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The conventional understanding of opponent colors has red and green as one axis and yellow and blue on a
second axis. This perceptual opponency is a result of the trichromatic nature of human color vision in
combination with subsequent processing in the visual system. This red-green and yellow-blue opponency is
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incorporate this concept of chromatic opponency. In most cases the yellow and blue opponent axes are
reasonable. However for the red-green axis it is more like a purple-green axis due to a consistent,
significant bending of the red-green axis. Is dark purple the opposite of green? This paper summarizes the
result of analyzing a wide range of color spaces based on their actual opponency. The consistent limitation
of a shared matrix formulation for opponency is discussed and finally a simple, invertible color space is
considered.

External Posting Date: March 21, 2009 [Fulltext]          Approved for External Publication
Internal Posting Date: March 21, 2009 [Fulltext]

To be presented at the Human Vision and Electronic Imaging XIV Conference, San Jose, CA and to be published in SPIE Proceedings
Volume 7241.

Copyright 2009 SPIE, Proceedings Volume 7241.



 
 

 
 

1The Opposite of Green is Purple? 
 

Nathan Moroney 

Hewlett-Packard Laboratories, Palo Alto, CA, USA 

ABSTRACT 

The conventional understanding of opponent colors has red and green as one axis and yellow and blue on a second axis. 
This perceptual opponency is a result of the trichromatic nature of human color vision in combination with subsequent 
processing in the visual system. This red-green and yellow-blue opponency is fundamental to many different color 
spaces. CIELAB, CIELUV, CIECAM02, IPT, YCC and more all incorporate this concept of chromatic opponency. In 
most cases the yellow and blue opponent axes are reasonable. However for the red-green axis it is more like a purple-
green axis due to a consistent, significant bending of the red-green axis. Is dark purple the opposite of green? This paper 
summarizes the result of analyzing a wide range of color spaces based on their actual opponency. The consistent 
limitation of a shared matrix formulation for opponency is discussed and finally a simple, invertible color space is 
considered.  The angular differences between quadrants and computed antonyms is shown to be significantly more 
consistent using this hypothetical alternative color space. 
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1. INTRODUCTION 
Color science and color vision reference books often describe color as being three dimensional. For instance in Color 
Appearance Models by Mark D. Fairchild,1 Figure 3-9 has a minimalist representation of the CIELAB color space with 
the color axes labeled “red”, “yellow”, “green” and “blue”. The opponent nature of color vision is based on phenomena, 
such as simultaneous contrast and afterimages, which exhibit red-green and yellow-blue opponency. In Color Vision by 
Leo M. Hurvich2 it is noted that “the seen afterimage usually lies about 180 degrees from the hue of the initially 
inspected stimulus on the opposite side of the hue circle.” In Color: Essence and Logic Rolf G. Kuehni3 shows an ideal 
arrangement of a color space in Figure 5-5 with red and green 180 degrees apart and yellow and blue 180 degrees apart 
although he notes “while we have described a valid blueprint for a color solid, there is actually no system in existence as 
described.” As a quick experiment to consider what the afterimage of purple is refer to figure one below. Stare at the 
central purple square for about a minute and then look to the side to the white around the colored squares. The red, 
green, yellow and blue squares to the author have color names corresponding roughly to greenish, reddish, bluish and 
yellowish. The purple square to the author has a color name that would be roughly a chartreuse or yellow-green. This 
figure is consistent with the previous Hurvich quote although his quote doesn’t necessarily specify the location of purple 
in the hue circle. Based on the perceptual opponency implicit in the after-image demonstration shown in Figure 1, the 
opposite of purple might be a hue circle with yellow-green 180 degrees apart. 

 

 

Figure 1. Test stimulus for after-image demo. Stare at the 
central purple square for about a minute and then look to 
the side. What color is the afterimage of purple? 

 

                                                 
1 Copyright 2009 Society of Photo-Optical Instrumentation Engineers.  
This paper was published in Volume 7241 of the Color Imaging XIV Conference Proceedings and is made available as 
an electronic reprint with permission of the SPIE. One print or electronic copy may be made for personal use only. 
Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any 
material in this paper for a fee or commercial purposes, or modification of the content of the paper are prohibited. 



 
 

 
 

In comparison, early color theorists and artists often ordered color in range of ways as can be seen in Color Ordered by 
Kuehni and Schwarz.4 In 1611 Fosini had system in which the opposite of green was yellow and the opposite of purple 
was sky blue. In 1810 Runge has a system in which the opposite of violet was green. At about the same time Goethe 
proposed his hue circle in Farbenlehre in which the opposite of green is red and the opposite of violet is yellow. 
Psychological color order systems, starting with Hering in 1905 have the opposite of green being red and the opposite of 
purple being a yellow-green. This ordering is roughly consistent for the systems of Johansson, Hesselgren, and the 
Natural Color System. A notable exception in the 20th century is the five primary system of Munsell, in which the 
opposite of green is red and the opposite of purple is yellow. 

