[LaBs™)

Operational Analysisof Parallel Servers

Terence Kelly, Kai Shen, Alex Zhang, Christopher Stewart

HP Laboratories
HPL-2009-8

Keyword(s):
performance modeling, performance prediction, capacity planning, system management, operational
analysis, multicore processors, capacity adjustment ACPI C-states, parallel computing, occupancy curve

Abstract:

Multicore processors promise continued hardware performance improvements even as single-core
performance flattens out. However they also enable increasingly complex application software that
threatens to obfuscate application-level performance. This paper applies operational analysis to the problem
of understanding and predicting application-level performancein parallel servers. We present operational
laws that offer both insight and actionable information based on lightweight passive external observations
of black-box applications. One law accurately infers queuing delays; others predict the performance
implications of expanding or reducing capacity. The former enables improved monitoring and system
management; the latter enable capacity planning and dynamic resource provisioning to incorporate
application-level performancein a principled way. Our laws rest upon a handful of weak assumptions that
are easy to test and widely satisfied in practice. We show that the laws are broadly applicable across many
practical CPU scheduling policies. Experimental results on a multicore network server in an enterprise data
center demonstrate the usefulness of our laws.

External Posting Date: January 21, 2009 [Fulltext] Approved for External Publication (éa
Internal Posting Date: January 21, 2009 [Fulltext]

Published in 16th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication

Systems (MASCOTSOB), Baltimore, MD, September 2008.

© Copyright 16th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTSOB), 2008.

Operational Analysis of Parallel Servers

Terence Kelly Kai Shen Alex Zhang Christopher Stewart
HP Labs U. Rochester CS HP Labs HP Labs & U. Rochester CS
Abstract important computing systems. Understanding performance

Multicore processors promise continued hardware per-

remains imperative because we must balance it against
other considerations such as power consumption and hard-

formance improvements even as single-core performance ware cost. More than ever, we require performance analy-

flattens out. However they also enable increasingly
complex application software that threatens to obfuscate
application-level performance. This paper applies opera-
tional analysis to the problem of understanding and pre-
dicting application-level performance in parallel serger
We present operational laws that offer both insight and
actionable information based on lightweight passive ex-
ternal observations of black-box applications. One law
accurately infers queuing delays; others predict the per-
formance implications of expanding or reducing capacity.
The former enables improved monitoring and system man-
agement; the latter enable capacity planning and dynamic
resource provisioning to incorporate application-leverp
formance in a principled way. Our laws rest upon a hand-
ful of weak assumptions that are easy to test and widely
satisfied in practice. We show that the laws are broadly ap-
plicable across many practical CPU scheduling policies.
Experimental results on a multicore network server in an

sis techniques that are practical, general, and accessible
real-world decision makers: They must work with black-
box production applications, for which source code ac-
cess, invasive instrumentation, and controlled benchmark
ing/profiling are seldom permitted; they must rely only on
weak assumptions that are easy to test and widely satisfied
in the field; and they must be easy for the average practi-
tioner to learn and apply.

This paper presents three parallel performance laws that
provide actionable insight using only lightweight passive
external observations of black-box production applicagio
The Occupancy Law infers processor utilization and queu-
ing delays from readily available observations of arbitrar
workloads. The Capacity Expansion and Reduction Laws
predict the application-level performance consequentes o
changing the number of processors available to an appli-
cation while holding workload fixed. All three amp-
erational laws because they involve only directly mea-

enterprise data center demonstrate the usefulness of our surable quantities (as opposed to, e.g., probabilistic as-

laws.

1. Introduction

The era of ubiquitous parallel computing has arrived.
Chip multiprocessing and simultaneous multithreading

sumptions) [7]. Classical operational laws such as Ldtle’
Law [23] are the foundation of traditional computer sys-
tems performance analysis [21, 26]. Our results address the
new challenges forced upon us by the multicore revolution.
The analyses that establish and characterize our oper-
ational laws are nontrivial but the laws themselves are
readily accessible to nonspecialists, requiring neittser e

have already brought us single-socket processors that Oteric assumptions nor extraordinary training. Our laws

present dozens of logical CPUs to operating systems
and application software, and computers with scores of
cores are imminent. For network servers, e.g., in enter-
prise data centers, today’s technology trends carry pro-
found implications. Multicore processors and virtualiza-
tion will enable massive consolidation and “datacenter-
on-chip” deployments of applications that are locally dis-
tributed across clusters today [16]. Modern multicore pro-
cessors furthermore offer increasingly fine control over
power-performance tradeoffs [14, 29]. Meanwhile, solid-

have several important uses: The Capacity Adjustment
Laws allow long-term capacity planning and short-term
dynamic resource allocation to incorporate application-
level performance in a principled way, and the Occupancy
Law enables qualitative improvements in application mea-
surement, monitoring, and management. Although our
practical discussions emphasize network servers with re-
quest/reply workloads, our results straightforwardlyeen
alize to other contexts, and technology trends are making
the formal model to which they apply increasingly relevant

state storage promises to revolutionize hardware and soft- to real-world computing.

ware architectures [12]. Unfortunately these trends, to-
gether with the growing complexity and opacity of appli-
cations, threaten to obfuscate performance in commeyciall

The remainder of this paper is organized as follows:
Section 2 describes our system model and Sections 3 and 4
present our performance laws. Section 5 empirically vali-

Preemption

Ni=a(t Ni=o(t
Departure:

Arrivals - -
time — time—

k Servers

Figure 1. System model. Figure 2. Occupancy curves.

request must read uncached data from disk, synchronously
write to non-volatile storage for durability, perform net-
work I/O (e.g., to invoke subsidiary services via RPCs), or
queue at mutexes. Technology trends have substantially re-
duced blocking for many applications and workloads, and
these trends will accelerate as the multicore era unfolds.
Large main memories accommodate the working sets of

dates our theoretical results and explores their pracjzal
plication to a real multicore network server in an entespris
data center. Section 6 surveys related work and Section 7
concludes. A companion paper presents complementary
results on processor speed scaling [35].

