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ON THE FREQUENCY-DOMAIN PROPERTIES OF SAVITZKY-GOLAY FILTERS

Ronald W. Schafer

Hewlett-Packard Laboratories
1501 Page Mill Road
Palo Alto, CA 94304

ABSTRACT

This paper is concerned with the frequency-domain proper-
ties of the so called Savitzky-Golay lowpass filters, which are
based on the principle of local least-squares fitting of a poly-
nomial. A summary of the important frequency-domain prop-
erties is given along with an empirically-derived formula for
3 dB cutoff frequency as a function of polynomial order N
and impulse response half-length M .

Index Terms— Savitzky-Golay filter, least-squares poly-
nomial approximation, smoothing

1. INTRODUCTION

Savitzky and Golay [1] proposed a method of data smooth-
ing based on local least-squares polynomial approximation.
They showed that fitting a polynomial to a set of input sam-
ples and then evaluating the resulting polynomial at a single
point within the approximation interval is equivalent to dis-
crete convolution with a fixed impulse response. The lowpass
filters obtained by this method are widely known as Savitzky-
Golay (S-G) filters. Savitzky and Golay were interested in
smoothing of noisy data obtained from chemical spectrum
analyzers, and they demonstrated that least-squares smooth-
ing reduces noise while maintaining the shape and height of
waveform (in their case, spectral) peaks. Subsequently, this
property of the S-G filters has been found to be attractive in
other applications such as ECG processing [2], and the ba-
sic concept has been generalized to two-dimensions [3] and
applied in processing images such as ultra sound and SAR.

Most discussions of S-G filters emphasize their time-
domain properties without reference to such frequency-
domain features as passband width, stopband attenuation,
etc. The purpose of this paper is to examine the S-G filters
from the frequency-domain viewpoint and to quantify some
of the frequency-domain properties of the S-G filters.

2. LEAST-SQUARES SMOOTHING OF SIGNALS

The basic idea behind least-squares smoothing is depicted in
Figure 1, which shows a sequence of samples x[n] of a dis-
crete signal as solid dots. Considering for the moment the
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x[m] or x[n]

Fig. 1. Illustration of least-squares smoothing by locally fit-
ting a second-degree polynomial (solid line) to five input sam-
ples: • denotes the input samples, ◦ denotes the least-squares
output sample, and × denotes the effective impulse response
samples (weighting constants). (Dotted line denotes polyno-
mial approximation to centered unit impulse.)
.

group of 2M + 1 samples centered at n = 0, we obtain (by a
process to be described) the coefficients of a polynomial

p(n) =
N∑

k=0

akn
k (1)

that minimize the mean-squared approximation error,

EN =
M∑

n=−M

(
N∑

k=0

akn
k − x[n]

)2

. (2)

In Figure 1, where N = 2 and M = 2, the solid curve on
the left in Figure 1 is the polynomial p(n) evaluated on a fine
grid between −2 and +2, and the smoothed output value is
obtained by evaluating p(n) at the central point n = 0.1 That
is, y[0], the output at n = 0, is y[0] = p(0) = a0. The
value of the output at the next sample is obtained by shifting
the analysis interval to the right by one sample and repeating
the polynomial fitting and evaluation at the central location.

1In general, the approximation interval need not be symmetric about the
evaluation point. This leads to nonlinear phase filters, that may be useful for
smoothing at the ends of finite-length input sequences.



This is repeated at each sample of the input, each time pro-
ducing a value of the output sequence y[n]. Another example
is shown on the right where the center of the interval is shifted
to sample n = 10 and the new polynomial fit to the samples
8 ≤ n ≤ 12 is shown again by the solid curve and the output
at n = 10 is the value of the new polynomial evaluated at the
center location.

The original paper by Savitzky and Golay [1] observed
that at each position, the smoothed output value obtained by
sampling the fitted polynomial is identical to a fixed linear
combination of the the local set of input samples; i.e., the set
of 2M+1 input samples within the approximation interval are
effectively combined by a fixed set of weighting coefficients
that can be computed once for a given polynomial order N
and approximation interval of length 2M + 1. That is, the
output samples can be computed by a discrete convolution of
the form

y[n] =
M∑

m=−M

h[m]x[n−m] =
n+M∑

m=n−M

h[n−m]x[m] (3)

The values marked with × in Figure 1 are the shifted im-
pulse responses h[0 −m] and h[10 −m] that could be used
to compute the output samples labeled with ◦, thus replacing
the polynomial fitting process at each sample with a single
evaluation of (3).

