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Abstract 

There is a significant number of IT failures per year 

because parts fail, products are used in ways they were 

not designed for, and humans make errors in using 

products. These failures result in incidents that product 

vendors service as a part of the warranty or contracts. 

Incidents incur significant costs for servicing them, 

including call centers, parts, and field engineers. Some of 

the major problems include lack of coherent incident 

information, leading to inaccurate service diagnosis and 

inability to forecast failures. At the same time, technology 

has evolved. Hardware is generally more reliable, 

failures are moving from hardware to firmware, software, 

and applications. The scale effect limits human operator 

engagement, prevents centralized approaches, and 

expands automation. Traditional ways of handling 

incidents are not appropriate any more. 

In this paper we present a set of tools and 

approaches that enable unified serviceability with self-

healing, automated learning, and an analysis engine. 

Unified serviceability with self-healing results in clean 

incident data and it reduces criticality of incidents into 

deferred maintenance. Automated learning produces 

empirically proven actionable knowledge enabling cost 

reduction of automated incident resolution. Using clean 

data and actionable knowledge, the analysis engine helps 

predict failures and determine trends, resulting in 

preventive maintenance. Collectively, preventive and 

deferred maintenance and automated incident service 

significantly reduce the costs. This way we have aligned 

incidents cost with the technology trends. 

1 Introduction 

IT products fail: servers and storage in data centers, 
laptops, printers. This is inevitable due to the failure rate 
associated with materials and parts, mis-configuration, 
software bugs, incompatibilities, etc. In addition, products 
are used in ways that they were not designed for. A 
substantial amount of time, money, and effort is invested 
in design for serviceability, but incidents still happen, and 
the cost to alleviate them is substantial, in the range of 
billions of dollars.  

Traditionally, the incidents are handled by call 
centers, which dispatch customer engineers and parts to 
service the incident. To reduce the costs, various 

optimizations are introduced: a) products are designed 
with increased redundancy or resilience to enable self-
healing; b) customers are educated to enable self-
mitigation; and c) service delivery is automated to reduce 
the human engagement. (See Figure 1). The “lines of 
defense” for incidents incrementally grow from products, 
through customers, to support organization.  

 

Figure 1. Serviceability Landscape 

Incident lifecycle consists of the following four 
phases: detect, diagnose, mitigate, and restore (see Figure 
2). Historically, most automation has taken place in the 
detect phase, with some automation to mitigate and 
restore. Diagnose is hardest to automate. Incident service 
can be reactive, upon incident; preventive, predating 
incident; and deferred, at later time. Each approach can be 
automated or not. 

 

Figure 2.  Service Incident Lifecycle.  

The trends are changing the landscape of service 
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firmware, to software and applications. New data centers 
are being built with higher levels of redundancy, such as 
containers, designed for lower criticality of maintenance. 
New applications are designed with built in resilience, 
such as Search or Web servers, which can sustain failures 
of the underlying hardware. Customers are expecting to 
self-support products much more than in the past. 

The hypothesis of our paper is presented in Figure 3, 
as a hypothetical prediction of the breakdown of 
preventive v. reactive v. deferred as well as automated v. 
manual incident service delivery. Our first hypothesis is 
that reducing human-involved incidents through 
automation saves costs throughout the service lifecycle. 
Our second hypothesis is that it is possible to shift the 
incidents into lower cost types:  

1. Reduce the proportion of reactive incidents (i.e. 
incidents that require immediate actions by humans)  - 
which are the most expensive -  to incidents deferred 
automatically by the system which is less expensive  

2. Increase the overall proportion of incidents avoided 
through preventive actions (least expensive) 

 
Figure 3.  Hypothesis: Hypothetical Breakdown of 
Preventive/Reactive/Deferred & Automated/Manual 

The rest of the paper is organized as follows. Section 
2 provides the background of modeling service delivery 
cost. Section 3 compares current and future serviceability. 
In Section 4 we present serviceability design and in 
Section 5 implementation. Section 6 presents specific 
examples of benefits of our serviceability framework. In 
Section 7, we provide data analysis. In Section 8 we 
compare our work to related research. We conclude in 
Section 9.   

