
 

                                                      
       

 
A Dollar from 15 Cents: Cross-Platform Management for Internet Services 
 
Christopher Stewart, Terence Kelly, Alex Zhang, Kai Shen 
 
HP Laboratories 
HPL- 2009-7 
 
Keyword(s):   
performance modeling, performance prediction, queueing models, CPU cache models processor cache 
models, multicore processors, cross-platform performance, prediction, processor selection, capacity 
planning, system management 
 
Abstract: 
As Internet services become ubiquitous, the selection and management of diverse server platforms now 
affects the bottom line of almost every firm in every industry. Ideally, such cross-platform management 
would yield high performance at low cost, but in practice, the performance consequences of such 
decisions are often hard to predict. In this paper, we present an approach to guide cross-platform 
management for real-world Internet services. Our approach is driven by a novel performance model that 
predicts application-level performance across changes in platform parameters, such as processor cache 
sizes, processor speeds, etc., and can be calibrated with data commonly available in today's production 
environments. Our model is structured as a composition of several empirically observed, parsimonious 
sub-models. These sub-models have few free parameters and can be calibrated with lightweight passive 
observations on a current production platform. We demonstrate the usefulness of our cross-platform 
model in two management problems. First, our model provides accurate performance predictions when 
selecting the next generation of processors to enter a server farm. Second, our model can guide platform-
aware load balancing across heterogeneous server farms. 

 
                                                                                                      
                                                                                                                      
 

External Posting Date: January 21, 2009 [Fulltext]                                           Approved for External Publication 
Internal Posting Date: January 21, 2009 [Fulltext] 
Published and presented at the USENIX Annual Technical Conference (USENIX'08). Boston, MA, June 2008. 

© Copyright the USENIX Annual Technical Conference (USENIX'08), 2008. 



A Dollar from 15 Cents:
Cross-Platform Management for Internet Services

Christopher Stewart† Terence Kelly∗ Alex Zhang∗ Kai Shen†

†University of Rochester ∗Hewlett-Packard Laboratories

Abstract

As Internet services become ubiquitous, the selection
and management of diverse server platforms now af-
fects the bottom line of almost every firm in every in-
dustry. Ideally, such cross-platform management would
yield high performance at low cost, but in practice, the
performance consequences of such decisions are often
hard to predict. In this paper, we present an approach
to guide cross-platform management for real-world In-
ternet services. Our approach is driven by a novel per-
formance model that predicts application-level perfor-
mance across changes in platform parameters, such as
processor cache sizes, processor speeds, etc., and can be
calibrated with data commonly available in today’s pro-
duction environments. Our model is structured as a com-
position of several empirically observed, parsimonious
sub-models. These sub-models have few free parameters
and can be calibrated with lightweight passive observa-
tions on a current production platform. We demonstrate
the usefulness of our cross-platform model in two man-
agement problems. First, our model provides accurate
performance predictions when selecting the next gener-
ation of processors to enter a server farm. Second, our
model can guide platform-aware load balancing across
heterogeneous server farms.

1 Introduction

In recent years, Internet services have become an in-
dispensable component of customer-facing websites and
enterprise applications. Their increased popularity has
prompted a surge in the size and heterogeneity of the
server clusters that support them. Nowadays, the man-
agement of heterogeneous server platforms affects the
bottom line of almost every firm in every industry. For
example, purchasing the right server makes and models
can improve application-level performance while reduc-
ing cluster-wide power consumption. Such management
decisions often span many server platforms that, in prac-
tice, cannot be tested exhaustively. Consequently, cross-
platform management for Internet services has histori-
cally been ad-hoc and unprincipled.

Recent research [9,14,31,37,40,41,44] has shown that
performance models can aid the management of Internet
services by predicting the performance consequences of
contemplated actions. However, past models for Inter-
net services have not considered platform configurations
such as processor cache sizes, the number of processors,
and processor speed. The effects of such parameters
are fundamentally hard to predict, even when data can
be collected by any means. The effects are even harder
to predict in real-world production environments, where
data collection is restricted to passive measurements of
the running system.

This paper presents a cross-platform performance
model for Internet services, and demonstrates its use
in making management decisions. Our model predicts
application-level response times and throughput from a
composition of several sub-models, each of which de-
scribes a measure of the processor’s performance (hence-
forth, a processor metric) as a function of a system pa-
rameter. For example, one of our sub-models relates
cache misses (a processor metric) to cache size (a system
parameter). The functional forms of our sub-models are
determined from empirical observations across several
Internet services and are justified by reasoning about the
underlying design of Internet services. Our knowledge-
lean sub-models are called trait models because, like hu-
man personality traits, they stem from empirical obser-
vations of system behaviors and they characterize only
one aspect of a complex system. Figure 1 illustrates the
design of our cross-platform model.

The applicability of our model in real-world produc-
tion environments was an important design considera-
tion. We embrace the philosophy of George Box, “All
models are wrong, but some [hopefully ours] are use-
ful.” [10] To reach a broad user base, our model targets
third-party consultants. Consultants are often expected
to propose good management decisions without touch-
ing their clients’ production applications. Such inconve-
nient but realistic restrictions forbid source code instru-
mentation and controlled benchmarking. In many ways
the challenge in such data-impoverished environments
fits the words of the old adage, “trying to make a dol-
lar from 15 cents.” Typically, consultants must make do
with data available from standard monitoring utilities and

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 199



� � ����� ��	
�� �
� 	����
���

� �������� ������ ��	�����	 ����	������	 ���	
�
����� �� !" #$ � �%� &� � #'�"�( ���! �����

)� *��
�	��� �	�
� ������ +�	�
� ��	,���� ������
-. / 0. 1 2.'��3345"��6��� �� !"7� *������ �	�
�� �� �	��
�� ����
 ���
��8�������	+�	����� �� � ��� ����+�	�9!: 5"��6���

���;!�! 3<3�!��9 �" 5"��6���� � �������� �� !"
'�"�(���! �����3-. 0. 2. =>?@A BCD>EFGHIJKG@JBLH>MCNBCIO?

Figure 1: The design of our cross-platform performance
model. The variable x represents a system parameter, e.g.,
number of processors or L1 cache size. The variable y rep-
resents a processor metric (i.e., a measure of processor per-
formance), such as instruction count or L1 cache misses.
Application-level performance refers to response time and
throughput, collectively.

application-level logs. The simplicity of our sub-models
allows us to calibrate our model using only such readily
available data.

We demonstrate the usefulness of our model in the
selection of high-performance, low-power server plat-
forms. Specifically, we used our model (and proces-
sor power specifications) to identify platforms with high
performance-per-watt ratios. Our model outperforms al-
ternative techniques that are commonly used to guide
platform selection in practice today. We also show that
model-driven load balancing for heterogeneous clusters
can improve response times. Under this policy, request
types are routed to the hardware platform that our model
predicts is best suited to their resource requirements.

The contributions of this paper are:

1. We observe and justify trait models across several
Internet services.

2. We integrate our trait models into a cross-platform
model of application-level performance.

3. We demonstrate the usefulness of our cross-
platform model for platform selection and load bal-
ancing in a heterogeneous server farm.

The remainder of this paper is organized as follows.
Section 2 overviews the software architecture, process-
ing patterns, and deployment environment of the realistic
Internet services that we target. Section 3 presents sev-
eral trait models. Section 4 shows how we compose trait

models into an established framework to achieve an ac-
curate cross-platform performance prediction and com-
pares our approach with several alternatives. Section 5
shows how trait-based performance models can guide the
selection of server platforms and guide load balancing in
a heterogeneous server cluster. Section 6 reviews related
work and Section 7 concludes.

