

Keyword(s):

Abstract:

©

Operational Analysis of Parallel Servers

Terence Kelly, Kai Shen, Alex Zhang, Christopher Stewart

HP Laboratories
HPL-2009-8

performance modeling, performance prediction, capacity planning, system management, operational
analysis, multicore processors, capacity adjustment ACPI C-states, parallel computing, occupancy curve

Multicore processors promise continued hardware performance improvements even as single-core
performance flattens out. However they also enable increasingly complex application software that
threatens to obfuscate application-level performance. This paper applies operational analysis to the problem
of understanding and predicting application-level performance in parallel servers. We present operational
laws that offer both insight and actionable information based on lightweight passive external observations
of black-box applications. One law accurately infers queuing delays; others predict the performance
implications of expanding or reducing capacity. The former enables improved monitoring and system
management; the latter enable capacity planning and dynamic resource provisioning to incorporate
application-level performance in a principled way. Our laws rest upon a handful of weak assumptions that
are easy to test and widely satisfied in practice. We show that the laws are broadly applicable across many
practical CPU scheduling policies. Experimental results on a multicore network server in an enterprise data
center demonstrate the usefulness of our laws.

External Posting Date: January 21, 2009 [Fulltext] Approved for External Publication
Internal Posting Date: January 21, 2009 [Fulltext]

Published in 16th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication
Systems (MASCOTS'OB), Baltimore, MD, September 2008.

Copyright 16th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS'OB), 2008.

Operational Analysis of Parallel Servers

Terence Kelly
HP Labs

Kai Shen
U. Rochester CS

Alex Zhang
HP Labs

Christopher Stewart
HP Labs & U. Rochester CS

Abstract

Multicore processors promise continued hardware per-
formance improvements even as single-core performance
flattens out. However they also enable increasingly
complex application software that threatens to obfuscate
application-level performance. This paper applies opera-
tional analysis to the problem of understanding and pre-
dicting application-level performance in parallel servers.
We present operational laws that offer both insight and
actionable information based on lightweight passive ex-
ternal observations of black-box applications. One law
accurately infers queuing delays; others predict the per-
formance implications of expanding or reducing capacity.
The former enables improved monitoring and system man-
agement; the latter enable capacity planning and dynamic
resource provisioning to incorporate application-level per-
formance in a principled way. Our laws rest upon a hand-
ful of weak assumptions that are easy to test and widely
satisfied in practice. We show that the laws are broadly ap-
plicable across many practical CPU scheduling policies.
Experimental results on a multicore network server in an
enterprise data center demonstrate the usefulness of our
laws.

1. Introduction

The era of ubiquitous parallel computing has arrived.
Chip multiprocessing and simultaneous multithreading
have already brought us single-socket processors that
present dozens of logical CPUs to operating systems
and application software, and computers with scores of
cores are imminent. For network servers, e.g., in enter-
prise data centers, today’s technology trends carry pro-
found implications. Multicore processors and virtualiza-
tion will enable massive consolidation and “datacenter-
on-chip” deployments of applications that are locally dis-
tributed across clusters today [16]. Modern multicore pro-
cessors furthermore offer increasingly fine control over
power-performance tradeoffs [14, 29]. Meanwhile, solid-
state storage promises to revolutionize hardware and soft-
ware architectures [12]. Unfortunately these trends, to-
gether with the growing complexity and opacity of appli-
cations, threaten to obfuscate performance in commercially

important computing systems. Understanding performance
remains imperative because we must balance it against
other considerations such as power consumption and hard-
ware cost. More than ever, we require performance analy-
sis techniques that are practical, general, and accessibleto
real-world decision makers: They must work with black-
box production applications, for which source code ac-
cess, invasive instrumentation, and controlled benchmark-
ing/profiling are seldom permitted; they must rely only on
weak assumptions that are easy to test and widely satisfied
in the field; and they must be easy for the average practi-
tioner to learn and apply.

This paper presents three parallel performance laws that
provide actionable insight using only lightweight passive
external observations of black-box production applications.
The Occupancy Law infers processor utilization and queu-
ing delays from readily available observations of arbitrary
workloads. The Capacity Expansion and Reduction Laws
predict the application-level performance consequences of
changing the number of processors available to an appli-
cation while holding workload fixed. All three areop-
erational laws because they involve only directly mea-
surable quantities (as opposed to, e.g., probabilistic as-
sumptions) [7]. Classical operational laws such as Little’s
Law [23] are the foundation of traditional computer sys-
tems performance analysis [21,26]. Our results address the
new challenges forced upon us by the multicore revolution.

The analyses that establish and characterize our oper-
ational laws are nontrivial but the laws themselves are
readily accessible to nonspecialists, requiring neither es-
oteric assumptions nor extraordinary training. Our laws
have several important uses: The Capacity Adjustment
Laws allow long-term capacity planning and short-term
dynamic resource allocation to incorporate application-
level performance in a principled way, and the Occupancy
Law enables qualitative improvements in application mea-
surement, monitoring, and management. Although our
practical discussions emphasize network servers with re-
quest/reply workloads, our results straightforwardly gener-
alize to other contexts, and technology trends are making
the formal model to which they apply increasingly relevant
to real-world computing.

The remainder of this paper is organized as follows:
Section 2 describes our system model and Sections 3 and 4
present our performance laws. Section 5 empirically vali-

Departures

Arrivals

Preemption

k ServersQueue

Figure 1. System model.

dates our theoretical results and explores their practicalap-
plication to a real multicore network server in an enterprise
data center. Section 6 surveys related work and Section 7
concludes. A companion paper presents complementary
results on processor speed scaling [35].

2. System Model

We consider a single-queue station withk servers (Fig-
ure 1) and jobs with heterogeneous service demands. Some
of our results place no restrictions on job arrivals and ap-
ply equally to batch, open, closed [21], and semi-open [34]
workloads; other results hold only for open arrivals. Simi-
larly some of our results assume identical servers but others
apply to heterogeneous systems. We permit but do not re-
quire preemption: the scheduler may alternately serve and
enqueue a job until its service demand is satisfied. We
make no assumptions about the information that guides the
scheduler’s decisions; e.g., we permit but do not require the
scheduler to exploit offline knowledge of future arrivals.
Two assumptions hold throughout this paper:

Assumption 1 Work conservation: no server is idle unless
the queue is empty.