To show that we can find a single FIR impulse response
that is equivalent to least-squares polynomial smoothing, we
must first determine the optimal coefficients of the polyno-
mial in (1) by differentiating EN in (2) with respect to each
of the unknown coefficients and setting the corresponding
derivative equal to zero. This yields, for i = 0, 1, . . . , N ,

∂EN
∂ai

=
M∑

n=−M

2ni

(
N∑

k=0

akn
k − x[n]

)
= 0, (4)

which, by interchanging the order of the summations, be-
comes the set of N + 1 equations in N + 1 unknowns

N∑
k=0

(
M∑

n=−M

ni+k

)
ak =

M∑
n=−M

nix[n] i = 0, 1, . . . , N.

(5)
The equations in (5) are known as the normal equations for
the least-squares approximation problem. It is important to
note before we proceed further that a unique solution requires
that we have at least as many data samples as we have coef-
ficients in the polynomial approximation. That is, we require
2M ≥ N . In fact, the equations in (5) become ill-conditioned
if M and N are large and 2M is close to N .

Additional insight can be obtained by expressing the
equations in (5) in matrix form. To do this it is helpful to
define a (2M + 1) by (N + 1) matrix A = {αn,i} as the
matrix with elements

αn,i = ni, −M ≤ n ≤M, i = 0, 1, . . . , N.

This matrix is called the design matrix for the polynomial
approximation problem [5]. The transpose of A is AT =
{αi,n} and the product matrix B = AT A is an (N + 1) ×
(N + 1) symmetric matrix with elements

βi,k =
M∑

n=−M

αinαnk =
M∑

n=−M

ni+k = βk,i,

for i = 0, 1, . . . , N and k = 0, 1, . . . , N , which we see are
the coefficients for the set of equations in (5). If we further
define the vector of input samples as

x = [ x[−M ], . . . , x[−1], x[0], x[1], . . . , x[M ] ]T ,

and define a = [a0, a1, . . . , aN ]T as the vector of polynomial
coefficients, then it follows that the equations in (5) can be
represented in matrix form as

Ba = AT Aa = AT x.

Therefore, the solution for the polynomial coefficients can be
written as

a = (AT A)−1AT x = Hx.

Now recall that the output for the group of samples centered
on n = 0 is y[0] = a0; i.e., we only need to obtain the coeffi-
cient a0. Furthermore, we see that we only need the 0th row
of the (N+1)×(2M+1) matrix H = (AT A)−1AT , which
by the definition of matrix multiplication gives a0 as a linear
combination of the (2M + 1) elements of the (2M + 1) × 1
column vector x. The important observation is that the ma-
trix H depends only on N and M and is independent of the
input samples. Thus, the same weighting coefficients will be
obtained at each group of 2M + 1 samples, and so we can
think of least-squares smoothing as a shift-invariant discrete
convolution process.

One approach to finding the impulse response of the
equivalent LTI system is to compute the matrix H. Then, by
the definition of matrix multiplication, the output will be

y[0] = a0 =
M∑

m=−M

h0,mx[m]

where hi,n denotes the elements of the (N + 1)× (2M + 1)
matrix H and h0,n is an element of the 0th row. Therefore,
comparing this equation to the second term of (3) with n = 0,
we observe that

h[−m] = h0,m −M ≤ m ≤M.

Note that this equation gives h[−m] since, as shown in (3), the
impulse response is flipped with respect to the input in eval-
uating discrete convolution. Efficient matrix inversion tech-
niques can be employed [5] to compute only this first row
rather than the entire matrix H .



Another approach is to note that since the same weight-
ing coefficients are obtained irrespective of the signal vector,
we can set x equal to a unit impulse centered in the interval
−M ≤ n ≤M , and solve for all the coefficients of the corre-
sponding polynomial approximation.2 Then, the impulse re-
sponse can be obtained by evaluating the corresponding poly-
nomial at locations −M ≤ n ≤M .

To show that this statement is true, we denote the coeffi-
cient vector for approximation of the impulse as ã, which is
given by

ã = (AT A)−1AT d.

where d = [0, 0, . . . , 0, 1, 0, . . . , 0, 0]T is a (2M + 1) × 1
column vector. Then for the impulse input d, it follows that
AT d is the (N + 1)× 1 column vector

AT d = [1, 0, . . . , 0]T .

This means that (AT A)−1 must have the form

(AT A)−1 =


ã0 ã1 · · · ãN

ã1 • · · · •
...

...
...

...
ãN • · · · •

 ,
where the matrix entries denoted • do not enter into the com-
putation of ã. Now, since AT is

AT =


(−M)0 · · · 1 · · · M0

(−M)1 · · · 0 · · · M1

(−M)2 · · · 0 · · · M2

...
...

