

Keyword(s):

Abstract:

©

Not One Click for Security

Alan H. Karp, Marc Stiegler, Tyler Close

HP Laboratories
HPL-2009-53

Secure cooperation, usable security

Conventional wisdom holds that security must negatively affect usability. We have developed SCoopFS
(Simple Cooperative File Sharing) as a demonstration that need not be so. SCoopFS addresses the problem
of sharing files, both with others and with ourselves across machines. Although SCoopFS provides server
authentication, client authorization, and end-to-end encryption, the user never sees any of that. The user
interface and underlying infrastructure are designed so that normal user acts of designation provide all the
information needed to make the desired security decisions. While SCoopFS is a useful tool, it may be more
important as a demonstration of the usability that comes from designing the infrastructure and user
interaction together.

External Posting Date: March 6, 2009 [Fulltext] Approved for External Publication
Internal Posting Date: March 6, 2009 [Fulltext]

Copyright 2009 Hewlett-Packard Development Company, L.P.

Not One Click for Security
Alan H. Karp

Hewlett-Packard Laboratories
1501 Page Mill Road
Palo Alto, CA 94304
alan.karp@hp.com

Marc Stiegler
Hewlett-Packard Laboratories

1501 Page Mill Road
Palo Alto, CA 94304

marc.d.stiegler@hp.com

Tyler Close
Hewlett-Packard Laboratories

1501 Page Mill Road
Palo Alto, CA 94304
tyler.close@hp.com

ABSTRACT

Conventional wisdom holds that security must negatively affect

usability. We have developed SCoopFS (Simple Cooperative File

Sharing) as a demonstration that need not be so. SCoopFS ad-

dresses the problem of sharing files, both with others and with

ourselves across machines. Although SCoopFS provides server

authentication, client authorization, and end-to-end encryption,

the user never sees any of that. The user interface and underlying

infrastructure are designed so that normal user acts of designation

provide all the information needed to make the desired security

decisions. While SCoopFS is a useful tool, it may be more impor-

tant as a demonstration of the usability that comes from designing

the infrastructure and user interaction together.

Categories and Subject Descriptors

H.1.2 [User/Machine Systems] Human factors; H.5.2 [User In-

terfaces]: User-centered design; H.5.3 [Group and Organization

Interfaces]: Computer-supported cooperative work; K.4.3 [Or-

ganizational Impacts]: Computer-supported cooperative work

General Terms

Security, Human Factors

Keywords

Secure cooperation, usable security

1. INTRODUCTION
Most people agree with the statement, ―There is an inevitable

tension between usability and security.‖ We don’t, so we set out

to build a useful tool to prove our point. Since people in our line

of work often share work on documents, such as this paper, we

decided to build a file sharing tool.

An informal survey revealed that most of our colleagues do not

use file sharing products. Those in the enterprise who do

primarily choose SharePoint. About half of those we asked use

CVS for document sharing when there are no firewall problems.

Everyone used email attachments to share versions of the

document when firewalls prevented co-authors from accessing the

document. Based on this result, we adopted an email metaphor

for SCoopFS1, a system for Simple Cooperative File Sharing.

Even the people who never use anything but email for sharing

work on documents voiced the same complaint. ―You’ve got to

remember to send the latest version and apply the updates when

they come in.‖ In addition, most of them reported resorting to

convoluted conventions to avoid losing work due to edit conflicts.

A few even mentioned the lack of security, since almost nobody

bothers to encrypt email. Several people wanted to share files

between Windows and Linux machines. We designed SCoopFS

to address these requirements. This paper discusses the interac-

tion design of SCoopFS. Details of its implementation will be

reported separately.

SCoopFS demonstrates two points. First, it shows that managing

rights at a fine granularity is easier than dealing with them in large

chunks. Second, SCoopFS shows that, at the very least, security

need not impede usability and can be largely invisible to the user.

The degree to which this view is counter to people’s intuitions

forced us to change the name of our project. The first ―S‖ in

SCoopFS originally stood for ―Secure‖, but several prospective

users told us that they didn’t need security enough to put up with

the pain it caused. Hence, we changed the first word to ―Simple.‖

SCoopFS allows users to manage read and write authorities on

single files using only the actions they commonly take when

sharing files. At the same time, SCoopFS provides server

authentication, so there is no vulnerability to DNS redirection

attacks, client authorization, in a way that reduces administrative

overhead, and is designed for end-to-end encryption, but the user

never sees the security infrastructure. In fact, the goal of the user

interface is to include nothing specific to security.

The key to SCoopFS achieving these goals is moving from access

decisions based on subject authentication to access decisions

based on explicit, delegatable authorizations[7]. Section 2

contains an outline of the access control model we chose, which

makes it possible for the infrastructure to infer what rights to grant

based solely on actions the user takes to complete the task at hand.

Making names meaningful yet free from confusion is important.

We describe our apporach in Section 3. Section 4 sketches the

user interaction. Several use patterns that emerged in our first,

trial deployment are discussed in Section 5. The small user study

described in Section 6 provided useful feedback for future work.