Assumption 2 Serial jobs: a job occupies exactly one
queue position or server at any instant.

Our system model is reasonable for parallel network
servers handling CPU-intensive request/reply workloads.
Parameterk may represent the number of physical proces-
sors/cores in a computer, or the number effectively avail-
able to the application (the latter may be less than the for-
mer, e.g., due to soft concurrency limits). Assumption 1
nearly always holds in practice for CPU scheduling. Multi-
level scheduling, e.g., involving virtualization, poses no in-
herent difficulties: our model applies regardless of whether
service demands are mapped onto CPUs/cores by a con-
ventional operating system, a virtual machine monitor, or
some combination of the two. We require only that overall
scheduling be work-conserving, which is true for default
configurations of mainstream OSes and VMMs. Assump-
tion 2 implies that the execution of a single job is not par-
allelized. This is true for request handling in most network
servers.

Our model does not include blocking at auxiliary
queues. Blocking can occur in today’s network servers if a

N (t)

time time

k=1N (t) k=2

Figure 2. Occupancy curves.

request must read uncached data from disk, synchronously
write to non-volatile storage for durability, perform net-
work I/O (e.g., to invoke subsidiary services via RPCs), or
queue at mutexes. Technology trends have substantially re-
duced blocking for many applications and workloads, and
these trends will accelerate as the multicore era unfolds.
Large main memories accommodate the working sets of
most applications, eliminating blocking storage reads in the
warm steady state. Non-volatile caches in storage systems,
increasingly popular as performance boosters [40], reduce
the latency of synchronous durable writes below the total
time cost of OS context switches [22], eliminating the need
for blocking writes. Transactional memory promises to
supplant locks in future applications, eliminating queueing
at locks. Finally, several trends conspire to eliminate inter-
nal network I/O within complex modern applications: To-
day’s applications locally distribute software components
across hosts in a cluster, making network I/O critical to
performance [39]. However the cost advantages of host
consolidation coupled with virtualization technology point
toward “datacenter-on-chip” app deployments on multicore
processors [16], eliminating inter-component network I/O.
Taken together, these trends suggest that an increasingly
broad range of real computing systems will resemble the
model of Figure 1 as the multicore era progresses.

3. The Occupancy Law

The difference between a job’s departure and arrival
times is its response time, which is the sum of queuing
time and service time. The Occupancy Law allows us to
estimate aggregate queuing and service times based on op-
erational analysis of cumulative arrivals and departures at
a black-box system described in Section 2. It requires no
information about scheduling within the system or jobs’ in-
dividual or aggregate service demands.

Consider a system initially empty at timet = 0. LetA(t)
andDk(t) respectively denote the cumulative number of job
arrivals and departures up to timet, where the subscript re-
minds us thatDk(t) may depend on the number of serversk.
Let Nk(t)≡ A(t)−Dk(t) denote the number of jobs present
in the system at timet. We refer to a graphical represen-
tation ofNk(t) as ak-server occupancy curve. Figure 2 il-
lustrates two possible occupancy curvesNk=1(t) (left) and
Nk=2(t) (right) for one- and two-server stations handling
the same workload: four jobs, each requiring unit service,
arrive att = 1 and are scheduled non-preemptively. Three

Service time

time

N (t)k=2

������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������

������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������ N=2

Queueing time

Figure 3. Occupancy Law example, k = 2.

remarks on occupancy curves: First, the area under the oc-
cupancy curve equals the sum of response times across all
jobs; this observation sometimes accompanies graphical il-
lustrations of Little’s Law [7,23]. Second, the shape of the
occupancy curve may depend upon the queue discipline as
well as the number of servers. Finally, we can compute
the occupancy curve even if we cannot associate specific
departures with corresponding arrivals.

Assumptions 1 and 2 imply that the number of servers
busy at timet is the lesser ofNk(t) and k. Therefore if
we draw a horizontal line through thek-server occupancy
curve atN = k, the area beneath both this line and the oc-
cupancy curve itself equals aggregate service time for the
workload and the area above equals aggregate queueing
time, as illustrated in Figure 3. TheN = k line furthermore
separates service and queueing timesduring any interval,
as summarized in our first result.

Result 1 The Occupancy Law. During any interval[T,T ′]

aggregate service time equals
∫ T ′

T min{Nk(t), k}dt and ag-

gregate queueing time equals
∫ T ′

T max{Nk(t) − k, 0}dt.

The sum of the two equals
∫ T ′

T Nk(t)dt and is the interval’s
contribution to aggregate response time.

The Occupancy Law is anoperationallaw because its
inputs are directly measurable quantities [7]. (By con-
trast, stochastic queuing models involve assumptions about
the probability distributions of job arrivals and service de-
mands.) Unlike the classical operational laws, the Occu-
pancy Law provides the relative magnitudes of service and
queuing times in a black-box system. Furthermore, unlike
asymptotic and balanced-system “bounding analysis” ap-
proximations [21], it yields exact performance quantities
of interest. The Occupancy Law does not assume identi-
cal servers and therefore applies to heterogeneous paral-
lel computing systems, including heterogeneous multicore
processors [20]. The Occupancy Law holds regardless of
fine-scale processor phenomena, e.g., involving caching.
Finally, note that even the very weak assumption of flow
balance is not required to establish the Occupancy Law.

In practical terms, the Occupancy Law provides in-
sights not readily available from conventional system- or
application-level measurements. Today’s system monitor-
ing tools provide only coarse-grained aggregate resource

utilization measurements at fixed, pre-specified intervals
(typically 5 minutes) [5, 11, 33], but the Occupancy Law
applies to arbitrary, variable-length intervals. Intervals as
short as 200 ms are not unreasonable for environments
such as the data center used for our experiments. Analyz-
ing the occupancy curve in each interval of constantNk(t)
and combining the results yields the distributions of server
utilizations and queue lengths during any period of inter-
est. Whereas conventional measurement tools reside on
the computer being measured and incur performance over-
heads, the Occupancy Law allows us to infer utilizations
and queueing delays vialightweight, passive, externalob-
servations of black-box applications.

