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Recent trends in systems architecture include the growing importance of warehouse-sized computers and
new solutions to address the scalability and power efficiency challenges in such large scale data centers.
The key drivers behind this rapid growth are a new class of large-scale applications that constantly push the
capacity and capability of existing infrastructures to the limit. The essence of these applications is
distributed processing of large datasets to satisfy multi-dimensional service-level requirements. A key need
for further research from the broader community on architectural issues for such large-scale data centers is
the availability of a representative set of the emerging distributed workloads that drive these markets. This
paper discusses this challenge. Specifically, we recognize the data-centricity of these workloads and
discuss changing requirements in the context of these workloads. We discuss a data-centric workload
taxonomy that seeks to separate the most important dimensions across which these applications differ. By
examining existing and emerging workloads, we argue for a systematic approach to derive a coverage set
of workloads based on this taxonomy. Inspired by the "seven dwarfs" of numerical computation [1][2], we
believe that our community needs to collectively identify a set of "data dwarfs" or key data processing
kernels -- that provide current and future coverage to this space and can be modeled by open benchmarks
with realistic datasets -- for reasoning about new architectural designs and tradeoffs. This discussion was
initiated at the 2010 ACLD workshop and we hope such goals would be achieved together by the computer
architecture community.
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1. MOTIVATION 

Recent trends in systems architecture include the growing 
importance of warehouse-sized computers and new solutions to 
address the scalability and power efficiency challenges in such 
large scale data centers. The key drivers behind this rapid growth 
are a new class of large-scale applications that constantly push the 
capacity and capability of existing infrastructures to the limit. The 
essence of these applications is distributed processing of large 
datasets to satisfy multi-dimensional service-level requirements.   

A key need for further research from the broader community on 
architectural issues for such large-scale data centers is the 
availability of a representative set of the emerging distributed 
workloads that drive these markets. This paper discusses this 
challenge. Specifically, we recognize the data-centricity of these 
workloads and discuss changing requirements in the context of 
these workloads. We discuss a data-centric workload taxonomy 
that seeks to separate the most important dimensions across which 
these applications differ. By examining existing and emerging 
workloads, we argue for a systematic approach to derive a 
coverage set of workloads based on this taxonomy. Inspired by 
the “seven dwarfs” of numerical computation [1][2], we believe 
that our community needs to collectively identify a set of “data 
dwarfs” or key data processing kernels — that provide current 
and future coverage to this space and can be modeled by open 
benchmarks with realistic datasets — for reasoning about new 
architectural designs and tradeoffs. This discussion was initiated 
at the 2010 ACLD workshop and we hope such goals would be 
achieved together by the computer architecture community. 

2. DATA CENTRICITY 
Prior reports (e.g., [3]) have observed the increasing intensity of 
data processing in data centers, quoting the sheer amount of data 
to be processed and the mismatch between conventional 
architectures and the need to quickly access large datasets. 
Extrapolating these trends, the future will see a greater shift, from 
compute, to data. Data will likely be the determining force in the 
data centers triggering different kinds of computation, as opposed 
to the traditional model of computation that transforms data from 
input to output. This has been demonstrated in the evolution of 
both web services and HPC applications. For example, web query 
and click streams not only initiate conventional searches and 
online transactions, but also trigger mash-ups and personalized 
recommendations, and provide the basis for trend and anomaly 
detection, data mining, knowledge extraction and future 
prediction. Conventional scientific simulations are moving into 
data-derived models, data mining, and multiple interactive models 
that require new balanced architecture designs [4] – a trend that 
Jim Gray referred to as “eScience”.   

These emerging data-centric workloads have some interesting 
characteristics that differentiate them from prior workloads.  

1. Scale. Emerging data-centric workloads involve complex 
analysis at an immense scale.  The scale is reflected in the fact 
that the total amount of data involved in a single operation often 
exceeds a single-system’s capacity, in turn, requiring distributed 
infrastructure to host and process the data.  More interestingly, 
while Moore’s law is a powerful exponential curve in itself, data 
volume rides on a much steeper growth curve than even Moore’s 
law. For example, online data and enterprise data warehouse sizes 
have been tracked to increase by more than 3X every two years 
[5][6]. These trends imply growing system sizes determined by 
the datasets, and a corresponding need to balance the computing 
and communication around these increased storage needs.   

2. Integration and correlation over multiple data sources. The 
data growth is partly fueled by the introduction of new data 
sources (e.g., sensors and digitization of our physical world), but 
also the integration and cross correlation of multiple data sources 
(e.g., mash-ups and multi-model interactions). This implies that 
future data centers are likely to process unstructured, structured, 
and rich media data as well as their combinations, with diverse 
data transformation and presentation requirements.   

3. Time criticality. A key aspect of data-centric computing is to 
deliver the right information at the right time. This often translates 
into real-time or interactive response requirements from the data 
center, and needs aggressive filtering and summarization as well 
as architectural support for providing large in-memory processing.   

4. Complex mining and learning. Deep analysis, mining and 
learning algorithms are needed to extract meaning out of the huge 
dataset. Combined with simple and predictable pre-processing 
tasks, this will create a spectrum of data processing tasks with 
varying compute complexity and data access patterns. In contrast 
to traditional data processing operations like ingress/egress, or 
simple joins, future processing will focus on more complex 
operations like cubing, graph traversal, etc.  

3. A DATA-CENTRIC TAXONOMY 
Clearly, as a community we need a benchmark suite to represent 
future data-centric workloads. However, existing benchmarks, 
including recent web2.0 benchmarks [7][8], are not sufficient in 
capturing the multifaceted requirements and continuous evolution 
of this domain. In this paper, we argue that maybe, we should 
consider a systematic approach towards a coverage benchmark 
set. The coverage should be tested against a well-defined data-
centric taxonomy, and, ideally, a small set of key data processing 
kernels constitute the benchmark suite whose fundamental 
behaviors persist along the paths of workload evolution. 

