

Keyword(s):

Abstract:

©

Crazy Cuts: Dissecting Planar Shapes into Two Identical Parts

Alfred M. Bruckstein, Doron Shaked

HP Laboratories
HPL-2009-61

Self Docking, congruent piece decomposition

We analyze a well known type of puzzle in planar geometry: given a planar shape, it is required to find a
cut that divides the shape into two identical parts (up to rotation and translation). Clearly not all shapes can
be so dissected and for some shapes that appear in puzzles the cutting curve is quite surprising and difficult
to find. In this paper we first analyze the inverse problem of assembling planar shapes from two identical
parts having partially "matching" boundaries and then use the insights gained on this topic to derive an
efficient algorithm to solve the dissection puzzle in quite general situations.

External Posting Date: March 21, 2009 [Fulltext] Approved for External Publication
Internal Posting Date: March 21, 2009 [Fulltext]

Copyright 2009 Hewlett-Packard Development Company, L.P.

Crazy Cuts: Dissecting Planar Shapes into
Two Identical Parts

Alfred M. Bruckstein∗and Doron Shaked†

March 1, 2009

Abstract

We analyze a well known type of puzzle in planar geometry: given
a planar shape, it is required to find a cut that divides the shape into
two identical parts (up to rotation and translation). Clearly not all
shapes can be so dissected and for some shapes that appear in puzzles
the cutting curve is quite surprising and difficult to find. In this paper
we first analyze the inverse problem of assembling planar shapes from
two identical parts having partially ”matching” boundaries and then
use the insights gained on this topic to derive an efficient algorithm
to solve the dissection puzzle in quite general situations.

1 Introduction

Consider the planar shape depicted in Figure 1a. The goal is to find
a cutting curve that divides this shape into to two identical shapes.
The solution is seen in Figure 1b, and is not trivial to find. Several
other examples of crazy-cut dissection puzzles are shown in Figure 2.
The question we address in this paper is the following: given a planar
shape, determine whether a simple cutting curve exists dissecting the
shape into two identical parts and, if it exists, find the cutting curve
efficiently. To answer this question we shall first analyze the inverse
problem of assembling a planar shape from two identical shapes that

∗Computer Science Department, Technion - IIT, Haifa, Israel. E-mail:
freddy@cs.technion.ac.il. Corresponding author.

†HP-labs, Haifa, Israel. E-mail: doron.shaked@hp.com

1

have partially ”matching” boundaries. This problem may be regarded
as solving a simple jigsaw puzzle of two pieces (with no drawings on
them).

(a)

(b)

Figure 1: (a) The shape and (b) the ”crazy-cut” into two identical parts
(after Martin Gardner).

2 Solving Two Piece Jigsaw Puzzles

A simple planar shape (with no holes) may be represented by the
closed planar curve of its boundary. Suppose we have a Euclidean in-
variant description of the closed boundary of the two (identical) shapes
we must put together. The description can be the curvature vs ar-
clength ”invariant signature” description k(s), where s ∈ [0, L] is the
arclength along the boundary (L being the total length of the planar
boundary that will be assumed measurable, and s = 0 being an arbi-
trarily selected starting point on the boundary). If the boundary is

2

(a) (b)

(c) (d)

Figure 2: Some crazy-cut challenges.

non-smooth we can defined k(s) as having δ- function components de-
scribing sharp angles at breakpoint or we might assume that we have
an equivalent description of the boundary via k(s) between break-
points along with the turn angle information at each breakpoint. If
we have to deal with polygonal planar shapes, the ”boundary signa-
ture” may be a sequence of edge-length (li) and the turn angles (ϕi)
at each vertex of the polygon (see Figure 3). For shapes digitized
on Z2 the natural boundary signature is the so-called crack-code of
the boundary, tracing the boundary of the shape built from adjacent
square pixels of size (1×1) having integer-coordinate vertices.

We may now ask what characterizes, in terms of the invariant sig-
nature function, for instance the Euclidian-invariant curvature k(s),
matching portions of boundaries of two given shapes SI and SII . If
kI(s) and kII(s) describe the boundaries of the two shapes in a clock-
wise traversal from arbitrary initial conditions and the portion be-
tween sI

A and sI
B on the boundary of SI matches the portion between

3

sII
A to sII

B we shall have (see Figure 4) that:

kI(s) = −kII(Σ− s) s ∈ [sI
A, sI

B].