Application-level transaction logs may record per-
request response times, but these are available only after re-
quests have completed and are inaccurate under heavy load
because they do not reflect queueing delays between packet
arrivals and application-level handling [36]. By contrast,
the Occupancy Law estimates both utilization and queue-
ing, and does soeven for requests that have not completed;
it is therefore better suited to real-time monitoring. Con-
ventional data center management tools alert human oper-
ators when resource utilizations or response times exceed
specified thresholds, but the former can fail to detect unre-
sponsiveness and the latter alerts are not actionable if re-
sponse times consist largely of service times. The Occu-
pancy Law enables more sophisticated alerts based on the
relative magnitudesof queuing and service times. Oper-
ational analysis of an occupancy curve provides accurate,
high-resolution insight into both utilization and queuingin
unmodified black-box legacy network servers while cre-
ating no additional load. The price of this additional in-
sight is modest. Job arrivals and departures can easily be
measured at clients, at network servers using kernel packet
timestamping facilities [36], or by a network sniffer near
the target machine [6]. In a cluster computing context, the
same observations can be made by the job dispatcher of a
cluster scheduler [30].

4. The Capacity Adjustment Laws

This section presents two operational laws that bound
the performance implications of capacity expansion and re-
duction, i.e., increasing or decreasing the number of servers
in the system depicted in Figure 1. A companion pa-
per considers the complementary problem of predicting
performance when thespeedof the servers changes [35].
Given only ak-server occupancy curve, we wish to bound
the change in aggregate queuing time that would result if
a different number of serversk′ handled the same work-
load. Predicting the performance consequences of capacity
change is difficult because both scheduling and the poten-
tial for parallelism in the workload influence the outcome,

N=4

time

N (t)k=2

������
������
������
������
������

������
������
������
������
������

����������
����������
����������
����������
����������

����������
����������
����������
����������
����������

������
������
������
������
������

������
������
������
������
������

N=2

Figure 4. Example, k = 2 and k′ = 4.

but the occupancy curve seemingly contains no explicit in-
formation about either.

4.1. The Capacity Expansion Law

Consider the example in Figure 4. It is tempting to
conclude (falsely) that the shaded area under the occu-
pancy curveNk(t) between horizontal linesN = k = 2 and
N = k′ = 4 equals the reduction in aggregate queueing time
that would result from increasing the number of servers
from k = 2 to k′ = 4. However, it is easy to generate
counter-examples showing that the reduction in aggregate
queueing time is sometimes strictly greater. It turns out
that the area beneath the occupancy curve and between the
N = k andN = k′ lines canbound the change in queue-
ing time. We first consider capacity expansion (k′ > k) and
begin by introducing an additional assumption.

Assumption 3 Completion-monotonic scheduling: if k′ >

k, then Dk′(t) ≥ Dk(t) for all times t (increasing capacity
does not reduce cumulative job completions).

Assumption 3 states that additional servers “do no
harm.” Below we state and derive the Capacity Expansion
Law (which requires Assumption 3). We then show that
several widely used scheduling policies are completion-
monotonic, i.e., they satisfy Assumption 3, under two ad-
ditional assumptions.

Result 2 The Capacity Expansion Law. If the number
of servers increases from k to k′ (k′ > k), then aggregate
queueing time during the interval[0,T] decreases by at
least

∫ T
0 max{min{Nk(t), k′}− k, 0}dt (the area beneath

the k-server occupancy curve and between the horizontal
lines N= k and N= k′).

Derivation When the number of servers increases from
k to k′, by the Occupancy Law the reduction of ag-
gregate queueing time is

∫ T
0 max{Nk(t) − k, 0}dt −∫ T

0 max{Nk′(t) − k′, 0}dt. Since server scheduling is
completion-monotonic (Assumption 3), we haveNk(t) ≥
Nk′(t) for every timet—the k′-server occupancy curve is

N(t)

t

N=k’

N=k

k’−server occupancy curve

k−server occupancy curve k−server aggregate queueing time

k’−server aggregate queueing time

Figure 5. Graphical derivation.

never higher than thek-server occupancy curve. Therefore:

∫ T

0
max{Nk(t)−k, 0}dt−

∫ T

0
max{Nk′(t)−k′, 0}dt

≥
∫ T

0
max{Nk(t)−k, 0}dt−

∫ T

0
max{Nk(t)−k′, 0}dt

=

∫ T

0
max{min{Nk(t), k′}−k, 0}dt

The Capacity Expansion Law also admits a graphical
derivation shown in Figure 5. Aggregate queueing time
with k servers is the area beneath thek-server occupancy
curve but above the horizontal lineN = k (light shad-
ing). With k′ servers, aggregate queueing time is the area
beneath thek′-server occupancy curve but aboveN = k′

(heavy shading). Since thek′-server occupancy curve is
never higher than thek-server occupancy curve (by As-
sumption 3), aggregate queueing time withk′ servers is no
greater than the area beneath thek-server occupancy curve
but above theN = k′ line. Thus, the reduction in aggre-
gate queueing time when the number of servers increases
from k to k′ is bounded from below by the area beneath the
k-server occupancy curve and between the horizontal lines
N = k andN = k′.

4.2. Completion-Monotonic Scheduling

We now return to completion monotonicity (Assump-
tion 3). This property is intuitive for schedulers that
strive to make effective use of resources and it holds for
many common schedulers. In this paper we show that
all static priority-based preemptive schedulers (including
First-Come-First-Served and Shortest-Job-First) are com-
pletion monotonic (Theorem 1), as is fine-grained Proces-
sor Sharing or Round Robin with infinitesimal timeslices
(Theorem 2). In both cases, we show that every job fin-
ishes at the same time or earlier after the capacity expan-
sion, which is a sufficient (but not necessary) condition for
completion monotonicity. Two additional assumptions for-
malize the notion that changing the number of servers does
not change the workload and restrict attention to homoge-
neous systems with identical servers.

Assumption 4 Open arrivals: Jobs arrive according to an
open arrival process.

