

Keyword(s):

Abstract:

©

Reiki: Serviceability Architecture and Approach for Reduction and
Management of Product Service Incidents
Chris Connelly, Brian Cox, Tim Forell, Rui Liu, Dejan Milojicic, Alan Nemeth, Peter Piet, Suhas
Shivanna, Wei-Hong Wang

HP Laboratories
HPL-2009-88

serviceability, support, incidents, failure reduction

There is a significant number of IT failures per year because parts fail, products are used in ways they were
not designed for, and humans make errors in using products. These failures result in incidents that product
vendors service as a part of the warranty or contracts. Incidents incur significant costs for servicing them,
including call centers, parts, and field engineers. Some of the major problems include lack of coherent
incident information, leading to inaccurate service diagnosis and inability to forecast failures. At the same
time, technology has evolved. Hardware is generally more reliable, failures are moving from hardware to
firmware, software, and applications. The scale effect limits human operator engagement, prevents
centralized approaches, and expands automation. Traditional ways of handling incidents are not appropriate
any more. In this paper we present a set of tools and approaches that enable unified serviceability with
selfhealing, automated learning, and an analysis engine. Unified serviceability with self-healing results in
clean incident data and it reduces criticality of incidents into deferred maintenance. Automated learning
produces empirically proven actionable knowledge enabling cost reduction of automated incident
resolution. Using clean data and actionable knowledge, the analysis engine helps predict failures and
determine trends, resulting in preventive maintenance. Collectively, preventive and deferred maintenance
and automated incident service significantly reduce the costs. This way we have aligned incidents cost with
the technology trends.

External Posting Date: April 21, 2009 [Fulltext] Approved for External Publication
Internal Posting Date: April 21, 2009 [Fulltext]

To be published in ICWS 2009, July 2009,

Copyright ICWS 2009

Reiki: Serviceability Architecture and Approach

for Reduction and Management of Product Service Incidents

Chris Connelly,1 Brian Cox,1 Tim Forell,4 Rui Liu, 2 Dejan Milojicic,2
Alan Nemeth,3 Peter Piet,4 Suhas Shivanna,4 and Wei-Hong Wang2

1
HP-IT,

2
HP Labs,

3
HP-EDS,

4
HP Enterprise Storage and Servers

[firstname.lastname]@hp.com

Abstract

There is a significant number of IT failures per year

because parts fail, products are used in ways they were

not designed for, and humans make errors in using

products. These failures result in incidents that product

vendors service as a part of the warranty or contracts.

Incidents incur significant costs for servicing them,

including call centers, parts, and field engineers. Some of

the major problems include lack of coherent incident

information, leading to inaccurate service diagnosis and

inability to forecast failures. At the same time, technology

has evolved. Hardware is generally more reliable,

failures are moving from hardware to firmware, software,

and applications. The scale effect limits human operator

engagement, prevents centralized approaches, and

expands automation. Traditional ways of handling

incidents are not appropriate any more.

In this paper we present a set of tools and

approaches that enable unified serviceability with self-

healing, automated learning, and an analysis engine.

Unified serviceability with self-healing results in clean

incident data and it reduces criticality of incidents into

deferred maintenance. Automated learning produces

empirically proven actionable knowledge enabling cost

reduction of automated incident resolution. Using clean

data and actionable knowledge, the analysis engine helps

predict failures and determine trends, resulting in

preventive maintenance. Collectively, preventive and

deferred maintenance and automated incident service

significantly reduce the costs. This way we have aligned

incidents cost with the technology trends.

1 Introduction

IT products fail: servers and storage in data centers,
laptops, printers. This is inevitable due to the failure rate
associated with materials and parts, mis-configuration,
software bugs, incompatibilities, etc. In addition, products
are used in ways that they were not designed for. A
substantial amount of time, money, and effort is invested
in design for serviceability, but incidents still happen, and
the cost to alleviate them is substantial, in the range of
billions of dollars.

Traditionally, the incidents are handled by call
centers, which dispatch customer engineers and parts to
service the incident. To reduce the costs, various

optimizations are introduced: a) products are designed
with increased redundancy or resilience to enable self-
healing; b) customers are educated to enable self-
mitigation; and c) service delivery is automated to reduce
the human engagement. (See Figure 1). The “lines of
defense” for incidents incrementally grow from products,
through customers, to support organization.

