

Keyword(s):

Abstract:

©

CACTI 6.0: A Tool to Model Large Caches

Naveen Muralimanohar, Rajeev Balasubramonian, Norman P. Jouppi

HP Laboratories
HPL-2009-85

No keywords available.

Future processors will likely have large on-chip caches with a possibility of dedicating an entire die for
on-chip storage in a 3D stacked design. With the ever growing disparity between transistor and wire delay,
the properties of such large caches will primarily depend on the characteristics of the interconnection
networks that connect various sub-modules of a cache. CACTI 6.0 is a significantly enhanced version of
the tool that primarily focuses on interconnect design for large caches. In addition to strengthening the
existing analytical model of the tool for dominant cache components, CACTI 6.0 includes two major
extensions over earlier versions: first, the ability to model Non-Uniform Cache Access (NUCA), and
second, the ability to model different types of wires, such as RC based wires with different power, delay,
and area characteristics and differential low-swing buses. This report details the analytical model assumed
for the newly added modules along with their validation analysis.

External Posting Date: April 21, 2009 [Fulltext] Approved for External Publication
Internal Posting Date: April 21, 2009 [Fulltext]

Published in International Symposium on Microarchitecture, Chicago, Dec 2007.

Copyright International Symposium on Microarchitecture, 2007.

CACTI 6.0: A Tool to Model Large Caches

Naveen Muralimanohar†, Rajeev Balasubramonian†, Norman P. Jouppi‡

† School of Computing, University of Utah
‡ Hewlett-Packard Laboratories

Abstract

Future processors will likely have large on-chip caches with a possibility of dedicating an entire die for
on-chip storage in a 3D stacked design. With the ever growingdisparity between transistor and wire delay, the
properties of such large caches will primarily depend on thecharacteristics of the interconnection networks that
connect various sub-modules of a cache. CACTI 6.0 is a significantly enhanced version of the tool that primarily
focuses on interconnect design for large caches. In addition to strengthening the existing analytical model of
the tool for dominant cache components, CACTI 6.0 includes two major extensions over earlier versions: first,
the ability to model Non-Uniform Cache Access (NUCA), and second, the ability to model different types of
wires, such as RC based wires with different power, delay, and area characteristics and differential low-swing
buses. This report details the analytical model assumed forthe newly added modules along with their validation
analysis.

Contents

1 Background 3

2 CACTI Terminologies 3

3 New features in CACTI 6.0 4

4 NUCA Modeling 5
4.1 Interconnect Model 8

5 Analytical Models 10
5.1 Wire Parasitics 10
5.2 Global Wires 11
5.3 Low-swing Wires 12

5.3.1 Transmitter 12
5.3.2 Differential Wires 15
5.3.3 Sense Amplifier 16

5.4 Router Models 16
5.5 Distributed Wordline Model 17
5.6 Distributed Bitline Model 17

6 Extensions to UCA Model 18

7 Trade-off Analysis 18

8 Validation 20

9 Usage 22

10 Conclusions 23

References 23

2

1 Background

This section presents some basics on the CACTI cache access model. Figure 1(a) shows the basic logical
structure of a uniform cache access (UCA) organization. Theaddress request to the cache is first provided as
input to the decoder, which then activates a wordline in the data array and tag array. The contents of an entire
row are placed on the bitlines, which are then sensed. The multiple tags thus read out of the tag array are
compared against the input address to detect if one of the ways of the set does contain the requested data. This
comparator logic drives the multiplexor that finally forwards at most one of the ways read out of the data array
back to the requesting processor.

The CACTI cache access model [14] takes in the following major parameters as input: cache capacity, cache
block size (also known as cache line size), cache associativity, technology generation, number of ports, and
number of independent banks (not sharing address and data lines). As output, it produces the cache configura-
tion that minimizes delay (with a few exceptions), along with its power and area characteristics. CACTI models
the delay/power/area of eight major cache components: decoder, wordline, bitline, senseamp, comparator, mul-
tiplexor, output driver, and inter-bank wires. The wordline and bitline delays are two of the most significant
components of the access time. The wordline and bitline delays are quadratic functions of the width and height
of each array, respectively.

In practice, the tag and data arrays are large enough that it is inefficient to implement them as single large
structures. Hence, CACTI partitions each storage array (inthe horizontal and vertical dimensions) to produce
smallersub-arraysand reduce wordline and bitline delays. The bitline is partitioned intoNdbl different seg-
ments, the wordline is partitioned intoNdwl segments, and so on. Each sub-array has its own decoder, and
some central pre-decoding is now required to route the request to the correct sub-array. CACTI carries out an
exhaustive search across different sub-array counts (different values of Ndbl, Ndwl, etc.) and sub-array aspect
ratios to compute the cache organization with optimal totaldelay. A cache may be organized into a handful of
banks. An example of a cache’s physical structure is shown inFigure 1(b).

2 CACTI Terminologies

The following is a list of keywords introduced by various versions of CACTI.

• Bank - A memory structure that consists of a data and a tag array. A cache may be split into multi-
ple banks and CACTI assumes enough bandwidth so that these banks can be accessed simultaneously.
The network topology that interconnects these banks can vary depending on the cache model (UCA or
NUCA).

• Sub-arrays - A data or tag array is divided into a number of sub-arrays to reduce the delay due to
wordline and bitline. Unlike banks, at any given time, thesesub-arrays support only one single access.
The total number of sub-arrays in a cache is equal to the product of Ndwl and Ndbl.

• Mat - A group of four sub-arrays (2x2) that share a common centralpredecoder. CACTI’s exhaustive
search starts from a minimum of at least one mat.

3

Input address

D
ec

od
er

Wordline

Bitlines

T
ag

 a
rr

ay

D
at

a
ar

ra
y

Column muxes
Sense Amps

Comparators

Output driver

Valid output?