Assumption 5 Fixed service demands: Job service de-
mands are fixed (though not necessarily identical). A job’s
service demand is independent of the number, nature, and
location of other jobs in the system, the number of servers,
the server(s) on which the job runs, and the scheduler’s
decisions.

Theorem 1 Completion monotonicity under Priority
scheduling. If scheduler S assigns a static priority to each
job (where the priorities form a total order) and S pre-
emptively schedules jobs by priority, then S is completion-
monotonic.

Proof of Theorem 1: Consider a workload withn jobs
ordered by priority in schedulerS: T1 (highest priority),T2,
· · ·, Tn (lowest priority). Under schedulerS, we show by in-
duction that no jobs finish later when the number of servers
increases fromk to k′. Note that under open arrivals (As-
sumption 4), every job arrives at the same time onk andk′

servers. Regardless of the number of servers, jobT1 always
starts as soon as it arrives and runs without interruption.
Following Assumption 5,T1 finishes at the same time onk
andk′ servers. If jobsT1, T2, · · ·, Ti do not finish later when
the number of servers increases fromk to k′, we show that
job Ti+1 also does not finish later. Under priority schedul-
ing, job Ti+1 runs when the number of arrived but not yet
completed higher-priority jobs is less than the number of
servers. Therefore all runnable time periods for jobTi+1 on
k servers must also be runnable onk′ servers. From As-
sumption 5, we know that jobTi+1 finishes, onk′ servers,
no later than it does onk servers.

Theorem 2 Completion monotonicity under Processor
Sharing. Let k be the number of servers in the system. Over
any time period of length p with a constant number of ac-
tive jobs n, scheduler S assignsmin{p · k

n, p} service time
to each of the n active jobs. Then any change in the number
of servers is always completion-monotonic under S.

Let Lk
t (T) denote the amount of service jobT has re-

ceived up to timet whenk is the number of servers. Let
the total service demand of jobT be l (recall that by As-
sumption 5 a job’s service demand is independent of the
number of servers and the particular ones that serve it).
ThereforeLk

t (T) = l if job T has completed by timet. We
define a capacity increase fromk to k′ servers to beper-job
completion-monotonicat timet if every job has received no
less service by timet in a system withk′ servers than with
k servers (i.e.,Lk

t (T) ≤ Lk′
t (T) for all jobs T). We intro-

duce a lemma before proving Theorem 2. Recall that by
Assumption 4 every job arrives at the same time onk and
k′ servers.

Lemma 1 If the capacity increase is per-job completion-
monotonic at time tpstart and there is no new job arrival
after tpstart but before tpend, then the increase is per-job
completion-monotonic at any time t in[tpstart,tpend] under
the processor-sharing scheduling S.

Proof of Lemma 1: When the system hask servers,
those jobs that have not completed bytpstart but will com-
plete bytpend are: T1,T2, · · · ,Tm (in order of their comple-
tion times). Lett1 ≤ t2 ≤ ·· · ≤ tm be their corresponding
completion times. LetTm+1,Tm+2, · · · ,Tn be remaining ac-
tive jobs attpstart (which will stay active attpend). We now
prove Lemma 1 by induction. First we show that the capac-
ity increase is per-job completion-monotonic at any timet
in [tpstart,t1] under schedulerS. Since there aren jobs dur-
ing the time period[tpstart,t1] when the system hask servers,
for any jobT and any timet in this period, we have:

Lk
t (T) = Lk

tpstart
(T)+min{(t − tpstart) ·

k
n
, t − tpstart}

Since there are no more thann jobs during[tpstart,t1] with
k′ servers, for any jobT, we have:

Lk′
t (T) ≥ Lk′

tpstart
(T)+min{(t − tpstart) ·

k′

n
, t − tpstart}

≥ Lk
tpstart

(T)+min{(t − tpstart) ·
k
n
, t − tpstart} = Lk

t (T)

If the capacity increase is per-job completion-monotonic at
any timet in [tpstart,ti] (here 1≤ i ≤ m), below we show
that it is also per-job completion-monotonic at any timet
in [tpstart,ti+1] (or [tpstart,tpend] wheni = m). Since there are
n− i jobs during the time period[ti ,ti+1] when the system
hask servers, for any jobT and any timet in this period,
we have:

Lk
t (T) = Lk

ti (T)+min{(t − ti) ·
k

n− i
, t − ti}

Since the capacity increase is per-job completion-
monotonic at timeti , at leasti jobs have completed byti
when the system hask′ servers. Consequently there are no
more thann− i jobs during the time period[ti ,ti+1] when
the system hask′ servers. For any jobT, we have:

Lk′
t (T) ≥ Lk′

ti (T)+min{(t − ti) ·
k′

n− i
, t − ti}

≥ Lk
ti (T)+min{(t − ti) ·

k
n− i

, t − ti} = Lk
t (T)

Proof of Theorem 2: Let t1 ≤ t2 ≤ ·· · ≤ tn be the ar-
rival times of all jobs. Att1, no job has made any progress
regardless of the number of servers in the system so a ca-
pacity increase is per-job completion-monotonic at time
t1. According to Lemma 1, we can show that it is also

per-job completion-monotonic at any time up tot2. Step
by step, we can further show that a capacity increase is
per-job completion-monotonic at any time up tot3,t4, · · ·.
Consequently we know that a capacity increase is per-
job completion-monotonic at any time instant under the
processor-sharing schedulingS. This also means every job
finishes onk′ servers no later than it does onk servers.

There exist scheduling policies that donot satisfy com-
pletion monotonicity. Some are contrived pathological
policies, e.g., the policy that employs Shortest Job First
whenk servers are available and Longest Job First fork′ >
k. However a non-deterministic scheduler that employs
randomization, for example, may violate the completion-
monotonicity property. We speculate that most commonly
used deterministic scheduling policies have the intuitive
“do no harm” property of completion monotonicity. We
leave the proofs for additional schedulers to future work.