Following the psychological ordering systems, early applied color spaces, such as those for television encoding made 
use of various YCrCb type colors spaces where the Y is luminance and there are two chrominance or opponent channels. 
One of the opponent color channels corresponds to a red-green axis while the other corresponds to a yellow-blue axis. 
Typically this was computed given a specific set of RGB primaries using an equation such as: 
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Where the luminance or Y is computed based a specific positive weighting of red, green and blue, the red-green axis is 
computed primarily based on a scaled difference between red and green and the yellow-blue axis is calculated based 
roughly on the sum of the red and green values minus the blue. The specific values for the 3 by 3 matrix depend on the 
specific set of input RGB primaries and on the design requirements for the YCC space.5 Similar differencing schemes 
are also used in other color spaces, such as IPT,6 CIELAB,7 CIECAM028 and many other color spaces. One limitation 
implicit in the formulation of the yellow-blue axis is that the red-green axis becomes distorted such that reds move away 
from the 0 degree line towards yellow and greens move away from the 180 degree line and also toward the yellow. This 
is a result of computing the yellow-blue axis based on the sum of the red and green. Various scaling factors can be used 
but the results are still generally distorted.  

This distortion was evident during the computation of color antonyms during the formulation of the Color Thesaurus.9 
Initially it was assumed that a reasonable antonym would be the color name that was as close as possible to the inverse 
of the luminance and the hue. However with extensive testing the opposite of green was consistently dark purple. 
Certainly it is a fair question whether perceptual inverses correspond to linguistic inverses but it was not even possible to 
make calculations in which this was the case. Likewise as even the simple example in Figure 1 shows, there may be 
some debate about whether the afterimage of green is red or a magenta-red. But the fact that all of the color spaces tested 
had dark purple as the opposite of green was frustrating. 

2. ANALYSIS 
Based on the data collected from an unconstrained online color naming experiment10 it is possible to compute mono-
lexical naming centroids for red, green, yellow and blue. The four points were calculated assuming sRGB as a nominal 
web display although the results for the hue angles of these centroids has been shown to be consistent with centroids 
obtained under laboratory conditions. The results for six of the color spaces or diagrams tested are shown in Figure 2. 
The results for CIELAB are in the upper left and the wishbone appearance of the four color names is evident. Note the 
lack of blue hue constancy is such that green and blue are almost 180 degrees apart. The results for IPT are shown in the 
upper right and again the red and green are bent although in this case the red and blue are almost 180 degrees apart. The 
results for CIELUV and CIECAM02 are shown on the left and right of the middle row. Although 26 years separate these 
two color spaces, the Joshua tree appearance of these results is remarkably similar. Finally the results for a YCC 
encoding and a Macleod-Boyton type diagram11 are shown on the left and right of the bottom row. Additional color 
spaces and encodings were also tested but the less than 180 degrees separation between red and green was present. 
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Figure 2. Red, yellow, green and blue mono-lexically named centroids from the unconstrained online color naming 
experiment plotted in a six color spaces. The results for CIELAB are shown in the upper left and IPT in the upper right. 
The results for CIELUV are shown in the middle left and CIECAM02 in the middle right. Finally the results for a YCC 
encoding are shown in the lower left and a Macleod-Boynton diagram in the lower right. 



 
 

 
 

3. A HYPOTHETICAL ALTERNATIVE 
Given the caveats and considerations at the end of the introduction, it is not necessarily to be expected that any given 
color space will have ideal red-green and yellow-blue opponency. In fact it is not clear that this is in fact an optimal or 
useful color space. However, the inability to compute color antonyms that were also perceptual antonyms in any color 
space was frustrating. Whether or not red is the opposite of green and chartreuse is the opposite of purple, there is no 
existing color space in which to make these calculations. This is a direct result of the matrix formulation of opponency 
shown in equation one. A three by three matrix or a linear differencing of color channels is a ubiquitous feature of the 
color spaces shown in Figure 2 and many other color spaces not shown in Figure 2. This compact and intuitive 
formulation is widespread and reasonably useful approximation. Are there alternatives? 

After some trial and error, the following highly simplified, which is to say not fully optimized, formulation of opponency 
was developed: 

GRCi −= , and      (2) 

BGRCii −= ),min( .      (3) 

Where RGB are the red, green and blue channels for the source color encoding and the min() operator is the minimum of 
the two input values. In this way equation two is still consistent with equation one but now the computation of the 
yellow-blue channel is the minimum of red and green minus blue. A luminance or Y channel can be computed as 
follows: 

( ) ( ) ( )( )( )255/29**150*77* BGRY += .    (4) 

In this way the only true difference for this hypothetical alternative is the calculation of Cii in equation 3. This color 
space will be referred to as the YCiCii space for the remainder of this paper. The use of a minimum operator is 
effectively a logical or comparison. To compute the YCiCii inverse the steps are: 

If (Ci < 0) 

 

( )( ) ( )( )255/*29255/*150 CiiCiYR ++= ,    (5) 
 

CiRG −= , and      (6) 
CiiRB −= ,       (7) 

 
else 

 

( )( ) ( )( )255/*29255/*77 CiiCiYG +−= ,    (8) 
 

CiGR +=  , and      (9) 
CiiGB −= .       (10) 

 
The minimalist formulae shown in equations two through ten could be further revised and improved by including more 
specific weighting schemes for a given set of RGB primaries or fitting criterion for the primary hues angles. However 
for the sake of this paper the equations listed above were used throughout as is. They define a non-matrix based model 
for opponency that is simple and invertible and can be used as an initial hypothetical alternative to the color spaces 
shown in Figure 2. 

