

Keyword(s):

Abstract:

©

Improving Clustering Stability with Combinatorial MRFs

Bekkerman, Ron; Scholz, Martin; Viswanathan, Krishnamurthy

HP Laboratories
HPL-2009-46

Clustering stability, combinatorial MRF, Comraf

As clustering methods are often sensitive to parameter tuning, obtaining stability in clustering results is an
important task. In this work, we aim at improving clustering stability by attempting to diminish the
influence of algorithmic inconsistencies and enhance the signal that comes from the data. We propose a
mechanism that takes m clusterings as input and outputs m clusterings of comparable quality, which are in
higher agreement with each other. We call our method the Clustering Agreement Process (CAP). To
preserve the clustering quality, CAP uses the same optimization procedure as used in clustering. In
particular, we study the stability problem of randomized clustering methods (which usually produce
different results at each run). We focus on methods that are based on inference in a combinatorial Markov
Random Field (or Comraf, for short) of a simple topology. We instantiate CAP as inference within a more
complex, bipartite Comraf. We test the resulting system on four datasets, three of which are medium-sized
text collections, while the fourth is a large-scale user/movie dataset. First, in all the four cases, our system
significantly improves the clustering stability measured in terms of the macro-averaged Jaccard index.
Second, in all the four cases our system managed to significantly improve clustering quality as well,
achieving the state-of-the-art results. Third, our system significantly improves stability of consensus
clustering built on top of the randomized clustering solutions.

External Posting Date: August 24, 2009 [Fulltext] Approved for External Publication
Internal Posting Date: February 21, 2009 [Fulltext]

Published in KDD Conference, Paris, France, June 29, 2009.

Copyright 2009 ACM SIGKDD.

Improving Clustering Stability with Combinatorial MRFs

Ron Bekkerman
HP Labs

1501 Page Mill Rd
Palo Alto, CA 94304

ron.bekkerman@hp.com

Martin Scholz
HP Labs

1501 Page Mill Rd
Palo Alto, CA 94304
scholz@hp.com

Krishnamurthy Viswanathan
HP Labs

1501 Page Mill Rd
Palo Alto, CA 94304

krishnamurthy.viswanathan@hp.com

ABSTRACT
As clustering methods are often sensitive to parameter tun-
ing, obtaining stability in clustering results is an important
task. In this work, we aim at improving clustering stability
by attempting to diminish the influence of algorithmic incon-
sistencies and enhance the signal that comes from the data.
We propose a mechanism that takes m clusterings as input
and outputs m clusterings of comparable quality, which are
in higher agreement with each other. We call our method the
Clustering Agreement Process (CAP). To preserve the clus-
tering quality, CAP uses the same optimization procedure
as used in clustering. In particular, we study the stability
problem of randomized clustering methods (which usually
produce different results at each run). We focus on methods
that are based on inference in a combinatorial Markov Ran-
dom Field (or Comraf, for short) of a simple topology. We
instantiate CAP as inference within a more complex, bipar-
tite Comraf. We test the resulting system on four datasets,
three of which are medium-sized text collections, while the
fourth is a large-scale user/movie dataset. First, in all the
four cases, our system significantly improves the clustering
stability measured in terms of the macro-averaged Jaccard
index. Second, in all the four cases our system managed
to significantly improve clustering quality as well, achieving
the state-of-the-art results. Third, our system significantly
improves stability of consensus clustering built on top of the
randomized clustering solutions.

Categories and Subject Descriptors
I.5 [Pattern Recognition]: Clustering

General Terms
Algorithms

Keywords
Clustering stability, combinatorial MRF, Comraf

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’09, June 28–July 1, 2009, Paris, France.
Copyright 2009 ACM 978-1-60558-495-9/09/06 ...$5.00.

1. INTRODUCTION
Data mining practitioners are often challenged with vaguely

stated requests such as: “We have a large data collection—
analyze it for us”. Many data analysis approaches have been
developed, among which data clustering—partitioning the
data collection to semantically coherent groups—is one of
the most prominent approaches. A large variety of cluster-
ing methods are available, each of which has its own advan-
tages and drawbacks. The major question that arises after
a clustering method has been applied to a data collection
is why the data was clustered this way. A data instance x1

was placed together with a data instance x2—does this mean
that they are inherently similar? Or they are not so similar
but all the other options appear worse? Or our clustering
method just made a mistake by associating x1 with x2?

This question becomes even more acute when taking into
account the fact that different clustering methods usually
obtain different results on the same data. Even the same
method can obtain different results depending on a particu-
lar setting of its parameters. Those clustering methods that
base on non-convex optimization often employ randomiza-
tion to escape local optima, which implies that, with high
probability, their results are different from run to run. Hav-
ing dozens or hundreds of different clusterings of the same
data does not add much clarity to our data analysis task.

Nevertheless, having more than one clustering can be help-
ful. Some data instances tend to come together with some
others; some instances tend to float around. If all the avail-
able clustering methods assign x1 to the same cluster with
x2, then this can be a good indicator that x1 and x2 have
something profound in common. Unfortunately, such sig-
nals are usually weak: it is a relatively rare case when one
data instance always goes with another. Some clusterings
may capture a few patterns like that, whereas others would
capture different patterns. An agreement amongst all those
clusterings would be much desired.

A somewhat standard approach to achieving an agreement
of clusterings is called Cluster Ensembles [22] or, alterna-
tively, Consensus Clustering (see, e.g., [13]), which embod-
ies a wide variety of averaging schema for the original set
of clusterings. The result of a consensus clustering proce-
dure is a single clustering that is an optimal combination
(in one sense or another) of the original clusterings. We
argue that the consensus clustering approach provides only
partial solution to the agreement problem: although it does
achieve an agreement about a particular clustering, it is still
not clear how stable this agreement is with respect to tun-
ing the consensus method’s parameters. Also, will the same

consensus method lead to a similar consensus when applied
to different clusterings of the same data? Will a different
consensus method lead to a substantially different consen-
sus? Moreover, since a consensus method aims at obtaining
a single clustering, it cannot provide answers to questions
such as: which data instances compose a stable component
(i.e. they are most often—or always—clustered together)?
Which stable components tend to be clustered with which?
Which data instances do not have a strong pattern of asso-
ciation with the others?