Since clearly along the common boundary portions of the shapes SI

and SII we have the same traversal rate (as arclength traversal implies
unit speed clockwise travel along the boundary!) but the velocity
vector at each point turns in opposite directions. Note that we also
have

Σ− sI
A = sII

B

Σ− sI
B = sII

A

and therefore

Σ = sI
A + sII

B = sII
A + sI

B.

Indeed if we plot kI(s) as a periodic function of s with period equal
to LI , the length of the boundary of shape SI , and similarly kII(s)
as a periodic function of s with period LII , . . . the picture looks like
illustrated in Figure 5. We see that for both SI and SII we can regard
the signature function k(s) as being composed of alternating part PI

and JI and PII and JII where JI and JII, the matching portions, have
same length LJ and are (up/down) and (left/right) mirror reflections
of each other. The joint object, after ”docking” the two jigsaw puzzle
pieces together will have a signature function that can be described
by PI followed by PII with a length of total LI + LII − 2LJ .

3 Self Docking of Shapes

Up to this point the discussion was for two general shapes SI and SII .
However we are interested in matching identical shapes, i.e. SI ≡
SII ≡ S. In this case we shall have to have for k(s), the invariant
signature description of the boundary of S, that

k(s) = −k(Σ− s) for s ∈ [0, ∆] (1)

(where we decided w.l.o.g. to start the arclength parametrization at
sA = 0). Here, however, something interesting can be observed: if
the intervals [0, ∆] and [Σ−∆, Σ] are disjoint it means that there are

4

two distinct portions on the shape’s boundary that can be matched,
but if the intervals overlap (i.e. ∆ > Σ

2 and consequently Σ−∆ < Σ
2)

we necessarily get that k(s) = −k(Σ − s) for all the interval [0, Σ].
Indeed for s = Σ

2 in (1) we’ll have that k(Σ
2) = −k(Σ

2) = 0, and more
importantly that k(s̃) = −k(Σ − s̃) for s̃ ∈ [∆, Σ] too by realizing
that this is simply reading equation (1) with sides interchanged, i.e.
redefining the arclength s̃ via s̃ = Σ− s. (See Figure 6). Note that in
the above discussion we assume that the interval [0,Σ] is maximal, in
the sense that k(0− ε) 6= −k(Σ + ε). The above considerations prove
the following

Self Docking Dichotomy Lemma
A given planar shape either ”docks” to itself over totally
disjoint matching portions of its boundary or over the exact
same portion of its boundary and it cannot possibly have
selfdockings that match over boundary portions that are only
partially disjoint (i.e. different boundary intervals that have
a common boundary portion).

Also note that if the shape ”docks” to itself on the same portion of
its boundary we shall always have at the midpoint of the match ”an
inflexion” point of zero curvature.

The consequences of these observations are far-reaching indeed,
with regard to the boundary of the composite shape obtained after
docking two identical parts together. If the docking was over the same
portion of the boundaries of the component shapes the outer boundary
will necessarily be the concatenation of two identical boundary curves,
(see Figure 7). In this case the cut curve is completely ”out of sight”,
i.e hidden inside the composite shape and in fact any symmetrical cut
from M to M ′ (in Figure 7) will yield a possible solution.

So far we have seen that the case of self-docking along the same
portion of the boundary is the trivial case of cutting a shape that has
two identical curves joining together to form the composite boundary.
The interesting case occurs when the self docking is along disjoint
portions of the boundary. This case is illustrated in Figure 8. Let us
call the matching portions J and J̄, and we assume that J and J̄ are
different segments of k(s), i.e. they correspond to two intervals [sA, sB]
and [s̄A, s̄B] that are of the same length but disjoint in s ∈ [0, L].
Without loss of generality let us take sA = 0. Then the boundary of

5

S will comprise the intervals

J[sA=0,sB] P[sB s̄A] J[s̄As̄B] Q[s̄B ,L] in cyclic order.