2 Minimization of Incident Service Cost 

Reiki aims to minimize the total annualized costs 
involved, by studying costs incurred by incident service 
delivery, adding spares, and Service Level Agreement 

(SLA) non-compliance. We follow the decomposition of 
costs as below:  

Total Annualized Cost =  
(ProbOfSLNon-Compliance)x(SLAPenaltyPerHour)x8760HoursPerYr 
+(PredictNumOfSvcEventsPerYr)x(AvgCostPerSvcEventPerSvcContractType) 
+AverageCostPerYrToDeploySpares (if any) 

We used continuous time Markov chains to evaluate 
the probability of not meeting the conditions specified in 
a Service Level Agreement (SLA).  The result is then 
combined with the SLA non-compliance penalty cost 
resulting in an annualized SLA non-compliance penalty 
cost.  Next, an annualized service cost is developed by 
multiplying the number of predicted service events per 
year times the average service event cost (corresponding 
to each of the types of service contracts offered).  
Additionally, the annualized cost of adding spares was 
calculated.  The total annualized cost was then calculated 
by adding up the three types of costs indicated above.  
Total annualized cost is then graphically displayed so that 
various tradeoffs between service contract type (some of 
which are reactive and some of which are deferred) and 
sparing level can be studied as a function of SLA non-
compliance penalty severity. 

As an example, we developed an in depth analysis for 
a medium sized deployment of server blades where the 
level of sparing, type of service contract, and service level 
agreement (SLA) penalty costs are studied.  The total 
annualized cost of service, sparing, and SLA penalties is 
the objective function that is sought to be minimized.  
First, a Markov chain model is used to predict the steady 
state probability of not meeting the conditions specified in 
the SLA (a minimum number of server blades perfectly 
healthy) based on predicted server blade failure rates, 
predicted server blade recovery rates (which depend upon 
type of service contract), and level of sparing (0,1, or 2 
two spare server blades).  Next, the total annualized cost 
as described above is calculated for each combination of 
service contract type and sparing level.  A typical result 
can be summarized graphically as shown in Figure 4. 

 
Figure 4. Service Delivery v. Degree of Redundancy 

The graphical display then allows for trade-offs to be 
addressed directly.  For example, for the server blade 
farm under consideration, and for an assumed $10,000 per 
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hour penalty function for SLA non-compliance, the 
addition of two spare server blades allows for deferred 
maintenance type service contracts (next day, once per 
week), that in turn allows for considerable service cost 
savings, without giving up customer satisfaction as 
measured by the degree of SLA penalty costs incurred.   

We observe that the incremental cost of introducing 
spares may be justified since SLA penalty costs may be 
avoided and less expensive deferred maintenance type 
service contracts may be utilized, (depending on the 
severity of the SLA non-conformance penalty costs).  
Since severity of SLA penalty non-conformance will be 
dependent on the level of mission criticality of the market 
segment in question, other scenarios were developed (for 
example, using a $100,000 per hour penalty function for 
extremely mission critical applications, or alternatively, 
using a $1,000 per hour penalty function for much less 
critical applications.)  Interestingly, inclusion of adequate 
sparing still enables deferred maintenance service 
contracts (e.g. next day or once per week) to be valid low 
cost choices. 

 
Figure 5. Service Delivery v. Market Segment 

3 Use Cases 

Today…. When a blade fails in a datacenter, an 
event is created, which gets recorded in an event database 
and after filtering in the incident database. This further 
triggers a human operator in a call center to dispatch a 
part order and a customer engineer to explore the incident 
and eventually replace the blade if its failure is confirmed. 
There are too many touches by humans in the process, 
primarily raising the cost, but also introducing 
opportunity for misdiagnosis. 