In this work, we introduce the Clustering Agreement Pro-
cess (CAP) that provides means for improving stability of
a clustering ensemble, without shrinking the space down to
a single clustering solution, and without compromising the
clustering ensemble’s quality. In a nutshell, CAP can be
described as follows. It operates in the space of all possi-
ble partitions of a given data collection. Initialized with the
original clusterings, it employs local search that makes the
clusterings “get closer” (i.e. become more similar) to each
other. Definitely enough, an arbitrarily chosen local search
technique may heavily hurt the quality of the original clus-
terings. As a matter of fact, for any pair of clusterings xc

1

and xc
2, there exists a sequence of local updates (i.e. moves

of one data instance from one cluster to another), which
transfers xc

1 into xc
2. We overcome this problem by applying

the type of local search similar to the one used in clustering
for constructing semantically meaningful solutions.

Our underlying clustering method is essentially bi-modal—
it allows to simultaneously construct two clusterings: one of
data instances, another one of their features. We use the
term data modality to address a set of data instances, as
well as the set of their features.1 Bi-modal (and, generally,
multi-modal) clustering methods are commonly believed to
exceed the ordinary, uni-modal clustering methods in the
quality of clustering multidimensional data (for a discus-
sion, see [2]). A Combinatorial Markov Random Field (or
Comraf, see Section 3) has proven itself to be a powerful
model for multi-modal clustering [4, 3]. In original Com-
raf models, clusterings of data modalities are organized in a
Markov Random Field (MRF) with one node per modality,
and edges representing interactions between the clusterings.
A multi-modal clustering task is subsequently expressed in
terms of the Most Probable Explanation (MPE) estimation
in the constructed MRF. At a node level, the inference pro-
cedure reduces to a local search routine that starts with
some initial clustering and stops at a clustering for which
the MPE objective reaches its local maximum, representing
an agreement between this clustering and its neighbors.

In previously proposed Comraf models, it was not useful
to have more than one node per modality. In this paper,
however, we show that the clustering agreement process in-
troduced above can be easily embedded into the Comraf

1From here on, we will intentionally refrain from using the
term “feature”, which is somewhat misleading in our con-
text. For example, in a document collection, documents
are commonly considered“data instances”, while their words
are considered “features”. However, if the task is to build a
meaningful word clustering, then words become “data in-
stances”, while the identities of documents in which the
words appear become “features”. Accepting the Bag-Of-
Words assumption, a document collection can be repre-
sented as a contingency table with documents as rows and
words as columns. In a contingency table, rows and columns
are equivalent up to transposition.

framework, with as many nodes as the number of the orig-
inal clusterings. We assume that m bi-modal clustering al-
gorithms were initially applied to a given data collection,
which led to constructing m clusterings of modality X and
m clusterings of modality Y. We build a Comraf model
with m nodes per one modality and m nodes per another.
Each node that corresponds to X is connected to each node
that corresponds to Y and vice versa, resulting in an MRF
of bipartite topology. An MPE inference is applied to the
constructed MRF, which at each node boils down to a local
search procedure similar to the one previously proposed. It
is initialized with one of the pre-constructed clusterings and
aims at finding a clustering that maximizes the agreement
with its neighbors in the MRF. Given the bipartite topology,
all m new clusterings of X maximize agreement with all m
clusterings of Y, which results in improving an agreement
between themselves (all details are provided in Section 4).

Note that the algorithms that originally clustered the data
do not play any role in the agreement process proposed
above, such that no pre-conditions are imposed on them,
apart from being bi-modal. However, the problem of choos-
ing a clustering ensemble is not in the focus of our current
study, and therefore we decided to construct original clus-
terings using the same bi-modal Comraf method that under-
lies the agreement process. This clustering method employs
randomization such that, with high probability, it produces
different results from run to run, and thus is suitable for our
task. To a large extent, the proposed agreement process al-
lows the original clustering method to escape the local max-
imum it is stuck in, and continue the clustering optimization
process while biasing towards other solutions. This obser-
vation brings us to a hypothesis that the proposed process
may significantly improve not only the clustering stability,
but also the clustering quality (we confirm this in Section 6).

Potentially, such an agreement process can lead to a single
solution, i.e. all the local searches that started from the orig-
inal clusterings will meet together. Practically, however, this
would be quite impossible for the following reasons: (a) the
search space is prohibitively large such that finding a com-
mon solution of high quality is computationally hard; (b)
our non-convex optimization procedure is unable to break
ties: if a data instance x1 equally probably belongs to two
clusters, it can be found in either of them. Building m sim-
ilar, but not equal clustering solutions opens the door to
extensive data analysis. Being similar, the clusterings de-
fine relatively large stable components, each of which has
a pattern of association with the others. Such a pattern
can be easily converted into a distribution over the clusters,
which is likely to be peaky enough and therefore easy for
comprehension and interpretation. A smoother distribution
will then determine a floater. To a certain extent, the pro-
posed mechanism can be used for softening a set of hard
clustering solutions (i.e. partitions), with a variety of prac-
tical applications in which soft clusters are needed.

The proposed agreement process is likely to identify a
dense region in the space of possible clusterings. If the user
is interested in a single clustering instead of an ensemble, a
consensus clustering mechanism can be applied to the con-
structed clusterings. Such a consensus method will most
probably explore the identified dense region, which would
lead to a potentially more stable and therefore more reliable
solution compared to the consensus of the original cluster-
ings. We justify this empirically in Section 6.1.