In Section 7 we introduce the criteria we used to evaluate the

degree to which we met our goal of usable security. In Section 8

we compare the usable security aspects of SCoopFS with those of

Microsoft Live Mesh[12], the most evolved example of the many

deployed file sharing systems. We finish in Section 9 with some

conclusions and directions for future work.

1 The ―F‖ is silent.

Copyright is held by the author/owner. Permission to make digital or
hard copies of all or part of this work for personal or classroom use is

granted without fee.

Symposium On Usable Privacy and Security (SOUPS) 2009, July 15-17,

2009, Mountain View, CA, USA.

2. ZBAC WITH WEBKEYS
Although the underlying mechanisms are not the thrust of this

paper, this Section describes just enough to allow us to explain the

user interaction.

Virtually all systems in use today decide whether or not to honor a

request based on the authentication of the requester, an approach

we refer to as autheNtication-Based Access Control (NBAC),

whether it is identity (IBAC), role (RBAC), or attributes (ABAC)

being authenticated. Our approach, which we call authoriZation-

Based Access Control (ZBAC) 2, bundles the authorization for an

access with the request itself. While subject authentication is one

way to decide what rights to grant when using ZBAC, no

examination of user authentication credentials is required at the

time of access. One advantage of such authorization-carrying

access requests is that the user interface can represent these

authorizations in the application context so that the user need not

be aware of the underlying security mechanisms. Manipulations

in the user interface can then be mapped directly to access control

decisions. This approach extends the fundamental property of

capabilities, combining designation with authorization [5], to the

user interaction, inferring authoriztion from designation.

An incomplete but useful analogy is the car key (ZBAC) as

opposed to the driver’s license (NBAC). Suppose our cars only

allowed the holder of a driver’s license listed in the car’s

approved list to drive the car. Valet parking would not work

because you wouldn’t know which attendant might need to drive

your car. By using the car key instead, our automotive systems

are able to support a more dynamic, evolving process of authority

grant and revocation. The same is possible with our computer

systems.

SCoopFS uses ZBAC in the form of webkeys[3], which are

designed specifically to operate across the Web. A webkey, such

as

https://y-yyx3b54gke3qg2dd.hp.com/#4ca26jq2quiugd

is a standard URL constructed to be used as a capability. Several

of its parts are of interest.

Protocol: The webkey is an HTTPS URL, which guarantees end-

to-end encryption between client and server with TLS/SSL and

protects both the transmitted data and the URL itself while in

transit.

Subdomain prefix: The domain name contains the fingerprint of

the public key of the server hosting the object the webkey

references. Servers and browsers suitably enabled to understand

webkeys can use this fingerprint to authenticate the server,

eliminating concerns about DNS redirection and man-in-the-

middle attacks without the complexity of certificate authorities.

Other browsers can still use these URLs, though with weaker

security guarantees.

Fragment: The page name contains an unguessably large random

string, which is put in the URL fragment so that it won’t appear in

a REFER header. Knowledge of the URL is proof that a request to

the object it designates is authorized.

2 Our earlier paper [7] uses the acronym ABAC, but that term is

used in the US Department of Defense for Attribute-Based

Access Control. Hence, we now use the term ZBAC.

A webkey is the moral equivalent of a password, but one the user

treats as a bookmark and that controls access to a specific object

rather than one the user must remember in order to access a large

set of resources. While there is some concern that a webkey will

be revealed unintentionally, its unguessability relative to most

passwords, the ease of limiting the rights represented by a single

webkey, and the safety from keystroke loggers and clickjacking

makes the tradeoff worthwhile.

Webkeys have the properties needed to support rich sharing. Since

they use HTTPS, references cross firewalls without changing

firewall settings. Since they provide request authorization rather

than subject authentication, authority passes across domain

boundaries without administrative overhead. Webkeys can be

used to jump directly to the resource, bypassing username-

password logon pages and the host of problems associated with

them. Using the caretaker pattern [14] allows delegating fine-

grain, temporary authority to a resource, in a fashion akin to the

process of using a lockbox to hold a car key as a temporary

delegation, and then revoking the right by removing the car key

from the lockbox.

3. NAMING
While webkeys allow us to enforce some useful security proper-

ties, they are clearly not suitable for people to use to designate

things. People want to use names that are meaningful to them.

The naming problem is best understood by looking at Zooko’s

Triangle [17], which lists three important properties for names.

Global: The name should have the same meaning no matter where

the object being named resides or where the request is coming

from.

Securely Unique: A name should point to exactly one thing, and

it should not be possible to make that name point to anything else.

Memorable: The name should be meaningful to the people who

use it.

No name can have all three properties, so SCoopFS uses three

different kinds of name. Webkeys are global and securely unique,

but not memorable, so SCoopFS users get to assign the petname

they will see in the user interface for each item they deal with. A

petname is a one-to-one mapping between a webkey and a string

unique to that user. Petnames are securely unique, because they

are local to the user, and memorable, because the user chooses

them. However, petnames, because they are purely local, are not

global, so they do not provide a means for out-of-band designa-

tion, such as over the telephone. For example, each co-author of

this paper uses a different petname for his copy of the file contain-

ing this document, but we commonly refer to it as the ―SOUPS

paper‖ when discussing it. Such nicknames are useful, much in

the way that ―Bill‖ is a useful designation even though there is

clearly more than one person in the world who answers to that

name.