Figure 1. Serviceability Landscape

Incident lifecycle consists of the following four
phases: detect, diagnose, mitigate, and restore (see Figure
2). Historically, most automation has taken place in the
detect phase, with some automation to mitigate and
restore. Diagnose is hardest to automate. Incident service
can be reactive, upon incident; preventive, predating
incident; and deferred, at later time. Each approach can be
automated or not.

Figure 2. Service Incident Lifecycle.

The trends are changing the landscape of service
delivery. Hardware is becoming more reliable and
incidents are moving up in the stack: from hardware to

Product
Self-Healing

Customer
Self-mitigation

HP Service
Support

HP Products

Transparent Learning
Serviceability Tools

Analysis Engine
Actionable KM

Unified Serviceability
(data, events, actions)

HP R&D

Unified Serviceability Architecture

1) detect
incident

2) diagnose
problem

3) mitigate
functionality

4) fully restore
health

green: automated
yellow: semi-autom.
red: human-engaged

firmware, to software and applications. New data centers
are being built with higher levels of redundancy, such as
containers, designed for lower criticality of maintenance.
New applications are designed with built in resilience,
such as Search or Web servers, which can sustain failures
of the underlying hardware. Customers are expecting to
self-support products much more than in the past.

The hypothesis of our paper is presented in Figure 3,
as a hypothetical prediction of the breakdown of
preventive v. reactive v. deferred as well as automated v.
manual incident service delivery. Our first hypothesis is
that reducing human-involved incidents through
automation saves costs throughout the service lifecycle.
Our second hypothesis is that it is possible to shift the
incidents into lower cost types:

1. Reduce the proportion of reactive incidents (i.e.
incidents that require immediate actions by humans) -
which are the most expensive - to incidents deferred
automatically by the system which is less expensive

2. Increase the overall proportion of incidents avoided
through preventive actions (least expensive)

Figure 3. Hypothesis: Hypothetical Breakdown of
Preventive/Reactive/Deferred & Automated/Manual

The rest of the paper is organized as follows. Section
2 provides the background of modeling service delivery
cost. Section 3 compares current and future serviceability.
In Section 4 we present serviceability design and in
Section 5 implementation. Section 6 presents specific
examples of benefits of our serviceability framework. In
Section 7, we provide data analysis. In Section 8 we
compare our work to related research. We conclude in
Section 9.

2 Minimization of Incident Service Cost

Reiki aims to minimize the total annualized costs
involved, by studying costs incurred by incident service
delivery, adding spares, and Service Level Agreement

(SLA) non-compliance. We follow the decomposition of
costs as below:

Total Annualized Cost =
(ProbOfSLNon-Compliance)x(SLAPenaltyPerHour)x8760HoursPerYr
+(PredictNumOfSvcEventsPerYr)x(AvgCostPerSvcEventPerSvcContractType)
+AverageCostPerYrToDeploySpares (if any)

We used continuous time Markov chains to evaluate
the probability of not meeting the conditions specified in
a Service Level Agreement (SLA). The result is then
combined with the SLA non-compliance penalty cost
resulting in an annualized SLA non-compliance penalty
cost. Next, an annualized service cost is developed by
multiplying the number of predicted service events per
year times the average service event cost (corresponding
to each of the types of service contracts offered).
Additionally, the annualized cost of adding spares was
calculated. The total annualized cost was then calculated
by adding up the three types of costs indicated above.
Total annualized cost is then graphically displayed so that
various tradeoffs between service contract type (some of
which are reactive and some of which are deferred) and
sparing level can be studied as a function of SLA non-
compliance penalty severity.

As an example, we developed an in depth analysis for
a medium sized deployment of server blades where the
level of sparing, type of service contract, and service level
agreement (SLA) penalty costs are studied. The total
annualized cost of service, sparing, and SLA penalties is
the objective function that is sought to be minimized.
First, a Markov chain model is used to predict the steady
state probability of not meeting the conditions specified in
the SLA (a minimum number of server blades perfectly
healthy) based on predicted server blade failure rates,
predicted server blade recovery rates (which depend upon
type of service contract), and level of sparing (0,1, or 2
two spare server blades). Next, the total annualized cost
as described above is calculated for each combination of
service contract type and sparing level. A typical result
can be summarized graphically as shown in Figure 4.

Figure 4. Service Delivery v. Degree of Redundancy

The graphical display then allows for trade-offs to be
addressed directly. For example, for the server blade
farm under consideration, and for an assumed $10,000 per

10%

4%

20%

10% 10%

35%

65%

15%

30%

25%

2%

30%

5%

1%

10%

5%

8%

15%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Now, human

diag.