Table 1 illustrates a data-centric taxonomy based on our 
examination of a wide class of data-centric workloads. Around the 
notion of data-centricity, we qualitatively identify important 
dimensions under which a given workload could be categorized. 
These include response time (real-time vs. background), access 
pattern (random, sequential or permutation), working set (all vs. 
partial), data type (structured, unstructured and rich media), 



read/write, and processing complexity (low, medium or high). 
Notice that scale is assumed for all workloads and therefore not 
explicitly listed. Table 1 also explains the attributes of each 
dimension and provides a list of popular workloads at the end.  

Response 
Time 

Real-time Real-time or interactive responses required 

Background Response time is not critical for user needs 

Access 
Pattern 

Random Unpredictable access to regions of data store 

Sequential Sequential access of data chunks 

Permutation Data is re-distributed across the system 

Working 
Set 

All The entire dataset is accessed 

Partial Only a subset of data is accessed 

Data Type 

Structured Metadata/schema/type are used for data records 

Unstructured No explicit data structure, e.g., text/binary files 

Rich media 
Audio/video and image data with inherent 
structures and specific processing algorithms 

Read  
vs. Write 

Read heavy Data reads are significant for processing 

Write heavy Data writes are significant for processing 

Processing 
Complexity 

High 
Complex processing of data is required per 
data item. Examples: video trans-coding, 
classification, prediction 

Medium 
Simple processing is required per data item. 
Examples: pattern matching, search, 
encryption. 

Low 
Workloads dominated by data access with few 
compute operations. Examples: sort, upload, 
download, filtering, and aggregation. 

Popular workloads 
Photograph processing, Sensor networks, Web search, Ad-hoc queries, 

Personalization, Recommendation, BI analytics, Online games, Graph mining, 
Social network analysis, Ad analysis, Disease outbreak prediction, Media trans-

coding, Transaction processing, RMS, Web server, Data mining, Sorting, 
Decision support, De-duplication, Mash-ups, Summarization, Compression, 

Encryption, Song recognition, Aggregation, Correlation, Index building, Cubes

Table 1: A data-centric workload taxonomy 

4. AN EXAMPLE COVERAGE SET 
Table 2 shows an example of mapping some popular workloads 
from prior studies to the taxonomy and picking a small subset 
with full coverage. Here each row represents a workload, and 
each column is an attribute in the taxonomy. An “X” sign at the 
intersection indicates the workload demonstrates the 
corresponding attribute. The highlighted workloads constitute a 
subset that collectively covers all attributes in the taxonomy. 
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Sort      X    X    X  X    X    X

Search (web)  X      X    X      X  X    X

Search (image)  X      X    X      X  X    X X

Search Indexer  X        X  X      X  X    X X X

Recommender  X        X  X      X  X    X

De‐duplication    X      X    X    X  X    X X

Transaction  X  X  X  X      X  X      X  X

Decision Support  X  X  X    X  X      X    X  X

Video Sharing  X  X    X  X  X      X    X  X X X

Data Mining      X    X    X    X  X    X

  
Table 2: An example coverage set of benchmarks 

For this set of popular workloads, Table 2 shows how we can 
choose five workloads to provide a reasonable coverage set while 
also enabling systems studies including potentially simulation.  
(1) Sort models a two-pass distributed sort at petabytes scale. It is 

both read- and write-heavy, and stresses the balance between 
compute/storage/networking subsystems. (2) Search models text 
search using in-memory index to achieve sub-seconds response 
time. It is read-only and stresses random access pattern. (3) 
Recommender represents parallel machine learning algorithms 
(e.g., for making Netflix movie recommendations), which have 
high processing complexity and regular communication patterns. 
(4) Dedup implements mostly read-only, sequential access based 
data de-duplication. (5) Video models a video upload and 
streaming server with real-time user interaction requirements. 

5. GENERALIZATION: DATA DWARFS 
Notice that the highlighted subset in Table 2 is neither the 
minimal set nor the only coverage set. There are other reasons for 
us to choose them, e.g., scalability and ease of simulation. More 
importantly, these seem to imply to the potential of identifying a 
few key “data dwarfs” — data processing kernels that represent 
critical application classes whose high-level characteristics are 
likely to persist across implementations and architectures in the 
future. We argue that such data dwarfs are likely to be well 
matched for systems/architecture research, for us to understand, 
design and evaluate data-centric workloads and systems, and are 
likely to differ from existing compute dwarfs [2].  

We also speculate that a small set of data dwarfs will constitute 
the coverage set in our data-centric taxonomy.  Empirically, this 
seems evident in most data processing frameworks: the majority 
of database cycles are spent on a handful of relational algebraic 
operators (e.g., selection and join), and MapReduce frameworks 
mainly operate on sort, shuffle, serialization and compression. 

6. CONCLUDING REMARKS 
In this paper, we take a first step towards motivating and defining 
a coverage set of future data center workloads with a data-centric 
workload taxonomy and “data dwarfs”. Many open questions 
remain to be answered: Are there other aspects of data-centricity? 
What new dimensions and attributes should be added to the 
taxonomy? Where do we find data dwarfs? What are the data 
dwarfs? How do we model these data dwarfs through open 
benchmarks and more importantly, open datasets? We hope these 
questions can fuel the discussion between architects and data 
center experts, and help collect community inputs to pursue the 
much needed data-centric benchmark suite. 
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