4.3. Tightness of the Bound

The Capacity Expansion Law defines a lower boundRLB

on the reduction in aggregate queuing time when the num-
ber of servers increases. How tight is this bound? In the ab-
sence of restrictions on problem parameters, it is possible
to construct examples in which the ratio between the actual
reduction in queuing time andRLB is arbitrarily high. How-
ever if the number of jobs in the system is bounded—i.e., if
Nk(t) ≤ N̂ at all timest—then the ratio between the actual
queueing time change andRLB is limited to N̂−k

k′−k . This is
easy to show because 1) the reduction of aggregate queue-
ing time is no more than the totalk-server aggregate queue-
ing time, and 2) the area beneath any occupancy curve and
between two horizontal linesN = y andN = y+1 is mono-
tonically non-increasing wheny increases. This result sug-
gests that the bound is tighter when the system is less con-
gested. BoundingNk(t) is not a restrictive assumption; if
the number of jobs in the system grows without bound,
the system is simply oversaturated. Like the Occupancy
Law, the Capacity Expansion Law does not require the as-
sumption of flow balance, but flow balance ensures tighter
bounds.

An obviousupperbound on the reduction in aggregate
queueing time is to reduce the queueing time to zero. We
have not yet established tighter general upper bounds, but
we know that there does not exist any upper bound in the
form of a constant timesRLB. This follows the pessimistic
result on the general tightness of usingRLB as a lower
bound.

In practical terms, the Capacity Expansion Law some-
times assures you that youdefinitely should expandcapac-
ity. Sometimes—e.g., because the performance improve-
ment bound is not tight—it does not recommend any ac-
tion. Our next result, the Capacity Reduction Law, is sym-

metric: it sometimes warns you that youdefinitely should
not reducecapacity.

4.4. The Capacity Reduction Law

We conclude this section by stating the Capacity Reduc-
tion Law, which closely resembles the Capacity Expansion
Law in both definition and derivation.

Result 3 Capacity Reduction Law. If the number of
servers decreases from k to k′ (k > k′), then aggregate
queueing time during the interval[0,T] increases by at
least

∫ T
0 max{min{Nk(t), k}− k′, 0}dt (the area beneath

the k-server occupancy curve and between two horizontal
lines of N= k and N= k′).

Derivation When the number of servers decreases from
k to k′, by the Occupancy Law the increase of ag-
gregate queueing time is

∫ T
0 max{Nk′(t) − k′, 0}dt −∫ T

0 max{Nk(t)− k, 0}dt. Since scheduling is completion-
monotonic (Assumption 3), we haveNk(t) ≤ Nk′(t) for ev-
ery time t—the k′-server occupancy curve is never lower
than thek-server occupancy curve. Therefore:

∫ T

0
max{Nk′(t)−k′, 0}dt−

∫ T

0
max{Nk(t)−k, 0}dt

≥

∫ T

0
max{Nk(t)−k′, 0}dt−

∫ T

0
max{Nk(t)−k, 0}dt

=

∫ T

0
max{min{Nk(t), k}−k′, 0}dt

5. Experiments

We conducted experiments on a real network server in
an HP data center to verify the practicality of the Occu-
pancy Law and test the tightness of the Capacity Adjust-
ment Laws’ bounds. Our client and server machines are
identical HP ProLiant BL460c blades housed together in
an HP BladeSystem c7000 enclosure communicating via a
Cisco Catalyst Blade Gb Switch 3020. Each blade con-
tains two dual-core Intel Xeon 5160 3 GHz CPUs (i.e,
k = 4) with 64 KB L1 cache, 4 MB L2 cache, and 8 GB of
667 MHz RAM; both blades run 64-bit SMP Linux 2.6.9-
42. The server application is a CPU-bound program in-
voked through the CGI interface of Apache 2.0.52. We
measured request start and end times with a bespoke client
workload generator. Our measurements are similar to those
that would be collected by a network sniffer located near
the Apache machine [6]. Network load and client CPU load
were negligible; queueing at the client did not distort mea-
surements. Client-serverping RTT is 81µs and the client
application latency of a null request is 1.35 ms; these RTTs
are far less than the CPU demands of requests.

 0
 10
 20
 30
 40

 0 1000 2000 3000 4000 5000 6000 7000

 0

 25

 50

 75

 100
oc

cu
pa

nc
y

cu
rv

e
 N 4

(t
)

C
P

U
 U

til
iz

at
io

n
(%

):
U

S
A

R
 =

 m
ea

su
re

d
U

O
cc

La
w

=
 e

st
im

at
ed

time (sec)

UOccLaw
USAR
N4(t)

Figure 6. Occupancy curve and server utilization.

5.1. Externally Estimating Queuing Delay

Our first test employed a semi-open workload: each
client session is a closed generator and the sessions them-
selves arrive in an open fashion. This is arguably the most
realistic kind of workload for a user-facing network ap-
plication [34]. Each session generates eight requests with
a server CPU demand drawn fromU [1,2] sec and think
times drawn fromU [3,6] sec, whereU [a,b] denotes the
uniform distribution in the range[a,b]. The per-request
server CPU demands are comparable to those of today’s
enterprise applications [37]. Session arrivals are burstyand
are constructed such that average server CPU demand fol-
lows a sawtooth pattern to mimic diurnal cycles. We ran
the test for two hours and measured CPU utilization at
the server in 1-minute intervals using thesar utility [11].
We measure utilization rather than queueing delay because
conventional tools do not report the latter. For our present
purposes, either is sufficient to test the accuracy of Occu-
pancy Law estimates. Accurate utilization estimates trans-
late directly into accurate queueing time estimates because
estimated service times can simply be subtracted from our
externally measured response times.

Figure 6 presents the client-measured occupancy curve
N4(t) (lower series, left scale) and server CPU utilization
(upper series, right scale) estimated by the Occupancy Law
(circles) and measured bysar (short bars). The Occu-
pancy Law’s estimate of server CPU utilization is remark-
ably accurate at all utilization levels, from roughly 5% to
over 99.5%.