Now,

automated

In 1-3y,

human diag.

In 1-3y,

automated

In 3-5y,

human diag.

In 3-5y,

automated

R
a

ti
o

 (
%

)
o

f
ty

p
e

s
o

f
d

if
fe

re
n

t
se

rv
ic

e
 d

e
li

v
e

ry

Preventive (forecast)

Reactive (break-fix)

Deferred (self-healing)

$100

$1,000

$10,000

$100,000

$1,000,000

$10,000,000

$100,000,000

6 hr. CTR 4 hr. RT 8x5, 4 hr RT, Same
Day

8 x 5, Next Day Once per Wk. Once per Mo.

Total Annual Support/Sparing/SLA Penalty Cost To HP By Support Contract Type & Sparing Level

No Spares, 10KSLA

One Spare, 10KSLA

Two Spares, 10KSLA

hour penalty function for SLA non-compliance, the
addition of two spare server blades allows for deferred
maintenance type service contracts (next day, once per
week), that in turn allows for considerable service cost
savings, without giving up customer satisfaction as
measured by the degree of SLA penalty costs incurred.

We observe that the incremental cost of introducing
spares may be justified since SLA penalty costs may be
avoided and less expensive deferred maintenance type
service contracts may be utilized, (depending on the
severity of the SLA non-conformance penalty costs).
Since severity of SLA penalty non-conformance will be
dependent on the level of mission criticality of the market
segment in question, other scenarios were developed (for
example, using a $100,000 per hour penalty function for
extremely mission critical applications, or alternatively,
using a $1,000 per hour penalty function for much less
critical applications.) Interestingly, inclusion of adequate
sparing still enables deferred maintenance service
contracts (e.g. next day or once per week) to be valid low
cost choices.

Figure 5. Service Delivery v. Market Segment

3 Use Cases

Today…. When a blade fails in a datacenter, an
event is created, which gets recorded in an event database
and after filtering in the incident database. This further
triggers a human operator in a call center to dispatch a
part order and a customer engineer to explore the incident
and eventually replace the blade if its failure is confirmed.
There are too many touches by humans in the process,
primarily raising the cost, but also introducing
opportunity for misdiagnosis.

When a failure happens to your laptop and it stops
working, if you are an average user you do not have many
options. Sophisticated users can play with the built-in
diagnostics and beyond that the only option is to take it to
a local shop and hope for the best, at least to retrieve the
data out of it (the delta since you made the last backup). If

it is more than year and a half old, any intervention will
likely cost more than the value of the laptop.

Future vision…. datacenters will be designed as
containers, with built in power and cooling. They will be
built to last a certified period of time, and replaced with
equivalent units. Certain components within the container
will continue to fail, but sufficient levels of redundancy
will enable the container to provide the agreed upon SLA
(more than 80% of products working). While this design
was motivated by reducing management costs
(installation, management), it has similar implications on
servicing incidents. All service is done remotely, and the
health of the datacenter is observed for anomalies from
the predicted failure rates. If the health trend is as
expected, intervention can be performed during regular
maintenance, (weekly, monthly), at which time failed
parts are replaced and preventive maintenance carried out.
Most interventions migrate from critical (reactive) to
scheduled (deferred, preventive). Most types of incidents
are well known, the few new types are analyzed by
operators and entered into the knowledge base, where
they are compared to the inflow of new incidents. Both
detecting and diagnosing incidents is carried out
automatically.

As soon as you have bought your new laptop, an
icon in the lower right corner has flashed the health of
your system and the maintenance schedule. Similarly to
the remaining battery time, the lifetime of the laptop
makes reminders of how healthy your laptop is, what kind
of maintenance if any you want to perform. If any failure
is imminent, the laptop has already informed its producer
and the part is on the way. If the laptop is completely
dead, you can connect it to another using a USB cable and
perform some troubleshooting. For complex failures, a
certified operator may have to be engaged, but all the
knowledge required to service incident is available off of
the portal.

Figure 6. Design

$100

$1,000

$10,000

$100,000

$1,000,000

$10,000,000

$100,000,000

6 hr. CTR 4 hr. RT 8x5, 4 hr RT, Same

Day

8 x 5, Next Day Once per Wk. Once per Mo.

