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Abstract— This paper studies the effect of parametric mis-
match in minimum mean square error (MMSE) estimation. In
particular, we consider the problem of estimating the inputsignal
from the output of an additive white Gaussian channel whose
gain is fixed, but unknown. The input distribution is known,
and the estimation process consists of two algorithms. First, a
channel estimator blindly estimates the channel gain usingpast
observations. Second, a mismatched MMSE estimator, optimized
for the estimated channel gain, estimates the input signal.We
analyze theregret, i.e., the additional mean square error, that is
raised in this process. We derive upper-bounds on both absolute
and relative regrets. Bounds are expressed in terms of the
Fisher information. We also study regret for unbiased, efficient
channel estimators, and derive a simple trade-off between Fisher
information and relative regret. This trade-off shows that the
product of a certain function of relative regret and Fisher
information equals the signal-to-noise ratio, independent of the
input distribution. The trade-off relation implies that hi gher
Fisher information results to smaller expected relative regret.

I. I NTRODUCTION

Consider an application that you are given the output of a
system, and you seek to recover the input of the system. You
know that the system is noisy, e.g., it adds white Gaussian
noise to the output. You know the distribution of the input,
but you do not know the system parameters. Problems of this
sort arise in different applications in signal processing and
communication systems. Some examples include blind decon-
volution [1], dereverberation [2], denoising [3], and mismatch
decoding [4]. These applications differ in their fundamental
models, fidelity criteria, and methodologies. However, they
have one thing in common: they all suffer from parametric
mismatch in recovering the input signals.

The motivation of this work is blind deconvolution and
dereverberation applications. Linear time-invariant channels
serve as common models in these applications. As the input
signal passes through these channels, it convolves with the
unknown finite-impulse response (FIR) of the channel, and it
adds with additive white Gaussian noise (of known variance).
Recovering the input signals from the noisy output could be
impossible even with perfect knowledge about the channel
response. This is out of our scope. Instead, we aim to study
the penalty and performance degradation that is specifically
caused by the lack of knowledge about the channel response.

We benchmark performance against that of perfect channel
knowledge scenario. We are concerned about issues such as
required sample complexity or training in channel estimation

to bring performance of input estimation within a desired
range. As a counterpart problem in communication systems,
one may think of block fading channels and the trade-off
between accuracy of channel estimation and performance of
decoding [5]. Note that channel estimation in our case is blind
as we have no control of the source.

As a first step to address these problems, in this work, we
focus on the most basic system in which the unknown channel
is just a single gain. We expect that the results and intuitions of
this work will generalize to generic FIR channels.1 In treating
the problem, we consider an estimation process that consists
of two algorithms. First, achannel estimatorblindly estimates
the channel gain using past output observations. Second, a
mismatchedminimum mean square error(MMSE) estimator,
optimized for the estimated channel gain, estimates the input
signal. Figure 1 illustrates the building blocks of this process.
Due to estimation error in channel estimation, the MMSE
estimator that is used in recovering the input signal results
in a mean square error that is larger than that of the ideal
MMSE estimator. We call this additional error asregret, and
we derive novel upper-bounds on both absolute and relative
regrets. The bounds are simple and demonstrate interesting
connections to the Fisher information. To this end, one might
attempt to exploit the results of [6] and [7] to derive other
alternative bounds.

We also quantify regret for unbiased,efficient channel
estimators. Since these estimators achieve Cramer-Rao bound,
they result in a simple trade-off relation between Fisher in-
formation and relative regret. This trade-off relation expresses
that the product of a certain function of relative regret and
Fisher information is equivalent to the signal-to-noise ratio,
independent of the input distribution. Trade-off suggeststhat
higher Fisher information results to smaller expected relative
regret. Although, intuitively, this may seem expected, simplic-
ity of the trade-off relation makes it worthwhile.