2. RELATED WORK
An extensive body of work has been published on finding a

consensus within a clustering ensemble. As discussed above,
we are solving an essentially different problem of improving
clustering stability, however consensus clustering is a related
task that needs to be reviewed. Cluster ensembles were pro-
posed and extensively studied by Strehl and Ghosh [22], who
used an information-theoretic framework for discovering a
consensus of clusterings. Our MPE inference in the Comraf
model also has information-theoretic nature, with its roots
in information-theoretic co-clustering [10] and multivariate
information bottleneck [21]. Note that Strehl and Ghosh’s
method is uni-modal while we apply a multi-modal tech-
nique. A consensus of bi-modal clustering methods was first
investigated by Badea [1]. Fern and Brodley [11] proposed
to solve the cluster ensemble problem using bipartite graph
partitioning. Our Comraf model also has a bipartite topol-
ogy, however our method is not graph-theoretic. Recently,
Punera and Ghosh [18] proposed a hard clustering consensus
of soft clusterings. To some extent, we address the opposite
problem of softening an ensemble of hard clusterings.

In the previously published literature, we were unable to
find any work on improving clustering stability, however
many works deal with assessing and measuring stability of
clustering methods. First works in the area were published
in the early 1980’s [19] which were based on an even earlier
work by Rand [20] who developed criteria for clustering eval-
uation. In the last decade, an effort was done on assessing
stability of deterministic clustering algorithms using either
Rand’s criteria [7], resampling [16], or classification [15], for
the tasks of cluster validation and model selection.2 Later,
Ben-David et al. [6] formalized the problem and proposed
theoretic criteria for stability of clustering methods, under
a few assumptions. Presumably the most relevant work to
our current study was done by Kuncheva and Vetrov [14]
who evaluated stability of cluster ensembles under random
initialization. They proposed to measure an ensemble’s sta-
bility with a pairwise adjusted Rand index, averaged over
all the clustering pairs. We adopt their averaging idea, but
instead of using the adjusted Rand index we use the Jaccard
index [12] which is easier for interpretation (see Section 5.2).

3. PRELIMINARIES
In this section we will provide all the necessary defini-

tions and notation. As discussed in Section 1, we are given
m clusterings of a data modality X and m clusterings of a
data modality Y, and our goal is to search the solution space
around those clusterings in order to come up with new clus-
terings that maximize an agreement objective function. To
formalize the space of all possible clusterings in which the
local search is performed, we define a discrete distribution P
over the entire space, such as each possible clustering is as-
signed a certain probability mass. We define a combinatorial
random variable that is distributed according to P :

Definition 3.1. A combinatorial random variable (or com-
binatorial r.v.) Xc is a discrete random variable defined
over a combinatorial set X c, which is a finite set whose
size is exponential with respect to another finite set X , i.e.
log |X c| = O(|X |).
2One major model selection problem extensively covered in
the literature is the choice of the number of clusters k. In
this work, however, we assume that k is given to us.

c

c

c

c

2 2

11

m m

c

c
Y

X

X

Y

X

Y

c

c

c

c

m

2 2

11

m

c

c
Y

X

X

Y

X

Y

Figure 1: (left) Comraf model used for the original
clustering; (right) bipartite Comraf for the cluster-
ing agreement process.

For our particular case, the combinatorial set X c is a set of
all possible clusterings of the data modality X , and the event
of picking one clustering xc

1 out of the set X c has probability
P (Xc = xc

1). From the theoretical point of view, X c is just a
discrete random variable with a finite support. In practice,
however, the set X c is extremely large, such that the distri-
bution P (Xc) cannot be explicitly specified. Nevertheless,
given two values xc

1 and xc
2, we can determine which one is

more probable than the other. An interaction pattern of a
combinatorial random variable with other random variables
can be modeled through a combinatorial MRF:

Definition 3.2. A combinatorial Markov Random Field
(Comraf) is a Markov Random Field, at least one node of
which is a combinatorial random variable.

From here on, we will discuss only Comraf models each node
of which is a combinatorial r.v. Generalizing P into a joint
distribution over all combinatorial r.v.’s in the Comraf, let
us write P down in the form of the Gibbs distribution [8]:

P (xc) =
1

Zf
exp

(∑
C

fC(x
c
C)

)
,

where xc is a vector of all combinatorial r.v.’s in the Com-
raf; C is a clique in the Comraf graph; xc

C are combinatorial
r.v.’s participating in the clique C; fC is a real-valued func-
tion called a log-potential ; and Zf is a normalization factor
called a partition function. If we fix the log-potentials fC for
each clique, the partition function Zf becomes a constant.
Thus, the Most Probable Explanation (MPE) inference in
the Comraf is defined as

xc
∗ = arg max

xc
P (xc) = arg max

xc
exp

(∑
C

fC(x
c
C)

)

= arg max
xc

∑
C

fC(x
c
C), (1)

which now solely depends on the choice of log-potentials.
Both for simplicity and for feasibility of our inference algo-
rithms, let us consider only cliques of size 2, i.e. graph edges.
Denoting by E the set of Comraf’s edges, Equation (1) can
then be rewritten as:

xc
∗ = arg max

xc

∑
eij∈E

fij(x
c
i , x

c
j). (2)

4. CLUSTERING AGREEMENT PROCESS
Let us first describe how the underlying clustering method

works. For the task of bi-modal clustering, a very sim-
ple Comraf model can be built which contains two nodes

c

c

c

c

c

c

c

m m

2 2

1 1

2 2

1

m m

1

cc

c c c

YX

X YX

X

X Y X

Y

Y

Y

Figure 2: The clustering agreement process. First,
we fix the values of all Y c

j |mj=1 variables (shaded on
the picture) and optimize all Xc

i |mi=1 variables in par-
allel. Then we fix new values of all Xc

i variables
(shaded) and optimize all Y c

j variables in parallel.

connected with an edge. The two nodes are combinatorial
r.v.’s Xc and Y c defined over all possible clusterings of data
modalities X and Y, respectively. Over the only edge, we
can define a log-potential function that would characterize
an agreement between clusterings xc and yc. Assuming that
the number of clusters k is given to us and never changes,
we follow Dhillon et al. [10] by choosing Mutual Information
between the clusterings to be our log-potential function (for

a discussion, see [4]). We define a random variable X̃ over

all clusters in the clustering xc. We define Ỹ analogously.
The only log-potential in the model is then:

f(xc, yc) = I(X̃; Ỹ) =
∑
ij

p(x̃i, ỹj) log
p(x̃i, ỹj)

p(x̃i)p(ỹj)
, (3)

where the joint distribution p(x̃i, ỹj) is estimated from the
data as p(x̃i, ỹj) =

∑
x∈x̃i

∑
y∈ỹj

p(x, y), while the marginals

are obtained through standard marginalization: p(x̃i) =∑
ỹj∈yc p(x̃i, ỹj) and, analogously, p(ỹj) =

∑
x̃i∈xc p(x̃i, ỹj).