Mux drivers

Data output

Output driver

(a) Logical organization of a cache.

Data output bits

Bank

Address bits

(b) Example physical organization of the data array.

Figure 1. Logical and physical organization of the cache (from CACTI 3 .0 [13]).

• Sub-bank - In a typical cache, a cache block is scattered across multiple sub-arrays to improve the
reliability of a cache. Irrespective of the cache organization, CACTI assumes that every cache block in a
cache is distributed across an entire row of mats and the row number corresponding to a particular block
is determined based on the block address. Each row (of mats) in an array is referred to as a sub-bank.

• Ntwl/Ndwl - Number of horizontal partitions in a tag or data array i.e.,the number of segments that a
single wordline is partitioned into.

• Ntbl/Ndbl - Number of vertical partitions in a tag or data array i.e., the number of segments that a single
bitline is partitioned into.

• Ntspd/Nspd- Number of sets stored in each row of a sub-array. For a given Ndwl and Ndbl values, Nspd
decides the aspect ratio of the sub-array.

• Ntcm/Ndcm - Degree of bitline multiplexing.

• Ntsam/Ndsam- Degree of sense-amplifier multiplexing.

3 New features in CACTI 6.0

CACTI 6.0 comes with a number of new features, most of which are targeted to improve the tool’s ability to
model large caches.

• Incorporation of many different wire models for the inter-bank network: local/intermediate/global wires,
repeater sizing/spacing for optimal delay or power, low-swing differential wires.

• Incorporation of models for router components (buffers, crossbar, arbiter).

• Introduction of grid topologies for NUCA and a shared bus architecture for UCA with low-swing wires.

4

• An algorithm for design space exploration that models different grid layouts and estimates average bank
and network latency. The design space exploration also considers different wire and router types.

• The introduction of empirical network contention models to estimate the impact of network configuration,
bank cycle time, and workload on average cache access delay.

• An improved and more accurate wordline and bitline delay model.

• A validation analysis of all new circuit models: low-swingdifferential wires, distributed RC model for
wordlines and bitlines within cache banks (router components have been validated elsewhere).

• An improved interface that enables trade-off analysis forlatency, power, cycle time, and area.

4 NUCA Modeling

Earlier versions of CACTI assumed a Uniform Cache Access (UCA) model in which, the access time of
a cache is determined by the delay to access the farthest sub-array. To enable pipelining, an H-tree network
is employed to connect all the sub-arrays of a cache. For large caches, this uniform model can suffer from
a very high hit latency. A more scalable approach for future large caches is to replace the H-tree bus with a
packet-switched on-chip grid network. The latency for a bank is determined by the delay to route the request
and response between the bank that contains the data and the cache controller. Such a NUCA model was first
proposed by Kim et al. [7] and has been the subject of many architectural evaluations. CACTI 6.0 builds upon
this model and adopts the following algorithm to identify the optimal NUCA organization.

The tool first iterates over a number of bank organizations: the cache is partitioned into2N banks (whereN
varies from 1 to 12); for eachN , the banks are organized in a grid with2M rows (whereM varies from 0 to
N). For each bank organization, CACTI 5.0 [15] is employed to determine the optimal sub-array partitioning
for the cache within each bank. Each bank is associated with arouter. The average delay for a cache access
is computed by estimating the number of network hops to each bank, the wire delay encountered on each hop,
and the cache access delay within each bank. We further assume that each traversal through a router takes upR

cycles, whereR is a user-specified input. Router pipelines can be designed in many ways: a four-stage pipeline
is commonly advocated [4], and recently, speculative pipelines that take up three, two, and one pipeline stage
have also been proposed [4, 8, 11]. While we give the user the option to pick an aggressive or conservative
router, the tool defaults to employing a moderately aggressive router pipeline with three stages. The user also
has the flexibility to specify the operating frequency of thenetwork (which defaults to 5 GHz). However,
based on the process technology and the router model, the tool will calculate the maximum possible network
frequency [11]. If the assumed frequency is greater than themaximum possible value, the tool will downgrade
the network frequency to the maximum value.

In the above NUCA model, more partitions lead to smaller delays (and power) within each bank, but greater
delays (and power) on the network (because of the constant overheads associated with each router and decoder).
Hence, the above design space exploration is required to estimate the cache partition that yields optimal delay
or power. The above algorithm was recently proposed by Muralimanohar and Balasubramonian [9]. While

5

0

50

100

150

200

250

300

2 4 8 16 32 64

C
o

n
te

n
ti

o
n

 C
y
c
le

s

Bank Count

16-core

8-core

4-core

(a) Total network contention value/access for CMPs with

different NUCA organizations

0

50

100

150

200

250

300

350

400

2 4 8 16 32 64

L
a
te

n
c
y
 (

c
y
c
le

s
)

No. of Banks

Total No. of Cycles

Network Latency

Bank access latency

Network contention Cycles

(b) Optimal NUCA organization

Figure 2. NUCA design space exploration.

the algorithm is guaranteed to find the cache structure with the lowest possible delay or power, the bandwidth
of the cache might still not be sufficient enough for a multi core processor model. To address this problem,
CACTI 6.0 further extends this algorithm by modeling contention in the network in much greater detail. This
contention model itself has two major components. If the cache is partitioned into many banks, there are
more routers/links on the network and the probability of twopackets conflicting at a router decrease. Thus,
a many-banked cache is more capable of meeting the bandwidthdemands of a many-core system. Further,
certain aspects of the cache access within a bank cannot be easily pipelined. The longest such delay within
the cache access (typically the bitline and sense-amp delays) represents the cycle time of the bank – it is the
minimum delay between successive accesses to that bank. A many-banked cache has relatively small banks
and a relatively low cycle time, allowing it to support a higher throughput and lower wait-times once a request
is delivered to the bank. Both of these two components (lowercontention at routers and lower contention at
banks) tend to favor a many-banked system. This aspect is also included in estimating the average access time
for a given cache configuration.