2. System Model most applications, eliminating blocking storage readbén t
warm steady state. Non-volatile caches in storage systems,
We consider a single-queue station witervers (Fig- increasingly popular as performance boosters [40], reduce

ure 1) and jobs with heterogeneous service demands. Somethe latency of synchronous durable writes below the total
of our results place no restrictions on job arrivals and ap- time cost of OS context switches [22], eliminating the need
ply equally to batch, open, closed [21], and semi-open [34] for blocking writes. Transactional memory promises to
workloads; other results hold only for open arrivals. Simi- supplant locks in future applications, eliminating quewgei
larly some of our results assume identical servers but sther at locks. Finally, several trends conspire to eliminaterint
apply to heterogeneous systems. We permit but do not re- nal network I/O within complex modern applications: To-
quire preemption: the scheduler may alternately serve and day’s applications locally distribute software comporsent
enqueue a job until its service demand is satisfied. We across hosts in a cluster, making network 1/O critical to
make no assumptions about the information that guides the performance [39]. However the cost advantages of host
scheduler’s decisions; e.g., we permit but do not requge th consolidation coupled with virtualization technology pii
scheduler to exploit offline knowledge of future arrivals. toward “datacenter-on-chip” app deployments on multicore
Two assumptions hold throughout this paper: processors [16], eliminating inter-component network 1/O
)] o Taken together, these trends suggest that an increasingly

Assumption 1 Work conservation: no server isidle unless proad range of real computing systems will resemble the

the queue is empty. model of Figure 1 as the multicore era progresses.

Assumption 2 Serial jobs: a job occupies exactly one
queue position or server at any instant. 3. The Occupancy Law

Our system model is reasonable for parallel network The difference between a job’s departure and arrival
servers handling CPU-intensive request/reply workloads. times is its response time, which is the sum of queuing
Parametek may represent the number of physical proces- time and service time. The Occupancy Law allows us to
sors/cores in a computer, or the number effectively avail- estimate aggregate queuing and service times based on op-
able to the application (the latter may be less than the for- erational analysis of cumulative arrivals and departutes a
mer, e.g., due to soft concurrency limits). Assumption 1 a black-box system described in Section 2. It requires no
nearly always holds in practice for CPU scheduling. Multi- information about scheduling within the system or jobs’ in-
level scheduling, e.g., involving virtualization, posesin- dividual or aggregate service demands.
herent difficulties: our model applies regardless of whethe Consider a system initially empty at time= 0. LetA(t)
service demands are mapped onto CPUs/cores by a con-andDy(t) respectively denote the cumulative number of job
ventional operating system, a virtual machine monitor, or arrivals and departures up to tihavhere the subscript re-
some combination of the two. We require only that overall minds us thaDy(t) may depend on the number of serviers
scheduling be work-conserving, which is true for default LetN(t) = A(t) — Dk(t) denote the number of jobs present
configurations of mainstream OSes and VMMs. Assump- in the system at timé. We refer to a graphical represen-
tion 2 implies that the execution of a single job is not par- tation ofNk(t) as ak-server occupancy curvéigure 2 il-
allelized. This is true for request handling in most network lustrates two possible occupancy curts; (t) (left) and
servers. Nk=2(t) (right) for one- and two-server stations handling

Our model does not include blocking at auxiliary the same workload: four jobs, each requiring unit service,
gueues. Blocking can occur in today’s network servers if a arrive att = 1 and are scheduled non-preemptively. Three

Queueing time

Service time

Ne-o(®
_.-N=2

time —

Figure 3. Occupancy Law example, k=2.

remarks on occupancy curves: First, the area under the oc-

utilization measurements at fixed, pre-specified intervals
(typically 5 minutes) [5, 11, 33], but the Occupancy Law
applies to arbitrary, variable-length intervals. Intdsvas
short as 200 ms are not unreasonable for environments
such as the data center used for our experiments. Analyz-
ing the occupancy curve in each interval of consteyit)

and combining the results yields the distributions of serve
utilizations and queue lengths during any period of inter-
est. Whereas conventional measurement tools reside on
the computer being measured and incur performance over-

cupancy curve equals the sum of response times across allheads, the Occupancy Law allows us to infer utilizations

jobs; this observation sometimes accompanies graphical il
lustrations of Little’s Law [7, 23]. Second, the shape of the

occupancy curve may depend upon the queue discipline as

well as the number of servers. Finally, we can compute

and queueing delays vightweight, passive, externab-
servations of black-box applications.

Application-level transaction logs may record per-
request response times, but these are available only efter r

the occupancy curve even if we cannot associate specific quests have completed and are inaccurate under heavy load

departures with corresponding arrivals.

Assumptions 1 and 2 imply that the number of servers
busy at timet is the lesser oNk(t) andk. Therefore if
we draw a horizontal line through theserver occupancy
curve atN =k, the area beneath both this line and the oc-
cupancy curve itself equals aggregate service time for the

because they do not reflect queueing delays between packet
arrivals and application-level handling [36]. By contrast
the Occupancy Law estimates both utilization and queue-
ing, and does seven for requests that have not completed

it is therefore better suited to real-time monitoring. Con-
ventional data center management tools alert human oper-

workload and the area above equals aggregate queueingators when resource utilizations or response times exceed

time, as illustrated in Figure 3. Thé¢ = k line furthermore
separates service and queueing tirdasng any interval
as summarized in our first result.

Result 1 The Occupancy Law. During any interval T, T]
aggregate service time equaﬂg min{N(t), k} dt and ag-
gregate queueing time equayg/max{Nk(t) —k, O}dt.
The sum of the two equajg/ Nk(t) dt and is the interval’s
contribution to aggregate response time.