Using this motivation we’ll have that the two identical shapes : S1 :
JPJ̄Q and S2 : JPJ̄Q when docked so as to have J matched to J̄ will
result in a combined shape with boundary described by the following
syntax

(Scombined) : PJ̄QQJP ∼ J̄QQJPP ∼ QJPPJ̄Q

where P, Q, J, J̄ are the k(s) portions that describe the original
(component piece) S. Hence if a shape can be represented as the
docking of two identical jigsaw-puzzle pieces its boundary is either of
the form:

(Scombined) : PP if S : JP ≡ J̄P (in this case J ≡ J̄)

or of the form:

(Scombined) : PJ̄QQJP if S : JPJ̄Q (in this case J 6= J̄).

4 Finding Crazy Cuts

The structure of the invariant signature representing the combined
shape yields an efficient algorithm for finding the crazy cut of a pla-
nar shape if such a cut exists, or for determining that such a cut is
not possible. Indeed when we are given a k(s) or any Euclidean in-
variant signature representation of the composite boundary we have
to determine whether it has, from some starting point the structure
PP or the structure PJ̄QQJP. In fact, exhaustive search for a given
string of length L, which would test all starting points and all possi-
ble internal distributions of lengths of P, J̄,Q,J would be feasible and
quite efficient if the signature was discrete. All starting point possi-
bilities will involve L runs of checking whereas l(P) and l(J) ≡ l(J̄)
are two additional parameters that are needed to be set. (Recall that
l(P) + l(J) + l(J̄) + l(Q) = L hence these two parameters also deter-
mine l(Q)!). Hence we can test a string of length L for the structure
PJ̄QQJP with an exhaustive search algorithm of O(L4) complexity,
and this without any sophisticated string manipulation optimization.

6

Notice that the additional (fourth) O(L) complexity is due to the
need to verify the syntax for every choice. In the sequel we will argue
that the latter can be included in the O(L3) search leading to an
overall complexity of O(L3).

4.1 An Efficient Algorithm for Finding Crazy
Cuts for Polygons

In this section we detail the crazy cut algorithm for a polygonal shape.
A polyline description may start by specifying the coordinates of the
first vertex and the direction of the first edge. If such initialization is
omitted, we may, w.l.o.g. place the vertex in the origin, and orient the
first edge in the positive x̂ direction. Following the initialization we
traverse the boundary of the shape in a clockwise manner, specifying L
couples (li, ϕi) of edge lengths li and turn angles ϕi as see for example
in Figure 3b.

Notice that since we know the polyline describes a closed shape
the length of the last edge and the turn angle of the two last segments
are redundant. For completeness one may assume they are given, and
we may verify that the data agrees with the closed curve assumption.

We start the algorithm with a choice of two vertices and the bound-
ary polyline segment connecting the first vertex to the second vertex
in a clockwise manner. There are O(L2) possible vertex choices.

For each choice of vertices we will check the possibility that the
connecting boundary segment contains the two segments PP in the
boundary syntax sequence QJPPJ̄Q. To do that, we will cut the ini-
tial boundary segment into two segments of equal length, and compare
them. They are qualified to be together the PP segment if both halves
are similar segments. Traversed clockwise on both halves edges should
be of the same length, and with the same turn angles. Additionally,
the internal angles on both ends of the initial segment should sum up
to the internal angle corresponding the midpoint of the segment, since
the midpoint should be the location where the J segment of one half
shape meets the J̄ segment of the other half (see Figure 9a).

This is the time to review a couple of interesting special cases that
may affect this part of the algorithm.

1. The boundary segment PP may be trivially short, that is, it may
well be a single vertex. Indeed, a vertex of a shape may often be
a pivot point around which one copy of a shape turns, whereby

7

one side of the vertex matches the other side (see e.g. Figure
10). Therefore every vertex constitutes one successful virtual
selection of the two vertices above.

2. The midpoint of the segment does not have to occur on a vertex.
It can well be inside an edge of the full polyline which may be
the adjoining point of two vertices complementing each other to
1800, (see e.g. Figure 9b).