Our optimization procedure in the resulting model starts
with some initial values xc

0 and yc
0 of Xc and Y c, respec-

tively. First, we fix yc
0 and perform a local search around

xc
0 that aims at maximizing the objective (3). The specific

local search procedure we use is hill climbing, performed by
moving a data instance x from its current cluster to another
for which the objective is maximal (or keeping x in its cur-
rent cluster in case of having no better option). After some
while (e.g. when the objective reaches its plateau, or when
all the data instances have been tested, etc.), we fix the new
clustering xc

1 and switch to optimizing Y c, and then go on
over the variables in a round robin fashion.3 After T such
iterations, clustering xc

T and yc
T come to an agreement with

each other. For the sake of our current work on clustering
agreement, we build m models like that (for an illustration,
see Figure 1, left).

Bekkerman et al. [4, 3] showed that such a bi-modal clus-
tering algorithm has a great potential in clustering multidi-
mensional data, but adding more modalities in most cases
improves the clustering results even more, as it improves
the model’s regularization and reduces its tendency to over-
fitting. We claim that a similar effect can be achieved even

3Note that the requirement on the number of clusters k to
be fixed during the optimization process does not hold at
the transition stage (when we switch between Xc and Y c).
At that stage we are free to split or merge clusters, which
allows exploring clustering hierarchy.

with only two data modalities—when more than one cluster-
ing result is available. Since the original bi-modal clustering
algorithm is randomized,4 each of its run is likely to produce
a different result that captures different signals coming from
the data. We may take the best from each of the constructed
models by letting them agree with each other. To initiate
such an agreement process, we connect all the Xc

i |mi=1 nodes
of our original models with all the Y c

j |mj=1 nodes, which re-
sults in a bipartite graph (see Figure 1, right).

Over each edge eij of the resulting Comraf model, we de-
fine a Mutual Information log-potential fij(x

c
i , y

c
j) = I(X̃i; Ỹj).

We then derive the new MPE inference process from Equa-
tion (2) as follows:

(xc
∗,y

c
∗) = arg max

xc,xc

∑
eij∈E

fij(x
c
i , y

c
j) = arg max

xc,xc

m∑
i=1

m∑
j=1

I(X̃i; Ỹj).

(4)
To perform this optimization, we apply the Iterative Condi-
tional Mode (ICM) inference algorithm [9]. At each iteration
of the ICM algorithm, one random variable from the MRF
gets chosen, and the values of all the rest of the model get
fixed. Next, the chosen variable is optimized with respect to
the fixed values of its neighboring random variables. After
this optimization step is over, we fix the final value of the
chosen variable and move to optimizing another variable—
and so on in a round robin. When only one variable gets
optimized at a time, our objective from Equation (4) be-
comes linear in m. Suppose that we optimize variable xc

i :

(xc
i)∗ = arg max

xc
i

m∑
i=1

m∑
j=1

I(X̃i; Ỹj) = arg max
xc

i

m∑
j=1

I(X̃i; Ỹj).

(5)
We notice however that rather than optimizing one variable
at a time, we can employ parallelization. If we fix all the val-
ues of the Y c

j |mj=1 variables in our bipartite Comraf, then all
the Xc

i |mi=1 variables become conditionally independent such
that we can optimize them in parallel. Once new values of
the Xc

i variables are obtained, we fix them and move to opti-
mizing the Y c

j variables—in parallel again. We can perform
this process (illustrated in Figure 2) until its convergence.

Proposition 4.1. The agreement process converges to a
local maximum of the objective function from Equation (4).

Proof. The proof of the proposition is fairly straight-
forward. It is based on two observations. First, at a node
level, the local search optimization does not decrease its ob-
jective in Equation (5), because any data instance is moved
from its cluster to another only if the objective is increased.
Since the global objective from Equation (4) is a sum of
these local objectives, then it cannot be decreased either.
The second observation is that the global objective remains
unchanged at the transition time (when one set of variable
values gets fixed and we switch to optimizing the second set
of variables). Since our global objective is a sum of Mu-
tual Information terms that are bounded from above, and
the presented process never decreases its objective, it must
reach its local maximum—which will stop the process.

The importance of parallelization should not be underesti-
mated in the case of our clustering agreement process—it
allows up to apply our method to large data collections.
4The randomization can come from the clustering initializa-
tion, as well as from ordering the data instances to test for
a potential relocation.

5. EXPERIMENTAL SETUP
We evaluate our methods on two unsupervised learning

tasks: (a) document/word clustering, where the goal is to
construct topically related groups of documents, while simul-
taneously constructing groups of words—which presumably
represent topics; (b) user/movie clustering for the collabo-
rative filtering purposes, where the goal is to recommend a
movie to a user based on collaborative behavior of the users’
community. On both tasks, we measure the clustering qual-
ity as well as the clustering stability (using criteria defined in
Section 5.2), as a relative improvement that CAP provides
with respect to the original clusterings. We also measure
an improvement in stability and quality of a consensus clus-
tering method, when applied to the clusterings after CAP
was applied on them. For this purpose, we use the Sta-
ble Component Consensus Clustering (SCCC) method dis-
cussed in Section 5.3. We come up with three experimental
setups (CAP, stand-alone SCCC, and SCCC applied after
CAP) and test them on four data collections, three of which
are document collections, and the fourth is the user/movie
dataset (see Section 5.1). We provide technical details on
the underlying clustering methods in Section 5.4.