The Occupancy Law is aoperationallaw because its
inputs are directly measurable quantities [7]. (By con-
trast, stochastic queuing models involve assumptionstabou
the probability distributions of job arrivals and service-d
mands.) Unlike the classical operational laws, the Occu-
pancy Law provides the relative magnitudes of service and
gueuing times in a black-box system. Furthermore, unlike
asymptotic and balanced-system “bounding analysis” ap-
proximations [21], it yields exact performance quantities
of interest. The Occupancy Law does not assume identi-

cal servers and therefore applies to heterogeneous paral-

lel computing systems, including heterogeneous multicore
processors [20]. The Occupancy Law holds regardless of
fine-scale processor phenomena, e.g., involving caching.
Finally, note that even the very weak assumption of flow
balance is not required to establish the Occupancy Law.

In practical terms, the Occupancy Law provides in-
sights not readily available from conventional system- or
application-level measurements. Today’s system monitor-

specified thresholds, but the former can fail to detect unre-
sponsiveness and the latter alerts are not actionable if re-
sponse times consist largely of service times. The Occu-
pancy Law enables more sophisticated alerts based on the
relative magnitudesf queuing and service times. Oper-
ational analysis of an occupancy curve provides accurate,
high-resolution insight into both utilization and queuing
unmodified black-box legacy network servers while cre-
ating no additional load. The price of this additional in-
sight is modest. Job arrivals and departures can easily be
measured at clients, at network servers using kernel packet
timestamping facilities [36], or by a network sniffer near
the target machine [6]. In a cluster computing context, the
same observations can be made by the job dispatcher of a
cluster scheduler [30].

4. The Capacity Adjustment Laws

This section presents two operational laws that bound
the performance implications of capacity expansion and re-
duction, i.e., increasing or decreasing the number of serve
in the system depicted in Figure 1. A companion pa-
per considers the complementary problem of predicting
performance when thspeedof the servers changes [35].
Given only ak-server occupancy curve, we wish to bound
the change in aggregate queuing time that would result if
a different number of servetd handled the same work-
load. Predicting the performance consequences of capacity
change is difficult because both scheduling and the poten-

ing tools provide only coarse-grained aggregate resource tial for parallelism in the workload influence the outcome,

time —

Figure 4. Example, k=2and k' =4.

but the occupancy curve seemingly contains no explicit in-
formation about either.

4.1. The Capacity Expansion Law

Consider the example in Figure 4. It is tempting to

conclude (falsely) that the shaded area under the occu-

pancy curveN(t) between horizontal lined = k=2 and

N = K = 4 equals the reduction in aggregate queueing time
that would result from increasing the number of servers
from k = 2 to kK = 4. However, it is easy to generate

counter-examples showing that the reduction in aggregate

gueueing time is sometimes strictly greater. It turns out
that the area beneath the occupancy curve and between th
N =k andN = K lines canboundthe change in queue-
ing time. We first consider capacity expansi&h k) and
begin by introducing an additional assumption.

Assumption 3 Completion-monotonic scheduling: if &
k, then Qv (t) > Dy(t) for all times t (increasing capacity
does not reduce cumulative job completions).

Assumption 3 states that additional servers “do no
harm.” Below we state and derive the Capacity Expansion
Law (which requires Assumption 3). We then show that
several widely used scheduling policies are completion-
monotonic, i.e., they satisfy Assumption 3, under two ad-
ditional assumptions.

Result 2 The Capacity Expansion Law. If the number

of servers increases from k té ' > k), then aggregate
queueing time during the intervdd, T] decreases by at
IeastfoT max{min{Ng(t), k'} —k, 0} dt (the area beneath
the k-server occupancy curve and between the horizontal
lines N=k and N=K/).

Derivation When the number of servers increases from
k to kK, by the Occupancy Law the reduction of ag-
gregate queueing time istT max{Ng(t) — k, O}dt —

_foT max{N¢ (t) — k', O}dt. Since server scheduling is

completion-monotonic (Assumption 3), we haMg(t) >

Ny (t) for every timet—the k’-server occupancy curve is

C
e

k-server occupancy curve
k’-server occupancy curve

k-server aggregate queueing
k’'-server aggregate queueing tir

Figure 5. Graphical derivation.

never higher than thieserver occupancy curve. Therefore:

T T
/max{Nk(t)—k, O}dt—/ max{Ny (t) —K, 0} dt
0 0
T T
2/ max{Ni(t) — k, O}dt—/ max{Ni(t) — K, O} dit
0 0

T
:/0 max{min{Ng(t), K} —k, O}t m
The Capacity Expansion Law also admits a graphical
derivation shown in Figure 5. Aggregate queueing time

with k servers is the area beneath theerver occupancy
urve but above the horizontal lind = k (light shad-
ing). With k' servers, aggregate queueing time is the area
beneath théd-server occupancy curve but aboMe= kK’
(heavy shading). Since tHé-server occupancy curve is
never higher than th&-server occupancy curve (by As-
sumption 3), aggregate queueing time vktiservers is no
greater than the area beneath kigerver occupancy curve
but above theN = K’ line. Thus, the reduction in aggre-
gate queueing time when the number of servers increases
fromkto K is bounded from below by the area beneath the
k-server occupancy curve and between the horizontal lines
N =kandN =K.

4.2. Completion-Monotonic Scheduling

We now return to completion monotonicity (Assump-
tion 3). This property is intuitive for schedulers that
strive to make effective use of resources and it holds for
many common schedulers. In this paper we show that
all static priority-based preemptive schedulers (inahgdi
First-Come-First-Served and Shortest-Job-First) are-com
pletion monotonic (Theorem 1), as is fine-grained Proces-
sor Sharing or Round Robin with infinitesimal timeslices
(Theorem 2). In both cases, we show that every job fin-
ishes at the same time or earlier after the capacity expan-
sion, which is a sufficient (but not necessary) condition for
completion monotonicity. Two additional assumptions for-
malize the notion that changing the number of servers does
not change the workload and restrict attention to homoge-
neous systems with identical servers.