 



 
 

 
 

4. RESULTS 
The results of plotting the red, yellow, green and blue centroids shown in Figure 2 in the YCiCii color space are shown in 
Figure 3. In this plot the x-axis is the Ci value computed using equation two and the y-axis is the Cii value computed 
using equation three. The luminance goes into the graph and the achromatic origin is at the center. The results for YCiCii 
are quite encouraging. The red-green values are almost exactly 180 degrees apart and the yellow-blue axis is close to the 
90-270 degree values. Compared to the psi-shaped results in Figure 2 this slightly slanted X is a considerable 
improvement. Red is clearly the opposite of green and blue is the opposite of yellow. Likewise at halfway between red 
and blue, the opposite of purple is halfway between yellow and green or chartreuse. 
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Figure 3. Red, yellow, green and blue mono-lexically named centroids from the unconstrained online color naming 

experiment plotted in YCiCii. 

 

The angular differences between YCiCii and three of the other color spaces shown in Figure 2 are shown plotted in 
Figure 4. These bar chart shows the angular difference between a given quadrant and the next one for YCiCii, CIELAB, 
CIECAM02 and YCC. For an ideal red-green and yellow-blue color space the difference between a given quadrant and 
the next would be 90 degrees. From this plot it is clear that quadrants one and two are significantly under-predicated by 
YCC, CIELAB and CIECAM02. YCiCii in contrast is closer to the 90 degree line. For quadrant three CIELAB and 
CIECAM02 over-predict the hue angle difference while YCC under-predicts the hue angle difference. Once again the 
results for YCiCii are the closest to the 90 degree difference. Finally, CIELAB and CIECAM02 over-predict quadrant 
four while YCC and YCiCii are reasonably close to the 90 degree difference line. Overall the YCiCii space is the space 
that is most consistently close to a 90 degree difference between quadrants. Although not shown, this is also the case 
with other color spaces, such as IPT and CIELUV. 

With respect to the calculation of color antonyms, the YCiCii color space can be used to compute antonyms that are 
more consistent with perceptual opponency. This is more of a qualitative test of the hypothetical model. However the 
results shown in table one are encouraging with respect to this criterion. Both CIELAB and IPT have ‘dark purple’ as the 
antonym or color name that is 180 degrees in hue and of inverted lightness for green. In comparison the YCiCii color 
space results in ‘barn red’ as the antonym for green. Similarly the YCiCii color space results in the color name ‘green 



 
 

 
 

yellow’ as the antonym for purple. Interestingly the results for non-basic color names, such as “mud” being an antonym 
to “cloudy blue” and “asparagus” being and antonym of “soft rose” and “aubergine” being the antonym of “citron” are 
also intriguing.  
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Figure 4. Angular differences for four of the color spaces for the four quadrants. 

 

Table 1. Color antonyms computed using three different color spaces. 

Color name CIELAB antonym IPT antonym YCiCii antonym 
red dark aqua cloudy blue bright lime green 

green dark purple dark purple barn red 
yellow deep blue ocean midnight purple real blue 
blue brownish green orangish brown dark yellow 

orange battleship blue battleship blue greenish blue 
pink forest green dark grass green frog green 

purple dark grass green garden green green yellow 
brown country blue celadon lichen green 

5. DISCUSSION AND CONCLUSIONS 
The results shown in Figures three and four and table one are encouraging with respect to conventional theories about 
color opponency. The simple hypothetical model using the minimum of red or green minus blue to compute the yellow-
blue axis is simple, invertible and out-performs the other color spaces that were tested. The use of a logical operator in 
the place of matrix results in a red-green axis that is considerably closer to 180 degrees apart. Specifically while there 
maybe some debate about specifically which shade of red corresponds to the afterimage of green, a description of ‘dark 
purple’ is quite far from the red-green opponent model. Stated differently all existing color spaces were in fact closer to 
the model of Runge with purple as the opposite of green. It was not possible to compute in closed form red as the 
opposite of green. 



 
 

 
 

However, there are a number of items to note. As was previously noted this is a completely minimalist approach to 
achieving more orthogonal axes and no additional optimization was performed. Likewise alternative formulations not 
based on a logical operation were not considered. There is no reason to expect this model to somehow relate to vision 
directly but from a computational standpoint, in cases where it is desirable to be able to compute values that are closer to 
being red-green and yellow-blue opponent, such as calculation of color antonyms, this formulation may be helpful. 
There are other cases, such as the computation of hue quadrature in color appearance models, where it may be a useful 
alternative to tabular interpolation of fixed values. 

Using the minimum of red or green minus blue to compute a yellow-green axis results in ‘barn red’ as the opposite of 
green and ‘green yellow’ as the opposite of purple. 
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