2 Background

Internet services are often designed according to a
three-tier software architecture. A response to an end-
user request may traverse software on all three tiers. The
first tier translates end-user markup languages into and
out of business data structures. The second tier (a.k.a. the
business-logic tier) performs computation on business
data structures. Our work focuses on this tier, so we will
provide a detailed example of its operation below. The
third tier provides read/write storage for abstract business
objects. Requests traverse tiers via synchronous com-
munication over local area networks (rather than shared
memory) and a single request may revisit tiers many
times [26]. Previous studies provide more information
on multi-tier software architectures [29, 44].

Business-logic computations are often the bottleneck
for Internet services. As an example, consider the busi-
ness logic of an auction site: computing the list of cur-
rently winning bids can require complex considerations
of bidder histories, seller preferences, and shipping dis-
tances between bidders and sellers. Such workloads
are processor intensive, and their effect on application-
level performance depends on the underlying platform’s
configuration in terms of cache size, on-chip cores, hy-
perthreading, etc. Therefore, our model, which spans
a wide range of platform configurations, naturally tar-
gets the business-logic tier. Admittedly, application-level
performance for Internet services can also be affected
by disk and network workloads at other tiers. Previous
works [14, 41] have addressed some of these issues, and
we believe our model can be integrated with such works.

Internet services keep response times low to satisfy
end-users. However as requests arrive concurrently, re-
sponse times increase due to queuing delays. In produc-
tion environments, resources are adequately provisioned
to limit the impact of queuing. Previous analyses of sev-
eral real enterprise applications [40] showed max CPU
utilizations below 60% and average utilizations below
25%. Similar observations were made in [8]. Services
are qualitatively different when resources are adequately
provisioned compared to overload conditions. For exam-
ple, contention for shared resources is more pronounced
under overload conditions [29].

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association200



Aggregate counts
Time Type Type Instr. count L1 L2
stamp 1 2 ... (x104) miss miss

2:00pm 18 42 ... 280322 31026 2072

2:01pm 33 36 ... 311641 33375 2700

Table 1: Example of data available as input to our model.
Oprofile [2] collects instruction counts and cache misses.
Apache logs [1] supply frequencies of request types.

2.1 Nonstationarity

End-user requests can typically be grouped into a
small number of types. For example, an auction site
may support request types such as bid for item, sell item,
and browse items. Requests of the same type often fol-
low similar code paths for processing, and as a result,
requests of the same type are likely to place similar de-
mands on the processor. A request mix describes the pro-
portion of end-user requests of each type.

Request mix nonstationarity describes a common phe-
nomenon in real Internet services: the relative frequen-
cies of request types fluctuate over long and short inter-
vals [40]. Over a long period, an Internet service will
see a wide and highly variable range of request mixes.
On the downside, nonstationarity requires performance
models to generalize to previously unseen transaction
mixes. On the upside, nonstationarity ensures that ob-
servations over a long period will include more unique
request mixes than request types. This diversity over-
constrains linear models that consider the effects of each
request type on a corresponding output metric (e.g., in-
struction count), which enables parameter estimation us-
ing regression techniques like Ordinary Least Squares.

2.2 Data Availability

In production environments, system managers must
cope with the practical (and often political) issues of trust
and risk during data collection. For example, third-party
consultants—a major constituent of our work—are typ-
ically seen as semi-trusted decision makers, so they are
not allowed to perform controlled experiments that could
pose availability or security risks to business-critical pro-
duction systems. Similarly, managers of shared host-
ing centers are bound by business agreements that pre-
vent them from accessing or modifying a service’s source
code. Even trusted developers of the service often re-
linquish their ability to perform invasive operations that
could cause data corruption.

Our model uses data commonly available in most
production environments, even in consulting scenarios.
Specifically, we restrict our model inputs to logs of re-
quest arrivals and CPU performance counters. Table 1
provides an example of our model’s inputs. Our model

also uses information available from standard platform
specification sheets such as the number of processors and
on-chip cache sizes [6].

3 Trait Models

Trait models characterize the relationship between a
system parameter and a processor metric. Like personal-
ity traits, they reflect one aspect of system behavior (e.g.,
sensitivity to small cache sizes or reaction to changes in
request mix). The intentional simplicity of trait models
has two benefits for our cross-platform model. First, we
can extract parsimonious yet general functional forms
from empirical observations of the parameter and out-
put metric. Second, we can automatically calibrate trait
models with data commonly available in production en-
vironments.

Our trait models take the simplest functional form that
yields low prediction error on the targeted system param-
eter and processor metric. We employ two sanity checks
to ensure that our traits reflect authentic relationships—
not just peculiarities in one particular application. First,
we empirically validate our trait models across several
applications. Second, we justify the functional form of
our trait models by reasoning about the underlying struc-
ture of Internet services.

In this section, we observe two traits in the busi-
ness logic of Internet services. First, we observe that a
power law characterizes the miss rate for on-chip pro-
cessor caches. Specifically, data-cache misses plotted
against cache size on a log-log scale are well fit by a
linear model. We justify such a heavy-tail relationship
by reasoning about the memory access patterns of back-
ground system activities. Compared to alternative func-
tional forms, a power law relationship achieves excellent
prediction accuracy with few free model parameters.

Second, we observe that a linear request-mix model
describes instruction count and aggregate cache misses.
This trait captures the intuition that request type and vol-
ume are the primary determinants of runtime code paths.
Our experiments demonstrate the resiliency of request
mix models under a variety of processor configurations.
Specifically, request-mix models remain accurate under
SMP, multi-core, and hyperthreading processors.

3.1 Error Metric

The normalized residual error is the metric that we use
to evaluate trait models. We also use it in the validation
of our full cross-platform model. Let Y and Ŷ represent
observed and predicted values of the targeted output met-
ric, respectively. The residual error, E = Y − Ŷ tends
toward zero for good models. The normalized residual
error, |E|

Y , accounts for differences in the magnitude of Y .

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 201



0

20

40

60

80

100

120

140

1

In
st
r. 
Ex

ec
ut
ed

 (x
 10

7 )

0

100

200

300

400

500

600

700

Ar
riv

al 
ra
te

Instructions Most popular type
Request arrival rate 2nd most popular type

     2 hours             4                 6                 8             10

Figure 2: Nonstationarity during a RUBiS experiment. Re-
quest arrivals fluctuate in a sinusoidal fashion, which corre-
spondingly affects the aggregate instructions executed. The ra-
tio of the most popular request type to the second most popular
type (i.e., f reqmost

f req2nd
) ranges from 0.13 to 12.5. Throughout this

paper, a request mix captures per-type frequencies over a 30
second interval.

3.2 Testbed Applications

We study the business logic of three benchmark In-
ternet Services. RUBiS is a J2EE application that cap-
tures the core functionalities of an online auction site [3].
The site supports 22 request types including browsing
for items, placing bids, and viewing a user’s bid history.
The software architecture follows a three-tier model con-
taining a front-end web server, a back-end database, and
Java business-logic components. The StockOnline stock
trading application [4] supports six request types. End
users can buy and sell stocks, view prices, view hold-
ings, update account information, and create new ac-
counts. StockOnline also follows a three-tier software
architecture with Java business-logic components. TPC-
W simulates the activities of a transactional e-commerce
bookstore. It supports 13 request types including search-
ing for books, customer registration, and administrative
price updates. Applications run on the JBoss 4.0.2 appli-
cation server. The database back-end is MySQL 4.0. All
applications run on the Linux 2.6.18 kernel.