Assumption 4 Open arrivals: Jobs arrive according to an
open arrival process.

Assumption 5 Fixed service demands: Job service de-
mands are fixed (though not necessarily identical). A job’s
service demand is independent of the number, nature, and
location of other jobs in the system, the number of servers,
the server(s) on which the job runs, and the scheduler’s
decisions.

Theorem 1 Completion monotonicity under Priority
scheduling. If scheduler S assigns a static priority to each
job (where the priorities form a total order) and S pre-
emptively schedules jobs by priority, then S is completion-
monotonic.

Proof of Theorem 1: Consider a workload witn jobs
ordered by priority in schedul&: T; (highest priority),T,,
-+, Tn (lowest priority). Under schedul& we show by in-
duction that no jobs finish later when the number of servers
increases fronk to k'. Note that under open arrivals (As-
sumption 4), every job arrives at the same timek@mdk'’
servers. Regardless of the number of serversTjaways
starts as soon as it arrives and runs without interruption.
Following Assumption 573 finishes at the same time én
andk servers. If jobdy, T, - -+, T do not finish later when
the number of servers increases fr&no k', we show that
job T 1 also does not finish later. Under priority schedul-
ing, job Ti 11 runs when the number of arrived but not yet
completed higher-priority jobs is less than the number of
servers. Therefore all runnable time periods forJph on
k servers must also be runnable kinservers. From As-
sumption 5, we know that jof;,; finishes, ork’ servers,
no later than it does okiservers.]

Theorem 2 Completion monotonicity under Processor
Sharing. Let k be the number of servers in the system. Over
any time period of length p with a constant number of ac-
tive jobs n, scheduler S assigmsn{p- ‘r—j, p} service time

to each of the n active jobs. Then any change in the number
of servers is always completion-monotonic under S.

Let L(T) denote the amount of service jdbhas re-
ceived up to timea whenk is the number of servers. Let
the total service demand of job bel (recall that by As-
sumption 5 a job’s service demand is independent of the
number of servers and the particular ones that serve it).
ThereforeLX(T) = if job T has completed by time We
define a capacity increase frdato k' servers to b@er-job
completion-monotoniat timet if every job has received no
less service by timein a system withk’ servers than with
k servers (i.e.LX(T) < LK(T) for all jobs T). We intro-
duce a lemma before proving Theorem 2. Recall that by
Assumption 4 every job arrives at the same timekand
k' servers.

Lemma 1 If the capacity increase is per-job completion-
monotonic at timegkart and there is no new job arrival
after tystart but before feng then the increase is per-job
completion-monotonic at any time t [fystart, toend UNder
the processor-sharing scheduling S.

Proof of Lemma 1: When the system hds servers,
those jobs that have not completedthyar but will com-
plete bytpengare: Ty, Tp, - -+, Tm (in order of their comple-
tion times). Lett; <ty < ... <ty be their corresponding
completion times. LeTy, 1, Tni2,- -+, Th be remaining ac-
tive jobs attpstart (Which will stay active atpend. We now
prove Lemma 1 by induction. First we show that the capac-
ity increase is per-job completion-monotonic at any time
in [tostar t1] under schedules. Since there ara jobs dur-
ing the time periodtpstar t1] when the system h&sservers,
for any jobT and any time in this period, we have:

. k
L{((T)= L{(pstarl(T) +min{ (t — tostary) - n t — tpstart}

Since there are no more tharjobs during[tpstars t1] with
K servers, for any jol, we have:

/

U /! . k
LE(T) > Ll ar(T) + Min{ (t — tostar) - 7t tpstart
. k
2 L{(pslart(T) + m|n{ (t - tpstar{) . ﬁ’ t - tpstart} == L{((T)

If the capacity increase is per-job completion-monotohic a
any timet in [tpstars ti] (here 1<i < m), below we show
that it is also per-job completion-monotonic at any time
in [tpstars ti+1] (OF [tpstart thend Wheni = m). Since there are
n—i jobs during the time periofti,t ;1] when the system
hask servers, for any jo and any time in this period,
we have:

LE(T) = LE(T) + min{ (t — t;) t—t}

n—i’
Since the capacity increase is per-job completion-
monotonic at timd;, at leasti jobs have completed by
when the system has servers. Consequently there are no
more tham —i jobs during the time periof;,t;1] when
the system hak' servers. For any jold, we have:

!

LK (T) > LK (T) + min{(t — t) -t

> LY(T) +min{(t—t)- %,t—ti} =L{T) =

n—i’

Proof of Theorem 2: Lett; <t, < ... <t, be the ar-
rival times of all jobs. At1, no job has made any progress
regardless of the number of servers in the system so a ca-
pacity increase is per-job completion-monotonic at time
t1. According to Lemma 1, we can show that it is also

per-job completion-monotonic at any time uptjo Step

by step, we can further show that a capacity increase is
per-job completion-monotonic at any time upttoty, - - -.
Consequently we know that a capacity increase is per-
job completion-monotonic at any time instant under the
processor-sharing scheduliBgThis also means every job
finishes ork’ servers no later than it does krservers. m

There exist scheduling policies that dot satisfy com-
pletion monotonicity. Some are contrived pathological
policies, e.g., the policy that employs Shortest Job First
whenk servers are available and Longest Job Firskfor
k. However a non-deterministic scheduler that employs
randomization, for example, may violate the completion-
monotonicity property. We speculate that most commonly
used deterministic scheduling policies have the intuitive
“do no harm” property of completion monotonicity. We
leave the proofs for additional schedulers to future work.