When a failure happens to your laptop and it stops 
working, if you are an average user you do not have many 
options. Sophisticated users can play with the built-in 
diagnostics and beyond that the only option is to take it to 
a local shop and hope for the best, at least to retrieve the 
data out of it (the delta since you made the last backup). If 

it is more than year and a half old, any intervention will 
likely cost more than the value of the laptop.  

Future vision…. datacenters will be designed as 
containers, with built in power and cooling. They will be 
built to last a certified period of time, and replaced with 
equivalent units. Certain components within the container 
will continue to fail, but sufficient levels of redundancy 
will enable the container to provide the agreed upon SLA 
(more than 80% of products working). While this design 
was motivated by reducing management costs 
(installation, management), it has similar implications on 
servicing incidents. All service is done remotely, and the 
health of the datacenter is observed for anomalies from 
the predicted failure rates. If the health trend is as 
expected, intervention can be performed during regular 
maintenance, (weekly, monthly), at which time failed 
parts are replaced and preventive maintenance carried out. 
Most interventions migrate from critical (reactive) to 
scheduled (deferred, preventive). Most types of incidents 
are well known, the few new types are analyzed by 
operators and entered into the knowledge base, where 
they are compared to the inflow of new incidents. Both 
detecting and diagnosing incidents is carried out 
automatically.  

As soon as you have bought your new laptop, an 
icon in the lower right corner has flashed the health of 
your system and the maintenance schedule. Similarly to 
the remaining battery time, the lifetime of the laptop 
makes reminders of how healthy your laptop is, what kind 
of maintenance if any you want to perform. If any failure 
is imminent, the laptop has already informed its producer 
and the part is on the way. If the laptop is completely 
dead, you can connect it to another using a USB cable and 
perform some troubleshooting. For complex failures, a 
certified operator may have to be engaged, but all the 
knowledge required to service incident is available off of 
the portal.  

 
Figure 6.  Design 
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4 Design 

The design of our serviceability model is presented in 
Figure 6. It consists of unified serviceability with self-

healing built into products; automated learning from call 
center operator actions; and an analysis engine acting 
upon data from products and knowledge from automated 
learning. These three components enable serviceability 
closed loops: a) on products through self-healing; b) in 
the back-end data centers through automated rules; and c) 
in call centers with the help of humans. The first two 
closed loops can be automated entirely, while the third 
assumes human engagement. Human engagement is a 
determining factor for the cost of service delivery. 

Unified Serviceability assumes the same set of 
product data, events, and serviceability interfaces across 
all products. Product data includes the date the product 
was manufactured, when it was sold, when it was serviced 
and how, etc. Similar events consist of the same or similar 
types of alerts and other information coming from 
products and into the back end data center. Finally 
serviceability interfaces enable remotely querying product 
data, updating firmware, reconfiguring and other 
serviceability action which could be performed remotely 
(preferably) or locally. Unified serviceability dramatically 
reduces service delivery cost because of unification of 
tools, educating operators, increased automation, etc. 

We define self healing as an ability of a product 
(hardware, firmware, OS, middleware, application) to 
detect, diagnose, and automatically mitigate a product 
fault. Self healing usually involves automatic repair of 
localized faults (e.g. ECC in DIMMs) or fail-over to 
redundant components. The advantages of self healing are 
in reducing the costs and improving customer experience. 
Server and storage products have many self healing 
features built-in as part of the hardware, firmware and OS 
components. Some examples of these features in HP 
products are: 

1. HP Advanced Memory Partition technology to detect 
and correct 2 DRAM failures. 

2. Dynamic Processor Resiliency to recover from high 
rate of processor errors with the help of OS  

3. Dynamic Page De-allocation to disable the use of 
pages mapped to failed DIMMs 

4. OS initiated recovery for certain types of machine 
checks caused by uncorrected CPU errors 

Automated Learning enables transparently 
capturing actionable knowledge from the operators in call 
centers. The biggest challenge is to accomplish automated 
learning transparently, without slowing down operators, 
such as requiring additional information, traversing 
troubleshooting trees or forms to classify incidents or 

recommend remedies. Significant simplifications for this 
activity rely on following assumptions: 

• Most simple hardware failures will have already been 
accurately diagnosed by self-healing components. 