5.1 Datasets
For the task of document clustering, we use three pub-

licly available datasets. Two of them (called sanders-r and
kitchen-l) are relatively large email directories of two former
Enron employees, derived from the Enron Email Dataset.5

The sanders-r collection contains 1188 email messages stored
in 30 folders. The kitchen-l collection contains 4015 mes-
sages stored in 47 folders.6 The document clustering task
on those collections aims at reconstructing the email folders.
The third document collection is the benchmark 20 News-
groups dataset, which consists of 19997 newsgroup postings,
classified into 20 categories. It is known that about 4.5% of
the postings are duplications of other postings—however, for
better replicability, we do not exclude the duplicated post-
ings. A particular preprocessing scheme of these datasets is
described in Bekkerman et al. [2].

For the collaborative filtering task, we use the Netflix
data as it was used for the Netflix KDD’07 Cup.7 For
this competition, the task was set up as predicting which
movies would be rated by which users, without predict-
ing the actual ratings. The training data consists of about
100M user/movie pairs (positive instances) for 480,189 users
and 17770 movies. The hold-out data consists of 100,000
pairs, 7.8% of which are positive instances. We simultane-
ously construct both a clustering of users and a clustering
of movies, and then use the resulting clusterings to rank the
test instances. Our ranking function r(u, m) for a user u and
a movie m is composed of the popularity score p(u)p(m),
lifted with the information gained at the clustering process:

r(u, m) = p(u)p(m)
p(ũ, m̃)

p(ũ)p(m̃)
,

when the user u was assigned into a cluster ũ, and the movie
m was assigned into a cluster m̃ (for a discussion, see [5]).

5http://www.cs.cmu.edu/~enron
6Preprocessed versions of the sanders-r and kitchen-l
datasets can be downloaded from http://www.cs.umass.
edu/~ronb/enron_dataset.html.
7http://cs.uic.edu/~liub/Netflix-KDD-Cup-2007.html

5.2 Evaluation criteria
For assessing the quality of document clustering we use the

clustering accuracy measure, as used in previous work [10,
2]. Let xc be a clustering of a document collection X . Let T
be the set of ground truth categories. For each cluster x̃ of
xc, let nT (x̃) be the maximal number of x̃’s elements that be-
long to one category. Then, precision Prec(x̃, T) of the clus-
ter x̃ with respect to T is defined as Prec(x̃, T) = nT (x̃)/|x̃|.
The micro-averaged precision of the entire clustering xc is:

Prec(xc, T) =

∑
x̃ nT (x̃)∑

x̃ |x̃|
=

∑
x̃ nT (x̃)

n
, (6)

where n is the size of the dataset. In words, Prec(xc, T) is
the portion of documents classified into the dominant cat-
egories. Note that this measure is meaningless when the
number of clusters k is large. In fact, if k equals the num-
ber of data points, the micro-averaged precision is 1. In
all our experiments, we choose the number of clusters to be
equal to the number of ground truth categories: k = |T |.
And when k = |T |, the micro-average precision Prec(xc, T)
equals micro-averaged clustering accuracy, or just clustering
accuracy, for short.

For evaluating our collaborative filtering results based on
the constructed clusterings of users and movies, we follow
Bekkerman and Scholz [5] who compute the Area Under the
ROC Curve (or AUC, in short) for a constructed ranking
of the user/movie pairs (see Section 5.1 for details on our
ranking scheme).

To evaluate the stability of a clustering method, we use

the Jaccard index [12] averaged over all m(m−1)
2

pairs of m
outcomes of this method. Given a pair of clusterings, xc

1 and
xc

2, we define a as the number of data instance pairs that
belong to the same cluster in xc

1 as well as in xc
2. We define

b as the number of data instance pairs that belong to the
same cluster in xc

1 but not in xc
2. We define c as the number

of data instance pairs that belong to the same cluster in xc
2

but not in xc
1. The Jaccard index between xc

1 and xc
2 is then

defined as:

J(xc
1, x

c
2) =

a

a + b + c
.

Note that the Jaccard index ranges between 0 and 1. Our
underlying clustering methods (Section 5.4) are randomized,
such that, when applied m times, they produce different
results. We compute the averaged Jaccard index over those
results, assessing by this the stability of the method. The
stability of the SCCC method (see 5.3 below) is assessed by
applying it a number of times with different values of its
parameter, and computing the averaged Jaccard index over
the outcomes. Evaluating the stability of our CAP method
is straightforward: it is designed to produce m outcomes,
over which we compute the averaged Jaccard index.

5.3 Stable Component Consensus Clustering
One of the applications of our clustering agreement pro-

cess is in improving stability and accuracy of consensus clus-
tering. A possible scenario for this task would be to come
up with the set of original clusterings, let them interact via
our clustering agreement mechanism, and then apply a con-
sensus clustering method that would presumably be more
accurate and more stable than a consensus of the original
clusterings. To evaluate this hypothesis, we need to have
a consensus clustering algorithm available for experimenta-
tion. There are many off-the-shelf consensus clustering algo-

rithms (see, e.g., [17]), however, we did not find any existing
algorithm that would have the following property: it is de-
sired that each cluster in the resulting consensus clustering
would be “labeled” by a large portion of data instances that
compose a stable component, i.e. are often, if not always,
clustered together.

Let us first provide some intuition. In Section 5.2 we
presented the clustering accuracy measure as the micro-
averaged accuracy of each cluster, which is computed as a
portion of the cluster having the most common label. For
example, in document clustering, if a large portion of a clus-
ter is classified as, say, sports news, then we assume that
the entire cluster is about sports while the cluster mem-
bers that were not classified as sports news are considered
noise. All the above refers to the evaluation stage, where the
ground truth labels are available. At the consensus cluster-
ing stage, however, the task remains completely unsuper-
vised, i.e. there is no ground truth. Nevertheless, the no-
tion of “large data portions” still exists. If a large group of
data instances is always clustered together, while not hav-
ing a strong correlation pattern with other groups, then this
group can be a good candidate for seeding a cluster. If all
clusters can be seeded with such groups, then these groups
will impose “implicit labels” on their corresponding clusters,
which will be very helpful in further data analysis.

Lacking an existing consensus method that would have
such a property, we came up with a method of our own,
which is very simple, very efficient, and still effective. We
call it Stable Component Consensus Clustering (SCCC) and
note that it is somewhat similar to the Iterative Voting Con-
sensus (IVC) method proposed by Nguyen and Caruana [17].
The SCCC method operates in two stages: first, it seeds
clusters with large stable components that are distant from
each other, and second it associates all the other stable com-
ponents with one of the seeds. Let us provide more details.