The workload generators bundled with RUBiS, Stock-
Online, and TPC-W produce synthetic end-user requests
according to fixed long-term probabilities for each re-
quest type. Our previous work showed that the resulting
request mixes are qualitatively unlike the nonstationary
workloads found in real production environments [40].
In this work, we used a nonstationary sequence of in-
tegers to produce a nonstationary request trace for each
benchmark application. We replayed the trace in an
open-arrival fashion in which the aggregate arrival rate
fluctuated. Figure 2 depicts fluctuations in the aggregate
arrival rate and in the relative frequencies of transaction
types during a RUBiS experiment. Our nonstationary se-
quence of integers is publicly available [5] and can be
used to produce nonstationary mixes for any application
with well-defined request types.

Mi
ss
es
/ 1
00
00
 In

st
.

20

22

24

26

210

28

Cache Size (KB)

16 16384256

RUBiS StockOnline TPC-W

16 16384256 16 16384256

Figure 3: Cache misses (per 10k instructions) plotted against
cache size on a log-log plot. Measurements were taken from
real Intel servers using the Oprofile monitoring tool [2]. The
same nonstationary workload was issued for each test. Cache
lines were 64 bytes.

3.3 Trait Model of Cache Size on Cache Misses

Figure 3 plots data-cache miss rates relative to cache
size on a log-log scale. Using least squares regres-
sion, we calibrated linear models of the form ln(Y ) =
Bln(X) + A. We observe low residual errors for each
application in our testbed. Specifically, the largest nor-
malized residual error observed for RUBiS, StockOnline,
and TPCW is 0.08, 0.03, and 0.09 respectively. The cali-
brated B parameters for RUBiS, StockOnline, and TPCW
are -0.83, -0.77, and -0.89 respectively. Log-log linear
models with slopes between (-2, 0) are known as power
law distributions [19, 33, 43]

We justify our power-law trait model by making ob-
servations on its rate of change, shown in Equation 1.

dY
dX

= BeAXB−1 (1)

For small values of X, the rate of change is steep, but
as X tends toward infinity the rate of change decreases
and slowly (i.e., with a heavy tail) approaches zero.
The heavy-tail aspect of a power law means the rate of
change decreases more slowly than can be described us-
ing an exponential model. In terms of cache misses,
this means a power-law cache model predicts significant
miss rate reductions when small caches are made larger,
but almost no reductions when large caches are made
larger. The business logic tier for Internet services ex-
hibits such behavior by design. Specifically, per-request
misses due to lack of capacity are significantly reduced
by larger L1 caches. However, garbage collection and
other infrequent-yet-intensive operations will likely in-
cur misses even under large cache sizes.

A power law relationship requires the calibration of
only two free parameters (i.e., A, and B), which makes it
practical for real-world production environments. How-
ever, there are many other functional forms that have
only two free parameters; how does our trait model
compare to alternatives? Table 2 compares logarithmic,

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association202



Log Exp. Power Log

law -normal

lowest 0.011 0.105 0.005 0.001
RUBiS median 0.094 0.141 0.028 0.027

highest 0.168 0.254 0.080 0.072

lowest 0.013 0.010 0.010 0.012
Stock median 0.075 0.099 0.023 0.024

highest 0.026 0.142 0.034 0.042

lowest 0.046 0.044 0.011 0.007
TPCW median 0.109 0.084 0.059 0.060

highest 0.312 0.146 0.099 0.101

Table 2: Normalized residual error of cache models that have
fewer than three free parameters. The lowest, median, and
highest normalized residuals are reported from observations on
seven different cache sizes.

exponential, and power law functional forms. Power
law models have lower median normalized residual er-
ror than logarithmic and exponential models for each
application in our testbed. Also, we compare against
a generalized (quadratic) log-normal model, ln(Y ) =
B2ln(X)2 +B1ln(X)+A. This model allows for an addi-
tional free parameter (B2) in calibration, and is expected
to provide a better fit, though it cannot be calibrated from
observations on one machine. Our results show that the
additional parameter does not substantially reduce resid-
ual error. For instance, the median residual error for the
power law distribution is approximately equal to that of
the generalized log-normal distribution. We note that
other complex combinations of these models may pro-
vide better fits, such as Weibull or power law with expo-
nential cut-off. However, such models are hard to cali-
brate with the limited data available in production envi-
ronments.

3.4 Trait Models of Request Mix on Instruc-
tions and Cache Misses

Figure 4 plots a linear combination of request type fre-
quencies against the instruction count, L1 misses, and L2
misses for RUBiS. Our parsimonious linear combination
has only one model parameter for each request type, as
shown below.

Ck = ∑
types j

α jkNj (2)

Where Ck represents one of the targeted processor met-
rics and Nj represents the frequency of requests of type
j. The model parameter α jk transforms request-type
frequencies into demand for processor resources. Intu-
itively, α jk represents the typical demand for processor
resource k of type j. We refer to this as a request-mix
model, and we observe excellent prediction accuracy.
The 90th percentile normalized error for instructions, L1
misses, and L2 misses were 0.09, 0.10, 0.06 respectively.

���

�����

�������

��� ����� �������

������

��
	


��
���




���������

�����	��


��
���
����

���������

���������

Figure 4: RUBiS instruction count and aggregate cache misses
(L1 and L2) plotted against a linear request mix model’s predic-
tions. Measurements were taken from a single processor Intel
Pentium D server. Lines indicate 15% error from the actual
value. Collected with OProfile [2] at sampling rate of 24000.

Request-mix models are justifiable, because business-
logic requests of the same type typically follow similar
code paths. The number of instructions required by a
request will likely depend on its code path. Similarly,
cold-start compulsory misses for each request will de-
pend on code path, as will capacity misses due to a re-
quest’s working set size. However, cache misses due to
sharing between requests are not captured in a request-
mix model. Such misses are not present in the single
processor tests in Figure 4.

Table 3 evaluates request-mix models under platform
configurations that allow for shared misses. The first
three columns report low normalized error when re-
sources are adequately provisioned (below 0.13 for all
applications), as they would be in production environ-
ments. However under maximum throughput conditions,
accuracy suffers. Specifically, we increased the volume
of the tested request mixes by a factor of 3. Approx-
imately 50% of the test request mixes achieved 100%
processor utilization. Normalized error increased for the
L1 miss metric to 0.22–0.34. These results are consis-
tent with past work [29] that attributed shared misses in
Internet services to contention for software resources. In
the realistic, adequately provisioned environments that
we target, such contention is rare. We conclude that
request-mix models are most appropriate in realistic en-
vironments when resources are not saturated.

Request-mix models can be calibrated with times-
tamped observations of the targeted processor metric and
logs of request arrivals, both of which are commonly
available in practice. Past work [40] demonstrated that
unrealistic stationary workloads are not sufficient for cal-
ibration. Request-mix models can require many observa-
tions before converging to good parameters. For the real
and benchmark applications that we have seen, request
mix models based on ten hours of log files are typically
sufficient.

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 203



2-way SMP Dual-core Hyperthreading Max tput
(L1 miss) (L2 miss) (L1 miss) (L1 miss)

RUBiS 0.044 0.030 0.045 0.349

Stock 0.060 0.077 0.096 0.276

TPCW 0.035 0.084 0.121 0.223

Table 3: Median normalized residual error of a request-mix
model under different environments. Evaluation spans 583 re-
quest mixes from a nonstationary trace. The target architectural
metric is shown in parenthesis. All tests were performed on
Pentium D processors. Hyperthreading was enabled in the sys-
tem BIOS. 2-way SMP and dual-cores were enabled/disabled
by the operating system scheduler. The “max tput” test was
performed on a configuration with 2 processors and 4 cores en-
abled with hyperthreading on.