...
...

...
(−M)N · · · 0 · · · MN

 ,
it follows from the definition of matrix multiplication that the
0th row of the matrix H = (AT A)−1AT is[
h0,−M h0,−M+1 · · · h0,0 · · · h0,M

]
=

[
p̃(−M) p̃(−M + 1) · · · p̃(0) · · · p̃(M)

]
where p̃(n) is the polynomial fit to the unit impulse,

p̃(n) =
N∑

k=0

ãkn
k −M ≤ n ≤M. (6)

Therefore, the impulse response of the S-G filter is

h[−n] = h0,n = p̃(n).

As before, this equation gives h[−n] since the impulse re-
sponse is flipped around n = 0 in evaluating discrete con-
volution. Henceforth, we shall refer to p̃(n) as the impulse
response design polynomial. As we will discuss in Section 5,
(6) is the basis for a simple method for design of S-G filters
using the polynomial fitting functions in MATLAB.

2Note that these polynomial coefficients, denoted ã, will not in general be
equal to those of any of the local approximations that are implicitly generated
for each group of 2M + 1 input samples.

3. MOVING AVERAGE FILTERING AS
LEAST-SQUARES FILTERING

An often used expedient for data smoothing is symmetrical
moving average (MA) filtering defined as the convolution

y[n] =
1

2M + 1

M∑
m=−M

x[n−m] =
1

2M + 1

n+M∑
m=n−M

x[m],

(7)
from which we see that the impulse response for the symmet-
rical MA, filter is

h[n] =

{ 1
2M + 1

−M ≤ n ≤M
0 otherwise.

(8)

Symmetrical MA filtering is identical to polynomial smooth-
ing with a polynomial of degree N = 0 (i.e., a constant). To
see this, we simply assume N = 0 in (5) to obtain the single
equation (

M∑
n=−M

)
a0 =

M∑
n=−M

x[n]

from which we obtain for the output value at the center of the
interval

y[0] = a0 =

M∑
n=−M

x[n]

M∑
n=−M

=
1

2M + 1

M∑
n=−M

x[n],

which is the average over the 2M + 1 samples. Thus, we
see that MA filtering is entirely equivalent to least-squares
polynomial smoothing with a polynomial of degree N = 0.

It is also interesting to consider least-squares smoothing
with a polynomial of degree N = 1. Again from (5), the co-
efficients of the fitted polynomial must satisfy the equations3


M∑

n=−M

0

0
M∑

n=−M

n2


[
a0

a1

]
=


M∑

n=−M

x[n]

M∑
n=−M

nx[n]


from which it follows easily that

a0 =

M∑
n=−M

x[n]

M∑
n=−M

=
1

2M + 1

M∑
n=−M

x[n],

3We have used the fact that
M∑

n=−M

n = 0.



and

a1 =

M∑
n=−M

nx[n]

M∑
n=−M

n2

.

Since the output of the smoothing process is simply y[0] =
a0, it follows that least-squares polynomial smoothing with a
first-degree polynomial (straight line) is identical to smooth-
ing by least-squares fitting a constant, which we have shown
above to be equivalent to MA filtering. Clearly, the reason for
this is that the sum of the integers −M, . . . ,−1, 0, 1, . . . ,M
is zero, making the output independent of a1.

4. A SUMMARY OF PROPERTIES OF S-G FILTERS

Figure 2 shows the impulse response of a S-G filter withN =
6 and M = 16. Although this is a specific example, its prop-
erties are representative of the entire class of symmetric S-G
filters. Figure 3 shows the frequency response of several S-G

−20 −15 −10 −5 0 5 10 15 20
−0.05

0

0.05

0.1

0.15

sample time n

S-G Impulse Response: N = 6, M = 16

Fig. 2. Impulse response of a S-G filter with M = 16 and
N = 6. Dashed curve is the polynomial p̃(n) evaluated on a
dense grid.
.

filters designed by MATLAB statements given in Section 5.
The impulse response lengths are all (2M + 1) = 2 · 16 +
1 = 33 with implicit polynomial orders of N = 0, 2, 4, 6, 12.
Figures 2 and 3 illustrate properties that are shared by all S-G
filters. These properties, which can be shown to be due to the
structures of the matrices B and H are summarized below:

• The odd-indexed coefficients of the impulse response
design polynomial all zero so that we can express p̃(n)
as

p̃(n) =
bN/2c∑
k=0

ã2kn
2k (9)

where b c means rounding down.