 0

 0.25

 0.5

 0.75

 1

 0.001 0.01 0.1 1 10

error (%)

raw
error
CDF

absolute
percent
error CDF

The figure at right con-
firms this impression. It
presents cumulative distribu-
tions over our 120 measure-
ment intervals of two er-
ror metrics of the difference
between measured utilization
Usar and utilization estimated
via the Occupancy LawUOccLaw: raw error |Usar −
UOccLaw|, where both utilizations are expressed as percent-
ages, and normalized error 100× raw error

Usar

. By either error
metric, the Occupancy Law allows us to estimate CPU uti-

lization to within 1% using only lightweight passive exter-
nal measurements; again, these estimates translate directly
into accurate queueing delay estimates. (A similar exper-
iment involving much shorter per-request CPU demands
drawn from U [100,500] ms yields qualitatively similar
conclusions, with median and 97th percentile normalized
errors of 0.64% and 4.91%, respectively.)

5.2. Capacity Adjustment & Performance

The Capacity Adjustment Laws offer actionable infor-
mation to complement the insights provided by the Occu-
pancy Law. By bounding the application-level performance
consequences of changing the number of processors/cores
available to an application, the Capacity Adjustment Laws
provide a principled basis for decisions ranging from pro-
cessor selection and capacity planning (“how many cores
do I need in my next hardware generation to meet my
QoS requirements?”) to dynamic resource allocation (“is
it worth the energy cost to wake up a dormant core?”).

We quantify the tightness of the Capacity Adjustment
Laws’ bounds by replaying a fixed open workload to our
network server, varying the number of cores available to the
application using thesched_setaffinity() system
call. The CPU demands of individual requests are drawn
fromU [1,2] sec. We use the same pseudo-random number
generator seed on each run and ensure that the workload
seen by the server machine is identical on all runs. Over

 0

 10

 20

 30

 0 25 50 75 100

C
P

U
 u

til
’n

 (
%

)

time (min)

the course of each 90-minute run,
arrival rates vary and server CPU
utilization fluctuates as shown at
right. Note that peak utiliza-
tion exceeds 25% and therefore
the server machine is briefly over-
loaded when only one of its four cores is available to the
application.

Table 1 presents raw results from our four experimental
runs. The table shows

∫ T
0 min{Nk(t),k′}dt, the area un-

der both the occupancy curve and theN = k′ horizontal
line, for all combinations ofk and k′. The k′ = ∞ col-
umn contains aggregate response time, from which we sub-
tract the entry in thek = k′ column to obtain the aggre-

cores aggregate
enabled k′ = 1 k′ = 2 k′ = 3 k′ = 4 k′ = ∞ queueing

k = 1 2721.15 4360.84 5431.77 6176.27 7862.46 5141.31
k = 2 2139.77 2766.31 2950.09 3014.17 3070.30 304.00
k = 3 2122.40 2698.98 2841.18 2870.96 2888.45 47.28
k = 4 2104.71 2654.67 2759.34 2776.92 2782.19 5.27

Table 1. Area (sec) under both occupancy
curve and N = k′.

k′ = 1 k′ = 2 k′ = 3 k′ = 4

k = 1 −4837.31 −5094.04 −5136.04
(−1639.69) (−2710.61) (−3455.12)

k = 2 4837.31 −256.72 −298.73
(626.53) (−183.79) (−247.87)

k = 3 5094.04 256.72 −42.01
(718.78) (142.20) (−29.78)

k = 4 5136.04 298.73 42.01
(672.21) (122.25) (17.58)

Table 2. Actual change in aggregate queue-
ing delay from capacity adjustment (Capacity
Adjustment Law bounds in parentheses).

gate queuing time shown in the rightmost column. Table 2
shows the change in aggregate queuing time that results
from changing the number of cores available to the appli-
cation fromk to k′ for all (k,k′) pairs. Negative quantities
indicate reduction in queueing time and positive quantities
indicate increase. For example, Table 1 shows that aggre-
gate queuing delays fork = 2 andk = 3 are respectively
304.00 sec and 47.28 sec, for a difference of 256.72 sec,
as shown in the(k = 2,k′ = 3) and (k = 3,k′ = 2) cells
of Table 2. Beneath the actual changes in aggregate queu-
ing delay, Table 2 also shows in parentheses the bounds
obtained from the Capacity Adjustment Laws. For exam-
ple, from Table 1 we compute the Capacity Expansion Law
bound on the reduction in queuing delay resulting from in-
creasing the number of available cores fromk = 1 tok′ = 4
as 6176.27−2721.15= 3455.12 sec. The actual reduction
in queuing delay is 5136.04 sec, or roughly 27% greater.
In general, as we expect, the bounds that we obtain from
the Capacity Adjustment Laws are conservative. Further-
more the bounds that we obtain in this experiment are far
better than the those guaranteed by the theoretical bounds-
tightness results of Section 4.3.

5.3. Improved Scheduling & Tighter Bounds

Our experiments so far have employed the default Linux
scheduler, which for our CPU-bound tasks is essentially
Round Robin with 100 ms timeslices [4]. As noted in Sec-
tion 4.3, shorter queues imply tighter Capacity Adjustment
Law bounds, so it is reasonable to suspect that the bounds
would be tighter if the scheduler and workload were better

suited to one another. We conducted an additional experi-
ment to explore this issue.

It is well known that Shortest Remaining Processing
Time First (SRPT) scheduling minimizes queuing delay,
and Harchol-Balteret al. have shown that SRPT schedul-
ing of network connectionscan sometimes significantly
reduce average client-perceived latency without unduly
penalizing large transfers [13]. We made two changes
to our experimental testbed to implement SRPT: we set
the CPU demand of all requests to 1.5 sec, and we
set the CPU scheduling policy to real-time FIFO (i.e.,
non-preemptive First-Come First-Served) using the Linux
sched_setscheduler() system call. The net ef-
fect of non-preemptive FCFS scheduling on identical jobs
is that the scheduler mimics an SRPT scheduler. In all
other respects our experiment was identical to the one that
yielded the data in Table 1.

k′ = 1 k′ = 2

k = 1 −2104.406
(−1244.616)

k = 2 2104.406
(611.797)

The table at right
presents our results in
the same format as Ta-
ble 2; k > 2 cases are
omitted because queue-
ing was negligibly small for these runs. Comparing the two
tables, we see that the Capacity Adjustment Law bounds
are considerably tighter under SRPT. While this experi-
ment does not attempt to imitate real-world network server
workloads or CPU scheduling policies, the results are con-
sistent with our expectation that shorter queues due to
better scheduling tighten the Capacity Adjustment Law
bounds.