3. The end point of one of the segments can occur on an edge. It
should be noted that in this case the other end (corresponding
to the other end of the segment P) has to coincide with a vertex.
Note also that in this case the interface between the two copies
of P occurs on a vertex whose internal angle is the sum of the
vertex angle and 1800, see Figure 11a . The next two paragraphs
will deal with this special case.
To cover the cases described in the last item, the first part of
the algorithm has to be repeated. This time again two vertices
are selected, and the segment between them is assumed to be
the first copy of P. To check this, a second copy is allocated by
allocating the length of the first segment on its counterclockwise
side (see Figure 11b). The algorithm described above is repeated,
with one change the counterclockwise end of the second copy
has an 1800 vertex (if the second copy ends in a vertex one can
skip this part).
Naturally one has to repeat the algorithm above for every initial
selection of two vertices by allocating the length of the initial
boundary segment on the clockwise side of the first selection.

Having completed the first part of the algorithm where a boundary
segment has qualified to be the PP part of the required boundary
syntax QJPPJ̄Q, we can continue checking the rest of the syntax.
Following the boundary on both ends of the PP segment we start
assembling the J and the J̄ segments. We match the length of the first
edge on both ends, and make sure the next turn angles are negatives
of each other. We continue until one of the conditions is broken. If
the angle condition was met and one of the edge segments is shorter,
we stop the JJ̄ search in the vertex of the short edge, and the middle
of the longer edge. If the edge length condition has been met, but not
the turn angle condition, we stop at both vertices. Notice that this
stage cannot fail (we start with a successful vertex condition and may
well stop on the first edge).

8

The boundary segments we managed to traverse are the candidates
for the J and J̄ segments. The remaining boundary segment should
now correspond to the QQ segment. The latter is verified by cut-
ting it in midpoint, and checking exactly like we did the PP segment
(including the internal angle condition, see Figure 9).

It should be noted that a shape may well pass all the syntax con-
ditions, but not have a crazy cut. To verify the validity of the crazy
cut one has to make sure the boundary segment made of QJPJ̄ con-
stitutes a valid closed shape. To do that we have to concatenate all
the boundary segments (including the turn angles in the ends of the
boundary segments) and test whether the the resulting boundary is a
simply closed contour.

To summarize the complexity of the algorithm: The first selection
of points is O(L2). For each selection the traversal of all the other
conditions: Checking the PP segment, the J and J̄ segments and
the QQ segment amounts to an O(L) processing time. Hence the
total algorithm complexity is O(L3). A successful completion of the
syntax search is so rare (in our implementations we found only one
false alarm) that the additional O(L log L) complexity of the final
verification does not increase the total complexity.

4.2 Algorithm for Crazy Cuts for Pixelized
Shapes

Pixelized shapes are shapes made out of a collection of square pixels.
Formally, they are a special case of polylines discussed above. For sim-
plicity we can optionally modify their description such that each edge
is exactly one unit length long, and turn angles are either +900 − 900

or 00 the latter being the main difference form the standard polyline
description. All above depicted syntax checking algorithms remain es-
sentially the same. Obviously, here edge length comparison becomes
trivially simple, and there are no edge length mismatch cases such
as in Figure 11. Additionally, if we require that both the full shape
and each of the cuts are pixelized, we inevitably miss some crazy cuts
(where the cuts are not pixelized). Figure 12 depicts some interesting
pixelized crazy cuts that were combined and then detected via our
algorithms.

9

5 Concluding Remarks

We have seen that analysis of the self-docking problem for planar
shapes readily leads to a very nice characterization of shapes that can
be split into two identical shapes and to efficient ways to solve crazy
cut puzzles. We would have been elated to be the first to provide a
mathematical discussion on an algorithm for crazy-cut problems, how-
ever a thorough search of the web revealed a paper of Kimmo Eriksson
dealing with ”crazy-cut” in 1996 [1]. His approach, subsequently crit-
icized and elaborated upon by G. Rote and his collaborators [2, 4, 3],
relies on checking whether two parallel tracings, one along the border
of the shape (master) and a corresponding curve (slave) that ”fol-
lows the master” tracing in a Euclidean invariant way yield a solu-
tion to the problem, when initiated at two arbitrarily selected border
points. Although both Eriksson and Rote eventually obtain efficient
algorithms to solve crazy cut puzzles, their approach is considerably
complicated by the fact that the very simple syntax made obvious
by analyzing self-docking was lacking in their work. It is very nice
however to realize that both approaches eventually yield solutions to
the geometric problem at hand via string analysis, the string being an
Euclidean-invariant-signature-based description of the borders of the
object. This way of encoding shape is very important and basic in
the shape analysis field, where automatic curve matching [5], comput-
erized jigsaw puzzle solutions [6], shape docking [7], invariant shape
processing [9], and skew-symmetry detection issues [8] were dealt with
via such an approach.