4. USER INTERACTION
In this section, we’ll show all the actions in the SCoopFS user

interface. At the end of the Section, we’ll list some places where

we think security becomes visible. Let the authors know if you

find any others.

After installing the Waterken [2] server and SCoopFS software,

users run a script that configures the system. This configuration

constructs a public/private key pair, and registers a domain name

at yurl.net, a domain we run. Software at yurl.net constructs the

domain name to contain the fingerprint of the specified public

key. When that is done, the configuration constructs a webkey

that points to a mailbox. None of these steps is visible to the user.

The user is instructed to bookmark the mailbox webkey, since

there is no way to recover access if the URL is lost. This webkey

allows access to the mailbox from any machine that can reach the

corresponding server because the SCoopFS user interface runs as

a Flash application on a single web page. Arguably, bookmarking

a page is a common activity few users would consider security

related. At any rate, we are primarily concerned with the user

interaction once the setup is complete.

Figure 1 shows the SCoopFS user interface running in Firefox.

The section above the gray bar is for navigating among the vari-

ous views. The section below the gray bar is specific to the view.

The buttons in the top section list the various views available to

the user. We’ll be showing each of them in this section. The only

difference in this part of the user interface among the views is to

gray out the button corresponding to the current view or to set its

label to ―Refresh.‖

The Mail view in Figure 1 should be familiar to users of Outlook

and some other mail clients, but there are some differences. The

CC and BCC buttons are disabled because they result in the reci-

pients being introduced via SCoopFS, a feature we haven’t im-

plemented yet. Next to the To button is a combo box with a pull

down menu. The default sharing mode is Read-Write, which

means the person sharing the file will accept updates from the

recipient. Selecting ―Don’t Accept Updates‖ is equivalent to

granting only read permission. The other three modes are related

to changing sharings and were originally the only way to carry out

the indicated tasks. We later added buttons in other views to do

the same things, so we’ll defer discussing them.

Clicking the Attachment button takes the user to the File selection

view shown in Figure 2. Although Flash provides a system spe-

cific file dialog box, the interface does not return the full file path.

After experimenting with various system tools, we decided to

provide our own. The user selects the file to be shared, and clicks

OK, which results in the file’s pathname being inserted in the

attachment field in the Mail view.

Like many instant messaging applications, SCoopFS is a closed

system, which means users must establish a relationship before

they can communicate. That shows up in the Mail view as a re-

quirement to select the addressee from a list by clicking the To

button.

Figure 3 shows the Pals view. Clicking the To button in the Mail

view takes the user to a view identical to this one, except the but-

tons below the gray bar are disabled. The first column in the table

is the petname selected by the user for the Pal. It can be changed

at any time, and all views will immediately show the new pet-

name. The next column is the name the Pal has proposed, as in

―You can call me Al.‖ Users often pick the proposed name as the

Figure 1: View for creating a SCoopFS mail message.

petname, but they need not. Indeed, they can’t if they already

have assigned that petname to another Pal. The proposed name is

useful as a nickname, though. The Info field contains whatever

information the user would like to see for this Pal. Here we show

email addresses, but phone numbers are commonly listed. Every

user has a Pal initially denoted ―Me‖. Receipt of a SCoopFS mes-

sage triggers a notification to the email address listed for this Pal,

which means users will be informed of updates even if the

SCoopFS user interface isn’t open.

There are two ways to create a Pal, each requiring a webkey.

Clicking ―Create a Pal without a Webkey‖ to initiate a new con-

nection takes the user to the view shown in Figure 4. The user

selects a petname for the new Pal, fills in the Info and Notes field,

and optionally selects Auto Send and Auto Receive. The first of

these sends updates of shared files to this Pal as soon as a file

shared with the Pal is saved. The second automatically replaces

the user’s copy with the new version when it is received if there is

not an edit conflict.

Figure 2: File Selection view.

Figure 3: Pals view.

Figure 4: View for creating a Pal.

 A webkey is displayed in the Webkey field after the user clicks

Save. The user sends this webkey to the new Pal by whatever

means the user desires, typically via a conventional email, much

as one would send an email address. Users can prevent a third

party who intercepts the webkey from impersonation attacks by

confirming the webkey out of band, such as over the telephone,

much as they would double check an email address. The recipient

clicks ―Create a Pal with a Webkey‖, fills out the form, inserts the

webkey, and clicks Save. The difference between these two ways

of creating a Pal avoids the confusion some early users had when

they generated a webkey instead of using one they had been sent.

Selecting a Pal in the Pals view allows the user to edit the Pal’s

information, as shown in Figure 5. Changing the Pal’s petname

automatically updates it in all views. ―Delete Pal‖ takes the user

to the Mail view with the combo box’s ―Delete Pal‖ option se-

lected. In fact, all sharing changes require that a SCoopFS mail

be sent because we thought it would be polite. An interesting

observation is how users react to the default mail message, which

is ―I am deleting you as a Pal because ...‖ We have seen them

complete that sentence even when just experimenting with the

system.