No Spares, 100KSLA

One Spare, 100KSLA

Two Spares, 100KSLA

No Spares, 1KSLA

One Spare, 1KSLA

Two Spares, 1KSLA

No Spares, 0-SLA

One Spare, 0-SLA

Two Spares, 0-SLA

Self-heal, mitigate on
device

Well known case, use
knowledgebase automat.,
high confidence

New/complex case,
engage human, low
confidence in existing rules

Automated Learning from actions

GSC Operators, CEs, parts

HP Products

actionable knowledge

casebase

clean data

Analysis Engine

backend

customer

Unified Serviceability, Self Healing

automated diagnoses, trends, forecast
(per product collections)

knowledgebase

4 Design

The design of our serviceability model is presented in
Figure 6. It consists of unified serviceability with self-

healing built into products; automated learning from call
center operator actions; and an analysis engine acting
upon data from products and knowledge from automated
learning. These three components enable serviceability
closed loops: a) on products through self-healing; b) in
the back-end data centers through automated rules; and c)
in call centers with the help of humans. The first two
closed loops can be automated entirely, while the third
assumes human engagement. Human engagement is a
determining factor for the cost of service delivery.

Unified Serviceability assumes the same set of
product data, events, and serviceability interfaces across
all products. Product data includes the date the product
was manufactured, when it was sold, when it was serviced
and how, etc. Similar events consist of the same or similar
types of alerts and other information coming from
products and into the back end data center. Finally
serviceability interfaces enable remotely querying product
data, updating firmware, reconfiguring and other
serviceability action which could be performed remotely
(preferably) or locally. Unified serviceability dramatically
reduces service delivery cost because of unification of
tools, educating operators, increased automation, etc.

We define self healing as an ability of a product
(hardware, firmware, OS, middleware, application) to
detect, diagnose, and automatically mitigate a product
fault. Self healing usually involves automatic repair of
localized faults (e.g. ECC in DIMMs) or fail-over to
redundant components. The advantages of self healing are
in reducing the costs and improving customer experience.
Server and storage products have many self healing
features built-in as part of the hardware, firmware and OS
components. Some examples of these features in HP
products are:

1. HP Advanced Memory Partition technology to detect
and correct 2 DRAM failures.

2. Dynamic Processor Resiliency to recover from high
rate of processor errors with the help of OS

3. Dynamic Page De-allocation to disable the use of
pages mapped to failed DIMMs

4. OS initiated recovery for certain types of machine
checks caused by uncorrected CPU errors

Automated Learning enables transparently
capturing actionable knowledge from the operators in call
centers. The biggest challenge is to accomplish automated
learning transparently, without slowing down operators,
such as requiring additional information, traversing
troubleshooting trees or forms to classify incidents or

recommend remedies. Significant simplifications for this
activity rely on following assumptions:

• Most simple hardware failures will have already been
accurately diagnosed by self-healing components.

• A lot of context information will be provided from the
product, failure history, surrounding infrastructure, etc.

• Complex failures will be matched against past and
offered to operators as candidate diagnosis.

• Building confidence in diagnosis will be accomplished
over time, with the fallback to human expertise.

The outcome of the automated learning are: runbook
automation-like sets of actionable rules, which can be
executed to automatically mitigate incidents and restore
health of systems; and accuracy estimates―the
confidence level in the diagnosis. Confidence level is
built over time. Once it surpasses the predefined
confidence threshold, the incident is moved from the new
to known category (see Figure 7).

The Analysis Engine relies on clean data from
products and actionable knowledge from call center
operators to make automated diagnosis, evaluate trends
and create forecasts. Each of these are valuable only if
fairly accurate. The accuracy of complex rules (for a
product collection) as well as timeliness of data play a
major role in analysis engine effectiveness. Accuracy is
verified in real deployments and compared to the
predicted levels. The artifacts of the analysis engine
comprise knowledge reports for R&D, customer, channel,
and partners.

Figure 7. Closed Loop for New v. Known

The classification of service incidents as new or
known originates in Knowledge-Centered Support (KCS)
[5], a common methodology for capturing, maintaining
and reusing knowledge in support organizations. An
incident is said to be known when the knowledge base
contains a description of the problem that can be used to
identify it and an associated solution. An incident is
classified as new when there is no corresponding
problem-solution pair. The ratio of new to known
incidents is often used to measure the efficiency of a
support organization [6]. Additionally, problem-solution

Knowledge Repository
Automation Engine “Support Eclipse”Automation

Orchestration

Known problems
No Parts (SW, FW)
CSR possible

New problems
No CSR possible

“CE Positioning System”

known,
automated

new,
manual

Virtual appliance,
diagnostic rules

Redesigned Analysis Engine

Serviceability requirements
designer

Call Center Operator

Customer Engineer

User, CSR

Notes: light blue boxes is what we propose Reiki to do
To simplify diagram parts ordering was omitted

pairs can be exposed outside of the support organization
as a way of enabling users or partners to resolve problems
by themselves.