4 Cross-Platform Performance Predictions

Section 3 described trait models, which are parsimo-
nious characterizations of only one aspect of a complex
system. In this section, we will show that trait mod-
els can be composed to predict application-level perfor-
mance for the whole system. Our novel composition is
formed from expert knowledge about the structure of In-
ternet services. In particular, we note that instruction and
memory-access latencies are key components of the pro-
cessing time of individual requests, and that Internet ser-
vices fit many of the assumptions of a queuing system.
Our model predicts application-level performance across
workload changes and several platform parameters in-
cluding: processor speed, number of processors (e.g., on-
chip cores), cache size, cache latencies, and instruction
latencies. Further, our model can be calibrated from the
logs described in Table 1. Source code access, instru-
mentation, and controlled experiments are not required.
We attribute the low prediction error of our model to ac-
curate trait models (described in Section 3) and a princi-
pled composition based on the structure of Internet ser-
vices.

The remainder of this section describes the composi-
tion of our cross-platform model, then presents the test
platforms that we use to validate our model. Finally, we
present results by comparing against alternative model-
ing techniques. In Section 5, we complete the challenge
of turning 15-cent production data into a dollar by using
our model to guide management decisions like platform
selection and load balancing.

4.1 Composition of Traits

The amount of time spent processing an end-user re-
quest, called service time, depends on the instructions
and memory accesses necessary to complete the request.

Average CPU service time can be expressed as

s =
I × (CPI+(H1C1 + H2C2 + M2Cmem)))

CPU speed×number of requests

where I is the aggregate number of instructions required
by a request mix, CPI is the average number of cycles per
instruction (not including memory access delays), Hk is
the percentage of hits in the Lk cache per instruction, Mk
is the percentage of misses in the Lk cache per instruc-
tion, and Ck is the typical cost in cycles of accesses to the
Lk cache [22]. CPI, CPUspeed, and Ck are typically re-
leased in processor spec sheets [6]. Recent work [16] that
more accurately approximates CPI and Ck could trans-
parently improve the prediction accuracy of our model.

This model is the basis for our cross-platform perfor-
mance prediction. Subsequent subsections will extend
this base to handle changes in application-level workload
and cache size parameters, and to predict the application-
level performance.

4.1.1 Request Mix Adjustments

In Section 3, we observed that both instruction counts
and cache misses, at both L1 and L2, are well modeled
as a linear combination of request type frequencies:

I = ∑
types j

αI jNj and #Mk = ∑
types j

αMk jNj

where I is the number of instructions for a given volume
and mix of requests, Nj is the volume of requests of type
j, and #Mk is the number of misses at cache level k. The
intuition behind these models is straightforward: αI j , for
example, represents the typical number of instructions
required to serve a request of type j. We apply ordinary
least squares regression to a 10-hour trace of nonstation-
ary request mixes to calibrate values for the α parame-
ter. After calibration, the acquired α̂ parameters can be
used to predict performance under future request mixes.
Specifically, we can predict both instruction count and
aggregate cache misses for an unseen workload repre-
sented by a new vector N′ of request type frequencies.

4.1.2 Cache Size Adjustments

Given L1 and L2 cache miss rates observed on the cur-
rent hardware platform, we predict miss rates for the
cache sizes on a new hardware platform using the power-
law cache model: Mk = eASB

k where Sk is the size of the
level-k cache.

We calibrate the power law under the most strenuous
test possible: using cache-miss observations from only
an L1 and L2 cache. This is the constraint under which
many consultants must work: they can measure an ap-
plication running in production on only a single hard-
ware platform. Theoretically, the stable calibration of

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association204



power law models desires observations of cache misses
on 5 cache sizes [19]. Calibration from only two obser-
vations skews the model’s predictions for smaller cache
sizes [33]. However in terms of service time prediction,
the penalty of such inaccuracies—L1 latency—is low.

4.1.3 Additional Service Time Adjustments

Most modern processors support manual and/or dynamic
frequency adjustments. Administrators can manually
throttle CPU frequencies to change the operation of the
processor under idle and busy periods. Such manual poli-
cies override the CPUspeed parameter in processor spec.
sheets. However, power-saving approaches in which the
frequency is automatically adjusted only during idle pe-
riods are not considered in our model. Such dynamic
techniques should not affect performance during the busy
times in which the system is processing end-user re-
quests.

We consider multi-processors as one large virtual pro-
cessor. Specifically, the CPUspeed parameter is the sum
of cycles per second across all available processors. We
do not distinguish between the physical implementations
of logical processors seen by the OS (e.g., SMT, multi-
core, or SMP). We note however that our model accuracy
could be improved by distinguishing between cores and
hyperthreads.

4.1.4 Predicting Response Times

Service time is not the only component of a request’s
total response time; often the request must wait for re-
sources to become available. This aspect of response
time, called queuing delay, increases non-linearly as the
demand for resources increases. Queuing models [27]
attempt to characterize queuing delay and response time
as a function of service time, request arrival rate, and
the availability of system resources. Our past work pre-
sented a queuing model that achieves accurate response
time prediction on real Internet services [40]. That par-
ticular model has two key advantages: 1) it considers the
weighted impact of request mix on service times and 2) it
can be easily calibrated in the production environments
that we target. It is a model of aggregate response time y
for a given request mix and is shown below:

y =
n

∑
j=1

s jNj +∑
r

(

1
λ
·

U2
r

1−Ur

)

·
n

∑
j=1

Nj

where λ and Ur respectively denote the aggregate count
of requests in the given mix (i.e., arrival rate) and the av-
erage utilization of resource r, respectively. Utilization is
the product of average service time and arrival rate. The
first term reflects the contribution of service times to ag-
gregate response time, and the second considers queuing

delays. For average response time, divide y by λ . The
parameter s j captures average service time for type j and
can be estimated via regression procedures using obser-
vations of request response times and resource utiliza-
tions [40]. Note that y reflects aggregate response time
for the whole system; s j includes delays caused by other
resources— not just processing time at the business-logic
tier. Our service time predictions target the portion of s j
attributed to processing at the business-logic tier only.

4.2 Evaluation Setup

We empirically evaluate our service and response time
predictions for RUBiS, StockOnline, and TPC-W. First,
we compare against alternative methods commonly used
in practice. Such comparisons suggest that our model
is immediately applicable for use in real world prob-
lems. Then we compare against a model recently pro-
posed in the research literature [25]. This comparison
suggests that our principled modeling methodology pro-
vides some benefits over state-of-the-art models.

4.2.1 Test Platforms

We experiment with 4 server machines that allow for a
total of 11 different platform configurations. The various
servers are listed below:

PIII Dual-processor PIII Coppermine with 1100 MHz
clock rate, 32 KB L1 cache, and 128 KB L2 cache.

PRES Dual-processor P4 Prescott with 2.2 GHz clock
rate, 16 KB L1 cache, and 512 KB L2 cache.

PD4 Four-processor dual-core Pentium D with 3.4 GHz
clock rate, 32 KB L1 cache, 4 MB L2 cache, and
16 MB L3 cache.

XEON Dual-processor dual-core Pentium D Xeon that
supports hyperthreading. The processor runs at
2.8 GHz and has a 32 KB L1 cache and 2 MB L2
cache.

