[LaBs™)

GPU-Accelerated Large Scale Analytics

Ren Wu, Bin Zhang, Meichun Hsu

HP Laboratories
HPL- 2009-38

Keyword(s):
Data-mining, Clustering, Parallel, Algorithm, GPU, GPGPU, K-Means, Multi-core, Many-core

Abstract:

In this paper, we report our research on using GPUs as accelerators for Business Intelligence(BI)
analytics. We are particularly interested in analytics on very large data sets, which are common
in today's real world BI applications. While many published works have shown that GPUs can be
used to accelerate various general purpose applications with respectable performance gains, few
attempts have been made to tackle very large problems. Our goal here is to investigate if the
GPUs can be useful accelerators for Bl analytics with very large data sets that cannot fit into
GPU’s onboard memory.

Using a popular clustering algorithm, K-Means, as an example, our results have been very
positive. For data sets smaller than GPU's onboard memory, the GPU-accelerated version is 6-
12x faster than our highly optimized CPU-only version running on an 8-core workstation, or
200-400x faster than the popular benchmark program, MineBench, running on a single core. This
is also 2-4x faster than the best reported work.

For large data sets which cannot fit in GPU's memory, we further show that with a design which
allows the computation on both CPU and GPU, as well as data transfers between them, to
proceed in parallel, the GPU-accelerated version can still offer a dramatic performance boost.
For example, for a data set with 100 million 2-d data points and 2,000 clusters, the GPU-
accelerated version took about 6 minutes, while the CPU-only version running on an 8-core
workstation took about 58 minutes. Compared to other approaches, GPU-accelerated
implementations of analytics potentially provide better raw performance, better cost-performance
ratios, and better energy performance ratios.

External Posting Date: March 6, 2009 [Fulltext] Approved for External Publication [ﬁa
Internal Posting Date: March 6, 2009 [Fulltext]

© Copyright 2009 Hewlett-Packard Development Company, L.P.

GPU-Accelerated Large Scale Analytics

Ren Wu, Bin Zhang, Meichun Hsu
HP Labs
ren.wu, bin.zhang, meichun.hsu@hp.com

Abstract

In this paper, we report our research on using GPUs as accelerators for Business Intelligence(Bl)
analytics. We are particularly interested in analytics on very large data sets, which are common in
today's real world Bl applications. While many published works have shown that GPUs can be used to
accelerate various general purpose applications with respectable performance gains, few attempts have
been made to tackle very large problems. Our goal here is to investigate if the GPUs can be useful
accelerators for Bl analytics with very large data sets that cannot fit into GPU’ s onboard memory.

Using a popular clustering algorithm, K-Means, as an example, our results have been very positive. For
data sets smaller than GPU's onboard memory, the GPU-accelerated version is 6-12x faster than our
highly optimized CPU-only version running on an 8-core workstation, or 200-400x faster than the
popular benchmark program, MineBench, running on a single core. Thisis also 2-4x faster than the best
reported work.

For large data sets which cannot fit in GPU's memory, we further show that with a design which allows
the computation on both CPU and GPU, as well as data transfers between them, to proceed in parallel,
the GPU-accelerated version can still offer a dramatic performance boost. For example, for a data set
with 100 million 2-d data points and 2,000 clusters, the GPU-accelerated version took about 6 minutes,
while the CPU-only version running on an 8-core workstation took about 58 minutes.

Compared to other approaches, GPU-accelerated implementations of analytics potentially provide better
raw performance, better cost-performance ratios, and better energy performance ratios.

INTRODUCTION

Recent research by Gartner found that CIOs see business intelligence (BI) as the number-one technology
priority [GARO7]. Next generation business intelligence will have much more sophisticated algorithms,
process petabyte-size data sets, and require real-time or near real-time responses for a broad base of users.
While massively paradlel data management systems have been used to scale the data management
capacity, Bl analytics and data integration analytics have increasingly become a bottleneck, and can only
get worse. High-performance support for these analyticsis both a great challenge and a great opportunity.

Graphics processors (GPUs) have developed very rapidly in recent years. GPUs have moved beyond their
originally-targeted graphics applications and increasingly become a viable choice for general purpose
computing. In fact, with many light-weight data-paralel cores, GPUs can provide substantial
computational power to running general purpose applications at a much lower capital equipment cost and
at much higher power efficiency, and therefore contribute to a greener economy while lowering operating
costs.

In this paper, we report our explorations on using GPUs as accelerators for Bl anaytics. We are

especialy interested in very large data sets that cannot fit into GPU’s onboard memory. Large data sets
are very common in today’ s real world Bl scenarios.

Using the well-known clustering algorithm K-Means as an example, our results have been very positive.
For smaller clustering problems whose entire data sets can fit inside the GPU’s onboard memory, and
whose cluster centroids (in K-Means, cluster centroids are computed iteratively) can fit inside GPU’s
constant memory, we have obtained up to 200-450x speedup over a popular benchmark program, or 50-
90x over our own highly optimized CPU version on a single CPU core. For very large problems whose
data sets cannot fit inside the GPU’s onboard memory, the speedup performance appears to decrease
somewhat but the GPU-accel erated version can till outperform CPU version by awide margin.

In addition to the raw computing power, GPU-accelerated implementations potentially also offer
improved cost-performance ratios and enegy-performance ratios for Bl anaytics

RELATED WORK

GPU Computing

Graphics processors (GPUs) are originaly designed for a very specific domain - to accelerate graphics
pipeline. Recognizing the huge potential performance gains from these GPUs, many efforts have been
made to use them to do general purpose computing, by mapping general purpose applications onto
graphics APIs. This has been known as the General Purpose GPU (GPGPU) approach.