Clicking Show Shares takes the user to the Shares view shown in

Figure 6 filtered to show only files shared with the selected user.

The Pending column indicates if a shared file has been changed

but not yet sent to this Pal, as might happen if Auto Send wasn’t

selected for this Pal, or if changes from the Pal have been received

but not yet applied to the user’s copy, as might happen if Auto

Receive was not selected or if there is an edit conflict. The

―Propagate Changes‖ button is enabled when the user selects a

shared file with an unsent change. The From and To fields show

the sender and recipient of the message initiating the sharing, and

the Mode shows the direction that changes propagate. The string

<-> denotes read/write sharing, while --> denotes read only.

The last column shows the time the last update was applied.

Selecting a shared file enables the rest of the buttons. These allow

the user to see all shares of the selected file, revoke the sharing of

this file with the displayed Pal, open the file, or take a snapshot.

The last of these is similar to what people do manually with email

attachments, assigning different filenames to significantly differ-

ent versions.

Figure 7 shows the Inbox view with a new share selected. There

are several items of note in this figure. The string ―Alan‖ in the

top line is the nickname that the owner of this mailbox has cho-

sen. It shows up in the Proposed Name column in the Pals view

of Alan’s Pals. Two SCoopFS users can discuss a third party with

a nickname ―Alan‖, but they can’t be sure it’s the same person.

Nevertheless, a nickname is a useful reference, especially within a

small group.

The table below the gray bar in the Inbox view shows some famil-

iar headings, such as ―From‖ and ―Subject‖. There are several

Figure 5: View for editing a Pal’s info.

Figure 6: Shares view.

kinds of messages in SCoopFS. Users can send what appear to be

ordinary email messages. Until these are read, the ―Mail‖ column

denotes them as ―U‖, with a tooltip ―Unread.‖ After, they are

marked ―R‖ with a tooltip ―Read.‖ Other messages are related to

file sharing and are discussed below.

The ―From‖ column lists the user’s petname for the sender. It is

impossible to forge the sender’s identity because each petname is

bound to a specific webkey. The sender of a SCoopFS mail se-

lects what appears in the ―Subject‖ column, but the value is ―File

Update‖ for system generated messages. The ―Reason‖ column

can contain the values ―Mail‖, for messages without an attach-

ment, ―Sharing‖, for messages with an attachment, ―Update Ap-

plied‖, for file updates that were accepted either manually or au-

tomatically, ―Unapplied Update‖, for file updates that have not

been applied because Auto Receive was not selected, and ―Edit

Conflict‖, where SCoopFS has detected overlapping updates.

Users may remove any message from the Inbox, except one from

a new share until they’ve saved the attachment, but the message is

still available in the Archive view as shown in Figure 8. Messag-

es can be hidden in the Archive view but not removed. SCoopFS

never forgets.

Selecting a ―Sharing‖ message enables the ―Save Attachment‖

button, which when clicked takes the user to the File Select view.

Selecting a ―File Update‖ message enables the ―Remove from

List‖ and ―Open‖ buttons. Selecting an ―Unapplied Update‖ mes-

sage, as shown in Figure 9, lets the user accept the update or keep

a private copy of either version. The ―Replace Mine with Pal’s‖

button is disabled for an ―Edit Conflict‖ message, which makes it

Figure 7: Inbox view for a new share.

Figure 8: Archive view.

Figure 9: Inbox view for applying an update.

harder to inadvertently lose work by replacing a file containing

one set of changes with another version having a different set.

SCoopFS has no ―Help‖ button. However, most buttons and input

fields have explanatory tooltips, and the views for creating Pals

have some instructions on them. We encourage our users to play

around, as they would with a new video game. Any action can be

undone.3

So, did you see any security? Any server authentication? Any

user authorization? Any encryption? Arguably, the answer is yes

in two places. The first is the option to choose whether or not to

accept updates. While this choice can be considered security

related, it is also common to distinguish between editors and re-

viewers when sharing files. It is possible to argue that this choice

is just shorthand for a decision that the sender would have to in-

clude manually in the body of the message. None of the users in

our study raised this point as a security issue, but we did not point

out the option to them. The second is in handling the webkey

needed to set up a Pal. To the user it is just a URL with no more

relation to security than a rental car confirmation with a URL

containing a confirmation number or a connection invitation from

LinkedIn. The users in our study emphatically disagree with this

interpretation, stating that the webkey is a confusing security me-

chanism. A future version will have to encapsulate the webkey so

the users don’t see it.

3 We haven’t implemented moving an item from the Archive back

to the Inbox.

5. EMERGENT USES
Our first trial with users outside our team taught us that the most

common use for SCoopFS wasn’t what we thought it would be. It

turns out that most people were more interested in sharing files

between their own machines, a desktop at work and a laptop, for

example. That observation led us to provide a tool to initiate shar-

ing from the Windows file explorer. Also, since these users rarely

sent or received SCoopFS mail messages, we added the ability to

request a notification be sent to their usual mail clients when an

update arrives.