We used a combination of BIOS features and OS
scheduling mechanisms to selectively enable/disable hy-
perthreading, multiple cores, and multiple processors on
the XEON machine, for a total of eight configurations.
We describe configurations of the XEON using nota-
tion of the form “#H/#C/#P.” For example, 1H/2C/1P
means hyperthreading disabled, multiple cores enabled,
and multiple processors disabled. Except where other-
wise noted, we calibrate our models using log files from
half of a 10-hour trace on the PIII machine. Our log files
contain aggregate response times, request mix informa-
tion, instruction count, aggregate L1 cache misses, and
aggregate L2 cache misses. The trace contains over 500
mixes cumulatively. Request mixes from the remain-
ing half of the trace were used to evaluate the normal-

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 205



ized residual error |predicted−actual|
actual on the remaining ten

platforms/configurations. Most mixes in the second half
of the trace constitute extrapolation from the calibration
data set; specifically, mixes in the second half lie outside
the convex hull defined by the first half.

4.2.2 Alternative Models Used In Practice

Because complex models are hard to calibrate in data-
constrained production environments, the decision sup-
port tools used in practice have historically preferred
simplicity to accuracy. Commonly used tools involve
simple reasoning about the linear consequences of plat-
form parameters on CPU utilization and service times.

Processor Cycle Adjustments Processor upgrades
usually mean more clock cycles per second. Although
the rate of increase in clock speeds of individual proces-
sor cores has recently slowed, the number of cores per
system is increasing. Highly-concurrent multi-threaded
software such as business-logic servers processing large
numbers of simultaneous requests can exploit the in-
creasing number of available cycles, so the net effect is
a transparent performance improvement. A common ap-
proach to predicting the performance impact of a hard-
ware upgrade is simply to assume that CPU service times
will decrease in proportion to the increase in clock speed.
For service time prediction, this implies

stnew = storig ×
cyclesorig

cyclesnew
(3)

However, this approach does not account for differences
in cache sizes on the old and new CPUs. Section 3 has
shown that changes to the cache size have non-linear ef-
fects on the number of cache misses for business-logic
servers, which in turn affects CPU service times and
CPU utilization. Furthermore, cache miss latencies dif-
fer across hardware platforms, and these differences too
may affect CPU service times.

Benchmark-Based Adjustments A more sophisti-
cated approach used widely in practice is to predict per-
formance using ratios of standard application benchmark
scores. Specifically, these approaches measure the ser-
vice times and maximum throughput for a target applica-
tion on both the new and original platform. This applica-
tion’s performance is expected to be representative of a
larger class of applications. This model is shown below:

stnew = storig ×
TPC scoreorig

TPC scorenew
(4)

This approach improves on the processor cycle adjust-
ments by considering the effect of caching and other

architectural factors. However, modern business-logic
servers can vary significantly from standard benchmark
applications. Indeed, standard benchmarks differ sub-
stantially from one another in terms of CPI and miss fre-
quencies [39]!

Workload Adjustments Workload fluctuations are
ubiquitous in Internet services, and we frequently wish
to predict the effects of workload changes on system re-
sources. One typical approach is to model CPU utiliza-
tion as a linear function of request volume.

utilizationnew = utilizationorig ×
request ratenew

request rateorig
(5)

The problem with this approach is that while it accounts
for changes in the aggregate volume of requests, it ig-
nores changes in the mix of request types. We call such
a model a scalar performance model because it treats
workload as a scalar request rate rather than a vector of
type-specific rates. Nonstationarity clearly poses a seri-
ous problem for scalar models. For example, if request
volume doubles the model will predict twice as much
CPU utilization. However if the increase in volume was
due entirely to a lightweight request type, actual utiliza-
tion may increase only slightly.

4.3 Results

4.3.1 Accuracy of Service Time Predictions

We first consider the problem of predicting average per-
request CPU service times of an application on a new
hardware platform given observations of the application
running on our PIII platform. We compare our method
with three alternatives: 1) the naı̈ve cycle-based adjust-
ment of Equation 3 with linear workload adjustments of
Equation 5, 2) a variant in which we first predict service
time as a function of request mix using a linear weighted
model and then apply the cycle-based adjustment, and
3) the benchmark-based method of Equation 4 with re-
quest mix workload adjustments.

Table 4 shows the prediction error for RUBiS. Our
method has less error than the benchmark-based method
for all target platforms. In all cases except one, our
method has lower error than its three competitors. Most
often, our model has less than one third the error of
competing approaches. The results for StockOnline and
TPC-W are similar. Table 5 shows that our predictions
are always the most accurate for the StockOnline appli-
cation. Our results for TPC-W (Table 6) show consis-
tently low error for our model (always below 0.17).

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association206



Target Cycle pred Bench- Our
Processor scalar req-mix mark Method

PRES 0.48 0.35 0.30 0.06

PD4 0.24 0.17 0.32 0.07

XEON 1H/1C/1P 0.63 0.49 0.27 0.10
XEON 1H/1C/2P 0.43 0.28 0.24 0.08
XEON 1H/2C/1P 0.39 0.30 0.26 0.02
XEON 1H/2C/2P 0.36 0.27 0.57 0.03
XEON 2H/1C/1P 0.42 0.28 0.24 0.02
XEON 2H/1C/2P 0.12 0.05 0.29 0.24
XEON 2H/2C/1P 0.35 0.22 0.32 0.02
XEON 2H/2C/2P 0.18 0.13 0.38 0.09

Table 4: Median normalized residual error of service time pre-
dictions for RUBiS. Models are calibrated on our PIII platform
from half of a 10-hour nonstationary trace. The numbers pre-
sented are the median error when the models are used to predict
the second half of the nonstationary trace on the targeted plat-
forms. The median across platforms for our method is 0.07.

Target Cycle pred Bench- Our
Processor scalar req-mix mark Method

PRES 0.35 0.23 0.56 0.18

PD4 0.38 0.28 0.42 0.12

XEON 1H/1C/1P 0.55 0.41 0.21 0.10
XEON 1H/1C/2P 0.48 0.38 0.34 0.12
XEON 1H/2C/1P 0.44 0.39 0.35 0.09
XEON 1H/2C/2P 0.36 0.26 0.71 0.12
XEON 2H/1C/1P 0.48 0.38 0.34 0.17
XEON 2H/1C/2P 0.22 0.16 0.52 0.14
XEON 2H/2C/1P 0.45 0.37 0.47 0.15
XEON 2H/2C/2P 0.36 0.29 0.39 0.02

Table 5: Median normalized residual error of service time pre-
dictions for StockOnline. The median across platforms for our
method is 0.12.

Target Cycle pred Bench- Our
Processor scalar req-mix mark Method

PRES 0.48 0.35 – 0.11

PD4 0.28 0.24 – 0.09

XEON 1H/1C/1P 0.38 0.32 – 0.13
XEON 1H/1C/2P 0.23 0.16 – 0.13
XEON 1H/2C/1P 0.22 0.16 – 0.12
XEON 1H/2C/2P 0.27 0.22 – 0.17
XEON 2H/1C/1P 0.28 0.23 – 0.06
XEON 2H/1C/2P 0.24 0.20 – 0.11
XEON 2H/2C/1P 0.20 0.15 – 0.16
XEON 2H/2C/2P 0.18 0.21 – 0.14

Table 6: Median normalized residual error of service time pre-
dictions for TPC-W. Note, the benchmark method is not appli-
cable for TPC-W, since observations on the new platform are
required for calibration. The median across platforms for our
method is 0.13.

0%

25%

50%

75%

100%

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
Normalized Residual Error

CD
F

PIII to XEON

PIII to PRES

PRES to XEON

XEON to PIII

(a) RUBiS

0%

25%

50%

75%

100%

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
CD

F PIII to XEON

PIII to PRES

PRES to XEON

XEON to PIII

(b) StockOnline

0%

25%

50%

75%

100%

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

CD
F PIII to XEON

PIII to PRES

PRES to XEON

XEON to PIII

(c) TPCW

Figure 5: Cumulative distributions of normalized residual er-
ror for response time predictions across nonstationary request
mixes. Mean response times on the PIII, P4, and XEON were
256, 106, and 93 ms respectively. XEON shortens XEON
2H/2T/2P according to our naming conventions.