To improve the search space of the NUCA model, CACTI 6.0 also explores different router types and wire
types for the links between adjacent routers. The wires are modeled as low-swing differential wires as well as
global wires with different repeater configurations to yield many points in the power/delay/area spectrum. The
sizes of buffers and virtual channels within a router have a major influence on router power consumption as
well as router contention under heavy load. By varying the number of virtual channels per physical channel
and the number of buffers per virtual channel, we are able to achieve different points on the router power-delay
trade-off curve.

The contention values for each considered NUCA cache organization are empirically estimated for typical
workloads and incorporated into CACTI 6.0 as look-up tables. For each of the grid topologies considered (for
different values ofN and M), we simulated L2 requests originating from single-core, two-core, four-core,
eight-core, and sixteen-core processors. Each core executes a mix of programs from the SPEC benchmark

6

Fetch queue size 64 Branch predictor comb. of bimodal and 2-level
Bimodal predictor size 16K Level 1 predictor 16K entries, history 12

Level 2 predictor 16K entries BTB size 16K sets, 2-way
Branch mispredict penalty at least 12 cycles Fetch width 8 (across up to 2 basic blocks)
Dispatch and commit width 8 Issue queue size 60 (int and fp, each)

Register file size 100 (int and fp, each) Re-order Buffer size 80
L1 I-cache 32KB 2-way L1 D-cache 32KB 2-way set-associative,
L2 cache 32MB 8-way SNUCA 3 cycles, 4-way word-interleaved

L2 Block size 64B
I and D TLB 128 entries, 8KB page size Memory latency 300 cycles for the first chunk

Network topology Grid Flow control mechanism Virtual channel
No. of virtual channels 4 /physical channel Back pressure handling Credit based flow control

Table 1. Simplescalar simulator parameters.

Memory intensive applu, fma3d, swim, lucas
benchmarks equake, gap, vpr, art

L2/L3 latency ammp, apsi, art, bzip2,
sensitive benchmarks crafty, eon, equake, gcc

Half latency sensitive & ammp, applu, lucas, bzip2
half non-latency crafy, mgrid,

sensitive benchmarks mesa, gcc
Random benchmark set Entire SPEC suite

Table 2. Benchmark sets

suite. We divide the benchmark set into four categories, as described in Table 2. For every CMP organization,
we run four sets of simulations, corresponding to each benchmark set tabulated. The generated cache traffic
is then modeled on a detailed network simulator with supportfor virtual channel flow control. Details of the
architectural and network simulator are listed in Table 1. The contention value (averaged across the various
workloads) at routers and banks is estimated for each network topology and bank cycle time. Based on the
user-specified inputs, the appropriate contention values in the look-up table are taken into account during the
design space exploration.

For a network with completely pipelined links and routers, these contention values are only a function of
the router topology and bank cycle time and will not be affected by process technology or L2 cache size1. If
CACTI is being employed to compute an optimal L3 cache organization, the contention values will likely be
much less because the L2 cache filters out many requests. To handle this case, we also computed the average
contention values assuming a large 2 MB L1 cache and this is incorporated into the model as well. In summary,
the network contention values are impacted by the followingparameters:M , N , bank cycle time, number of
cores, router configuration (VCs, buffers), size of preceding cache. We plan to continue augmenting the tool
with empirical contention values for other relevant sets ofworkloads such as commercial, multi-threaded, and

1We assume here that the cache is organized as static-NUCA (SNUCA), where the address index bits determine the unique bank
where the address can be found and the access distribution does not vary greatly as a function of the cache size. CACTI is designed to
be more generic than specific. The contention values are provided as a guideline to most users. If a user is interested in a more specific
NUCA policy, there is no substitute to generating the corresponding contention values and incorporating them in the tool.

7

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

2 4 8 16 32 64

Bank count
D

ev
ia

ti
o

n

4 Core

8 Core

16 Core

Figure 3. Contention deviation

transactional benchmarks with significant traffic from cache coherence.
Figure 2(b) shows an example design space exploration for a 32 MB NUCA L2 cache while attempting to

minimize latency. The X-axis shows the number of banks that the cache is partitioned into. For each point on
the X-axis, many different bank organizations are considered and the organization with optimal delay (averaged
across all banks) is finally represented on the graph. The Y-axis represents this optimal delay and it is further
broken down to represent the contributing components: bankaccess time, link and router delay, router and bank
contention. We observe that the optimal delay is experienced when the cache is organized as a2 × 4 grid of 8
banks.

As mentioned earlier, contention values in Figure 2 correspond to the average values across different bench-
mark sets tabulated in Table 2. Depending upon the choice of benchmark set, the actual network contention
can deviate from this mean value. Figure 3 shows the percentage deviation of contention values for different
number of cores. Once again, the contention values are obtained by running ‘n’ different workloads from each
benchmark set, where ‘n’ is equal to the number of cores in a CMP. For sixteen and eight core models, the
deviation in contention values has negligible effect on optimal NUCA configuration. However, for some four
core models, the optimal bank count can vary with the choice of benchmarks. Depending upon the bank cy-
cle time, network contention typically accounts for around25% of the NUCA access time. In the worst case,
employing average network contention values for design space exploration can result in at most 10% error in
NUCA access time.

4.1 Interconnect Model

With shrinking process technologies, interconnect plays an increasingly important role in deciding the power
and performance of large structures. In the deep sub-micronera, the properties of a large cache are heavily im-
pacted by the choice of the interconnect model [9, 10]. Another major enhancement to the tool that significantly
improves the search space is the inclusion of different wiremodels with varying power and delay characteristics.
The properties of wires depend on a number of factors like dimensions, signaling, operating voltage, operating

8

(a) Effect repeater spacing/sizing on wire delay. (b) Contours corresponding to 2% delay penalty.