• A lot of context information will be provided from the 
product, failure history, surrounding infrastructure, etc. 

• Complex failures will be matched against past and 
offered to operators as candidate diagnosis. 

• Building confidence in diagnosis will be accomplished 
over time, with the fallback to human expertise. 

The outcome of the automated learning are: runbook 
automation-like sets of actionable rules, which can be 
executed to automatically mitigate incidents and restore 
health of systems; and accuracy estimates―the 
confidence level in the diagnosis. Confidence level is 
built over time. Once it surpasses the predefined 
confidence threshold, the incident is moved from the new 
to known category (see Figure 7). 

The Analysis Engine relies on clean data from 
products and actionable knowledge from call center 
operators to make automated diagnosis, evaluate trends 
and create forecasts. Each of these are valuable only if 
fairly accurate. The accuracy of complex rules (for a 
product collection) as well as timeliness of data play a 
major role in analysis engine effectiveness. Accuracy is 
verified in real deployments and compared to the 
predicted levels. The artifacts of the analysis engine 
comprise knowledge reports for R&D, customer, channel, 
and partners.  

 
Figure 7.  Closed Loop for New v. Known  

The classification of service incidents as new or 
known originates in Knowledge-Centered Support (KCS) 
[5], a common methodology for capturing, maintaining 
and reusing knowledge in support organizations. An 
incident is said to be known when the knowledge base 
contains a description of the problem that can be used to 
identify it and an associated solution. An incident is 
classified as new when there is no corresponding 
problem-solution pair. The ratio of new to known 
incidents is often used to measure the efficiency of a 
support organization [6]. Additionally, problem-solution 
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pairs can be exposed outside of the support organization 
as a way of enabling users or partners to resolve problems 
by themselves.  

KCS and “New versus Known” were designed for 
manual support processes (i.e. knowledge is captured, 
maintained, and located, and reused by call agents, 
product users and designers); however, the concepts are 
also applicable to automated serviceability. The consistent 
data and events from a product and its environment 
obtained from unified serviceability products allow 
problems to be characterized and diagnosed by the 
analysis engine. Solutions manually linked to a problem 
allow support personnel to create actionable rules, and in 
some cases, the automated learning feature generates 
actionable rules without human input (e.g. automated part 
dispatch for break-fix incidents). Feedback from solution 
reuse and manual review facilitates the identification of 
high-confidence solutions and creation of actionable 
rules. Rules may execute actions in the support provider’s 
environment (e.g. automatically shipping a part to a 
customer) or in the customer environment (e.g. launching 
a recovery action). Finally, pattern matching rules for 
identifying problem diagnoses can be incorporated into 
knowledge search tools to improve the effectiveness of 
existing KCS processes.  

5 Implementation 

There are currently several independent service 
incident management ecosystems in use – each focused 
on a particular business segment. Within each domain 
there are disparate levels of product serviceability, 
multiple event sources (automated, manual), a plethora of 
(point) analysis mechanisms and a fragmented approach 
to knowledge management (See Figure 8). 

 
Figure 8. Legacy Architecture 

The three main areas of development―Automated 
Learning, Analysis Engine and Serviceability Analysis― 

will integrate with the existing incident management 
fabric and utilize relevant data to help automate and 
optimize HP’s management of incidents (see Figure 9). 
The Analysis Engine will augment existing event analysis 
mechanisms for codifying and automating the handling of 
events while also forecasting potential issues and 
initiating appropriate action. Automated Learning will 
strive to leverage the support engineer’s expertise and 
actions in conjunction with active analysis of the available 
data (structured and unstructured) to indicate meaningful 
relationships/links and helpful suggestions (root causes, 
problem solving steps, associated issues, hints, etc.). 
Unified Serviceability will provide the product 
development teams a means of learning about existing 
deployments and identifying serviceability improvements. 
This will help drive enhanced self-healing capabilities on 
Services Objects and better event telemetry data feeding 
into the incident management system. 