We found some interesting use patterns. We have a machine run-

ning a SCoopFS account as ―SCoopFS Support‖ that shares a

read/write copy of the file containing the SCoopFS FAQ with all

users. We encourage them to share this file with Pals on other

machines that they configure. The result is that all users see

changes made by any user, making that file effectively a wiki.

Any user can ask a question, which can be answered by any other

user. Had SCoopFS Support not accepted updates to the shared

file, it would serve as a blog.

Our distribution is a ZIP file maintained by one of us, Marc, and

made available on the web site of another of us, Alan. Marc

shared this file read/only with Alan, who put his shared copy on

the remote drive hosting his internal web site and shared that ver-

sion with his external web site. This configuration allows Marc to

control exactly one file on those two web sites, something that

would be difficult to do with conventional mechanisms since Alan

doesn’t have permission to create an account for Marc on that

machine.

We discovered that we could implement the workflow involved in

distributing software updates by properly configuring the sharing

Figure 10: Using SCoopFS sharing to implement distribution of software updates.

Manual Synch for validation

Automatic Synch

LiveMesh Usability or Least Privilege issue

LiveMesh Nonfunctional or Critical Breach

SCoopFS Implementing Simple Work Flow

UI Developer

UI Tester/Builder

Dev

ui

Prod

ui

install

Prod

ui

Dev

ui

Build

uiinstall

ui

Usersui
ui

ui
install

install
install

HP External

Web Hosting

New External

Users

SCoopFS

Support

install

HP Internal

Web Hosting

install
install

install

New Internal

Users

A rich network of sharings that emerged

during the first SCoopFS pilot test. Microsoft

LiveMesh is unable to support key elements

of the network because of its incomplete

support for features of sharing routinely

found in the physical world.

as shown in Figure 10. Alan maintains a development copy of the

user interface and a test version. The latter is shared read/only

with Marc. When Alan copies the development version to the test

version, Marc gets the update. When Marc completes his testing,

he copies the file to his production version. When he creates a

new ZIP file for the distribution, the change propagates to Alan’s

web sites. Meanwhile, the file containing the updated user inter-

face propagates to SCoopFS Support. The changes then propa-

gate to all SCoopFS users because SCoopFS Support shared the

file with them. If those users also shared the file with Pals on

machines they configured, every SCoopFS user gets the new ver-

sion without the need to verify certificates [13].

6. USER STUDY
We sent a call for volunteers to HP Labs and selected 10 of our

technical colleagues, excluding anyone who had prior knowledge

of SCoopFS or who had a computer security background. The

invitation included the short document in the Appendix, which is

intended to give prospective users a basic understanding of what

SCoopFS is intended to do.

Since the installation procedure was not part of the study, we in-

stalled the software for the users and set up SCoopFS Support as

the first Pal. The configuration resulted in the users receiving a

welcoming SCoopFS mail sharing a file containing the instruc-

tions shown in the Appendix and a message sharing the USE [8]

survey. We augmented that form with the following questions:

1. Which tasks were too hard?

2. Did the security get in your way? If so, how?

3. Did you look for the Help button?

4. Do you want us to remove SCoopFS from your ma-

chine, or would you like to try it for a while?

We set the initial view to show the Inbox, told the user to read the

welcoming message and follow the instructions in it. Those in-

structions were

1. Familiarize yourself with the user interface.

2. Save the attachment to a file.

3. Wait for the file to be updated

4. When the update arrives, open the file and follow the

instructions in it.

Those instructions were:

5. Use the webkey in the file to create a new Pal.

6. Share your shared file with the new Pal.

7. Unshare the file.

8. Save the attachment in the second message.

9. Fill out the survey contained in that file and save it.

10. Collect your scoop (of ice cream).

Items 2-9 are the most common SCoopFS activities. Not wanting

to impose too much on our volunteers, we stopped there.

We didn’t set any time limit, but one of us did watch the test and

noted when an activity took longer than we expected. Although

we had planned to help when the user got stuck on a task, no in-

tervention was necessary.

The questions in the USE survey [8] fall into two classes, useful-

ness and usability. Each question is graded on a scale of 1 (bad)

to 7 (good). As noted by one of the testers, some of the questions

make sense only after more use than the 15 to 20 minutes users

spent on this study. We excluded questions users marked N/A

from the average scores shown in Table 1. Not surprisingly, the

testers who found SCoopFS useful also found it useable and

would recommend it to their friends.

Most users commented that the usefulness of the tool depends on

how many colleagues choose to use it, the network effect. Every

user felt that having to see the webkey to set up a new Pal was the

weakest part of the user interaction. However, that was the only

place users felt that the security showed through. Although sever-

al of them looked for a Help button, none felt its absence was

critical because, as one tester noted, the tooltips answered his

questions. Each tester found at least one feature puzzling, indicat-

ing the need for a user’s guide.

 In retrospect, we learned some of the dangers of user testing an

early prototype [6]. One test failed because the updated version of

Flash on the user’s machine has more stringent security settings

than the version we used for development. Some users were bo-

thered by weaknesses in the user interface caused by the lack of

features we didn’t know we wanted when building the infrastruc-

ture. One test failed due to a race condition that we haven’t been

able to fix.