4.3.2 Accuracy of Response Time Predictions

Figure 5 shows the prediction accuracy of our queuing
model. For predictions from PIII to XEON, our model
converts median service time error of 0.09, 0.02, and
0.14 into response time predictions with median error of
0.06, 0.09, and 0.13, for RUBiS, TPC-W, and StockOn-
line respectively. Even though response time is a more
complex metric, our prediction error remains low.

Figure 5 also demonstrates the robustness of our
method. The 85th percentile of our prediction error for
RUBiS is always below 0.21 no matter which platforms
we use for calibration and validation. For StockOnline
and TPC-W, the 85th percentile prediction error is below
0.29 and 0.30, respectively.

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 207



0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4

RUBiS Stock TPC-W RUBiS Stock TPC-W

No
rm

ali
ze
d 
Er
ro
r Artificial Neural Network

Our Cross-Platform Model

  New workload only               New platform

Figure 6: Comparison of an artificial neural network to our
cross-platform model. The median normalized error for pre-
dictions of average response time are reported. We trained the
ANN on several subsets of the training data. The reported val-
ues are from the training subset that yielded the lowest predic-
tion error for each application.

4.3.3 Comparison to Neural Net Model

Ipek et al. used an artificial neural network to pre-
dict performance across changes in platform parame-
ters [25]. Artificial neural networks can be automatically
calibrated without knowledge of the form of the func-
tional relationship between input parameters and output
variables. Also, they operate with categorical and con-
tinuous data. However, the limited amount of available
data for cross-platform management for real-world In-
ternet services presents a challenge for neural networks.
Neural networks require many observations of the input
parameters and output variables in order to learn the un-
derlying structure of the system. In contrast, our compo-
sition of trait models is based on our knowledge of the
underlying structure of Internet services.

We implemented an artificial neural network (ANN) as
described in [25]. We used 16 hidden states, a learning
rate 0.0001, a momentum value of 0.5, and we initial-
ized the weights uniformly. The output variable for the
ANN was the average response time. The training set for
the ANN consisted of observations on the PIII and PRES
platforms. The validation set consisted of observations
under new transaction mixes on the PRES and XEON
platforms.

Figure 6 shows the median prediction error of the
ANN compared to our model on the validation set. Our
model has comparable accuracy, within 0.02, under sit-
uations in which the ANN predicts only the effects of
workload changes. However, the ANN has up to 3X the
error of our model when predicting response time on the
unseen XEON platform. Observations on two platforms
are not enough for the ANN to learn the relationship be-
tween platform parameters and response time. These re-
sults suggest that our methodology, a composition of trait
models, may be better suited for cross-platform manage-
ment in data-constrained production environments.

5 Enhanced System Management

In this section, we use our model to improve cross-
platform management decisions for Internet services. In
general, such management decisions can have significant
consequences on the bottom line for service providers,
which completes our metaphor of creating a dollar from
15 cents. We explore two specific management problems
often encountered in real-word production environments.

• Platform Selection When building or augmenting a
server cluster, service providers wish to select plat-
forms that will maximize performance relative to a
cost. We look at the problem of choosing the hard-
ware platform that yields maximum response-time-
bounded throughput per watt. This problem is chal-
lenging because architectural features and config-
uration options that enhance performance also in-
crease power consumption. Of course, the problem
could also be solved by testing the application of
interest on each target processor configuration, but
such exhaustive testing is typically too expensive
and time consuming in real-world scenarios.

• Platform-Aware Load Balancing for Heterogeneous
Servers Service providers wish to extract maxi-
mum performance from their server infrastructure.
We show that naı̈vely distributing arriving requests
across all machines in a server cluster may yield
sub-optimal performance for certain request types.
Specifically, certain types of requests execute most
efficiently only under certain platform configura-
tions in the server cluster. Our cross-platform per-
formance predictions can identify the best platform
for each request type.

5.1 Platform Selection

Our metric for platform selection is throughput per
watt. We leverage our performance model of application-
level response time to predict the maximum request ar-
rival rate that does not violate a bound on aggregate
response time. Given an expected request mix, we it-
eratively query our model with increased aggregate ar-
rival rates. The response-time-bounded throughput is the
maximum arrival rate that does not exceed the response
time bound. The other half of our metric for platform
selection is power consumption, which we acquire from
processor spec sheets [6]. Admittedly, processor specs
are not the most accurate source for power consump-
tion data [17, 21], but they will suffice for the purpose of
demonstrating our model’s ability to guide management
decisions.

For this test, we compare our model against the other
cross-platform prediction methods commonly used in
practice. The competing models are not fundamentally

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association208



��

���

���

���

���

����

�	
� �
��� �
���

��
��
��

��
��

	

�		
�
�


��
	

��

��
�

��

����	���
	�

�	����������
	�

����	 �	�
!
�


Figure 7: Probability of incorrect decisions for model-driven
platform selection.

intended to model response time, so we apply our queue-
ing model to each. Specifically, the difference in results
in this section come from the different methods of ser-
vice time prediction presented in Section 4. We cali-
brate performance models on the PIII platform, and show
results for the RUBiS auction service. Table 7 com-
pares the measured throughput per watt to the predic-
tions of each method. The absolute value of the dif-
ference between the actual ranking and the predicted
ranking (i.e., |pred − act|), is never greater than 1 with
our method. Comparatively, the cycle-based and bench-
mark approach have mis-rankings of 5 and 3 respec-
tively. In practice, mis-rankings could cause service
providers to purchase an inefficient platform. One way
to measure the cost of such mis-predictions is to mea-
sure the net loss in throughput per watt between the mis-
predicted platform and the properly ranked platform, i.e.,
t pwpredicted rank k

t pwactual rank k
× 100%. The maximum loss is only 5%

for our method, but is 45% and 12% for the cycle-based
and benchmark methods, respectively.

Often in practice, platform selections are made from a
few properly priced platforms. We divided our platform
into subsets of five, and then predicted the best platform
in the subset. We report how often each performance
prediction method does NOT correctly identify the best,
the top two, and the top three platforms. Figure 7 shows
that our method selects the best processor configuration
for 230 of 252 (91%) combinations. More importantly,
alternative methods are 2X and 4X more likely to make
costly wrong decisions. For the problems of correctly
identifying the top two and top three platforms, our ap-
proach yields the correct decision for all but 25% of plat-
form subsets whereas our competitors are wrong more
than 41% and 60% of the time.

Processor Rankings
actual our cycle- bench-

method based mark

PD4 1 1 1 1

XEON 2H/2C/2P 2 2 6 2

XEON 2H/2C/1P 3 4 3 5

XEON 2H/1C/1P 4 3 4 3

XEON 2H/1C/2P 5 5 5 6

XEON 1H/1C/1P 6 7 7 7

PRES 7 6 2 4

XEON 1H/2C/1P 8 8 8 8

XEON 1H/1C/2P 9 9 9 9

XEON 1H/2C/2P 10 10 10 10

Table 7: Platform rankings of the response-time-bounded
throughput per watt on RUBiS. Response time bound was
150ms. Power consumption data was taken from [6]. Actual
response-time-bounded throughput was measured as a base-
line.