Definition 5.1. Given an ordered list of m clusterings
(xc

1, x
c
2, . . . , x

c
m) and a data instance x, we define a signature

of x as an ordered list of cluster identities to which x belongs
in each of the m clusterings: s(x) = (x̃i1 , x̃i2 , . . . , x̃im).

Definition 5.2. A stable component is the largest subset
of data instances each of which have the same signature.

A distance between two stable components is then defined as
a Hamming distance between their signatures. Our SCCC
algorithm works as follows:

1. Construct all stable components of the data. Con-
struct their ranked list R in which they are sorted in
decreasing order of their sizes.

2. Traverse the ranked list R and test each component
for being able to serve as a cluster seed. Choose a
component to seed a cluster if it is at least at distance
g from each previously assigned cluster seed. If the
component is chosen as a cluster seed, exclude it from
R. If the number of cluster seeds reaches the number
of clusters k, stop.

3. Traverse the ranked list R again, this time assigning
each remaining component to a cluster whose seed is
the closest one to the component being assigned.8

8We also tested a centroid-based version of the SCCC al-

The main advantage of the SCCC algorithm is in its efficiency—
its time complexity is linear in the number of data instances.
Its main drawback is that it has a free parameter g, which
we call the seed gap parameter. The values of the seed gap
parameter are integers in the [0..m] range. We do not at-
tempt to set it up in the optimal way, instead, we apply the
SCCC algorithm with all possible seed gap values9 and then
average the results. This provides a notion of stability of the
SCCC algorithm with respect to tuning its parameter, and
as well as a notion of statistical significance of its results.

Other possible limitations of the SCCC algorithm include
its instability for very large values of m: if an ensemble
consists of very many clusterings, it is highly probable that
stable components will be small, and then the seeding pro-
cess will be almost random. In our experiments, however,
we choose m = 10, which is small enough to allow many
large stable components. Also, the seeding procedure can
be almost random if the original clusterings are very differ-
ent from each other—but it is exactly the problem that we
solve with our clustering agreement process.

It is important to note that in this paper we do not focus
on consensus clustering, and therefore do not intend to pro-
pose the most effective consensus clustering method. Our
goal is to show that CAP can improve consensus clustering,
applied on top of CAP’s results, as compared to the same
consensus clustering method applied without CAP.

5.4 Underlying clustering methods
In our document clustering setup, we use the Multi-way

Distributional Clustering (MDC) tool [2, 4] to produce origi-
nal clusterings. MDC is an open source tool,10 which is able
to perform simultaneous clustering of multiple modalities,
organized in a Comraf model of arbitrary topology. First,
we apply it to construct initial clusterings, using the Com-
raf topology from Figure 1 (left). MDC allows hierarchical
clustering, which is proved to be very effective [2]. One of
its advantages is that it is not heavily dependent on the
clustering initialization. We perform top-down clustering of
words and, simultaneously, bottom-up clustering of docu-
ments. The top-down scheme is initialized by assigning all
the words in one cluster. The bottom-up scheme is initial-
ized by having one cluster per document. At each MDC’s
iteration, we first split each word cluster to two, and then
perform the local search (as described in Section 4) to max-
imize the objective (3). Then we merge each two clusters
of documents and perform the same optimization over the
resulting document clustering. We continue this process un-
til we reach the required number of document clusters. At
the first iteration of the algorithm, we perform three split-
and-optimize procedures over word clusters (ending up with
eight clusters), before we start with the merge-and-optimize
procedure over the document clusters.

For our clustering agreement process, we apply MDC on
the bipartite Comraf from Figure 1 (right). We initialize
each clustering node with a clustering obtained at the bi-
modal stage, and perform flat (i.e. non-hierarchical) clus-

gorithm, in which each cluster’s centroid is updated after a
stable component is added. The resulting version did not
show significantly better results on our test datasets.
9In some cases, the seed gap g can be too large such that
not all k clusters can be seeded. In those cases, we disregard
such a value of g.

10http://comraf.sourceforge.net

Table 1: Results on document datasets. Accuracies of the initial clustering and of CAP are averaged over
m = 10 runs. Accuracies of SCCC are averaged over the number of valid values of the seed gap parameter g
(which is between 8 and 10). Jaccard index values are averaged over all the clustering pairs. The standard
error of the mean is given after the ± sign. Relative improvements with respect to the original clustering
results are shown in brackets.

Measure Before After CAP After SCCC After CAP and SCCC
sanders-r dataset:

Averaged accuracy 0.6594 ± 0.0051 0.6745 ± 0.0036 0.6763 ± 0.0028 0.6826 ± 0.0018
of document clusterings (+2.2%) (+2.5%) (+3.5%)
Averaged Jaccard index 0.4186 ± 0.0062 0.6435 ± 0.0099 0.6831 ± 0.0266 0.7242 ± 0.0306
of document clusterings (+53.7%) (+63.1%) (+73.0%)
Averaged Jaccard index 0.1743 ± 0.0013 0.3453 ± 0.0034 0.3459 ± 0.0264 0.5024 ± 0.0315
of word clusterings (+98.1%) (+98.4%) (+188.2%)

kitchen-l dataset:
Averaged accuracy 0.4053 ± 0.0035 0.4350 ± 0.0017 0.4214 ± 0.0060 0.4481 ± 0.0016
of document clusterings (+7.3%) (+3.9%) (+10.5%)
Averaged Jaccard index 0.1757 ± 0.0020 0.3784 ± 0.0071 0.5576 ± 0.0262 0.7067 ± 0.0214
of document clusterings (+115.3%) (+217.3%) (+302.2%)
Averaged Jaccard index 0.2038 ± 0.0014 0.3696 ± 0.0027 0.3202 ± 0.0308 0.4476 ± 0.0405
of word clusterings (+81.3%) (+57.1%) (+119.6%)

20 Newsgroups dataset:
Averaged accuracy 0.7203 ± 0.0044 0.7562 ± 0.0047 0.7388 ± 0.0083 0.7523 ± 0.0067
of document clusterings (+4.9%) (+2.5%) (+4.4%)
Averaged Jaccard index 0.4924 ± 0.0061 0.7404 ± 0.0133 0.7732 ± 0.0292 0.8556 ± 0.0165
of document clusterings (+50.3%) (+57.0%) (+73.7%)
Averaged Jaccard index 0.1006 ± 0.0005 0.6430 ± 0.0010 0.2639 ± 0.0363 0.4607 ± 0.0395
of word clusterings (+539.1%) (+162.3%) (+357.9%)

tering until the changes in the value of the objective (4) are
small enough. In practice, it turned out that only a few op-
timization iterations are required to reach convergence. For
consistency, we fixed the number of iterations to four.