7. SCORECARD
Entire libraries worth of books have been written on security

evaluations. Usability evaluations are not far behind. Far less has

been written on usable security, but there is still a substantial lite-

rature. For this paper we score SCoopFS on the 10 design guide-

lines for secure interaction design [19].

1. Make the most convenient way to do something the way that

grants the least authority. Score: 0.5

We made a conscious decision to violate this guideline by

making the default sharing mode Read/Write rather than

Read/Only to better support the most common use. Even the

user interface developer kept forgetting to change the mode

from Read/Only when sharing files with himself. We still

get half credit because by default users share access to single

files rather than the large chunks of rights that often come

from changes to the ACL.

2. Use user actions indicating consent when granting authori-

ties. Score: 1.0

Setting up a new Pal explicitly grants that Pal the right to

send messages. Sharing a file gives the Pal the authority to

read changes and/or send changes to the sharer. Both are ex-

plicit actions taken in the user interface.

3. Make it possible for the user to reduce the authority others

have to the user’s resources. Score: 1.0

Table 1. Summary of user study results.

Tester Usefulness Usability Recommend

1 3.7 3.9 3

2 4.9 5.4 5

3 2.7 2.9 1

4 Additional participants to be added

after the paper deadline. 5

Users share only the files they want to share and can decide

if they want to accept updates from the Pal. Turning off Au-

to Receive allows the user to decide which updates to accept.

Turning off Auto Send lets the user decide which versions of

the file the Pal will see. Users may also unshare a file or de-

lete a Pal, revoking the associated rights.

4. Make the user aware of other’s authorities to the user’s re-

sources when making decisions. Score: 1.0

The Shares view allows the user to see all shares, shares with

a specific Pal, or all shares of a specific file. The Pals view

allows the user to identify who may send messages and

whether sends and/or receives are handled automatically.

5. Make the user aware of the user’s own authorities. Score:

1.0

The Pals view lets the user see which Pals will accept mes-

sages, and the Shares view shows the user which shares will

accept updates. We can’t do anything about the user’s au-

thorities to files not shared through SCoopFS, but we didn’t

think that was cause to reduce our score.

6. Protect the means by which the user indicates to software

how to manipulate authorities. Score: 0.8

The SCoopFS trusted path, based on secure labeling with

petnames, is not truly trustworthy because of the vulnerabili-

ties of the browsers through which it operates. However,

webkeys prevent Cross Site Request Forgeries and click-

jacking. Since they are never typed in, webkeys are also safe

from keystroke loggers.

7. Express security policy in terms relevant to the user’s task.

Score: 1.0

All security policy is inferred from actions users take to get

their jobs done.

8. Make apparent the distinctions among objects and actions in

a way that is relevant to the user’s task. Score: 0.5

The Shares view shows which files are shared read/only and

the direction changes propagate. Editing a Pal shows wheth-

er updates are sent and/or received automatically, but this in-

formation is not shown when sending a message to the Pal.

Sharing and propagation information is not shown when the

user edits a shared file. These shortcomings can be fixed in a

later version.

9. Clearly and truthfully distinguish different objects and ac-

tions. Score: 1.0

SCoopFS uses color cues to help the user avoid being con-

fused by similar views, such as the Inbox and Archive. Pet-

names chosen by the user are less likely to lead to confusion

than other methods of choosing names.

10. Make the implications of the user’s actions clear. Score: 0.8

Creating a Pal adds an entry to the Pal’s list, but we do not

highlight the new Pal. Sharing a file with a Pal creates a new

entry in the Shares view, but we do not highlight new shares.

These shortcomings can be fixed in a later version.

These are common sense guidelines, yet it is hard to think of a

single system in common use that implements even one of them.

The previous highest score went to CapDesk [18], which gets a

score of 7. Although we are happy with our score of 8.6 out of

10, there are improvements we can make in a future version.

8. RELATED WORK
CapDesk [18] introduced the concept of inferring which rights to

grant from user acts of designation, an idea we used in developing

Polaris, a virus safe computing environment for Windows XP

[16]. Polaris encountered ambiguities that resulted from the fact

that the Windows user interface was developed independently of

our infrastructure. One way to get around such problems is to

provide a means to express a policy that is independent of the user

interface [1]. SCoopFS takes a different approach, avoiding that

problem by considering user interactions throughout the develop-

ment process. This approach assumes full control over the user

experience, so it is not applicable to legacy environments.

When we started this project some two years before writing this

paper, searching Google for ―file sharing tools‖ returned mostly

links to tools for sharing files that are unlikely to be modified,

usually downloads of music and videos. The same search done

when this paper was being written, still returns a lot of hits to such

tools, but an increased number of them are for sharing of files that

are likely to be modified. Approximately 50 of the 100 top

ranked links are for unique file sharing tools. Browsing Google to

Top > Computers > Software > Internet > Clients > File_Sharing

turns up 30, about 10 of which are to tools such as Napster, and

the rest for sharing files likely to be modified. Space and time do

not permit reviewing them all.