5.2 Platform-Aware Load Balancing

In this section, we first observe that the best proces-
sor for one request type may not be the best processor
for another. Second, we show that the techniques de-
scribed in Section 4 enable black-box ranking of pro-
cessors for each request type. Our techniques comple-
ment advanced type-based load distribution techniques,
like locality-aware request distribution, in heterogeneous
clusters and do not require intrusive instrumentation or
benchmarking. A mapping of request type to machine
can be made with the limited data available to consul-
tants.

Table 8 shows the expected and actual response time
for four request types that contribute significantly to the
overall response time of RUBiS. These types were cho-
sen because they are representative of different demands
for processor resources in RUBiS. The first type rep-
resents requests for static content. Since XEON and
PRES have similar clock rates there is not much dif-
ference between their processing power on this request
type. Search Items by Region has a large working set
and benefits from fewer L2 cache misses on XEON. View
Item has a small working set size that seems to fit mostly
within the larger L1 cache of XEON. Lookup user infor-
mation, however, has unique cache behavior. Its working
set is medium-sized consisting of user information, user
bid histories, and user items currently for sale. This re-
quest type seems to benefit more from the lower-latency
512KB cache of PRES, than it does from the larger 32KB
L1 cache of Xeon.

Table 8 also shows our ability to predict the best ma-
chine on a per-request-type basis. We achieve this by us-

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 209



Response Time Per-type (ms)
PRES Dual-core Xeon

actual predict actual predict
Browse.html 53 49 48 47
Search Items by Reg. 423 411 314 354
View Item 102 110 89 92
Lookup User Info 80 75 132 109

Table 8: Expected response time of each request-type when is-
sued in isolation. Predictions are based on log file observations
from PIII. The dual-core Xeon is a single processor. Request
mix consisted of only requests of the tested type at a rate of ten
requests per second.

ing the techniques described in Section 4. In particular,
we calibrate the parameters of our business-logic traits
using only lightweight passive observations of a system
serving a realistic nonstationary workload. Then, we pre-
dict performance under a workload mix that consists of
only one type of request. This is done for each machine
and request type in the system.

6 Related Work

Our contributions in this paper span model-driven sys-
tem management, workload characterization, and perfor-
mance modeling. The general literature on these topics
is vast; this section briefly reviews certain related works.

6.1 Model-Driven Management

Networked services are now too complex for ad-hoc,
human-centric management. Performance predictions,
the by-product of performance models, offer a conve-
nient abstraction for principled, human-free manage-
ment. Our previous work [41] presented a whole-system
performance model capable of guiding the placement
and replication of interacting software components (e.g.,
web server, business-logic components, and database)
across a cluster. Shivam et al. [34, 37] model scientific
applications on a networked utility. Their model can be
used to guide the placement of compute and I/O-bound
tasks and the order in which workflows execute. Doyle
et al. provide a detailed model of file system caching
for standard web servers that is used to achieve resource
management objectives such as high service quality and
performance isolation [14]. Magpie [9] models the con-
trol flow of requests through distributed server systems,
automatically clustering requests with similar behavior
and detecting anomalous requests. Aguilera et al. [7]
perform bottleneck analysis under conditions typical of
real-world Internet services. Thereska and Ganger [42]
investigate real-world causes for inaccuracies in storage
system models and study their effect on management

policies. Finally, our most recent work proposed a model
of application-level performance that could predict the
effects of combining two or more applications onto the
same machine (i.e., consolidation).

The contribution of this work is a practical method
for performance prediction across platform and workload
parameters that can be used to guide cross-platform de-
cisions for real-world Internet services.

6.2 Workload Characterization

Internet services have certain innate resource demands
that span hardware platforms, underlying systems soft-
ware, and even the end-user input supplied to them. Pre-
vious work [32, 36] advocated separating the characteri-
zation of application-specific demands from the charac-
terization of underlying systems and high-level inputs.
Our trait models continue in this tradition by providing
parsimonious and easy-to-calibrate descriptions of an ap-
plication’s demand for hardware resources. We believe
trait models exist and can be derived for other types of
applications, such as databases and file systems.

Characterizations of application resource demand that
have functional forms similar to our trait models have
been observed in past research. Saavedra & Smith
model the execution time of scientific FORTRAN pro-
grams as a weighted linear combination of “abstract op-
erations” such as arithmetic and trigonometric opera-
tions [35]. Our request-mix models characterize much
higher level business-logic operations in a very different
class of applications. Another difference is that Saave-
dra & Smith calibrate their models using direct measure-
ments obtained through invasive application instrumen-
tation whereas we analyze lightweight passive observa-
tions to calibrate our models.

Chow considers the optimal design of memory hierar-
chies under the assumption of a power-law relationship
between cache size and miss rates [13]. Smith presents
very limited empirical evidence, based on a single in-
ternal Amdahl benchmark, that appears to be roughly
consistent with Chow’s assumption [38]. Thiebaut and
Hartstein et al. explore a special case of Chow’s assump-
tion from a theoretical standpoint [20, 43]. This prior
work is primarily concerned with the design of cache
hierarchies and typically employs traces of memory ac-
cesses. We compose a power-law model with request-
mix models and queuing models to predict the impact
on response times of both workload changes and archi-
tectural changes. Furthermore we employ only passive
observations of a running application to estimate power-
law parameters.

The growing commercial importance of Java-based
middleware and applications has attracted considerable
attention in the architecture community. Recent stud-

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association210



ies investigate interactions between Java benchmarks and
architectural features including branch prediction, hy-
perthreading, and the CPU cache hierarchy [11, 24, 29].
One important difference between these investigations
and our work is that they focus on throughput whereas
we emphasize application-level response times. Also,
our work incorporates expert knowledge about Internet
services via a novel composition of trait models. We
demonstrated, in Section 4.3.3, that our composition im-
proves cross-platform performance prediction when only
limited production data is available.

6.3 Cross-Platform Performance Models

Chihaia & Gross report that simple analytic mem-
ory models accurately predict the execution times of sci-
entific codes across hardware architectures [12]. We
predict response times in business-logic servers across
platforms, and we too find that succinct models suf-
fice for our purposes. More sophisticated approaches
typically fall into one of two categories: Knowledge-
free machine learning techniques [23, 25, 30] and de-
tailed models based on deep knowledge of processor de-
sign [16, 28, 32].

Detailed knowledge-intensive models typically re-
quire more extensive calibration data than is available
to consultants in the practical scenarios that motivate
our work, e.g., data available only through simulated
program execution. Knowledge-free machine learning
methods, on the other hand, typically offer only limited
insight into application performance: The structure and
parameters of automatically-induced models are often
difficult to explain in terms that are meaningful to a hu-
man performance analyst or useful in an IT management
automation problem such as the type-aware load distri-
bution problem of section 5.2. Furthermore the accu-
racy of knowledge-free data-mining approaches to cross-
platform performance prediction has been a controversial
subject: See, e.g., Ein-Dor & Feldmesser for sweeping
claims of accuracy and generality [15] and Fullerton for
a failure to reproduce these results [18].

Our contribution is a principled composition of con-
cise and justifiable models that are easy to calibrate in
practice, accurate, and applicable to online management
as well as offline platform selection.

7 Conclusion

This paper describes a model-driven approach for
cross-platform management of real-world Internet ser-
vices. We have shown that by composing trait models—
parsimonious, easy-to-calibrate characterizations of one
aspect of a complex system—we can achieve accurate
cross-platform performance predictions. Our trait mod-

els themselves are typically accurate to within 10% and
our application-level performance predictions are typi-
cally accurate to within 15%. Our approach relies only
on lightweight passive observations of running produc-
tion systems for model calibration; source code access,
invasive instrumentation, and controlled benchmarking
are not required. Applied to the problem of selecting
a platform that offers maximal throughput per watt, our
approach correctly identifies the best platform 91% of
the time whereas alternative approaches choose a sub-
optimal platform 2x–4x more frequently. Finally, we
have shown that our model can improve load balancing in
a heterogeneous server cluster by assigning request types
to the most suitable platforms.