4.3. Tightness of the Bound

The Capacity Expansion Law defines a lower boRpgl
on the reduction in aggregate queuing time when the num-
ber of servers increases. How tight is this bound? In the ab-
sence of restrictions on problem parameters, it is possible
to construct examples in which the ratio between the actual
reduction in queuing time arfg g is arbitrarily high. How-
ever if the number of jobs in the system is bounded—i.e., if
Ni(t) < N at all timest—then the ratio between the actual

gueueing time change amiig is limited to H This is

easy to show because 1) the reduction of aggregate queue-

ing time is no more than the totkiserver aggregate queue-

metric: it sometimes warns you that ydefinitely should
not reducecapacity.

4.4. The Capacity Reduction Law

We conclude this section by stating the Capacity Reduc-
tion Law, which closely resembles the Capacity Expansion
Law in both definition and derivation.

Result 3 Capacity Reduction Law. If the number of
servers decreases from k té k > k'), then aggregate
queueing time during the intervd0d, T] increases by at
IeastfoT max{min{N(t), k} — k', 0} dt (the area beneath
the k-server occupancy curve and between two horizontal
lines of N=k and N=K).

Derivation When the number of servers decreases from
k to K, by the Occupancy Law the increase of ag-
gregate queueing time iy max{N¢(t) — k', 0}dt —

fOT max{Nk(t) —k, 0} dt. Since scheduling is completion-
monotonic (Assumption 3), we hadg(t) < Ny (t) for ev-

ery timet—the k'-server occupancy curve is never lower
than thek-server occupancy curve. Therefore:

T T

/Omax{Nk/(t)—k’, O}dt—/o max{N(t) — k, O} cit
T T

2/ max{Ni(t) — K, O}dt—/ max{Ni(t) — k, O} ci
0 0

:/(;T max{min{Ny(t), k} —K, 0} dt u

ing time, and 2) the area beneath any occupancy curve and2. EXperiments

between two horizontal linds =y andN = y+ 1 is mono-
tonically non-increasing wheyincreases. This result sug-

gests that the bound is tighter when the system is less con-

gested. Boundindl(t) is not a restrictive assumption; if
the number of jobs in the system grows without bound,
the system is simply oversaturated. Like the Occupancy
Law, the Capacity Expansion Law does not require the as-
sumption of flow balance, but flow balance ensures tighter
bounds.
An obviousupperbound on the reduction in aggregate

gueueing time is to reduce the queueing time to zero. We

We conducted experiments on a real network server in
an HP data center to verify the practicality of the Occu-
pancy Law and test the tightness of the Capacity Adjust-
ment Laws’ bounds. Our client and server machines are
identical HP ProLiant BL460c blades housed together in
an HP BladeSystem c7000 enclosure communicating via a
Cisco Catalyst Blade Gb Switch 3020. Each blade con-
tains two dual-core Intel Xeon 5160 3 GHz CPUs (i.e,
k = 4) with 64 KB L1 cache, 4 MB L2 cache, and 8 GB of
667 MHz RAM; both blades run 64-bit SMP Linux 2.6.9-

have not yet established tighter general upper bounds, but42. The server application is a CPU-bound program in-

we know that there does not exist any upper bound in the
form of a constant timeR_g. This follows the pessimistic
result on the general tightness of usiRgs as a lower
bound.

In practical terms, the Capacity Expansion Law some-
times assures you that yalefinitely should expanchpac-

ity. Sometimes—e.g., because the performance improve-

ment bound is not tight—it does not recommend any ac-
tion. Our next result, the Capacity Reduction Law, is sym-

voked through the CGI interface of Apache 2.0.52. We
measured request start and end times with a bespoke client
workload generator. Our measurements are similar to those
that would be collected by a network sniffer located near
the Apache machine [6]. Network load and client CPU load
were negligible; queueing at the client did not distort mea-
surements. Client-servpi ng RTT is 81us and the client
application latency of a null request is 1.35 ms; these RTTs
are far less than the CPU demands of requests.

= PR -

w0 §%=
50 2o
© 30 Cc
> N
g 20 25 Sz
I xS
g 10 < g
=] 0 D o
Q 0 o> O
8 | | | | | | | | @) D
0 1000 2000 3000 4000 5000 6000 7000
time (sec)
Figure 6. Occupancy curve and server utilization.
5.1. Externally Estimating Queuing Delay lization to within 1% using only lightweight passive exter-

nal measurements; again, these estimates translatdylirect

Our first test employed a semi-open workload: each @nto aqcuratg queueing delay estimates. (A similar exper-
client session is a closed generator and the sessions them.Ment involving much shorter per-request CPU demands

selves arrive in an open fashion. This is arguably the most drawn from /(100500 ms yields qualitatively similar
realistic kind of workload for a user-facing network ap- conclusions, with median and 97th percentile normalized

plication [34]. Each session generates eight requests with €70rs of 0.64% and 4.91%, respectively.)

a server CPU demand drawn fro#[1,2] sec and think
times drawn from [3,6] sec, where% [a,b] denotes the ~ 5.2. Capacity Adjustment & Performance
uniform distribution in the rangéa,b]. The per-request
server CPU demands are comparable to those of today’s The Capacity Adjustment Laws offer actionable infor-
enterprise applications [37]. Session arrivals are busty mation to complement the insights provided by the Occu-
are constructed such that average server CPU demand fol-pancy Law. By bounding the application-level performance
lows a sawtooth pattern to mimic diurnal cycles. We ran consequences of changing the number of processors/cores
the test for two hours and measured CPU utilization at available to an application, the Capacity Adjustment Laws
the server in 1-minute intervals using thar utility [11]. provide a principled basis for decisions ranging from pro-
We measure utilization rather than queueing delay because cessor selection and capacity planning (“how many cores
conventional tools do not report the latter. For our present do | need in my next hardware generation to meet my
purposes, either is sufficient to test the accuracy of Occu- QoS requirements?”) to dynamic resource allocation (“is
pancy Law estimates. Accurate utilization estimates trans it worth the energy cost to wake up a dormant core?”).
late directly into accurate queueing time estimates becaus We quantify the tightness of the Capacity Adjustment
estimated service times can simply be subtracted from our Laws’ bounds by replaying a fixed open workload to our
externally measured response times. network server, varying the number of cores available to the
Figure 6 presents the client-measured occupancy curve application using thesched_set af fi ni t y() system
Na(t) (lower series, left scale) and server CPU utilization call. The CPU demands of individual requests are drawn
(upper series, right scale) estimated by the Occupancy Law from %/[1,2] sec. We use the same pseudo-random number
(circles) and measured kyar (short bars). The Occu- generator seed on each run and ensure that the workload
pancy Law’s estimate of server CPU utilization is remark- seen by the server machine is identical on all runs. Over