II. SETUP

Consider a linear dynamic system

Yn = aXn + Vn (1)

in which{Vn} is an independent, identically, distributed (i.i.d.)
Gaussian noise such thatVn ∼ N (0, σ2

v). The inputXn is

1Analogous to the case between the analysis of flat-fading andthe analysis
of frequency-selective channels.



an i.i.d. process whose distribution is known to beP(X).
Parametera ∈ R

+ is a fixed, unknown channel gain. It
results to a derived parametric family of probability measures
Pa(X, Y ), the joint distribution ofX and Y , governing the
system dynamic (1). The objective is to observe a realization
of the output process

Y n = (Y1, Y2, · · · , Yn)

and estimate the realization of the underlying input process,
i.e.,

Xn = (X1, X2, · · · , Xn).

Let X = R andY = R denote the input and output spaces,
respectively. We consider memoryless input estimators, e.g.,
φ : Y → X whereφ(Yn) is an estimate forXn. The mean
square error(MSE) for φ is defined

E
[

(X − φ(Y ))2
]

=

∫

(x − φ(y))2dPa. (2)

In Eq. (2) and henceforth we follow the convention that un-
subscribed expectations are measured according toPa(X, Y ).
Moreover, we use concise notations likePa = Pa(X, Y )
and Pa|y = Pa(X |Y = y) to denote joint and conditional
distributions, respectively.

One seeks to find an estimator that minimizes MSE (2).
The main challenge, however, is thata andPa are unknown.
Should we had oracle knowledge abouta, the MMSE estima-
tor for X is defined

φa(y) = E [X |Y = y] . (3)

for an observationY = y. Any other estimatorφ results
to additional error that we call itregret. The motivation for
this name is that it measures degradation on performance, an
impact caused by imprecise knowledge abouta.

In this paper, we assess regret for a special class of
mismatched estimators. Namely, we consider an estimation
process that is depicted in Figure 1. A channel estimation
works in parallel with an MMSE input estimation as follows.
At time instancen, a channel estimator finds an estimate
â = ân of a using the observed valuesY n−1. Then, it uses
the optimal estimator ofPâ(X, Y ) to compute

φâ(yn) = Eâ [Xn|Y = yn] (4)

as an estimate forXn. Functionφâ is a mismatch MMSE
estimator that causes regret when used in place ofφa. In
the following sections, we study two types of regret:absolute
regret and relative regret.

III. A BSOLUTE REGRET

A. Deviation Analysis

The absolute regret corresponding toφâ is

R(â, a) = E
[

(X − φâ(Y ))2
]

− E
[

(X − φa(Y ))2
]

. (5)

Application of orthogonality principle results to

R(â, a) = E
[

(φâ(Y ) − φa(Y ))2
]

. (6)

Xn YnYn

Y n−1

Vn

a

aXn

â

X̂n

channel

channel estimation

estimation

MMSE

estimation process

Fig. 1. Figure depicts the building blocks of the system setup. The estima-
tion process consists of two individual algorithms: 1) a channel estimation
algorithm that blindly estimateŝa as an estimate fora, 2) a mismatch MMSE
estimation algorithm, optimized for̂a, that recoversXn.

Eq. (6) quantifies the absoluteregret of using φâ instead of
φa. The following lemma states and proves an upper-bound
on (6).

Lemma 3.1:For everyâ, the following holds true

R(â, a) ≤ (â − a)2E [k(Y )J(X ; a|Y = y)]

+ o(â − a)2 (7)

in which the expectation is with respect toY ,

k(Y ) , 6σ2
x + 4

Y 2

a2
+ 4

Y 2

â2
,

and

J(X ; a|Y = y) , E

[

(

∇ ln fa(X |Y = y)
)2
]

(8)

is the Fisher information ofX relative toa, conditioned on
Y = y. Here,fa(X |Y = y) is the density ofPa|y.

Proof: Refer to Appendix A.
Lemma 3.1 describes a bound (7) that comprises two multi-
plicative terms. The first term(â − a)2 measures the channel
estimation error. The second term is the weighted average of
conditional Fisher information. Intuitively, this term measures
the amount of information that an observable random variable
X carries about unknown parametera conditioned onY ,
assigning more weight to larger values ofY .

Corollary 3.1: For |â − a| << 1, we have

R(â, a) ≤ (â − a)2E [k(Y )J(X ; a|Y = y)] . (9)

Moreover, if J(X ; a|Y = y) and k(Y ) are uncorrelated, we
obtain the simple bound

R(â, a) ≤ (â − a)2(14σ2
x + 8

σ2
v

a2
)J(X ; a|Y ) (10)

in which J(X ; a|Y ) , E [J(X ; a|Y = y)].