KCS and “New versus Known” were designed for
manual support processes (i.e. knowledge is captured,
maintained, and located, and reused by call agents,
product users and designers); however, the concepts are
also applicable to automated serviceability. The consistent
data and events from a product and its environment
obtained from unified serviceability products allow
problems to be characterized and diagnosed by the
analysis engine. Solutions manually linked to a problem
allow support personnel to create actionable rules, and in
some cases, the automated learning feature generates
actionable rules without human input (e.g. automated part
dispatch for break-fix incidents). Feedback from solution
reuse and manual review facilitates the identification of
high-confidence solutions and creation of actionable
rules. Rules may execute actions in the support provider’s
environment (e.g. automatically shipping a part to a
customer) or in the customer environment (e.g. launching
a recovery action). Finally, pattern matching rules for
identifying problem diagnoses can be incorporated into
knowledge search tools to improve the effectiveness of
existing KCS processes.

5 Implementation

There are currently several independent service
incident management ecosystems in use – each focused
on a particular business segment. Within each domain
there are disparate levels of product serviceability,
multiple event sources (automated, manual), a plethora of
(point) analysis mechanisms and a fragmented approach
to knowledge management (See Figure 8).

Figure 8. Legacy Architecture

The three main areas of development―Automated
Learning, Analysis Engine and Serviceability Analysis―

will integrate with the existing incident management
fabric and utilize relevant data to help automate and
optimize HP’s management of incidents (see Figure 9).
The Analysis Engine will augment existing event analysis
mechanisms for codifying and automating the handling of
events while also forecasting potential issues and
initiating appropriate action. Automated Learning will
strive to leverage the support engineer’s expertise and
actions in conjunction with active analysis of the available
data (structured and unstructured) to indicate meaningful
relationships/links and helpful suggestions (root causes,
problem solving steps, associated issues, hints, etc.).
Unified Serviceability will provide the product
development teams a means of learning about existing
deployments and identifying serviceability improvements.
This will help drive enhanced self-healing capabilities on
Services Objects and better event telemetry data feeding
into the incident management system.

Figure 9. Reiki Architecture

When the various programs were initially conceived
and developed proprietary interfaces and protocols were
the mainstay. Over the last number of years things
evolved to a point where most of the main solutions
utilize web technologies and standards. For instance, the
remote support event data models have been redesigned
around a CIM-compliant data model mapped into an
XML document format (XSC schema); web-based
solutions have been developed to provide assisted
troubleshooting; all user interfaces utilize a range of web
technologies with a move towards greater standardization;
and most services (internal and external to HP) are now
accessible via web-based technologies. That said, the
picture is still evolving and there is much to do. Many of
the systems and solutions were initially created before the
rise of web standards and mindsets (e.g. pre-Web 2.0).

6 Specific Examples of Benefits

Beside general benefit of Serviceability approach we
have presented, there are also specific scenarios where it
can be of unique help. For example:

Unified Serviceability with self healing can

eliminate user-maintenance inflicted false alarms (close

Data
collection

Availability
monitoring

Assessment
Proactive
Services
Portal

IT Support
Portal

Patch
analysis

servers

storage

networks

printers

apps

Server
analysis

Customer

HP Support

Licensing

Local event
analysis

Workflow Automated
event analysis

Network
support

Storage
analysis

Availability
analysis

System mgmt
console

KM

Mostly independent systems
with weak integration

Assessment

HP knowledge & expertise
scattered throughout

Data
collection

Availability
Monitoring

Assessment

Proactive
Services
Portal

IT Support
Portal

Patch
Analysis

servers

storage

networks

printers

applications

Server
config
analysis

Customer HP Support

Licensing

Local event
analysis

Workflow /
KM

Event
Analysis

Network
Support

Storage
analysis

Assessments
Availability
Analysis

System
Mgmt
Console

KM

Mostly independent
systems with weak
integration

Data
collection

Availability
monitoring

Assessment
Proactive
Services
Portal

IT Support
Portal

Patch
analysis

servers

storage

networks

printers

apps

Server
analysis

Customer

HP Support

Licensing

Local event
analysis

Workflow Automated
event analysis

Network
support

Storage
analysis

Availability
analysis

System mgmt
console

KM

Mostly independent systems
with weak integration

Assessment

HP knowledge & expertise
scattered throughout

� HP’s environment

Serviced
Objects

Customer’s environment

Workflow /
KM

Customer
or CE

HP Support

Analysis
Engine

Self-healing
(local)