File sharing tools fall into three main categories. There are tools

where the shared space is controlled by an administrator, such as

Groove [10] and SharePoint [11]. These tools are based on user

accounts and require that files be moved to their workspaces in

order to be shared, although the most recent version of SharePoint

provides some automation. There are tools that store your files on

the provider’s servers. Some of them provide for off-line access,

but they all require substantial trust in the provider. Neither of

these classes of tools is directly comparable to SCoopFS, so we

won’t discuss them further. Their most important weakness is the

inability to do chained sharing. ContentCircles [4] is a hybrid,

sharing files in a workspace that is copied on all participants’

machines. It does allow chained sharing, but it centralizes the

means by which participants connect.

Closer to SCoopFS in spirit are peer-to-peer tools. Microsoft

Windows Vista natively supports sharing of files between users

on the same LAN [9]. However, unlike SCoopFS, the shared files

are not copied, so there is no off-line use, the transport is not en-

crypted, so the contents can be snooped on the LAN, and the user

interface for managing shares is accessed from the Control Panel,

which is inconvenient. Partly to fix these problems, Microsoft

developed Live Mesh [12]. Microsoft would claim that Live

Mesh meets the requirements of SCoopFS users. In the rest of

this Section we’ll show the ways that it does not.

SCoopFS starts with a user interface concept (rich seamless shar-

ing) and constructs a software infrastructure specifically designed

to support the user experience. With the Live Mesh system, users

must "log on" to their Mesh with a user name and password – a

clear violation of seamlessness. Synchronized files must be orga-

nized the same away on all machines – even if the organization on

one machine for one purpose does not make sense on another with

another purpose. Explicit directions must be given to the system

when the user decides to work offline – another violation of seam-

lessness.

Even obvious forms of attenuation, such as single-file access, are

not supported. Chained attenuation, for example, the ability of the

holder of a read-only authority to further share a separately revoc-

able read-only authority to another person, is not supported.

Figure 11 shows a screen shot with typical Live Mesh dialogs that

present obstacles to the user. Many of the required user actions are

independent of the task at hand, in contrast to SCoopFS. The

tools and techniques used for SCoopFS, like petnames and web-

keys, supply infrastructure support that enables the building of

superior user interfaces.

Figure 10, which we discussed in Section 5 is the clearest way to

show where Live Mesh falls short of SCoopFS. The software

update workflow requires attenuated, chained delegation of the

authority to use the file. The orange Xs in Figure 10 show places

where a violation of Least Privilege or a violation of experience

seamlessness is the only way to get the desired sharing from Live

Mesh. The red Xs show where either Live Mesh explicitly forbids

the sharing, or the only possible implementation results in a criti-

cal vulnerability.

9. CONCLUSIONS
We started the SCoopFS project with three goals in mind. The

first was to produce a useful tool. We find that SCoopFS simpli-

fies our work, but we’re biased. The early versions of SCoopFS

were missing some features users thought important, such as an

integrated file explorer and a means to share a file directly from

the Windows desktop. We did our user study after adding these

features. Based on the lukewarm reaction, we will not be quitting

our day jobs to form a startup based on SCoopFS.

The number one complaint about SCoopFS is, ―Oh, no. Not

another mail client.‖ We are sympathetic, but we felt that having

full control over the user experience was important for the first

prototype. We plan to examine building a SCoopFS plug-in for

Microsoft Outlook and one of the mail clients for Linux. We

don’t plan to build one for any of the web-based mail clients be-

cause the security model is so different from that of SCoopFS.

The most common requests for additional features are for sharing

folders and integration with a version control system. We added

the ability to snapshot a file in the File Select view as a primitive

form of version control that is consistent with the way people deal

with email attachments. We plan to add support for folders, but

there are interesting questions of the semantics of operations that

we’ll need to answer. For example, what should be done if a file

is deleted in a read only sharing of a folder?

The second goal was to demonstrate that security need not inter-

fere with the user experience. The user study supports the claim

that we succeeded. Even more telling is the quote from one of our

early users. ―This tool would be a lot better if it had some securi-

ty. Is there any way I can turn some on?‖ While that question

shows we achieved our goal, it also indicates that achieving our

goal is not enough. While ―security reality‖ is necessary, the

―feeling of security‖ is important, too [15]. We need to find a

way to make people feel secure without making security interfere

with their work

The success in meeting our third goal is hard to quantify. We

believe that we’ve shown that it is easy for users to manage rights

to individual files. We also believe that existing systems for man-

aging rights in big chunks, such as NFS and shared drives in Win-

dows, require a lot of work on the part of the user or an adminis-

trator to avoid serious violations of Least Privilege. Perhaps we’ll

know after we gain some experience with sharing folders with

SCoopFS. Quantifying the difference will be a challenge.

Acknowledgements

We’d like to thank Jhilmil Jain for help with the user study and

for her patience as an early user of SCoopFS. We’d also like to

thank the seven people who gave up part of their day to participate

in our user study.

10. References
[1] Cannon, Brett, and Eric Wohlstadter. "Enforcing Security

for Desktop Clients using Authority Aspects." AOSD '09:

Proceedings of the 8th international conference on Aspect-

oriented software development. Charlottesville, VA : ACM,

Figure 11: Screen shot of Live Mesh in use.