6. Related Work

Computer system performance models have long facil-
itated the exploration of design alternatives [17] and ca-
pacity planning [26]. New applications continue to arise,
e.g., dynamic resource provisioning [8, 42], performance
anomaly detection [19], and server consolidation decision
support [37].

Most existing approaches cluster at opposite ends of
a complexity/fidelity spectrum. At one extreme, stochas-
tic queuing models [3] yield supremely detailed insight—
specifically, the full distributions of performance measures
of interest. Stochastic models, however, can require con-
siderable skill to apply and can be brittle with respect to
their detailed underlying assumptions [41].

Denning & Buzen popularized the other end of the spec-
trum: operational analysis, which involves only directly
measurable quantities (as opposed to probabilistic assump-
tions) [7]. Elementary results include the well-known clas-
sical operational laws, e.g., Little’s Law [23]. Arguably
the most powerful and versatile result in all of performance
modeling [26], Little’s Law is furthermore the foundation

of more sophisticated methods including Mean Value Anal-
ysis (MVA) [21]. MVA is useful for modeling modern
multi-tiered network server applications [24, 42] and has
spawned its own extensions and generalizations. For exam-
ple, Rolia & Sevcik [31] and Menascé [25, 27] generalize
MVA to account for queueing at “soft” resources such as
mutexes and concurrency limits.

Our contributions represent an intermediate point on the
complexity/fidelity spectrum. Our laws are easier to learn
and apply than either MVA or stochastic models and they
yield more detailed insight than the classical operational
laws. All of our results rest upon a handful of straightfor-
ward assumptions that are easy to test and that are satisfied
in many practical systems of interest. Of course, there is
no free lunch: Our laws do not yield all of the insights of
the more sophisticated approaches. The former do not sup-
plant the latter but rather complement them by offering a
useful new point on the spectrum of performance modeling
techniques.

Performance model calibration, e.g., service demand es-
timation, is a difficult problem in itself. Many proposed
methods emphasize enhanced runtime measurement [2]
and application profiling via controlled benchmarking [18,
39, 43]. Unfortunately, both are sometimes forbidden in
production environments. Recent research emphasizes cal-
ibration via lightweight passive observation coupled with
sophisticated analyses [37, 38]. The present paper repre-
sents another step in the same direction by further reduc-
ing the inputs required for the modeling exercise, restrict-
ing attention to lightweight passiveexternalobservations
of black-box applications.

Energy efficiency is an increasingly important concern.
Fanet al. argue that computing systems should consume
power in proportion to the useful work they perform [10].
At the level of microprocessors, power/performance trade-
offs involve clock speed adjustment or per-core hiberna-
tion [14, 29]. We consider performance vs. number of ac-
tive processors/cores in this paper and processor speed scal-
ing in a companion paper [35]. Irani & Pruhs survey al-
gorithmic problems involving processor speed scaling and
powering down idle processors [15], and Augustineet al.
present online-optimal power-down algorithms for a single
idle processor with multiple sleep states [1]. These con-
tributions differ from ours both in objective and approach:
they focus on power savings alone whereas we consider
queueing delays, and they employ competitive analysis in
contrast to our operational analysis. Rybczynskiet al.con-
sider energy-conservation strategies that actively alterdisk
workloads [32]. Our models are more appropriate to CPUs,
and our approach does not reshape workloads.

Eageret al. explore the tradeoff between speedup and
efficiency (average overall utilization) as functions of the
number of processors serving a single compound job with

known service demand, bounding the extent to which
speedup and efficiency can both be poor [9]. Our work is
similar in that we too consider the resource/performance
tradeoffs inherent in a workload. However we consider
multiple jobs and we do not assume that service demands
are given.

Our Occupancy Law builds on the rule that the number
of busy servers at any instant is the lesser of the number
of serversk and the number of jobs in the systemNk, if
scheduling is work-conserving. This rule appears in prior
stochastic modeling work (e.g., multi-server analysis of the
Rate Conservation Law [28]). However, we are not aware
of any prior result that provides a precise, fine-grained sep-
aration of request waiting time and service time as estab-
lished by our Occupancy Law. To the best of our knowl-
edge the Capacity Adjustment Laws (and our complemen-
tary results on processor speed scaling [35]) are entirely
novel.

7. Conclusions

This paper presents three operational laws well suited
to the new challenges thrust upon us by the multicore rev-
olution and other current technology trends. Our laws re-
quire only readily available inputs and usefully illuminate
performance in opaque applications that satisfy a handful
of simple assumptions. Our experiments confirm that the
Occupancy Law accurately estimates queueing delays and
the Capacity Adjustment Laws bound the performance con-
sequences of capacity changes in a real parallel network
server. Technology trends promise to improve application-
level performance but also threaten to obscure it. Opera-
tional analysis can help to preserve our understanding and
control of performance as these trends overtake us.

Acknowledgments

We thank Arif Merchant and Ward Whitt for helpful
discussions and suggestions, and we thank Hernan Laf-
fitte, Eric Wu, and Krishnan Narayan for technical support
that made our experiments possible. This work was sup-
ported in part by National Science Foundation grants CCF-
0448413, CNS-0615045, and CCF-0621472. Finally, we
thank the anonymous reviewers for useful suggestions and
pointers.

References

[1] J. Augustine, S. Irani, and C. Swamy. Optimal power-down
strategies.SIAM J. Comput., 37(5):1499–1516, 2008.

[2] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using
Magpie for request extraction and workload modelling. In
OSDI, pages 259–272, Dec. 2004.

[3] G. Bolch, S. Greiner, H. de Meer, and K. S. Trivedi.Queue-
ing Networks and Markov Chains. John Wiley & Sons,
1998.

[4] D. P. Bovet and M. Cesati.Understanding the Linux Kernel.
O’Reilly, third edition, Nov. 2005.

[5] H.-P. Corp. HP Performance Manager software, Jan. 2008.
[6] H.-P. Corp. HP Real User Monitor, Jan. 2008. Search for

“Real User Monitor” athttp://www.hp.com/.
[7] P. J. Denning and J. P. Buzen. The operational analysis

of queueing network models.ACM Computing Surveys,
10(3):225–261, Sept. 1978.