Note that from the work on viewpoint-invariant planar shape anal-
ysis via variations of projective, affine and similarity invariant bound-
ary signatures, see e.g. [8, 9], we see that invoking generalized invari-
ant signatures we could readily solve crazy cut puzzles even for shapes
distorted by such, rather complicated, viewing transformations.

Acknowledgement

We are grateful to Tomer Shaked for challenging us with several hard
crazy-cut puzzles, thereby initiating the work reported in this paper.

10

References

[1] K. Eriksson, ”Splitting a polygon into two congruent pieces”, The
American Mathematical Monthly, Vol. 103, No. 5, pp. 393-400,
May 1996.

[2] G. Rote, ”Some thoughts about decomposition of a
polygon into two congruent pieces”, Unpublished Draft,
page.mi.fu-berlin.de/∼ rote/Papers/postscript/Decomposition+
of+a+polytope+into+two+congruent+pieces.ps, 1997.

[3] D. El-Khechen, T. Fevens, J. Iacono, and G. Rote, ”Partition-
ing a polygon into two congruent pieces”, Kyoto International
Conference on Computational Geometry and Graph Theory, Ky-
otoCGGT2007, Kyoto, Japan, June 11-15, 2007.

[4] D. El-Khechen, T. Fevens, J. Iacono, and G. Rote, ”Partition-
ing a polygon into two mirror congruent pieces”, 20th Canadian
Conference on Computational Geometry, CCCG 2008, Montréal,
Québec, August 13-15, 2008.

[5] H. J. Wolfson, ”On curve matching”, IEEE Transactions on
PAMI, Vol. 21, No. 5, pp. 483-489, May 1990.

[6] H. Wolfson, E. Schonberg, A. Kalvin, and Y. Lamdan, ”Solving
jigsaw puzzles using computer vision”, Ann. Oper. Res., Vol. 12,
pp. 51-64, 1988.

[7] A. Imiya and S. Kudo, ”Docking of polygons using boundary
descriptor”, CAIP 2003, LNCS 2756, pp. 25-32, Springer-Verlag
Berlin Heidelberg 2003.

[8] A.M. Bruckstein and D. Shaked, ”On projective invariant
smoothing and curve evolutions”, Journal of Mathematical Imag-
ing and Vision, Vol. 7, pp. 225-240, 1997.

[9] A.M. Bruckstein and D. Shaked, ”Skew symmetry detection via
invariant signatures”, Pattern Recognition, Vol. 31, No. 2, pp.
181-192, 1998.

11

(a)

(b)

Figure 3: (a) Euclidean invariant boundary signatures for shape description
(smooth case). (b) Polygonal case.

12

(a)

(b)

Figure 4: (a) Smooth shape dockings (b) Polygonal shapes.

13

Figure 5: The signatures of two shapes SI and SII showing the docking
portions JI and JII and the portions PI and PII that will make the boundary
of the joint shape.

14

(a)

(b)

Figure 6: Self docking dichotomy: (a) disjoint matching intervals (b) same
boundary portion matching.

15

Figure 7: ”Self-docking” over the same boundary portion of the two identical
shapes S and S. The self docking boundary portion J is completely hidden
inside the composite shape, whose boundary is of the form PsPs, where Ps

is the free portion of the boundary of S : PsJs .

16

Figure 8: ”Self-docking” over disjoint boundary portions of the two identical
shapes SI ≡ SII ≡ S. The ”self-docking” portions J and J̄ are visible in the
composite shape whose boundary has the form PsJ̄sQsQsJsPs where the
boundary of S is PsJ̄sQsJs.

17

(a)

(b)

Figure 9: PP segment candidates and angle conditions.

18

Figure 10: A pivot vertex constituting a trivial PP segment.

19

(a)

(b)

Figure 11: The case where one end of P is inside an edge.

20

(a) (b) (c)

Figure 12: Some interesting pixelized crazy cuts.

21