 
Figure 9. Reiki Architecture 

When the various programs were initially conceived 
and developed proprietary interfaces and protocols were 
the mainstay. Over the last number of years things 
evolved to a point where most of the main solutions 
utilize web technologies and standards. For instance, the 
remote support event data models have been redesigned 
around a CIM-compliant data model mapped into an 
XML document format (XSC schema); web-based 
solutions have been developed to provide assisted 
troubleshooting; all user interfaces utilize a range of web 
technologies with a move towards greater standardization; 
and most services (internal and external to HP) are now 
accessible via web-based technologies. That said, the 
picture is still evolving and there is much to do. Many of 
the systems and solutions were initially created before the 
rise of web standards and mindsets (e.g. pre-Web 2.0).  

6 Specific Examples of Benefits 

Beside general benefit of Serviceability approach we 
have presented, there are also specific scenarios where it 
can be of unique help. For example: 

Unified Serviceability with self healing can 
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the loop between product-site and HP DC to prevent false 
incident generation). It can also reduce no faults found in 

parts by performing fail-back to failed part just prior to its 
replacement (after original failover as a part of self-
healing). Finally, it can assist in evaluating end-to-end 

support cost with/-out self healing for different regions 
with support staff of varying ability and, accounting for 
spares (inventory/built-in), and delivery (4h v. deferred)  

Automated Learning facilitates automation of a 

new-known incident promotion, e.g. identifying a 
frequent, well understood incident and showing how we 
will move them from new to known. It can also help 

manage the lifecycle of rules (introduction, deployment, 
adjustment, retirement), including thresholds, criteria for 
retirement, etc. Finally, it can identify typical diagnosis 

errors and extract learning (“inverted, not-to-do rules”), 
suggest methodology how to identify them in a general 
fashion. 

Analysis Engine can help identify epidemics, such as 
a patch that caused a failure on multiple sites, or so called 
“flash crowd” per region. It can also enable “RSS Feed” 
from case and knowledge bases to R&D designer of a 
product. It can help identify trends for warranty changes 
and showcase how to specify, calculate and insert triggers 
to re-evaluate/adjust warranty. Finally, it can assist to 
overcome incomplete or incongruent data: search for 
missing, critical data elements; real time feedback loops 
to humans; flag and conflicts. 

7 Analysis of Potential Reiki Improvements 

This analysis will examine the ratio of human-involved 
versus automated incidents. There are two sources of data 
to examine: system-generated and human-generated. 
System-generated data is from our widely deployed 
remote support software, designed to see system events 
and transmit them to the support “back-end” for analysis. 
System-generated data is entered automatically by 
software event triggers and system calls. The data is 
stored in our backend system event database. Human 
generated data is created by human service agents, either 
locally or remotely by analyzing problem information and 
creating remedies. The human-generated data is entered 
into our call-tracking system. Today, analysis is primarily 
done by humans (remote support agents) with remedies 
sent back to the client systems in the form of hardware 
fixes, firmware and software patches, and configuration 
or tuning changes. Note that call-tracking data base also  
contains system-generated cases which are distinguished 
in Table 1.  

I. Current data shows a preponderance of human-involved 
service incidents. The table below shows the most recent 
6 months of call-tracking data for one of our storage 
products that has a highly redundant design and has been 

deployed for several years.  We distinguish between 
automated, system generated events (labeled Sytem 
Events) and the human-entered events (labeled HUman 
Events). Regional differences are yet to be understood but 
seem most distinct for Region 3. One explanation is that 
Region 3 customers have less deployment of the remote 
support software and traditionally rely on human support 
more so than the other regions. We currently believe that 
the system generated events are overstated and have an 
initiative in HP to drive down duplicates and false events 
from the remote support software. 