Parts if
needed

Actionable
knowledge

Serviceability
Analysis

Product R&D

Serviceability
Enhancements

Runbook
automation
break-fix

Trends
Failure forecast

Parts/CE
Dispatch

New events

Incident related data
(internal + external)

Known
events

Events +
config data

Automated
Learning

the loop between product-site and HP DC to prevent false
incident generation). It can also reduce no faults found in

parts by performing fail-back to failed part just prior to its
replacement (after original failover as a part of self-
healing). Finally, it can assist in evaluating end-to-end

support cost with/-out self healing for different regions
with support staff of varying ability and, accounting for
spares (inventory/built-in), and delivery (4h v. deferred)

Automated Learning facilitates automation of a

new-known incident promotion, e.g. identifying a
frequent, well understood incident and showing how we
will move them from new to known. It can also help

manage the lifecycle of rules (introduction, deployment,
adjustment, retirement), including thresholds, criteria for
retirement, etc. Finally, it can identify typical diagnosis

errors and extract learning (“inverted, not-to-do rules”),
suggest methodology how to identify them in a general
fashion.

Analysis Engine can help identify epidemics, such as
a patch that caused a failure on multiple sites, or so called
“flash crowd” per region. It can also enable “RSS Feed”
from case and knowledge bases to R&D designer of a
product. It can help identify trends for warranty changes
and showcase how to specify, calculate and insert triggers
to re-evaluate/adjust warranty. Finally, it can assist to
overcome incomplete or incongruent data: search for
missing, critical data elements; real time feedback loops
to humans; flag and conflicts.

7 Analysis of Potential Reiki Improvements

This analysis will examine the ratio of human-involved
versus automated incidents. There are two sources of data
to examine: system-generated and human-generated.
System-generated data is from our widely deployed
remote support software, designed to see system events
and transmit them to the support “back-end” for analysis.
System-generated data is entered automatically by
software event triggers and system calls. The data is
stored in our backend system event database. Human
generated data is created by human service agents, either
locally or remotely by analyzing problem information and
creating remedies. The human-generated data is entered
into our call-tracking system. Today, analysis is primarily
done by humans (remote support agents) with remedies
sent back to the client systems in the form of hardware
fixes, firmware and software patches, and configuration
or tuning changes. Note that call-tracking data base also
contains system-generated cases which are distinguished
in Table 1.

I. Current data shows a preponderance of human-involved
service incidents. The table below shows the most recent
6 months of call-tracking data for one of our storage
products that has a highly redundant design and has been

deployed for several years. We distinguish between
automated, system generated events (labeled Sytem
Events) and the human-entered events (labeled HUman
Events). Regional differences are yet to be understood but
seem most distinct for Region 3. One explanation is that
Region 3 customers have less deployment of the remote
support software and traditionally rely on human support
more so than the other regions. We currently believe that
the system generated events are overstated and have an
initiative in HP to drive down duplicates and false events
from the remote support software.

Table 1. Distribution of human-involved and
automated incidents by time and region

II. Current data shows a highest weighting of reactive
incidents, followed by deferred, followed by preventive.
The bar chart below is from the most recent 6 months of
data for the same storage product. The remote support
software has a tool that has error analysis rules for each
failure mode. There are over 700 failure modes of which
approximately 200 were seen as events in this time
period. All of the incidents described by this data are
automatically identified by software agents on the system,
analyzed for severity, classified and recommended for an
action. The “deferred” category, in almost all cases,
represents component errors that have resulted in a
failover to a spare part. This is because this product is at
near 100% redundancy in design. In each case, a service
event will be required to restore full system health, i.e.
repair the failed component. The “reactive” category
represents failure modes that require further human
diagnosis and actions to address the problem. This will
include in most cases the dispatch of a service engineer
and replacement of parts. The “preventive” category
represents information and warnings about conditions that
should be addressed to avoid a failure. This may include
a dispatch of an engineer to proactively service the system
through part replacement or adjustments to hardware. If
the preventive action is tuning, configuration, patching or
some non disrupting action this may be done remotely.