B. Efficient Channel Estimation

Note that (9) does not depend on the channel estimation
algorithm that estimatesa. It simply relates small deviation
between â and a to absolute regret in estimatingX . To
incorporate the effect of channel estimation algorithm, we
proceed as follows.

As mentioned earlier, at timen, â is obtained through
observation ofY n−1 = (Yi)

n−1
i=1 . In formal terms,

â = An(Y n−1)



whereA = (A1, A2, · · · ) is a channel estimation algorithm in
which An : Yn−1 → R

+.
Lemma 3.2:Let A denote the class of all unbiased channel

estimation algorithms. IfA contains anefficient estimator[8,
p. 92], the following holds true

inf
A∈A

E
[

R(An(Y n−1), a)
]

≤
1

n − 1

E [k(Y )J(X ; a|Y )]

J(Y ; a)
(11)

for sufficiently large values ofn.2

Proof: Refer to Appendix B.

IV. RELATIVE REGRET

A. Deviation Analysis

Let

RR(â, a) = E

[

(φâ(Y ) − φa(Y ))2

Eâ [X2|Y ] + Ea [X2|Y ]

]

(12)

denote the relative regret. The following lemma states and
proves a simple upper-bound onRR(â, a).

Lemma 4.1:For everyâ, we have

RR(â, a) ≤(â − a)2 J(X ; a|Y ) + o(â − a)2 (13)

where

J(X ; a|Y ) , E

[

(

∇ ln fa(X |Y )
)2
]

(14)

is the Fisher information ofX relative toa, conditioned onY .

Proof: See Appendix C.
The novelty of Eq. (13) is that it expresses a simple upper-
bound on the relative regret for small deviations betweenâ

anda. For small(â − a)2, it simplifies to

RR(â, a) ≤ (â − a)2 J(X ; a|Y ). (15)

B. Efficient Channel Estimation

Similar to the case for absolute regret, we now state the
following result.

Lemma 4.2:Let A denote the class of all unbiased esti-
mation algorithms. IfA contains anefficient estimator, the
following holds true

inf
A∈A

E
[

RR(An(Y n−1), a)
]

≤ 1

n − 1

J(X ; a|Y )

J(Y ; a)
(16)

for sufficiently large values ofn.
Proof: The proof of this lemma is essentially the same

as the proof of Lemma 3.2.
Lemma 4.2 describes a bound on the expected relative regret,
should an efficient estimator be used. This bound determines
the smallest upper-bound on average relative regret, when
sufficiently good unbiased channel estimators are used.

2The expectation in the LHS is with respect toY
n−1.

C. Regret Scalar

The constant value in the RHS of Eq. (16) worths attention.
It does not change with respect ton, and asn → ∞, it
becomes the sole scalar that determines the level of relative
regret. We define this quantity as theregret scalarand denote
it by

ρ(a) =
J(X ; a|Y )

J(Y ; a)
. (17)

Lemma 4.3:For every zero-mean input distributionP(X),
the following trade-off holds true between regret scalar and
output fisher information

(ρ(a) + 1)J(Y ; a) =
σ2

x

σ2
v

. (18)

Proof: See Appendix D.
In Eq. (18), the RHS is the signal-to-noise ratio that is
independent ofa. Thus, Eq. (18) presents a simple product
trade-off relationship betweenρ(a) and J(Y ; a). It suggest
that the higher the fisher information, the smaller the regret
scalar, and vice-versa. The following example explicates this
trade-off.