• The impulse response is symmetric since h[−n] =
p̃(n) = p̃(−n) = h[n]. Therefore, the frequency re-
sponse is purely real. (The shifted impulse response
h[n − M ] is causal and the corresponding frequency
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Fig. 3. Frequency response of S-G filters with M = 16 and
various polynomial orders.
.

response has linear phase corresponding to the time de-
lay of M samples.) S-G filters are type I FIR lowpass
filters [6] with nominal passband gain of unity.

• The zeros of the system function H(z) of a S-G fil-
ter are either on the unit circle of the z-plane or they
occur in complex conjugate reciprocal groups [6]. The
unit circle zeros are, of course, responsible for the sharp
dips (high attenuation) in the stopband of the frequency
response.

• The nominal normalized cutoff (3 dB) frequency, fc =
ωc/π, depends on both the implicit polynomial order
N and the length of the impulse response, (2M + 1).
If M is fixed as in Figure 3, the passband of the filter
gets wider approximately in proportion toN . Although
not illustrated in Figure 3, the cutoff frequency depends
inversely onM . Section 5 gives an approximate empir-
ical relation for fc as a function of N and M .

• S-G filters have very flat frequency response in their
passbands since it can be shown that H(ejω)

∣∣
ω=0

= 0
and

d rH(ejω)
dωr

∣∣∣∣
ω=0

= (−j)r
M∑

n=−M

nrh[n] = 0, (10)

for r = 1, 2, . . . , N .

• The S-G filters have mediocre attenuation characteris-
tics in their stopband regions (except at the frequencies
corresponding to zeros on the unit circle). Defining the
stopband as the frequency range from the first zero up
to π radians, we see from Figure 3 that for the MA fil-
ter (N = 0), the minimum attenuation in the stopband
(amplitude of first peak after the first zero) is approxi-
mately 13 dB. For N ≥ 2, the minimum attenuation in



the stopband is approximately 11 dB. Also illustrated
in Figure 3 is the fact that the peak stopband gain tends
to increase with increasing N for fixed M . Figure 3
also shows that the frequency response decreases in
gain as frequency increases above the nominal cutoff
frequency.

• A final property not explicitly illustrated by Figures 2
and 3 is that for the symmetric case that we have em-
phasized, the S-G filters for polynomial orders N and
N + 1 (N even) are identical. This was illustrated in
Section 3 where it was shown that the cases N = 0
and N = 1 give the same impulse response. It can be
shown this is true in general due to the symmetry of the
approximation region.

5. DESIGN OF S-G FILTERS

Recall from (6) that the impulse response of a S-G filter can
be computed as samples of the N th degree polynomial fit to
the unit impulse. This method of computing the S-G filters is
easily implemented using MATLAB’s polynomial functions
as in the following MATLAB statements:

a=polyfit( -ML:MR,...

[zeros(1,ML),1,zeros(1,MR)],N );

h=fliplr( polyval(a,-ML:MR) )

The MATLAB function polyfit( ) computes the co-
efficients of the impulse response design polynomial and
polyval( ) evaluates the polynomial at a discrete set of
points. Note that these statements can be use to compute
non-symmetric S-G filter by setting ML6=MR.

There are some important constraints in the use of polyno-
mial fitting in general. Specifically, the number of data points
(in this case 2M + 1) must be at least as large as the num-
ber of undetermined coefficients N + 1. Furthermore, if the
order of the polynomial, N , is too large, the approximation
problem is badly conditioned and the solution will be of no
value. (The function polyfit( ) issues an alert when the
approximation problem is ill-conditioned.) Although these
factors are significant limitations, a wide range of frequency-
domain characteristics can be achieved by choosing M and
N appropriately.

In order to quantify the frequency-domain behavior of S-
G filters, impulse responses were computed for various val-
ues of M and N within the constraints mentioned above,
and the corresponding frequency responses were computed
for 0 ≤ ω ≤ π. The passband of the filter was defined by
the frequency where 20 log10 |H(ejω)| is “3 dB down” from
the value of 0 dB, the gain of the filter at ω = 0. The re-
sults for measurements on filters with M = 25, 50, 100, 200
and even orders N = 2, 4, . . . , 32 are displayed in Figure 4.
The points marked with * and connected by a blue line are the

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

3
dB

cu
to

ff,
f p

polynomial order, N

M = 25

M = 50

M = 100

M = 200

Fig. 4. Relationship between 3 dB cutoff frequency fc, poly-
nomial length N , and impulse response half-length M . )
.
measured cutoff frequencies. It is seen that fc varies almost
linearly with N with the slope being dependent inversely on
M . A reasonably accurate approximation to this behavior for
the indicated range of parameters is the equation

fc =
N + 1

3.2M − 4.6
. (11)