The main disadvantage of the MDC method is that it
is inherently sequential and time-consuming. It cannot be
applied to the large Netflix dataset. Instead, we apply its
parallelized version, called DataLoom [5]. The DataLoom
algorithm optimizes the same objective, however, it is not
hierarchical, therefore, at the bi-modal stage, we randomly
initialize user and movie clusterings. We fix the number
of clusters at 800—for both cases. At the CAP stage, how-
ever, there is no principal difference between DataLoom and
MDC. We performed only two CAP iterations.

6. RESULTS
Our results on the document clustering task are summa-

rized in Table 1. As can be seen from the table, on all
the three datasets CAP significantly improves both accu-
racy and stability of the original clustering algorithm. The
stability improvements are quite impressive. An interesting
case is the stability improvement of word clustering on the
20 Newsgroups dataset. CAP managed to increase the aver-
aged Jaccard index from about 0.1 to over 0.6. We decided
to study this case more closely, and constructed all stable
components before and after the CAP application. Even
a quick scan through the results showed dramatic changes.
For example, one stable component of the post-CAP result
consists of the following 15 words:

altar materialistic revelation

apprentice metaphorical teachings

bible narratives theologians

gospel philistines tierra

inerrant recite unbeliever

Checking on these words in the pre-CAP data, we figured
out that each of them composed a stable component of size
one, i.e. was disconnected from any other. The stability
and accuracy improvement per CAP’s iteration are shown
in Figure 4. As we can see, the first two iterations are most
crucial, after which the curves become flatter.

From the right two columns of Table 1 we can learn that
CAP also improves both stability and accuracy of consensus
clustering. The improvement on words is always more sub-
stantial than the improvement on documents, while the ab-
solute values on words are always lower than on documents—
possibly because the word modality is larger than the doc-
ument modality, and the number of word clusters is larger
than the number of document clusters.

We have to note that, technically, stability of our consen-
sus method (with or without CAP) cannot be directly com-
pared with the stability of the original clustering (again,
with or without CAP), because SCCC is a deterministic
method, such that its stability is measured over various val-
ues of its parameter g, while the original clustering is ran-
domized. Nevertheless, we added the relative improvement
values, for consistency with the rest of the table.

In contrast, the accuracy values are comparable between
all the listed methods. Although relative improvements do
not look as dramatic as for the stability measure, we should
point out that in two of the three cases we managed to obtain
the state-of-the-art results. Specifically, the 44.8% accuracy
obtained by the consensus method with the help of CAP on
the kitchen-l dataset, as well as over 75% accuracy shown on
the 20 Newsgroups are, to our knowledge, the best results
ever obtained on these data collections.

It is interesting to see how the CAP system responds to
changes in m—the number of participating clusterings. Fig-
ure 3 shows such a result on the 20 Newsgroups. First, it
turns out that as few as just three participants can already

Table 2: Results of the Clustering Agreement Process on the Netflix dataset.
Measure Before Agreement After one iteration After two iterations Relative improvement
Averaged AUC 0.73128 ± 0.00023 0.73172 ± 0.00020 0.73201 ± 0.00023 +0.1%
Averaged Jaccard index 0.1488 ± 0.0014 0.1658 ± 0.0015 0.1716 ± 0.0014 +15.4%
of user clusterings
Averaged Jaccard index 0.2745 ± 0.0024 0.3158 ± 0.0024 0.3321 ± 0.0022 +21.0%
of movie clusterings

Table 3: Improving stability of clustering consen-
suses on the sanders-r dataset: we show that CAP
consistently leads to similar agreements, when ap-
plied to different ensembles of clusterings.

Measure Before CAP After CAP Relative
improv.

Averaged accuracy .6771± .0033 .6870± .0027 +1.5%
of doc consensuses
Averaged Jaccard .5365± .0090 .6186± .0057 +15.3%
of doc consensuses
Averaged Jaccard .2163± .0018 .3310± .0028 +53.0%
of word consensuses

boost the accuracy by 2%. Second, as m goes up, the stan-
dard error of clustering accuracy decreases, and the after-
CAP curve consistently rises while the before-CAP curve
fluctuates.

Our stability and quality results on the Netflix dataset
are shown in Table 2. As one can notice, CAP obtains a
very modest improvement in the AUC measure. Although
being statistically significant, it cannot be considered a suc-
cess. However, we should note that improving AUC on
this dataset is a very challenging task, and half-percent im-
provements are considered a valuable achievement (see [5]).
Nonetheless, the stability improvement is substantial, espe-
cially taking into account the size of the data.

6.1 Consistency of clustering agreement
As we have shown, our clustering agreement process is

able to significantly improve stability of clustering methods.
An important question still to ask is whether CAP is con-
sistent in its behavior, i.e. does it tend to lead to the same
(or similar) solutions, independently of the initial cluster-
ings? To answer this question, we set up the following ex-
periment. Over the same data, we construct M clustering
ensembles, and find their M consensuses (using our SCCC
method with g = 5). Afterwards, we apply CAP to each of
the ensembles, and find M consensuses of the after-CAP ver-
sions. Then we compute the stability of the two ensembles
of consensuses—before CAP and after CAP. The results for
the sanders-r dataset (with M = 10) are shown in Table 3.
To our satisfaction, the after-CAP ensemble of consensuses
is much more stable (and, as a matter of fact, is also slightly
more accurate). This supports our hypothesis that CAP’s
behavior is consistent.