Example 4.1 (Gaussian Input):Assume Xn ∼ N (0, σ2
x)

andVn ∼ N (0, σ2
v) are i.i.d. implying thatYn ∼ N (0, a2σ2

x +
σ2

v) andYn|xn ∼ N (axn, σ2
v). With perfect knowledge ofa,

the ideal estimator forX given Y = y is

φa(y) =
aσ2

x

a2σ2
x + σ2

v

y. (19)

The MMSE error resulting from this estimator is

E
[

(X − φa(Y ))2
]

=
σ2

xσ2
v

a2σ2
x + σ2

v

. (20)

A mismatch estimator for̂a is

φâ(y) =
âσ2

x

â2σ2
x + σ2

v

y. (21)

We have

J(Y ; a|X) =
σ2

x

σ2
v

(22)

and

J(Y ; a) =
2a2σ4

x

(a2σ2
x + σ2

v)2
. (23)

Thus,

ρ(a) =
1

2

(

a2σ2
x

σ2
v

+
σ2

v

a2σ2
x

)

(24)

Figure 2 depicts the behavior ofρ(a) andJ(Y ; a) with respect
to a. The SNR =

σ2

x

σ2
v

= 10 dB and ata = .35, the minimum
regret scalar coincides with maximum Fisher information.

V. RECAP AND CONCLUSION

We considered the problem of estimating the input signal
from the output of an additive white Gaussian noise channel
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Fig. 2. Figure illustrates the multiplicative trade-off between regret scalar
and Fisher information. Smaller Fisher information results to larger regret
scalar and vice versa. TheSNR = 10 dB and the minimum regret scalar is
coincident with maximum Fisher information.

subject to parametric uncertainty. Namely, the channel gain is
fixed, but unknown. In treating the problem, we considered
an estimation process that consists of two algorithms: a blind
channel estimator and a mismatched MMSE estimator to
estimate the input. We studied the regret that is raised as a
result of mismatch estimation. Simple upper-bounds on both
absolute and relative regrets were presented. These bounds
provide useful tools in assessing deviation in estimating the
input when there exists a small deviation in channel gain
estimation. The bounds are simple and expressed in terms of
the Fisher information. This makes them more intuitive and
could potentially bridge to other known results in the literature.

We also quantified regret for unbiased, efficient channel
estimators. Using Caramer-Rao bound, we derived a simple
trade-off between Fisher information and relative regret.This
trade-off expresses that the product of a certain function of
relative regret and the fisher information is equivalent to the
signal-to-noise ratio, independent of the input distribution. The
trade-off suggests that the higher the Fisher information,the
smaller the expected relative regret.

This work is our initial attempt to shed light on information-
theoretic limits of blind deconvolution and dereverberation
systems. We are currently working on generalization of these
results to these applications.

APPENDIX

A. Proof of Lemma 3.1

To derive an upperbound on absolute regret, we first state
and prove the following results.

Proposition 1.1:For everyâ andy ∈ Y, we have

(φâ(y) − φa(y))2 ≤
2(Eâ

[

X2|y
]

+ Ea

[

X2|y
]

)D(Pâ|y‖Pa|y). (25)

Proof: By definition, we have

(φâ(y) − φa(y))
2

=

(
∫

x
(dPâ|y

dQ
− dPa|y

dQ

)

dQ

)2

for every probability measureQ such thatPa|y ≪ Q and
Pâ|y ≪ Q. By Cauchy Schwartz inequality, we obtain

(φâ(y) − φa(y))2 ≤
∫

x2

(

√

dPâ|y

dQ
+

√

dPa|y

dQ

)2

dQ

.

∫

(

√

dPâ|y

dQ
−
√

dPa|y

dQ

)2

dQ (26)

By inequality (a + b)2 ≤ 2(a2 + b2), one can show that the
first term in the RHS of the above inequality is smaller than
or equal to

2(Ea

[

X2|y
]

+ Eâ

[

X2|y
]

).

The second term in the RHS of inequality (26) is known as
Kakutani-Hellingerdistance betweenPa(X |y) andPâ(X |y),
denoted by [9, p. 363]

r2(Pâ|y, Pa|y) =
1

2

∫

(

√

dPâ|y

dQ
−
√

dPa|y

dQ

)2

dQ.

Moreover, we know of the following inequality between
Kakutani-Hellinger distance and Kullback-Leibler distance [9,
p. 369]

2r2(Pâ|y, Pa|y) ≤ D(Pâ|y‖Pa|y).

Substituting in (26), we obtain Eq. (25).