2009.

[2] Close, Tyler. Waterken Server. 2008.

http://waterken.sourceforge.net/ (accessed February 9,

2009).

[3] —. "web-key: Mashing with Permission." IEEE W2SP

2008: Web 2.0 Security and Privacy. Oakland: IEEE, 2008.

[4] ContentCircles. Collaborative Content Management for

Distributed Teams. 2009. http://www.contentcircles.com/

(accessed February 9, 2009).

[5] Dennis, Jack B., and Earl C. Van Horn. "Programming

Semantics for Miltiprogrammed Computations." Comm.

ACM (ACM) 9, no. 3 (March 1966): 143-155.

[6] Greenberg, Saul, and Bill Buxton. "Usability evaluation

considered harmful (some of the time)." Proc.26th SIGCHI

conf. on Human factors in computing systems. Florence,

Italy: ACM, 2008.

[7] Karp, Alan H. "Authorization Based Access Control for the

Services Oriented Architecture." Proc. 4th Int. Conf. on

Creating, Connecting and Collaborating through

Computing (C5 2006). Berkeley, CA: IEEE Press, 2006.

[8] Lund, Arnold. USE Questionnaire Resource Page.

November 11, 1998.

http://usesurvey.com/ExampleQuestionnaire.html (accessed

February 9, 2009).

[9] Microsoft Corp. File and Printer Sharing in Windows

Vista. May 14, 2007. http://technet.microsoft.com/en-

us/library/bb727037.aspx (accessed February 9, 2009).

[10] —. Groove Home Page. 2009.

http://office.microsoft.com/en-

us/groove/FX100487641033.aspx (accessed February 9,

2009).

[11] —. Microsoft Office SharePoint Server 2007. 2009.

http://www.microsoft.com/Sharepoint/default.mspx

(accessed February 9, 2009).

[12] —. What’s inside Live Mesh? 2008.

https://www.mesh.com/Welcome/features/features.aspx

(accessed December 17, 2008).

[13] —. Windows Update. 2009. http://update.microsoft.com

(accessed February 9, 2009).

[14] Redell, D. D. Naming and Protection in Extendible

Operating Systems. Ph. D. Thesis, Project MAC TR-140,

MIT, 1974.

[15] Schneier, Bruce. "Reconceptualizing Security." LISA '08:

22nd Large Installation System Administration Conf. San

Diego: Usenix, 2008.

[16] Stiegler, Marc D, Alan H Karp, Ka-Ping Yee, and Tyler

Close. "Polaris: Virus Safe Computing for Windows XP."

Comm. ACM, September 2006: 83-88.

[17] Stiegler, Marc D. An Introduction to Petname Systems.

http://www.skyhunter.com/marcs/petnames/IntroPetNames.

html (accessed December 16, 2008).

[18] —. E and CapDesk: POLA for the Distributed Desktop.

2002. http://wiki.erights.org/wiki/CapDesk (accessed

December 16, 2008).

[19] Yee, Ka-Ping. "Guidelines and Strategies for Secure

Interaction Design." In Security and Usability: Designing

Secure Systems That People Can Use, by Lorrie Faith

Cranor and Simson Garfinkel, 247-273. Sebastopol, CA:

O'Reilly Media, Inc., 2005.

Appendix: Documents Given to Participants

Call for Volunteers for User Study

SCoopFS (The ―F‖ is silent.) is a system that allows you to share

files between any two machines anywhere on the Web. While

designed to allow people to collaboratively edit documents, many

other uses for the system have been identified. The most popular

use of SCoopFS is to share files between your own devices, such

as between your laptop and your desktop computers, so that you

can pick up where you left off no matter which machine you hap-

pen to be using.

Although there are a wide variety of file sharing tools, in practice,

most people share files by sending a copy as an attachment to an

email with a note say, ―Please edit this and send it back when you

are done.‖ SCoopFS builds on this already successful model of

sharing by using an email-like interface to send file attachments to

the people or machines in your SCoopFS address book. Once a

file has been shared, SCoopFS automates the propagation of up-

dates and warns you if there is an edit conflict.

If you agree to test SCoopFS, we will install our software on your

machine and ask you to carry out 10 tasks. One of these tasks is

to fill out a survey form and answer a few questions. The entire

process should take about 30 minutes. There will be a small re-

ward for participants.

User Instructions for File Sharing with

SCoopFS Experimental Study

In your FireFox bookmarks please find a bookmark called

―SCoopFS Inbox.‖ Click the link and familiarize yourself with the

SCoopFS user interface. When you are comfortable, read the

Greeting message already in your inbox and follow the instruc-

tions found there.

User Instructions in the Greeting Message

1. Familiarize yourself with the user interface.

2. Save the attachment to a file.

3. Wait for the file to be updated

4. When the update arrives, open the file and follow the

instructions in it.

User Instructions in the File Shared in the
Greeting Message

1. Use the webkey in the file to create a new Pal.

2. Share your shared file with the new Pal.

3. Unshare the file.

4. Save the attachment in the second message.

5. Fill out the survey contained in that file and save it.

6. Collect your scoop (of ice cream).