Figure 4. Repeater overhead vs wire delay

frequency, etc. Based on the signaling strategy, RC wires can be classified into two broad categories2: 1.
Traditional full-swing wires, 2. Differential, low-swing, low power wires.

The delay of an RC wire increases quadratically with its length. To avoid this quadratic relationship, a long
wire is typically interleaved with repeaters at regular intervals. This makes delay a linear function of wire
length. However, the use of repeaters at regular intervals requires that voltage levels of these wires swing across
the full range (0-Vdd) for proper operation. Given the quadratic dependence between voltage and power, these
full swing wires are accompanied by very high power overhead. Figure 5 shows the delay and power values of
global wires for different process technologies.

With power emerging as a major bottleneck, focusing singularly on performance is not possible. Alterna-
tively, we can improve the power characteristics of these wires by incurring a delay penalty. In a typical, long,
full swing wire, repeaters are one of the major contributorsof interconnect power. Figure 4(a) shows the im-
pact of repeater sizing and spacing on wire delay. Figure 4(b), shows the contours corresponding to the 2%
delay penalty increments for different repeater configurations. As we can see, by tolerating a delay penalty,
significant reduction in repeater overhead is possible. Figure 5 shows the power values of different wires that
take 10%, 20%, and 30% delay penalty for different process technologies.

One of the primary reasons for the high power dissipation of global wires is the full swing requirement
imposed by the repeaters. While we are able to somewhat reduce the power requirement by reducing repeater
size and increasing repeater spacing, the requirement is still relatively high. Low voltage swing alternatives
represent another mechanism to vary the wire power/delay/area trade-off. Reducing the voltage swing on global
wires can result in a linear reduction in power. In addition,assuming a separate voltage source for low-swing
drivers will result in a quadratic savings in power. However, these lucrative power savings are accompanied
by many caveats. Since we can no longer use repeaters or latches, the delay of a low-swing wire increases

2Many recent proposals advocate designing wires with very low resistance and/or high operating frequency so that wires behave
like a transmission line. While transmission lines incur very low delay, they are accompanied by high area overheads andsuffer from
signal integrity issues. For these reasons, we limit our discussion in this report to RC wires.

9

2.50E 09

Low!Swing

2.00E 09

30!%!penalty

20!%!penalty

10%!penalty

Global

1.50E 09

e
la
y

 (
s)

1.00E 09

D
e

5.00E 10

0 00E+000.00E+00

1 2 3 4 5 6 7 8 9 10

Wire Length (mm)

(a) Delay characteristics of different wires at 32nm process

technology.

0.00E+00

5.00E 13

1.00E 12

1.50E 12

2.00E 12

2.50E 12

3.00E 12

3.50E 12

4.00E 12

1 2 3 4 5 6 7 8 9 10

E
n
e
rg
y

(J
)

Wire Length (mm)

Global!Power

10%!delay

20%!dela

30%

Low!Swing!Power

(b) Energy characteristics of different wires at 32nm process

technology.

Figure 5. Power-delay properties of different wires

quadratically with length. Since such a wire cannot be pipelined, they also suffer from lower throughput. A
low-swing wire requires special transmitter and receiver circuits for signal generation and amplification. This
not only increases the area requirement per bit, but also assigns a fixed cost in terms of both delay and power
for each bit traversal. In spite of these issues, the power savings possible through low-swing signalling makes it
an attractive design choice. The detailed methodology for the design of low-swing wires and their overhead is
described in a later section. In general, low-swing wires have superior power characteristics but incur high area
and delay overheads. Figure 5 compares power delay characteristics of low-swing wires with global wires.

5 Analytical Models

The following sections discuss the analytical delay and power models for different wires. All the process
specific parameters required for calculating the transistor and wire parasitics are obtained from ITRS [1].

5.1 Wire Parasitics

The resistance and capacitance per unit length of a wire is given by the following equations [5]:

Rwire =
ρ

d ∗ (thickness − barrier)(width − 2 barrier)
(1)

where,d (< 1) is the loss in cross-sectional area due to dishing effect [1] andρ is the resistivity of the metal.

Cwire = ǫ0(2Kǫhoriz

thickness

spacing
+ 2ǫvert

width

layerspacing
) + fringe(ǫhoriz, ǫvert) (2)

In the above equation for the capacitance, the first term corresponds to the side wall capacitance, the second
term models the capacitance due to wires in adjacent layers,and the last term corresponds to the fringing
capacitance between the sidewall and the substrate.

10

ll

RepeaterRepeater

Figure 6. Interconnect segment

5.2 Global Wires

For a long repeated wire, the single pole time constant modelfor the interconnect fragment shown in Figure 6
is given by,

τ = (
1

l
rs(c0 + cp) +

rs

s
Cwire + Rwiresc0 + 0.5RwireCwirel) (3)

In the above equation,c0 is the capacitance of the minimum sized repeater,cp is its output parasitic capacitance,
rs is its output resistance,l is the length of the interconnect segment between repeatersands is the size of the
repeater normalized to the minimum value. The values ofc0, cp, and rs are constant for a given process
technology. Wire parasiticsRwire andCwire represent resistance and capacitance per unit length. The optimal
repeater sizing and spacing values can be calculated by differentiating equation 3 with respect tos and l and
equating it to zero.

Loptimal =

√

2rs(c0 + cp)

RwireCwire

(4)

Soptimal =

√

rsCwire

Rwirec0

(5)

The delay value calculated using the aboveLoptimal andSoptimal is guaranteed to have minimum value.
The total power dissipated is the sum of three main components (equation 6) [3].

Ptotal = Pswitching + Pshort−circuit + Pleakage (6)

The dynamic and leakage components of the interconnect are computed using equations 7 and 8.