Proposition 1.2:For every â and y ∈ Y, the following
inequality holds true

Eâ

[

X2|y
]

≤ 3σ2
x + 4

y2

â2
. (27)

Proof: Let fâ(y|x) andfâ(y) denote the conditional and
marginal densities forPâ(X, Y ). Then,

Eâ

[

X2|y
]

=

∫

x2 fâ(y|x)

fâ(y)
f(x)dx

=

∫

x:fâ(y|x)≤fâ(y)

+

∫

x:fâ(y|x)>fâ(y)

≤ E
[

X2
]

+

∫

x:fâ(y|x)>fâ(y)

(28)

To simplify the second term, we substitutex2 by the inequality
that is derived as follows

fâ(y|x) >fâ(y) ⇒
(y − âx)2 < −2σ2

v ln
(√

2πσvfâ(y)
)

.



Taking the square roots, we obtain

|y − âx| <

√

−2σ2
v ln

(√
2πσvfâ(y)

)

⇒

|âx| < |y| +
√

−2σ2
v ln

(√
2πσvfâ(y)

)

.

Taking the square of both sides of the previous inequality and
using the inequality(a + b)2 ≤ 2(a2 + b2), we obtain

x2 < 2
y2

â2
− 4

σ2
v

â2
ln
(√

2πσvfâ(y)
)

⇒

x2 < 2
y2

â2
+ 4

σ2
v

â2

∫

(y − âx)2

2σ2
v

f(x)dx ⇒

x2 < 4
y2

â2
+ 2σ2

x

By substituting forx2 in the second term of the RHS of Eq.
(28), we conclude Eq. (27).

As a result of Propositions 1.1 and 1.2, we obtain

(φâ(y) − φa(y))2≤2(6σ2
x + 4

y2

â2
+ 4

y2

a2
)D(Pâ|y‖Pa|y).

Moreover, the following equality is known between Kullback-
Leibler distance and Fisher information [10, p.55]

D(Pâ|y‖Pa|y) =
(â − a)2

2
J(X ; a|Y = y)

+ o(â − a)2, (29)

where

J(X ; a|Y = y) , E

[

(

∇ ln fa(X |Y = y)
)2
]

is the Fisher information ofX relative toa, conditioned on
Y = y. Defining

k(y) , 6σ2
x + 8

y2

a2

and taking expectation with respect toY , we conclude the
proof of Lemma 3.1.

B. Proof of Lemma 3.2

We know that̂a = An(Y n−1). For sufficiently large values
of n, Eq. (9) holds true with arbitrarily high probability. Taking
the expectation of both sides of Eq. (9) with respect toY n−1,
we obtain

E
[

R(An(Y n−1), a)
]

≤
E
[

(An(Y n−1) − a)2
]

E [k(Y )J(X ; a|Y )]

Take the infimum of both sides overA and assumeA contains
an efficient estimator[8, p. 92]. By definition an efficient
estimator achieves the Cramer-Rao bound. This means

E
[

(An(Y n−1) − a)2
]

=
1

J(Y n−1; a)
.

SinceYn is i.i.d., by additivity of Fisher information

J(Y n−1; a) = (n − 1)J(Y ; a).

As a result, we obtain

inf
A∈A

E
[

R(An(Y n−1), a)
]

≤
1

n − 1

E [k(Y )J(X ; a|Y )]

J(Y ; a)
.

C. Proof of Lemma 4.1

By Proposition 1.1, we have

(φâ(y) − φa(y))2

Eâ [X2|y] + Ea [X2|y]
≤ 2D(Pâ|y‖Pa|y).

By Eq. (29), we obtain

RR(â, a) ≤ (â − a)2E

[

(

∇ ln fa(X |Y )
)2
]

+ o(â − a)2,

where

J(X ; a|Y ) , E

[

(

∇ ln fa(X |Y )
)2
]

is the average Fisher information ofX relative toa, condi-
tioned onY .

D. Proof of Lemma 4.3

SinceX does not depend ona, J(X ; a) = 0, and hence

ρ(a) =
J(X ; a|Y )

J(Y ; a)
=

J(Y ; a|X)

J(Y ; a)
− 1.

Moreover, since the additive noise is Gaussian, the equality

J(Y ; a|X) =
σ2

x

σ2
v

holds true for every distributionP (X) with zero mean. As a
result, we obtain Eq. (18).
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