7. CONCLUSION
In this paper, we investigated a novel machine learning

problem, the Improvement of Clustering Stability, which can
play a key role in data analysis and other areas of data min-
ing. We proposed an effective method for this problem’s so-
lution, the Clustering Agreement Process (CAP), which is
based on inference in a new type of Combinatorial MRFs—

2 3 4 5 6 7 8 9 10
0.68

0.7

0.72

0.74

0.76

0.78

number of participating clusterings

cl
us

te
rin

g
ac

cu
ra

cy

20 Newsgroups

Before CAP
After CAP

Figure 3: Clustering accuracy on the 20 Newsgroups
dataset, as a function of m—the number of cluster-
ings which participate in the agreement process.

of bipartite topology, with multiple nodes per data modality.
We proposed an efficient, parallelized method for performing
this inference, and showed its convergence. As a byproduct
of this research, we proposed a Stable Component Consen-
sus Clustering method, which has a property of “implicit
labeling” of the constructed clusters. We applied our CAP
method to four real-world datasets and obtained significant
improvements in clustering stability, as well as in clustering
quality, of both initial clusterings and their consensuses.

8. ACKNOWLEDGEMENTS
The authors thank Rajan Lukose for fruitful discussions

at the early stages of this project. Ron thanks his wife Anna
for her constant support.

9. REFERENCES
[1] L. Badea. Clustering and metaclustering with

nonnegative matrix decompositions. In Proceedings of
ECML-16, pages 10–22, 2005.

[2] R. Bekkerman, R. El-Yaniv, and A. McCallum.
Multi-way distributional clustering via pairwise
interactions. In Proceedings of ICML-22, 2005.

[3] R. Bekkerman and J. Jeon. Multi-modal clustering for
multimedia collections. In Proceedings of CVPR’07,
the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 2007.

[4] R. Bekkerman, M. Sahami, and E. Learned-Miller.
Combinatorial Markov Random Fields. In Proceedings
of ECML-17, 2006.

[5] R. Bekkerman and M. Scholz. Data weaving: Scaling
up the state-of-the-art in data clustering. In
Proceedings of CIKM-17, pages 1083–1092, 2008.

[6] S. Ben-David, U. von Luxburg, and D. Pál. A sober
look at clustering stability. In Proceedings of
COLT-19, pages 5–19, 2006.

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

iteration

Ja
cc

ar
d

co
ef

fic
ie

nt

sanders−r

docs
words

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

iteration

Ja
cc

ar
d

co
ef

fic
ie

nt

kitchen−l

docs
words

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

iteration

Ja
cc

ar
d

co
ef

fic
ie

nt

20 Newsgroups

docs
words

0 1 2 3 4
0.6

0.62

0.64

0.66

0.68

0.7

iteration

ac
cu

ra
cy

sanders−r

0 1 2 3 4
0.36

0.38

0.4

0.42

0.44

0.46

iteration

ac
cu

ra
cy

kitchen−l

0 1 2 3 4
0.68

0.7

0.72

0.74

0.76

0.78

iteration

ac
cu

ra
cy

20 Newsgroups

Figure 4: Stability in terms of the averaged Jaccard index (top) and document clustering accuracy (bottom)
results on sanders-r (left), kitchen-l (middle), and the 20 Newsgroups (right), as a function of the number
of iterations in the clustering agreement process. The standard error of the mean is shown as errorbars of
every plot, however, in some cases the error is very small and thus barely seen. The results of iteration 0 are
the original clustering results, before CAP was applied.

[7] A. Ben-Hur, A. Elisseeff, and I. Guyon. A stability
based method for discovering structure in clustered
data. Pacific Symposium on Biocomputing, pages
6–17, 2002.

[8] J. Besag. Spatial interaction and statistical analysis of
lattice systems. Journal of the Royal Statistical
Society, 36(2):192–236, 1974.

[9] J. Besag. On the statistical analysis of dirty pictures.
Journal of the Royal Statistical Society, 48(3), 1986.

[10] I. S. Dhillon, S. Mallela, and D. S. Modha.
Information-theoretic co-clustering. In Proceedings of
SIGKDD-9, pages 89–98, 2003.

[11] X. Z. Fern and C. Brodley. Solving cluster ensemble
problems by bipartite graph partitioning. In
Proceedings of ICML-21, 2004.

[12] P. Jaccard. The distribution of flora in the alpine
zone. New Phytologist, 11:37–50, 1912.

[13] A. Kreiger and P. Green. A generalized rand-index
method for consensus clustering of separate partitions
of the same data base. Journal of Classification,
16:63–89, 1999.

[14] L. Kuncheva and D. Vetrov. Evaluation of stability of
k-means cluster ensembles with respect to random
initialization. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 28(11):1798–1808, 2006.

[15] T. Lange, V. Roth, M. Braun, and J. Buhmann.
Stability-based validation of clustering solutions.
Neural Computation, 16(6):1299–1323, 2004.

[16] E. Levine and E. Domany. Resampling method for
unsupervised estimation of cluster validity. Neural
Computation, 13(11):2573–2593, 2001.

[17] N. Nguyen and R. Caruana. Consensus clusterings. In
Proceedings of ICDM-7, pages 607–612, 2007.

[18] K. Punera and J. Ghosh. Consensus-based ensembles
of soft clusterings. Applied Artificial Intelligence,
22(7-8):780–810, 2008.

[19] V. Raghavan and M. Y. L. Ip. Techniques for
measuring the stability of clustering: a comparative
study. In Proceedings of SIGIR-5, pages 209–237, 1982.

[20] W. M. Rand. Objective criteria for the evaluation of
clustering methods. Journal of the American
Statistical Association, 66(336):846–850, 1971.

[21] N. Slonim, N. Friedman, and N. Tishby. Multivariate
information bottleneck. Neural Computation,
18(8):1739–1789, 2006.

[22] A. Strehl and J. Ghosh. Cluster ensembles — a
knowledge reuse framework for combining multiple
partitions. Journal of Machine Learning Research,
3:583–617, 2003.