Pdynamic = αV 2

DDfclock(
Soptimal

Loptimal

(cp + c0) + c)

+(αVDDWminISCfclockloge3)Soptimal

τ

Loptimal

11

in

enable
diff_out1

inbinb

Figure 7. Low-swing transmitter (actual transmitter has two such cir cuits to feed the differential wires)

fclock is the operating frequency,Wmin is the minimum width of the transistor,ISC is the short-circuit
current, and the value(τ/L)optimal can be calculated from equation 7.

(
τ

L
)optimal = 2

√
rsc0rc

(

1 +

√

0.5 ∗

(

1 +
cp

c0

)

)

(7)

Pleakage =
3

2
VDDIleakWnSoptimal (8)

Ileak is the leakage current andWn is the minimum width of the nMOS transistor.
With the above equations, we can compute the delay and power for global and semi-global wires. Wires

faster than global wires can be obtained by increasing the wire width and spacing between the wires. Wires
whose repeater spacing and sizing are different from equation 4 and 5 will incur a delay penalty. For a given
delay penalty, the power optimal repeater size and spacing can be obtained from the contour shown in Figure
4(b). The actual calculation involves solving a set of differential equations [3].

5.3 Low-swing Wires

A low-swing interconnect system consists of three main components: (1) a transmitter that generates and
drives the low-swing signal, (2) twisted differential wires, and (3) a receiver amplifier.

5.3.1 Transmitter

For an RC tree with a time constantτ , the delay of the circuit for an input with finite rise time is given by
equation 9

12

delayr = tf

√

[log
vth

Vdd

]2 + 2triseb(1 −
vth

V dd
)/tf (9)

where,tf is the time constant of the tree,vth is the threshold voltage of the transistor,trise is the rise time of
the input signal, andb is the fraction of the input swing in which the output changes(we assumeb to be 0.5).

For falling input, the equation changes to

delayf = tf

√

[log(1 −
vth

Vdd

)]2 +
2tfallbvth

tfVdd

(10)

where,tfall is the fall time of the input. For the falling input, we use a value of 0.4 forb [18].
To get a reasonable estimate of the initial input signal rise/fall time, we consider two inverters connected

in series. Letd be the delay of the second inverter. Thetfall and trise values for the initial input can be
approximated to

tfall =
d

1 − vth

trise =
d

vth

For the transmitter circuit shown in Figure 7, we employ the model proposed by Ho et al. [6].
The total delay of the transmitter is given by,

tdelay = nanddelay + inverterdelay + driverdelay (11)

Each gate in the above equation (nand, inverter, anddriver) can be reduced to a simple RC tree. Later a
Horowitz approximation is applied to calculate the delay ofeach gate. The power consumed in different gates
can be derived from the input and output parasitics of the transistors.

NAND gate:
The equivalent resistance and capacitance values of a NAND gate is given by,

Req = 2 ∗ Rnmos

Ceq = 2 ∗ CPdrain + 1.5 ∗ CNdrain + CL

whereCL is the load capacitance of the NAND gate and is equal to the input capacitance of the next gate. The
value ofCL is equal toINVsize∗(CPgate +CNgate) whereINVsize is the size of the inverter whose calculation
is discussed later in this section.

NOTE: The drain capacitance of a transistor is highly non-linear. In the above equation forCeq, the ef-
fective drain capacitance of two nMOS transistors connected in series is approximated to 1.5 times the drain
capacitance of a single nMOS transistor.

τnand = Req ∗ Ceq

13

Using theτnand and trise values in equation 10,nanddelay can be calculated. Power consumed by the
NAND gate is given by

Pnand = Ceq ∗ V 2

dd

The fall time (tfall) of the input signal to the next stage (NOT gate) is given by

tfall = nanddelay(
1

1 − vth

)

Driver:
To increase the energy savings in low-swing model, we assumea separate low voltage source for driving

low-swing differential wires. The size of these drivers depends on its load capacitance which in turn depends
on the length of the wire. To calculate the size of the driver,we first calculate the drive resistance of the nMOS
transistors for a fixed desired rise time of eight F04.

Rdrive =
−Risetime

CL ∗ ln(0.5)

Wdr =
Rm

Rdrive

∗ Wmin

In the above equation,CL is the sum of capacitance of the wire and input capacitance ofthe sense amplifier.
Rm is the drive resistance of a minimum sized nMOS transistor and Wmin is the width of the minimum sized
transistor.

From theRdrive value, the actual width of the pMOS transistor can be calculated3.
NOTE: The driver resistanceRdrive calculated above is valid only if the supply voltage is set tofull Vdd.

Since low-swing drivers employ a separate low voltage source, the actual drive resistance of these transistors
will be greater than the pMOS transistor of the same size driven by the fullVdd. Hence, theRdrive value
is multiplied with an adjustment factorRES ADJ to account for the poor driving capability of the pMOS
transistor. Based on the SPICE simulation,RES ADJ value is calculated to be 8.6.

NOT gate:
The size of the NOT gate is calculated by applying the method of logical effort. Consider the NAND gate

connected to the NOT gate that drives a load ofCL, where,CL is equal to the input capacitance of the driver.
Let p ef ands ef represent path effort and stage effort respectively.

p ef =
CL

CNgate + CPgate

The delay will be minimum when the effort in each stage is same.

s ef =
√

(4/3) ∗ p ef

CNOT in =
(4/3) ∗ CL

s ef

3In our model, we limit the transistor width to 100 times the minimum size.

14

INVsize =
CNOTin

CNgate + CPgate

Using the above inverter size, the equivalent resistance and the capacitance of the gate can be calculated.

Req = Rpmos

Ceq = CPdrain + CNdrain + CL

whereCL for the inverter is equal to (CNgate).