Table 1. Distribution of human-involved and 
automated incidents by time and region 

II. Current data shows a highest weighting of reactive 
incidents, followed by deferred, followed by preventive. 
The bar chart below is from the most recent 6 months of 
data for the same storage product. The remote support 
software has a tool that has error analysis rules for each 
failure mode. There are over 700 failure modes of which 
approximately 200 were seen as events in this time 
period. All of the incidents described by this data are 
automatically identified by software agents on the system, 
analyzed for severity, classified and recommended for an 
action. The “deferred” category, in almost all cases, 
represents component errors that have resulted in a 
failover to a spare part. This is because this product is at 
near 100% redundancy in design. In each case, a service 
event will be required to restore full system health, i.e. 
repair the failed component.  The “reactive” category 
represents failure modes that require further human 
diagnosis and actions to address the problem. This will 
include in most cases the dispatch of a service engineer 
and replacement of parts. The “preventive” category 
represents information and warnings about conditions that 
should be addressed to avoid a failure.  This may include 
a dispatch of an engineer to proactively service the system 
through part replacement or adjustments to hardware. If 
the preventive action is tuning, configuration, patching or 
some non disrupting action this may be done remotely. 

 
Region 

Call Tracking 
DB Cases ‘08-08 ‘08-09 ‘08-10 ‘08-11 ‘08-12 

‘09-01 
(26) Total 

1 

System Events 43% 41% 37% 40% 41% 42% 41% 

Human Events 57% 59% 63% 60% 59% 58% 59% 

Total 39% 37% 34% 34% 36% 41% 37% 

2 

System Events 54% 48% 40% 48% 48% 44% 47% 

Human Events 46% 52% 60% 52% 52% 56% 53% 

Total 39% 39% 44% 41% 40% 37% 40% 

3 

System Events 21% 17% 17% 17% 16% 16% 17% 

Human Events 79% 83% 83% 83% 84% 84% 83% 

Total 22% 24% 21% 25% 24% 22% 23% 

Global 
System Events 42% 38% 34% 38% 38% 37% 38% 

Human Events 58% 62% 66% 62% 62% 63% 62% 



 

 

 
Figure 10. Preventive/Reactive/Deferred Incident Ratio 

III. New vs Known. Figure 11 shows the ratio of 
automatically v. manually reported problems for two 
thousand servers running remote support software over 
the course of twelve months. Problems reported by the 
remote support software are considered to be “known” 
since detection is triggered by well defined conditions, 
and the solution is typically the replacement of a 
hardware component. The figure shows that a large 
portion of known failures can be detected automatically 
(although the data overstates automated problem detection 
due to false alarms). Manually reported problems may be 
“new” or “known,” though a spot check indicates that the 
majority are known hardware failures, requests for 
configuration or setup assistance, and software problems 
not covered by the remote support tools. From this data 
we conclude that we can successfully detect certain 
classes of known problems, though opportunity exists to 
improve detection of failures and expand coverage to 
other classes of known problems (e.g. software failures).  

 
Figure 11. Automatic v manual problems reporting 

We can derive the following conclusions  

1. Deferred and reactive types together require human 
actions to address and represent 80.7 % of the total 
incidents. This becomes the potential for shifting 

human-involvement to automated. One could also add 
preventive to this group for automation. 

2. Server data shows that a large percentage of problems 
can be detected and reported with no human 
involvement, but opportunities exist to extend coverage 
beyond simple hardware failures. Data from storage 
devices shows that even with highly redundant 
products, the potential is very large to convert human-
involved incidents (62.31%) into fully automated 
incidents. 

3. Analysis of the incident data by the system is focused 
on single, known events and does not consider 
combinations. This is a potential for a more 
sophisticated analysis engine. 

8 Related Work 

Self-healing at the hardware level is often achieved 
through redundancy and hot-swapping; recent work offers 
increased flexibility, e.g., for SoC, Akoglu et al. [1] 
proposed to localize and isolate the faulty area and 
replace the functionality through partial configuration of 
FPGA. Techniques of software dynamic updating and 
patching change parts or the entirety of a user-level 
program or a system program without interruption.  