The values of fc = ωc/π predicted by this equation are
marked with ◦ and connected by a red line. Figure 4 shows
that this simple formula fits the measurements quite well
except for the case M = 25 where the measurements devi-
ate somewhat from linear over the entire range of N . The
relative error in predicting the measured cutoff frequency
is less than 4% over the range M = 25, 50, 100, 200 and
N = 4, . . . , 32, and the relative error is within 8% for the
casesM = 25, 50, 100, 200 andN = 2. As can be seen, large
values of M and N = 2 lead to extremely narrow passbands,
which would be of limited usefulness except when the signal
components are greatly oversampled. It was found that even
though the function polyfit( ) gave an ill-conditioned
warning for the larger values of N , the resulting filters re-
mained acceptable for values of N up to 40. The formula in
(11) becomes increasingly accurate for larger values of M
and N . The formula does not fit as well for values of M less
than 25. However, the dependence of fc on N is still linear.
For M < 25 and N suitably restricted, a formula similar to
(11) with 4.6 replaced by 2 gives more accurate predictions.
While a more complicated functional form based on more
measurements could provide more accurate predictions over
a wider range of M and N , (11) should be adequate for most
applications of S-G filters.

6. DISCUSSION

Savitzky-Golay filters are based on the principle of fitting of
anN th degree polynomial to a set of input samples in a finite-
length interval around the output sample time. There is value



in knowing that a single impulse response implicitly achieves
this local polynomial fitting for every output sample. How-
ever, in many applications, signals are not characterized in
terms of their ability to be modeled by polynomials but rather
in terms of their frequency spectra. Thus, we have focused
in this paper on the frequency-domain properties of the S-G
filters.

Savitzky-Golay filters are often preferred because, when
they are appropriately designed to match the waveform of
an oversampled signal corrupted by noise, they tend to pre-
serve the width and height of peaks in the signal waveform.
While such performance features are often explained in terms
of the implicit polynomial fitting process (where it is assumed
that the fitted polynomial slopes are matched to those of the
signal) the reason for this behavior is also obvious from the
frequency domain properties of the filters. Specifically, they
have extremely flat passbands with modest attenuation in their
stopbands. Furthermore, the symmetric S-G filters have zero
phase so that features of the signal are not shifted. Thus, if
the signal has most of its energy in the passband of the filter
(implying significant over-sampling), the signal components
are undistorted while some high-frequency noise is reduced
but not completely eliminated. Of course, assuming that the
signal is lowpass is equivalent to assuming that the signal is
smooth enough to be represented by a polynomial of high
enough degree. However, S-G filters are often used in situ-
ations where a direct frequency-domain specification is more
precise or more easily related to models for signal produc-
tion. Toward the end of quantifying the design of S-G filters,
we have given an empirical relationship in (11) between 3 dB
frequency and the parameters M and N .

If one adopts the frequency-domain point of view, the
question naturally arises as to whether the main desirable
property of the S-G filters (very flat passband) could be
achieved with another design method, and perhaps with
greater attenuation in the stopband region. Figure 5 shows the
frequency response of an S-G filter with M = 16 (impulse
response length L = 2M + 1 = 33) and N = 6. Also shown
is the frequency response of a length L = 33 filter designed
by the Parks-McClellan (P-M) algorithm. In this example, the
passband and stopband cutoff frequencies were adjusted by
trial and error so that the transition region and the location of
the first zero of the frequency response were approximately
in the same location as those of the corresponding S-G filter.
The measured 3 dB cutoff frequency of the S-G filter was
fc = 0.143 (the formula of (11) predicts fc = 0.15). A very
flat passband is achieved with the P-M design algorithm by
imposing a 10:1 ratio between the passband equiripple ap-
proximation error and the stopband approximation error.4 In
the case of the S-G filter, the gain at the first local maximum
beyond the first zero of the frequency response is -11.73 dB,
while the equiripple maxima of the P-M filter have gains of
-19.9 dB. The lower part of the plot shows that the passband

4Larger ratios will make the passband even flatter.
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Fig. 5. Comparison of S-G filter (N = 6 and M = 16)
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McClellan algorithm: upper plot is entire frequency response
and lower plot is only the passband region.)
.
gain of the P-M filter has small ripple about 0 dB, and the flat
region is in fact wider than that of the S-G filter. It should
be noted that due to the tendency of S-G frequency responses
to fall off at high frequencies, the S-G filter has lower peak
stopband gain than the P-M filter after about ω/π = 0.5.

Given the close similarity of the two frequency responses
in Figure 5, it is clear that for the case of a signal confined to
the band |ω| < 0.143π with additive white noise, the perfor-
mance of the two systems should be nearly identical.
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