τnot = Req ∗ Ceq

Using the aboveτnot and tfall values,notdelay can be calculated. Energy consumed by this NOT gate is
given by

Enot = Ceq ∗ V 2

dd

The rise time for the next stage is given by

trise =
notdelay

vth

5.3.2 Differential Wires

To alleviate the high delay overhead of the un-repeated low-swing wires, similar to differential bitlines, we
employ pre-emphasis and pre-equalization optimizations.In pre-emphasis, the drive voltage of the driver is
maintained at higher voltage than low-swing voltage. By overdriving these wires, it takes only a fraction of
time constant to develop the differential voltage. In pre-equalization, after a bit traversal, the differential wires
are shorted to recycle the charge. Developing a differential voltage on a pre-equalized wires takes less time
compared to the wires with opposite polarity.

The following equations present the time constant and capacitance values of the segment that consist of
low-swing drivers and wires.

tdriver = (Rdriver ∗ (Cwire + 2 ∗ Cdrain) + RwireCwire/2 + (Rdriver + Rwire) ∗ Csense amp) (12)

TheCwire andRwire in the above equation represents resistance and capacitance parasitics of the low-swing
wire. Rdriver andCdrain are resistance and drain capacitance of the driver transistors. The pre-equalization and
pre-emphasis optimizations bring down this time constant to 35% of the above value.

The total capacitance of the low-swing segment is given by

Cload = Cwire + 2 ∗ Cdrain + Csense amp

The dynamic energy due to charging and discharging of differential wires is given by,

Cload ∗ VoverDrive ∗ Vlowswing

For our evaluations we assume an overdrive voltage of 400mV and a low swing voltage of 100mV.

15

out
t

b

out

bit bit

en

Figure 8. Sense-amplifier circuit

5.3.3 Sense Amplifier

Figure 8 shows the cross-coupled inverter sense amplifier circuit used at the receiver. The delay and power
values of the sense amplifier were directly calculated from SPICE simulation. The simulation methodology and
the actual delay and power values of the sense-amplifier for different process technologies are discussed in the
validation section 8.

5.4 Router Models

There have been a number of router proposals in the literature with different levels of speculation and pipeline
stages [4, 8, 11]. The number of pipeline stages for routers in CACTI 6.0 is left as a user-specified input,
defaulting to 3 cycles. Buffers, crossbars, and arbiters are the major contributors to the router power. CACTI
6.0’s analytical power models for crossbars and arbiters issimilar to the model employed in Orion toolkit [17].
Buffer power is modeled using CACTI’s inbuilt RAM model.

16

Figure 9. RC model of a wordline

5.5 Distributed Wordline Model

Figure 9 shows the wordline circuit and its equivalent RC model. Earlier versions of CACTI modeled the
wordline wire as a single lumped RC tree. In process technologies where wire parasitics dominate, a distributed
RC model of the type shown in the figure will significantly improve the accuracy of the model.

Let cw andrw be the resistance and capacitance values of the wire of length l where,l is the width of the
memory cell. The time constant governing the above RC tree isgiven by

τ = Rdr ∗ Cdr + n ∗ Rdr ∗ (cw + Cpg) +
rw ∗ (cw + Cpg) ∗ n ∗ (n + 1)

2

where,
Rdr - Resistance of the pMOS transistor in the driver.
Cdr - Sum of the drain capacitance of the pMOS and nMOS transistors in the driver.
Cpg - Input gate capacitance of the pass transistor.
n - Length of the wordline in terms of number of memory cells.

5.6 Distributed Bitline Model

Figure 10 shows the RC model of the bitline read path. The timeconstant of the RC tree is given by,

τ = (Rpass + Rpd) ∗ Cpass +

(Rpd + Rpass + r ∗ n + Rbmux) ∗ Cbmux +

(Rpd + Rpass) ∗ c ∗ n + n ∗ (n + 1) ∗ r ∗ c/2

17

Figure 10. RC model of a bitline

where,
Rpass - Resistance of the pass transistor
Cpass - Drain capacitance of the pass transistor
Rbmux - Resistance of the transistor in the bitline multiplexer
Cbmux - Drain capacitance of the transistor in the bitline multiplexer
n - Length of the bitline in terms of number of memory cells
c - Capacitance of the bitline segment between two memory cells that include wire capacitance and the drain

capacitance of the pass transistor
r - Resistance of the wire connecting two pass transistors
We follow a methodology similar to the one proposed in the original version of CACTI [18] to take into

account the effect of finite rise time of wordline signal on the bitline delay.

6 Extensions to UCA Model

A traditional UCA model employs an H-tree network for address and data communication for the following
reason: it enables uniform access times for each bank, whichin turn, simplifies the pipelining of requests
across the network. In addition to supporting traditional full-swing, repeated wires, CACTI 6.0 also has an
option to employ low-swing wires for address and data transfers in UCA caches. Since low-swing wires cannot
be pipelined and since they better amortize the transmitter/receiver overhead over long transfers, we adopt a
different network style when using low-swing wires. Instead of the H-tree network, we adopt a collection of
simple broadcast buses that span multiple banks. Each bus isshared by half the banks in a column - an example
with eight banks is shown in Figure 11. The banks continue to have uniform access times, as determined by
the worst-case delay.