8 Acknowledgments

More people assisted in this work than we can ac-
knowledge in this section. Keir Fraser, our shepherd,
helped us polish the camera-ready version. The anony-
mous reviewers gave rigorous, insightful, and encourag-
ing feedback, which improved the camera-ready version.
Reviews from our friends Kim Keeton, Xiaoyun Zhu,
Zhikui Wang, Eric Anderson, Ricardo Bianchini, Nidhi
Aggarwal, and Timothy Wood helped us nail down the
contributions. Jaap Suermondt helped formalize an eval-
uation methodology for the decision problems in Sec-
tion 5. Eric Wu (HP) and Jim Roche (Univ. of Rochester)
maintained the clusters used in our experiments. Part of
this work was supported by the National Science Foun-
dation grants CNS-0615045 and CCF-0621472.

References

[1] Apache software foundation. http://www.apache.
org.

[2] Oprofile: A sytem profiler for linux. http://
oprofile.sourceforge.net/.

[3] Rice university bidding system. http://rubis.
objectweb.org/.

[4] Stock-online. http://objectweb.org/
stockonline.

[5] http://www.cs.rochester.edu/u/stewart/
models.html.

[6] x86 technical information. http://www.sandpile.
org.

[7] M. Aguilera, J. Mogul, J. Wiener, P. Reynolds, and
A. Muthitacharoen. Performance debugging for dis-
tributed systems of black boxes. In SOSP, 2003.

[8] A. Andrzejak, M. Arlitt, and J. A. Rolia. Bounding the
resource savings of utility computing models. Technical
report, HP Labs, Dec. 2002.

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 211



[9] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using
magpie for request extraction and workload modeling. In
OSDI, Dec. 2004.

[10] G. Box and N. Draper. Empirical model-building and re-
sponse surfaces. Wiley, 1987.

[11] H. Cain, R. Rajwar, M. Marden, and M. Liphasti. An ar-
chitectural evaluation of java tpc-w. In HPCA, Dec. 2001.

[12] I. Chihaia and T. Gross. Effectiveness of simple mem-
ory models for performance prediction. In ISPASS, Mar.
2004.

[13] C. Chow. On optimization of storage hiearchy. In IBM J.
Res. Dev., May 1974.

[14] R. Doyle, J. Chase, O. Asad, W. Jin, and A. Vahdat.
Model-based resource provisioning in a web service util-
ity. In USENIX Symp. on Internet Tech. & Sys., Mar. 2003.

[15] P. Ein-Dor and J. Feldmesser. Attributes of the perfor-
mance of central processing units: A relative performance
prediction model. CACM, 30(4):308–317, Apr. 1987.

[16] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. Smith. A
performance counter architecture for computing accurate
CPI components. In ASPLOS, Oct. 2006.

[17] X. Fan, W. Weber, and L. Barroso. Power provisioning
for a warehouse-sized computer. In ISCA, June 2007.

[18] G. D. Fullerton. An evaluation of the gains achieved by
using high-sped memory in support of the system pro-
cessing unit. CACM, 32(9):1121–1129, 1989.

[19] M. Goldstein, S. Morris, and G. Yen. Problems with fit-
ting to the power-law distribution. In The European Phys-
ical Journal B - Condensed Matter and Complex Systems,
June 2004.

[20] A. Hartstein, V. Srinivasan, T. Puzak, and P. Emma.
Cache miss behavior: is it sqrt(2)? In Conference on
Computing Frontiers, May 2006.

[21] T. Heath, A. Centeno, P. George, L. Ramos, Y. Jaluria,
and R. Bianchini. Mercury and freon: Temerature emu-
lation and management for server systems. In ASPLOS,
Oct. 2006.

[22] J. Hennessey and D. Patterson. Computer architecture:
A quantitative approach, fourth edition. In The Morgan
Kaufmann Series, 2007.

[23] K. Hoste, A. Phansalkar, L. Eeckhout, A. Georges,
L. John, and K. Bosschere. Performance prediction based
on inherent program similarity. In Int’l Conf. on Parallel
Architectures & Compilation Techniques, Sept. 2006.

[24] W. Huang, J. Liu, Z. Zhang, and M. Chang. Performance
characterization of Java applications on SMT processors.
In ISPASS, Mar. 2005.

[25] E. Ipek, S. McKee, B. Supinski, M. Schultz, and R. Caru-
ana. Efficiently exploring archtectural design spaces via
predictive modeling. In ASPLOS, Oct. 2006.

[26] R. Isaacs and P. Barham. Performance analysis in loosely-
coupled distributed systems. In Cabernet Radicals Work-
shop, Feb. 2002.

[27] R. Jain. The art of computer systems performance analy-
sis. In Wiley, 1991.

[28] T. Karkhanis and J. Smith. A first-order superscalar pro-
cessor model. In ISCA, June 2004.

[29] M. Karlsson, K. Moore, E. Hagersten, and D. Wood.
Memory system behavior of java-based middleware. In
HPCA, Feb. 2003.

[30] B. Lee and D. Brooks. Accurate and efficient regression
modeling for microarchitectural performance and power
prediction. In ASPLOS, Oct. 2006.

[31] X. Li, Z. Li, P. Zhou, Y. Zhou, S. Adve, and S. Ku-
mar. Performance-directed energy management for main
memory and disks. In ASPLOS, Oct. 2004.

[32] G. Marin and J. Mellor-Crummey. Cross-architecture per-
formance predictions for scientific applications using pa-
rameterized models. In SIGMETRICS, June 2004.

[33] M. Newman. Power laws pareto distributions and zipf’s
law. In Contemporary Physics, 2005.

[34] S. B. P. Shivam and J. Chase. Active and accelerated
learning of cost models for optimizing scientific applica-
tions. In VLDB, Sept. 2006.

[35] R. H. Saavedra and A. J. Smith. Analysis of bench-
mark characteristics and benchmark performance predic-
tion. ACM Trans. Comp. Sys., 14(4):344–384, Nov. 1996.

[36] M. Seltzer, D. Krinsky, K. Smith, and X. Zhang. The case
for application-specific benchmarking. June 1999.

[37] P. Shivam, A. Iamnitchi, A. Yumerefendi, and J. Chase.
Model-driven placement of compute tasks in a networked
utility. In ACM International Conference on Autonomic
Computing, June 2005.

[38] A. Smith. Cache memories. In ACM Computing Surveys.

[39] R. Stets, L. Barroso, and K. Gharachorloo. A de-
tailed comparison of two transaction processing work-
loads. In IEEE Workshop on Workload Characterization,
Nov. 2002.

[40] C. Stewart, T. Kelly, and A. Zhang. Exploiting nonsta-
tionarity for performance prediction. In EuroSys, Mar.
2007.

[41] C. Stewart and K. Shen. Performance modeling and sys-
tem management for multi-component online services. In
NSDI, May 2005.

[42] E. Thereska and G. Ganger. Ironmodel: Robust perfor-
mance models in the wild. In SIGMETRICS, June 2008.

[43] D. Thiebaut. On the fractal dimension of computer pro-
grams. In IEEE Trans. Comput., July 1989.

[44] B. Urgoankar, G. Pacifici, P. Shenoy, M. Spreitzer, and
A. Tantawi. An analytical model for multi-tier inter-
net services and its applications. In SIGMETRICS, June
2005.

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association212