Region

Call Tracking
DB Cases ‘08-08 ‘08-09 ‘08-10 ‘08-11 ‘08-12

‘09-01
(26) Total

1

System Events 43% 41% 37% 40% 41% 42% 41%

Human Events 57% 59% 63% 60% 59% 58% 59%

Total 39% 37% 34% 34% 36% 41% 37%

2

System Events 54% 48% 40% 48% 48% 44% 47%

Human Events 46% 52% 60% 52% 52% 56% 53%

Total 39% 39% 44% 41% 40% 37% 40%

3

System Events 21% 17% 17% 17% 16% 16% 17%

Human Events 79% 83% 83% 83% 84% 84% 83%

Total 22% 24% 21% 25% 24% 22% 23%

Global
System Events 42% 38% 34% 38% 38% 37% 38%

Human Events 58% 62% 66% 62% 62% 63% 62%

Figure 10. Preventive/Reactive/Deferred Incident Ratio

III. New vs Known. Figure 11 shows the ratio of
automatically v. manually reported problems for two
thousand servers running remote support software over
the course of twelve months. Problems reported by the
remote support software are considered to be “known”
since detection is triggered by well defined conditions,
and the solution is typically the replacement of a
hardware component. The figure shows that a large
portion of known failures can be detected automatically
(although the data overstates automated problem detection
due to false alarms). Manually reported problems may be
“new” or “known,” though a spot check indicates that the
majority are known hardware failures, requests for
configuration or setup assistance, and software problems
not covered by the remote support tools. From this data
we conclude that we can successfully detect certain
classes of known problems, though opportunity exists to
improve detection of failures and expand coverage to
other classes of known problems (e.g. software failures).

Figure 11. Automatic v manual problems reporting

We can derive the following conclusions

1. Deferred and reactive types together require human
actions to address and represent 80.7 % of the total
incidents. This becomes the potential for shifting

human-involvement to automated. One could also add
preventive to this group for automation.

2. Server data shows that a large percentage of problems
can be detected and reported with no human
involvement, but opportunities exist to extend coverage
beyond simple hardware failures. Data from storage
devices shows that even with highly redundant
products, the potential is very large to convert human-
involved incidents (62.31%) into fully automated
incidents.

3. Analysis of the incident data by the system is focused
on single, known events and does not consider
combinations. This is a potential for a more
sophisticated analysis engine.

8 Related Work

Self-healing at the hardware level is often achieved
through redundancy and hot-swapping; recent work offers
increased flexibility, e.g., for SoC, Akoglu et al. [1]
proposed to localize and isolate the faulty area and
replace the functionality through partial configuration of
FPGA. Techniques of software dynamic updating and
patching change parts or the entirety of a user-level
program or a system program without interruption.

Operating systems provide profound mechanisms for
fault detection and resolution in hardware and software.
Sun Solaris 10 enables fine-grained response to failures
from the lowest levels of hardware/software stack [2].

Web services have become increasingly self-healing.
Carzaniga et al. [3] proposed to self-heal component-
based applications by automatically identifying and
executing workarounds. Baresi et al. [8] discussed self-
healing service compositions based on defensive process
design and run-time service monitoring. Mostefaoui et al.
[9] further studied recovery actions as structured units,
with self-healing actions implemented as software
aspects, which are triggered and organized based on the
type of fault and the context of use.

To address increasingly more complex systems and
environments, Cook et al.[7] discuss the design for
learning-based approaches to identifying the right fixes to
errors, failures or faults in multitier services. The authors
especially studied different data collection mechanisms,
diagnosis- and signature-based synopsis building and
querying, combinations of these options and input of
human knowledge, and ranking of target synopses.
Pranayama [10] is a self-healing solution which uses
Bayesian belief network for root cause analysis and fault
prediction in adaptive enterprise management.

For large-scale computing systems, IBM’s autonomic
computing blueprint [11] projects a novel architecture to
enable systems to self-manage (-configure, -heal, -

deferred

37%

reactive

44%

preventive

19%

Automatic
68%

Manual
32%

Automatic vs. Manual Problem Reporting

optimize, and -protect) guided by human knowledge.
System components must have monitor, analyze, plan,
and execute functions, to adapt to changes and anomalies
in accordance with business policies and objectives.