7 Trade-off Analysis

The new version of the tool adopts the following default costfunction to evaluate a cache organization (taking
into account delay, leakage power, dynamic power, cycle time, and area):

18

ReceiverDifferentialwires

Sub-array

Transmitter

Figure 11. 8-bank data array with a differential low-swing broadcast b us.

cost = Wacc time
acc time

min acc time
+ Wdyn power

dyn power

min dyn power
+ Wleak power

leak power

min leak power
+

Wcycle time

cycle time

min cycle time
+ Warea

area

min area

The weights for each term (Wacc time,Wdyn power,Wleak power,Wcycle time,Warea) indicate the relative
importance of each term and these are specified by the user as input parameters in the configuration file:

-weight 100 20 20 10 10

The above default weights used by the tool reflect the priority of these metrics in a typical modern design. In
addition, the following default line in the input parameters specifies the user’s willingness to deviate from the
optimal set of metrics:

-deviate 1000 1000 1000 1000 1000

The above line dictates that we are willing to consider a cache organization where each metric, say the access
time, deviates from the lowest possible access time by 1000%. Hence, this default set of input parameters
specifies a largely unconstrained search space. The following input lines restrict the tool to identify a cache
organization that yields least power while giving up at most10% performance:

-weight 0 100 100 0 0

-deviate 10 1000 1000 1000 1000

CACTI 6.0 also takes anED or ED2 value as input to its cost function to determine a cache organization
that has the best energy-delay or energy-delay square product.

19

Technology Delay (ps) Energy (fJ)
90nm 279 14.7
68nm 200 5.7
45nm 38 2.7
32nm 30 2.16

Table 3. Sense-amplifier delay and energy values for different proce ss technologies.

8 Validation

In this work, we mainly focus on validating the new modules added to the framework. This includes low-
swing wires, router components, and improved bitline and wordline models. Since SPICE results depend on
the model files for transistors, we first discuss the technology modeling changes made to the recent version of
CACTI (version 5) and later detail our methodology for validating the newly added components to CACTI 6.0.

Earlier versions of CACTI (version one through four) assumed linear technology scaling for calculating
cache parameters. All the power, delay, and area values are first calculated for 800nm technology and the
results are linearly scaled to the user specified process value. While this approach is reasonably accurate for
old process technologies, it can introduce non-trivial error for deep sub-micron technologies (less than 90nm).
This problem is fixed in CACTI 5 [15] by adopting ITRS parameters for all calculations. The current version
of CACTI supports four different process technologies (90nm, 65nm, 45nm, and 32nm) with process specific
values obtained from ITRS. Though ITRS projections are invaluable for quick analytical estimates, SPICE
validation requires technology model files with greater detail and ITRS values cannot be directly plugged in
for SPICE verification. The only non-commercial data available publicly for this purpose for recent process
technologies is the Predictive Technology Model (PTM) [2].For our validation, we employ the HSPICE
tool along with the PTM 65 nm model file for validating the newly added components. The simulated values
obtained from HSPICE are compared against CACTI 6.0 analytical models that take PTM parameters as input4.
The analytical delay and power calculations performed by the tool primarily depend on the resistance and
capacitance parasitics of transistors. For our validation, the capacitance values of source, drain, and gate of n
and p transistors are derived from the PTM technology model file. The threshold voltage and the on-resistance
of the transistors are calculated using SPICE simulations.In addition to modeling the gate delay and wire delay
of different components, our analytical model also considers the delay penalty incurred due to the finite rise
time and fall time of an input signal [18].

Figure 12 (a) & (b) show the comparison of delay and power values of the differential, low-swing analytical
models against SPICE values. As mentioned earlier, a low-swing wire model can be broken into three compo-
nents: transmitters (that generate the low-swing signal),differential wires5, and sense amplifiers. The modeling
details of each of these components are discussed in section5.3. Though the analytical model employed in
CACTI 6.0 dynamically calculates the driver size appropriate for a given wire length, for the wire length of our

4The PTM parameters employed for verification can be directlyused for CACTI simulations. Since most architectural and circuit
studies rely on ITRS parameters, CACTI by default assumes ITRS values to maintain consistency.

5Delay and power values of low-swing drivers are also reported as part of differential wires.

20

4500

5000

4000

4500 CACTI 6.0

SPICE

3000

3500

s
)

SPICE

2500

3000

n

(p

s

1500

2000

e
la

y
 i

500

1000

D

0

500

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 10

Wire Length (mm)Wire Length (mm)

(a) Delay verification

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10

E
n

e
rg

y
/a

c
c
e
s
s
 (

fJ
)

Length (mm)

CACTI 6.0

SPICE

(b) Energy verification
Figure 12. Low-swing model verification

1

10

100

1000

128 256 512 1024

D
e

la
y
 (

p
s

)

Memory Cells

CACTI 6.0

SPICE

(a) Wordline

1

10

100

1000

32 64 128 256

D
e

la
y
 (

p
s

)

No. of Cells

CACTI 6.0

SPICE

(b) Bitline
Figure 13. Distributed wordline and bitline model verification

21

interest, it ends up using the maximum driver size (which is set to 100 times the minimum transistor size) to
incur minimum delay overhead. Earlier versions of CACTI also had the problem of over estimating the delay
and power values of the sense amplifier. CACTI 6.0 eliminatesthis problem by directly using SPICE generated
values for sense-amp power and delay. Table 3 shows the delayand power values of the sense-amplifier for
different process technologies. To calculate these values, the sense amplifier load was set to twice the input
capacitance of the minimum sized inverter. On an average, the low-swing wire models are verified to be within
12% of the SPICE values.

The lumped RC model used in prior versions of CACTI for bitlines and wordlines are replaced with a more
accurate distributed RC model in CACTI 6.0. Based on a detailed SPICE modeling of the bitline segment along
with the memory cells, we found the difference between the old and new model to be around 11% at 130 nm
technology. This difference can go up to 50% with shrinking process technologies as wire parasitics become
the dominant factor compared to transistor capacitance [12]. Figure 13 (a) & (b) compare the distributed
wordline and bitline delay values and the SPICE values. The length of the wordlines or bitlines (specified in
terms of memory array size) are carefully picked to represent a wide range of cache sizes. On an average,
the new analytical models for the distributed wordlines andbitlines are verified to be within 13% and 12% of
SPICE generated values.