Operating systems provide profound mechanisms for 
fault detection and resolution in hardware and software. 
Sun Solaris 10 enables fine-grained response to failures 
from the lowest levels of hardware/software stack [2].  

Web services have become increasingly self-healing. 
Carzaniga et al. [3] proposed to self-heal component-
based applications by automatically identifying and 
executing workarounds. Baresi et al. [8] discussed self-
healing service compositions based on defensive process 
design and run-time service monitoring. Mostefaoui et al. 
[9] further studied recovery actions as structured units, 
with self-healing actions implemented as software 
aspects, which are triggered and organized based on the 
type of fault and the context of use. 

To address increasingly more complex systems and 
environments, Cook et al.[7] discuss the design for 
learning-based approaches to identifying the right fixes to 
errors, failures or faults in multitier services. The authors 
especially studied different data collection mechanisms, 
diagnosis- and signature-based synopsis building and 
querying, combinations of these options and input of 
human knowledge, and ranking of target synopses. 
Pranayama [10] is a self-healing solution which uses 
Bayesian belief network for root cause analysis and fault 
prediction in adaptive enterprise management. 

For large-scale computing systems, IBM’s autonomic 
computing blueprint [11] projects a novel architecture to 
enable systems to self-manage (-configure, -heal, -

deferred

37%
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44%
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19%

Automatic
68%

Manual
32%

Automatic vs. Manual Problem Reporting



 

 

optimize, and -protect) guided by human knowledge. 
System components must have monitor, analyze, plan, 
and execute functions, to adapt to changes and anomalies 
in accordance with business policies and objectives. 

A self-healing framework for databases has been 
proposed in [12]. It aims to proactively detect potential 
problems in either a learning-based or programmed 
manner, maintain an adaptable repository of problem 
patterns or normal behavior patterns, mine knowledge 
from accumulated usage data, execution patterns and 
successful resolutions, while minimizing self-healing 
overhead against risk factors. Similarly, Oracle database 
has also put key development focus on self-healing 
capabilities [13], i.e., proactive problem detection, limited 
damage and interruption, faster diagnosis, simplified 
resolution and repair, faster solution delivery.  

Self-healing mechanisms are also discussed in contexts 
of automatically re-establishing trust in previously 
compromised virtual machines [4]. Many other 
mechanisms can help to improve serviceability. For 
example, the Boeing 787 aircraft is made 30% less 
expensive to maintain, because of the extensive use of 
composite components, integrated system architecture, 
and carefully scheduled maintenance plan [14]. 

The service industry has adopted knowledge-centered 
support (KCS) as a methodology for support teams to 
service customer problems by searching and updating a 
knowledgebase [5]. The support technician needs to 
document or update the very solution at the same time 
s/he is servicing the customer. Quality of the resulting 
knowledgebase is guarded by the competency of staff 
members. As proved by HP Non Stop Support [6], KCS 
brings consistent and high-quality solution sharing among 
service staff and end users, capture of knowledge, 
incremental improvement and reuse of group intelligence.  

9 Conclusions 

In this paper, we have presented Reiki, a 
serviceability architecture and approach for managing and 
reducing incidents from products. We motivated the need 
for such an approach and architecture by modeling costs 
and by providing two use cases. We then described the 
architecture and design, followed by some scenarios of 
use. We also provided some data analysis of the current 
levels of automation and costs. Reiki reduces the costs of 
serviceability by: 

• Increased automation of service delivery 

• Shifting service delivery to match level of automation 

• Understanding costs and balancing product redundancy 
with the support organization’s ability to service 

In the future, we shall present more detailed 
quantified analysis of the results of our work. A 
comprehensive measurement of serviceability cost before 

and after deploying Reiki serviceability will be compared 
for individual products, product families, business, and 
for the overall services organization. 
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