[8] R. P. Doyle, J. S. Chase, O. M. Asad, W. Jin, and A. M.
Vahdat. Model-based resource provisioning in a Web ser-
vice utility. In Proc. USENIX Symposium on Internet Tech-
nologies and Systems (USITS), Mar. 2003.

[9] D. K. Eager, J. Zahorjan, and E. D. Lazowska. Speedup ver-
sus efficiency in parallel systems.IEEE Trans. Computers,
38(3):408–423, Mar. 1989.

[10] X. Fan, W.-D. Weber, and L. A. Barroso. Power provision-
ing for a warehouse-sized computer. InISCA, pages 13–23,
2007.

[11] S. Godard. sysstat utilities for Linux version
8.0.4, Jan. 2008.http://pagesperso-orange.fr/
sebastien.godard/.

[12] G. Graefe. The five-minute rule 20 years later, and how
flash memory changes the rules. InProc. Workshop on Data
Management on New Hardware (DaMoN), June 2007.

[13] M. Harchol-Balter, B. Schroeder, N. Bansal, and
M. Agrawal. Size-based scheduling to improve Web per-
formance. ACM Transactions on Computing Systems,
21(2):207–233, 2003.

[14] HP, Intel, Microsoft, Phoenix, and Toshiba. Advanced
configuration & power interface (ACPI) specification, Oct.
2006.http://www.acpi.info/spec.htm.

[15] S. Irani and K. R. Pruhs. Algorithmic problems in power
management.ACM SIGACT News, 36(2):63–76, June 2005.

[16] R. Iyer et al. Datacenter-on-chip architectures: Tera-
scale opportunities and challenges.Intel Technical Journal,
11(3):227–238, Aug. 2007.

[17] R. Jain.The Art of Computer Systems Performance Analy-
sis. John Wiley & Sons, 1991.

[18] N. Joukov, A. Traeger, R. Iyer, C. P. Wright, and E. Zadok.
Operating system profiling via latency analysis. InOSDI,
Nov. 2006.

[19] T. Kelly. Detecting performance anomalies in global appli-
cations. InUSENIX Workshop on Real, Large Distributed
Systems (WORLDS), Dec. 2005.

[20] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and
K. I. Farkas. Single-ISA heterogeneous multi-core archi-
tectures for multithreaded workload performance. InISCA,
pages 64–75, 2004.

[21] E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sev-
cik. Quantitative System Performance: Computer System
Analysis Using Queueing Network Models. Prentice-Hall,
1984. ISBN 0-13-746975-6.

[22] C. Li, C. Ding, and K. Shen. Quantifying the cost of context
switch. InExperimental Comp. Sci., June 2007.

[23] J. D. Little. A Proof of the Queueing Formula:L = λW.
Operations Research, 9(3):383–387, May 1961.

[24] X. Liu, J. Heo, and L. Sha. Modeling 3-tiered web applica-
tions. InMASCOTS, Sept. 2005.

[25] D. A. Menascé. Two-level iterative queuing modeling for
software contention. InMASCOTS, Oct. 2002.

[26] D. A. Menascé and V. A. F. Almeida. Scaling for E-
Business: Technologies, Models, Performance, and Capac-
ity Planning. Prentice Hall, May 2000.

[27] D. A. Menascé and M. Bennani. Analytic performance
models for single class and multiple class multithreaded
software servers. InComputer Measurement Group Conf.,
Dec. 2006.

[28] M. Miyazawa. The derivation of invariance relations in
complex queueing systems with stationary inputs.Advances
in Applied Probability, 15(4):874–885, Dec. 1983.

[29] A. Naveh et al. Power and Thermal Management in the
Intel Core Duo Processor.Intel Tech. J., 10(2):109–122,
May 2006.

[30] Platform Computing. LSF Scheduler.
http://www.platform.com/Products/
platform-lsf-family/.

[31] J. A. Rolia and K. C. Sevcik. The method of layers.
IEEE Transactions on Software Engineering, 21(8):689–
700, Aug. 1995.

[32] J. P. Rybczynski, D. D. Long, and A. Amer. Adapting pre-
dictions and workloads for power management. InMAS-
COTS, pages 3–12, Sept. 2006.

[33] R. F. Sauers, C. P. Ruemmler, and P. S. Weygant.HP-UX
11i Tuning and Performance. Prentice Hall, 2004.

[34] B. Schroeder, A. Wierman, and M. Harchol-Balter. Open
versus closed: A cautionary tale. InNSDI, pages 239–252,
May 2006.

[35] K. Shen, A. Zhang, T. Kelly, and C. Stewart. Operational
analysis of processor speed scaling. InSPAA, June 2008.
Short paper.

[36] N. Spring, L. Peterson, A. Bavier, and V. S. Pai. Using
PlanetLab for network research: Myths, realities, and best
practices. InProc. USENIX Workshop on Real, Large Dis-
tributed Systems (WORLDS), pages 67–72, Dec. 2005.

[37] C. Stewart, T. Kelly, and A. Zhang. Exploiting nonstation-
arity for performance prediction. InProc. EuroSys, Mar.
2007. Also available as HP Labs Tech Report 2007-64.

[38] C. Stewart, T. Kelly, A. Zhang, and K. Shen. A dollar from
15 cents: Cross-platform management for Internet services.
In USENIX Annual Tech, June 2008.

[39] C. Stewart and K. Shen. Performance modeling and system
management for multi-component online services. InNSDI,
pages 71–84, May 2005.

[40] Texas Memory Systems. RamSan-400 Solid State
Disk, Jan. 2008. http://www.superssd.com/
products/ramsan-400/.

[41] E. Thereska and G. R. Ganger. IRONModel: Robust Per-
formance Models in the Wild. InSIGMETRICS, June 2008.

[42] B. Urgaonkar et al. An analytical model for multi-tier In-
ternet services and its applications. InProc. ACM SIGMET-
RICS, pages 291–302, June 2005.

[43] B. Urgaonkar, P. Shenoy, and T. Roscoe. Resource over-
booking and application profiling in shared hosting plat-
forms. InOSDI, Dec. 2002.