Buffers, crossbars, and arbiters are the primary components in a router. CACTI 6.0 uses its scratch RAM
model to calculate read/write power for router buffers. We employ Orion’s arbiter and crossbar model for
calculating router power and these models have been validated by Wang et al. [16].

9 Usage

Prior versions of CACTI take cache parameters such as cache size, block size, associativity, and technology
as command line arguments. In addition to supporting the command line input, CACTI 6.0 also employs
a configuration file (cache.cfg) to enable user to describe the cache parameters in much greater detail. The
following are the valid command line arguments in CACTI 6.0:

C B A Tech NoBanks

and / or

-weight <delay> <dynamic> <leakage> <cycle> <area>

and / or

-deviate <delay> <dynamic> <leakage> <cycle> <area>

C - Cache size in bytes

B - Block size in bytes

A - Associativity

Tech - Process technology in microns or nano-meter

NoBanks - No. of UCA banks

Command line arguments are optional in CACTI 6.0 and a more comprehensive description is possible using
the configuration file. Other non-standard parameters that can be specified in the cache.cfg file include,

22

• No. of read ports, write ports, read-write ports in a cache

• H-tree bus width

• Operating temperature (which is used for calculating the cache leakage value),

• Custom tag size (that can be used to model special structures like branch target buffer, cache directory,
etc.)

• Cache access mode (fast - low access time but power hungry; sequential - high access time but low power;
Normal - less aggressive in terms of both power and delay)

• Cache type (DRAM, SRAM or a simple scratch RAM such as register files that does not need the tag
array)

• NUCA bank count (By default CACTI calculates the optimal bank count value. However, the user can
force the tool to use a particular NUCA bank count value)

• Number of cores

• Cache level - L2 or L3 (Core count and cache level are used to calculate the contention values for a
NUCA model)

• Design objective (weight and deviate parameters for NUCA and UCA)

More details on each of these parameters is provided in the default cache.cfg file that is provided with the
distribution.

10 Conclusions

This report details major revisions to the CACTI cache modeling tool along with a detailed description of the
analytical model for newly added components. Interconnectplays a major role in deciding the delay and power
values of large caches, and we extended CACTI’s design spaceexploration to carefully consider many different
implementation choices for the interconnect components, including different wire types, routers, signaling
strategy, and contention modeling. We also added modeling support for a wide range of NUCA caches. CACTI
6.0 identifies a number of relevant design choices on the power-delay-area curves. The estimates of CACTI 6.0
can differ from the estimates of CACTI 5.0 significantly, especially when more fully exploring the power-delay
trade-off space. CACTI 6.0 is able to identify cache configurations that can reduce power by a factor of three,
while incurring a 25% delay penalty. We validated components of the tool against SPICE simulations and
showed good agreement between analytical and transistor-level models.

23

References

[1] Semiconductor Industry Association, International Technology Roadmap for Semiconductors 2005.
http://public.itrs.net/Links/2005ITRS/Home2005.htm.

[2] Arizona State University. Predictive technology model.
[3] K. Banerjee and A. Mehrotra. A Power-optimal Repeater Insertion Methodology for Global Interconnects in

Nanometer Designs.IEEE Transactions on Electron Devices, 49(11):2001–2007, November 2002.
[4] W. Dally and B. Towles.Principles and Practices of Interconnection Networks. Morgan Kaufmann, 1st edition,

2003.
[5] R. Ho, K. Mai, and M. Horowitz. The Future of Wires.Proceedings of the IEEE, Vol.89, No.4, April 2001.
[6] R. Ho, K. Mai, and M. Horowitz. Managing Wire Scaling: A Circuit Prespective.Interconnect Technology Confer-

ence, pages 177–179, June 2003.
[7] C. Kim, D. Burger, and S. Keckler. An Adaptive, Non-Uniform Cache Structure for Wire-Dominated On-Chip

Caches. InProceedings of ASPLOS-X, October 2002.
[8] R. Mullins, A. West, and S. Moore. Low-Latency Virtual-Channel Routers for On-Chip Networks. InProceedings

of ISCA-31, May 2004.
[9] N. Muralimanohar and R. Balasubramonian. InterconnectDesign Considerations for Large NUCA Caches. In

Proceedings of the 34th International Symposium on Computer Architecture (ISCA-34), June 2007.
[10] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi. Optimizing NUCA Organizations and Wiring Alterna-

tives for Large Caches With CACTI 6.0. InProceedings of MICRO-40, 2007.
[11] L.-S. Peh and W. Dally. A Delay Model and Speculative Architecture for Pipelined Routers. InProceedings of

HPCA-7, 2001.
[12] J. M. Rabaey, A. Chandrakasan, and B. Nikolic.Digital Integrated Circuits - A Design Perspective. Prentice-Hall,

2nd edition, 2002.
[13] P. Shivakumar and N. P. Jouppi. CACTI 3.0: An IntegratedCache Timing, Power, and Area Model. Technical

Report TN-2001/2, Compaq Western Research Laboratory, August 2001.
[14] D. Tarjan, S. Thoziyoor, and N. Jouppi. CACTI 4.0. Technical Report HPL-2006-86, HP Laboratories, 2006.
[15] S. Thoziyoor, N. Muralimanohar, and N. Jouppi. CACTI 5.0. Technical Report HPL-2007-167, HP Laboratories,

2007.
[16] H.-S. Wang, L.-S. Peh, and S. Malik. Power-Driven Design of Router Microarchitectures in On-Chip Networks. In

Proceedings of MICRO-36, December 2003.
[17] H.-S. Wang, X. Zhu, L.-S. Peh, and S. Malik. Orion: A Power-Performance Simulator for Interconnection Networks.

In Proceedings of MICRO-35, November 2002.
[18] S. Wilton and N. Jouppi. An Enhanced Access and Cycle Time Model for On-Chip Caches. Technical Report

TN-93/5, Compaq Western Research Lab, 1993.

24