ably accurate at all utilization levels, from roughly 5% to the course of each 90-minute run, .,

over 99.5%. arrival rates vary and server CP§ 20

The figure at right con-) utilization fluctuates as shown ag 0
firms this impression. It raw right. Note that peak utiliza—g .
presents cumulative distribu- *" . tion exceeds 25% and therefore ° o 25 s0 75 100
tions over our 120 measure- °° the server machine is briefly over- time (min)
ment intervals of two er- 02 ;2?;’;‘,’,? loaded when only one of its four cores is available to the
ror metrics of the difference o error COF application.
between measured utilization 001 001 e”:r-l(o/) roow Table 1 presents raw results from our four experimental
Usar and utilization estimated runs. The table showﬁ)T min{Ng(t),k'}dt, the area un-
via the Occupancy LawJoccrawi raw error |Ug.y — der both the occupancy curve and tNe= k' horizontal
UoccLawl» Where both utilizations are expressed as percent- line, for all combinations ok andk'. The k' = « col-
ages, and normalized error 180%-°"™". By either error umn contains aggregate response time, from which we sub-

metric, the Occupancy Law allows Us to estimate CPU uti- tract the entry in thé&k = k' column to obtain the aggre-

cores aggregate

enabled K—1 K=2 K=3 K-4 K-wo queueng Suitedtoone anot_he.r. We conducted an additional experi-
ment to explore this issue.
k=1 2721.15 4360.84 5431.77 6176.27 7862.46 5141.31

2139.77 276631 2950.09 3014.17 3070.30 304.00 It is well known that Shortest Remaining Processing

k=2
k=8 22240 209898 2oal8 ZeToor ZmEste 4728 Time First (SRPT) scheduling minimizes queuing delay,
' ' ' ' ' and Harchol-Balteet al. have shown that SRPT schedul-
Table 1. Area (sec) under both occupancy ing of network connectionsan sometimes significantly
curve and N =K. reduce average client-perceived latency without unduly

penalizing large transfers [13]. We made two changes
to our experimental testbed to implement SRPT: we set

k=1 k=2 k=3 K=4 the CPU demand of all requests to 1.5 sec, and we
k=1 —483731 —509404 —513604 set the CPU scheduling policy to real-time FIFO (i.e.,
(~163969) (-271061) (-345512) non-preemptive First-Come First-Served) using the Linux
k=2 483731 —25672 —20873 sched_set schedul er () system call. The net ef-
(62653) (—18379) (—247.87)

fect of non-preemptive FCFS scheduling on identical jobs

k=3 ?3;’;‘3; (fi’g;g) @23%) is that the scheduler mimics an SRPT scheduler. In all
k_4 513604 20873 4201 other respects our experiment was identical to the one that
S (67221 (12225) (1758) yielded the data in Table 1.
_ The table at right K=1 K=2
Table 2. Actual change in aggregate queue- presents our results in _; 9104406
ing delay from capacity adjustment (Capacity the same format as Ta- (~1244616)
Adjustment Law bounds in parentheses). ble 2: k> 2 cases are k—2 2104406
omitted because queue- (611797)

gate queuing time shown in the rightmost column. Table 2 NG was negligibly small for these runs. Comparing the two

shows the change in aggregate queuing time that results f2bles, we see that the Capacity Adjustment Law bounds
from changing the number of cores available to the appli- @€ considerably tighter under SRPT. While this experi-

cation fromk to K’ for all (k,K') pairs. Negative quantities ment does not attempt to |m|tate r_egl-world network server
indicate reduction in queueing time and positive quarstitie Workloads or CPU scheduling policies, the results are con-
indicate increase. For example, Table 1 shows that aggre- SIStént with our expectation that shorter queues due to
gate queuing delays fdr= 2 andk = 3 are respectively better scheduling tighten the Capacity Adjustment Law

304.00 sec and 47.28 sec, for a difference of 256.72 sec, Pounds.

as shown in thek = 2 k' = 3) and (k = 3,k = 2) cells

of Table 2. Beneath the actual changes in aggregate queu-6. Related Work

ing delay, Table 2 also shows in parentheses the bounds

obtained from the Capacity Adjustment Laws. For exam- Computer system performance models have long facil-
ple, from Table 1 we compute the Capacity ExpansionLaw jtated the exploration of design alternatives [17] and ca-
bound on the reduction in queuing delay resulting fromin- - hacity planning [26]. New applications continue to arise,

creasing the number of available cores friom 1 tok’ =4 e.g., dynamic resource provisioning [8, 42], performance
as 617627—272115= 345512 sec. The actual reduction gnomaly detection [19], and server consolidation decision

in queuing delay is 5136.04 sec, or roughly 27% greater. support [37].
In general,_ as we expect, the bounds that we obtain from post existing approaches cluster at opposite ends of
the Capacity Adjustment Laws are conservative. Further- 5 complexity/fidelity spectrum. At one extreme, stochas-

more the bounds that we obtain in this experiment are far tic queuing models [3] yield supremely detailed insight—
better than the those guaranteed by the theoretical bounds'specifically, the full distributions of performance measir

tightness results of Section 4.3. of interest. Stochastic models, however, can require con-
) _ siderable skill to apply and can be brittle with respect to
5.3. Improved Scheduling & Tighter Bounds their detailed underlying assumptions [41].