A self-healing framework for databases has been
proposed in [12]. It aims to proactively detect potential
problems in either a learning-based or programmed
manner, maintain an adaptable repository of problem
patterns or normal behavior patterns, mine knowledge
from accumulated usage data, execution patterns and
successful resolutions, while minimizing self-healing
overhead against risk factors. Similarly, Oracle database
has also put key development focus on self-healing
capabilities [13], i.e., proactive problem detection, limited
damage and interruption, faster diagnosis, simplified
resolution and repair, faster solution delivery.

Self-healing mechanisms are also discussed in contexts
of automatically re-establishing trust in previously
compromised virtual machines [4]. Many other
mechanisms can help to improve serviceability. For
example, the Boeing 787 aircraft is made 30% less
expensive to maintain, because of the extensive use of
composite components, integrated system architecture,
and carefully scheduled maintenance plan [14].

The service industry has adopted knowledge-centered
support (KCS) as a methodology for support teams to
service customer problems by searching and updating a
knowledgebase [5]. The support technician needs to
document or update the very solution at the same time
s/he is servicing the customer. Quality of the resulting
knowledgebase is guarded by the competency of staff
members. As proved by HP Non Stop Support [6], KCS
brings consistent and high-quality solution sharing among
service staff and end users, capture of knowledge,
incremental improvement and reuse of group intelligence.

9 Conclusions

In this paper, we have presented Reiki, a
serviceability architecture and approach for managing and
reducing incidents from products. We motivated the need
for such an approach and architecture by modeling costs
and by providing two use cases. We then described the
architecture and design, followed by some scenarios of
use. We also provided some data analysis of the current
levels of automation and costs. Reiki reduces the costs of
serviceability by:

• Increased automation of service delivery

• Shifting service delivery to match level of automation

• Understanding costs and balancing product redundancy
with the support organization’s ability to service

In the future, we shall present more detailed
quantified analysis of the results of our work. A
comprehensive measurement of serviceability cost before

and after deploying Reiki serviceability will be compared
for individual products, product families, business, and
for the overall services organization.

Acknowledgement

We would like to thank numerous people who helped
us with data analysis, in particular: Al Haddix, Jay
Harlan, Roy Carlson, Mike Kerr, Don Davis, Rod Naker,
and Drew Walton.

References

[1] Ali Akoglu, et al, “FPGA Based Fault Detection, Isolation
and Healing for Integrated Vehicle Health”, AAAI Fall
Symp. on Artificial Intelligence for Prognostics, Nov’07.

[2] Sun Microsystems Technical Report, “Predictive Self
Healing in the Solaris 10 Operating System,” June 2004.

[3] Antonio Carzaniga, et al., “Self-Healing by Means of
Automatic Workaround,” Proc of SEAMS’08, May 12–
13, 2008, Leipzig, Germany, pp17-24

[4] Julian B. Grizzard, et al., “Towards a Trusted Immutable
Kernel Extension (TIKE) for Self-Healing Systems: A
Virtual Machine Approach,” Proc. of IEEE Workshop on
Information Assurance and Security, West Point, NY, pp
444-446, 2004.

[5] Consortium for Service Innovation, “The KCSsm
Operational Model (Knowledge-Centered Support),
Version 3.7”.

[6] Consortium for Service Innovation, “HP Non Stop
Customer Support, Knowledge-Centered Support sm (KCS)
at Work”.

[7] Brian Cook, et al., “Toward Self-Healing Multitier
Services,” Proc. of IEEE International Data Engineering
Workshop, 17-20 April 2007, pp 424-432.

[8] L. Baresi, et al. “Towards Self-Healing Service
Compositions”, Proc. 1st Conference on the Principles of
Software Engineering, Buenos Aires, Argentina, 2004

[9] Ghita Kouadri, et al., “On Modeling and Developing Self-
Healing Web Services Using Aspects,” Proc. Of the IEEE
Conference on Communication Systems Software and
Middleware, 2007. COMSWARE 2007, pp 1-8.

[10] Goranka Medhi, et al., “Pranayama*: A predictive self-
healing technique for fault-tolerance in Adaptive
Enterprise Management, HP Tech Con Asia

[11] IBM White Paper, “An Architectural Blueprint for
Autonomic Computing”, 2006

[12] Rimma V. Nehme, “Database, Heal Thyself,” Proc of
IEEE ICDE Workshop 2008, pp 4-10

[13] Richard Sarwal, “The Self-Healing Database: Strategies
and Directions”

[14] Boeing News Release, “FAA Approves Boeing 787
Dreamliner Maintenance Program”, Dec. 22, 2008,
www.boeing.com/commercial/news/2008/q4/081222b_nr.html