Denning & Buzen popularized the other end of the spec-
Our experiments so far have employed the default Linux trum: operational analysis, which involves only directly
scheduler, which for our CPU-bound tasks is essentially measurable quantities (as opposed to probabilistic assump
Round Robin with 100 ms timeslices [4]. As noted in Sec- tions) [7]. Elementary results include the well-known elas
tion 4.3, shorter queues imply tighter Capacity Adjustment sical operational laws, e.g., Little’s Law [23]. Arguably
Law bounds, so it is reasonable to suspect that the boundsthe most powerful and versatile result in all of performance
would be tighter if the scheduler and workload were better modeling [26], Little’s Law is furthermore the foundation

of more sophisticated methods including Mean Value Anal- known service demand, bounding the extent to which
ysis (MVA) [21]. MVA is useful for modeling modern speedup and efficiency can both be poor [9]. Our work is
multi-tiered network server applications [24, 42] and has similar in that we too consider the resource/performance
spawned its own extensions and generalizations. For exam-tradeoffs inherent in a workload. However we consider
ple, Rolia & Sevcik [31] and Menascé [25, 27] generalize multiple jobs and we do not assume that service demands
MVA to account for queueing at “soft” resources such as are given.
mutexes and concurrency limits. Our Occupancy Law builds on the rule that the number
Our contributions represent an intermediate point on the Of busy servers at any instant is the lesser of the number
complexity/fidelity spectrum. Our laws are easier to learn Of serversk and the number of jobs in the systeW, if
and apply than either MVA or stochastic models and they scheduling is work-conserving. This rule appears in prior
yield more detailed insight than the classical operational Stochastic modeling work (e.g., multi-server analysisef t
laws. All of our results rest upon a handful of straightfor- Rate Conservation Law [28]). However, we are not aware
ward assumptions that are easy to test and that are satisfiedof any prior result that provides a precise, fine-grained sep
in many practical systems of interest. Of course, there is aration of request waiting time and service time as estab-
no free lunch: Our laws do not yield all of the insights of lished by our Occupancy Law. To the best of our knowl-
the more sophisticated approaches. The former do not sup- €dge the Capacity Adjustment Laws (and our complemen-
plant the latter but rather complement them by offering a tary results on processor speed scaling [35]) are entirely
useful new point on the spectrum of performance modeling Novel.
techniques.
Performance model calibration, e.g., service demand es- 7. Conclusions
timation, is a difficult problem in itself. Many proposed
methods emphasize enhanced runtime measurement [2] This paper presents three operational laws well suited
and application profiling via controlled benchmarking [18, to the new challenges thrust upon us by the multicore rev-
39, 43]. Unfortunately, both are sometimes forbidden in olution and other current technology trends. Our laws re-
production environments. Recent research emphasizes cal-quire only readily available inputs and usefully illumiaat
ibration via lightweight passive observation coupled with performance in opaque applications that satisfy a handful
sophisticated analyses [37,38]. The present paper repre-of simple assumptions. Our experiments confirm that the
sents another step in the same direction by further reduc- Occupancy Law accurately estimates queueing delays and
ing the inputs required for the modeling exercise, restrict the Capacity Adjustment Laws bound the performance con-
ing attention to lightweight passivexternalobservations sequences of capacity changes in a real parallel network
of black-box applications. server. Technology trends promise to improve application-
Energy efficiency is an increasingly important concern. level performance but also threaten to obscure it. Opera-
Fanet al. argue that computing systems should consume tional analysis can help to preserve our understanding and
power in proportion to the useful work they perform [10]. ~ control of performance as these trends overtake us.
At the level of microprocessors, power/performance trade-
offs involve clock speed adjustment or per-core hiberna- Acknowledgments
tion [14, 29]. We consider performance vs. number of ac-
Five processors/cloresinthis paperanq processorspdedsca \ne thank Arif Merchant and Ward Whitt for helpful
ing in a companion paper [35]. Irani & Pruhs survey al- giscyssions and suggestions, and we thank Hernan Laf-
gorithmic problems involving processor speed scaling and fitte, Eric Wu, and Krishnan Narayan for technical support
powering down idle processors [15], and Augusiateal. that made our experiments possible. This work was sup-
present online-optimal power-down algorithms for a single ported in part by National Science Foundation grants CCF-
idle processor with multiple sleep states [1]. These con- 0448413, CNS-0615045, and CCF-0621472. Finally, we

tributions differ from ours both in objective and approach: inank the anonymous reviewers for useful suggestions and
they focus on power savings alone whereas we consider pginters.

gueueing delays, and they employ competitive analysis in
contrast to our operational analysis. Rybczyretldl. con-
sider energy-conservation strategies that actively ditgk
workloads [32]. Our models are more appropriate to CPUs, [1] J. Augustine, S. Irani, and C. Swamy. Optimal power-down
and our approach does not reshape workloads. strategiesSIAM J. Comput.37(5):1499-1516, 2008.

Eageret al. explore the tradeoff between speedup and [2] p. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using
efficiency (average overall utilization) as functions o th Magpie for request extraction and workload modelling. In
number of processors serving a single compound job with OSDI, pages 259-272, Dec. 2004.

References

(3]
(4]
(5]
(6]
(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

G. Bolch, S. Greiner, H. de Meer, and K. S. TriveQiueue-

ing Networks and Markov ChainsJohn Wiley & Sons,
1998.

D. P. Bovet and M. CesatUnderstanding the Linux Kernel
O’Reilly, third edition, Nov. 2005.

H.-P. Corp. HP Performance Manager software, Jan. 2008.
H.-P. Corp. HP Real User Monitor, Jan. 2008. Search for
“Real User Monitor” aht t p: / / www. hp. cont .

P. J. Denning and J. P. Buzen. The operational analysis
of queueing network modelsACM Computing Surveys
10(3):225-261, Sept. 1978.

R. P. Doyle, J. S. Chase, O. M. Asad, W. Jin, and A. M.
Vahdat. Model-based resource provisioning in a Web ser-
vice utility. In Proc. USENIX Symposium on Internet Tech-
nologies and Systems (USIT8)ar. 2003.

D. K. Eager, J. Zahorjan, and E. D. Lazowska. Speedup ver-
sus efficiency in parallel systemHEEEE Trans. Computers
38(3):408-423, Mar. 1989.

X. Fan, W.-D. Weber, and L. A. Barroso. Power provision-
ing for a warehouse-sized computer.|8CA pages 13-23,
2007.

S. Godard. sysstat utilities for Linux version
8.0.4, Jan. 200&ht t p: / / pagesper so- or ange. fr/
sebasti en. godard/ .

G. Graefe. The five-minute rule 20 years later, and how
flash memory changes the rules Aroc. Workshop on Data
Management on New Hardware (DaMgNune 2007.

M. Harchol-Balter, B. Schroeder, N. Bansal, and
M. Agrawal. Size-based scheduling to improve Web per-
formance. ACM Transactions on Computing Systems
21(2):207-233, 2003.

HP, Intel, Microsoft, Phoenix, and Toshiba. Advanced
configuration & power interface (ACPI) specification, Oct.
2006.htt p: // ww. acpi . i nfo/ spec. htm

S. Irani and K. R. Pruhs. Algorithmic problems in power
managementACM SIGACT News6(2):63—76, June 2005.
R. lyer et al. Datacenter-on-chip architectures: Tera
scale opportunities and challengéstel Technical Journal
11(3):227-238, Aug. 2007.

R. Jain. The Art of Computer Systems Performance Analy-
sis John Wiley & Sons, 1991.

N. Joukov, A. Traeger, R. lyer, C. P. Wright, and E. Zadok
Operating system profiling via latency analysis. Q8DI|,
Nov. 2006.

T. Kelly. Detecting performance anomalies in globapkiyp
cations. INUSENIX Workshop on Real, Large Distributed
Systems (WORLDS)ec. 2005.

R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Joupp, an
K. I. Farkas. Single-ISA heterogeneous multi-core archi-
tectures for multithreaded workload performancelSGA
pages 64-75, 2004.

E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sev-
cik. Quantitative System Performance: Computer System
Analysis Using Queueing Network ModeRrentice-Hall,
1984. ISBN 0-13-746975-6.

C. Li, C. Ding, and K. Shen. Quantifying the cost of cotite
switch. InExperimental Comp. S¢iJune 2007.

J. D. Little. A Proof of the Queueing Formuld: = AW.
Operations Resear¢i®(3):383-387, May 1961.

[24]
[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

X. Liu, J. Heo, and L. Sha. Modeling 3-tiered web applica
tions. INMASCOTSSept. 2005.

D. A. Menascé. Two-level iterative queuing modeliray f
software contention. IMASCOTSOct. 2002.

D. A. Menascé and V. A. F. Almeida. Scaling for E-
Business: Technologies, Models, Performance, and Capac-
ity Planning Prentice Hall, May 2000.

D. A. Menascé and M. Bennani. Analytic performance
models for single class and multiple class multithreaded
software servers. I€@omputer Measurement Group Cgnf.
Dec. 2006.

M. Miyazawa. The derivation of invariance relations in
complex queueing systems with stationary inpAdvances

in Applied Probability 15(4):874-885, Dec. 1983.

A. Naveh et al. Power and Thermal Management in the
Intel Core Duo Processorintel Tech. J. 10(2):109-122,
May 2006.

Platform Computing. LSF
http://ww. pl at f orm conf Product s/
platformlsf-famly/.

J. A. Rolia and K. C. Sevcik. The method of layers.
IEEE Transactions on Software Engineerirg(8):689—
700, Aug. 1995.

J. P. Rybczynski, D. D. Long, and A. Amer. Adapting pre-
dictions and workloads for power management. MAS-
COTS pages 3-12, Sept. 2006.

R. F. Sauers, C. P. Ruemmler, and P. S. Weygair-UX

11i Tuning and PerformancédPrentice Hall, 2004.

B. Schroeder, A. Wierman, and M. Harchol-Balter. Open
versus closed: A cautionary tale. NSDI, pages 239-252,
May 2006.

K. Shen, A. Zhang, T. Kelly, and C. Stewart. Operational
analysis of processor speed scaling. SIRAA June 2008.
Short paper.

N. Spring, L. Peterson, A. Bavier, and V. S. Pai. Using
PlanetLab for network research: Myths, realities, and best
practices. InProc. USENIX Workshop on Real, Large Dis-
tributed Systems (WORLD®Rrges 67—-72, Dec. 2005.

C. Stewart, T. Kelly, and A. Zhang. Exploiting nonstarti
arity for performance prediction. IRroc. EuroSysMar.
2007. Also available as HP Labs Tech Report 2007-64.

C. Stewart, T. Kelly, A. Zhang, and K. Shen. A dollar from
15 cents: Cross-platform management for Internet services
In USENIX Annual Teghlune 2008.

C. Stewart and K. Shen. Performance modeling and system
management for multi-component online serviceN8D]|,
pages 71-84, May 2005.

Texas Memory Systems. RamSan-400 Solid State
Disk, Jan. 2008. http://ww. superssd. conl
product s/ ransan- 400/ .

E. Thereska and G. R. Ganger. IRONModel: Robust Per-
formance Models in the Wild. IBIGMETRICSJune 2008.

B. Urgaonkar et al. An analytical model for multi-tiam-I
ternet services and its applications.Aroc. ACM SIGMET-
RICS pages 291-302, June 2005.

B. Urgaonkar, P. Shenoy, and T. Roscoe. Resource over-
booking and application profiling in shared hosting plat-
forms. InOSDI|, Dec. 2002.

Scheduler.