However, to express a general problem in existing graphics APIs proved to be cumbersome and counter-
intuitive at best. A few attempts have been made to create new languages or APIs that abstract away from
3D APIs and provide general purpose interfaces [KHAOQ3].

One of the most important advances in GPU computing is NVidias CUDA solution, which provides both
software support- the CUDA programming language extended from popular C language, and the CUDA-
enabled hardware compute engine - a highly parallel architecture with hundreds of cores and very high
memory bandwidth. With the large install base of CUDA-enabled devices and the C-like programming
environment, many researchers are now able to use GPU to accelerate their applications, and many have
shown respectable speedup performance compared to CPU-only implementations. Popular commercial
applications, such as Adobe's creative suite, Mathematica, etc., have new releases of their CUDA-enabled
version; researchers have used CUDA in cloud dynamics, N-Body and molecular dynamics simulations,
and database operations, with results that show great promise [CUAQS].

Clustering Algorithms

There are a few published works which have used GPUs for clustering, and in particular, using the K-
Means method. Among them, two pieces of work are closely related to ours [CHEO7, CHEO8, FANOS].

A team at University of Virginia, led by Professor Skadron, conducted a series of research on using GPU
to accerelate various general purpose applications, including K-Means. In their earlier work [CHEQ7], 8x
speed up was observed on a G80 GPU over MineBench running on a single core of Pentium 4.
Subsequently, they fine-tuned their code and achieved much better performance. Their latest version
showed about 72x speedup on a GTX 260 GPU over a single-thread CPU version on a Pentium 4 running
MineBench, and about 35x speedup over four-thread MineBench on a dual-core, hyper-threaded CPU
[CHEOS].

Another team at HKUST and Microsoft Research Asia has also looked into parallel data mining on GPUs
[Fan08]. K-Means was one of the two algorithms used in their research. They reported more than 5x

speedup over the earlier version from University of Virginia even though it was still much slower than the
newer version from the University of Virginiateam.

K-MEANS ALGORITHM AND ITS IMPLEMENTATION

K-Means algorithm

K-Means is a well-known clustering algorithm widely used in both academic research and industrial
practices. It shares the properties of a much wider class of statistical algorithms.

Given the number of clusters k, K-Means iteratively finds the k-centres of the data clusters. Each iteration
consists of two steps:

Step 1. Partition the data set into k subsets by assigning each point to a subset whose center is the
closest center to the point.

Step 2. Recalculate the k cluster centers as the geometric centers of the subsets.

The agorithm repeats these two steps until no data point moves from one cluster to another. It has been
shown that K-Means converges quickly and stopsin afinite number of iterations.

There is still active research on the K-Means agorithm itself [e.g., ZHAQO, ARTO7]. In this paper, we
areinterested in GPU acceleration rather than the K-Means algorithm itself.

Experiment design and hardware

Since MineBench [PIS05] has been used in afew related previous works [CHEO7, CHEOS], we have used
it as our baseline for performance comparison so as to align with previously published results. We also
implemented our own CPU version of K-Means algorithm for more accurate comparisons (details in the
next section). Two machines used in our experiments are HP XW8400 workstations, with dual quad core
Intel Xeon 5345 running at 2.33GHz, 4GB CPU memory; one running Windows XP professional x64
equipped with a Quadro FX 4600 GPU (NVIDIA G80 series) with 768MB onboard device memory, and
the other running Windows XP (32bits), equipped with an Nvidia GeForce GTX 280 GPU with 1GB
onboard device memory. The GPU code was developed in CUDA, NVidias C extension to support
general GPU computing, on top of Microsoft Visual C++ 2005.

Since our primary interest is on the performance acceleration ratios by GPUs, not the agorithm itself, we
used randomly generated data sets. The maximum number of iterations is limited to 50 for al experiments
because for our purpose of speedup comparison, it is sufficient to obtain the per-iteration cost. The timing
reported is the total wall timefor al iterations, including both the time for calculation and communication
between the CPU and the GPU, but without the time for initializing the data sets. Both CPU and GPU
versions give identical new centers under identical initializations of the centers. This confirms the
algorithmic correctness of our GPU implementation.

CPU-only implementation

MineBench is a popular high-performance multi-threaded data-mining package, which includes K-Means
as one of its benchmark algorithms. It has been used in afew previous works as the baseline reference.

While focusing on the speedups achievable by GPU over CPU, we observe that it is equally important to
realize that the CPU has a lot of performance potential as well [INTO8]. Careful algorithm and data
structure designs, using verious optimization techniques, and the use of CPU’s SSE vector capbilities etc,
can usually help create a CPU implementation that outperforms the non-optimized CPU version by a

considerable margin as well. Since we are interested in the performance difference between CPU-only
version and GPU-accel erated version, we have developed our own highly optimized K-M eans package on
CPU as well, trying to push the performance on CPU as much as possible. Various optimizations have
been put into our CPU code, at both the C language level and assemembler level using SSE, developed in
Microsoft Visual C++ 2005 with OpenMP turned on for the multi-core support. Our own optimized CPU
code for K-Means runs severa times faster than MineBench. It provides a better CPU performance
benchmark to judge more accurately the value of GPU accelerators in Bl analytics. Table 1 is the
comparsion between MineBench and our optimized version, using 1 core, 4 cores and 8 cores
respectively. It is shown that our optimized CPU implementation achieved about 3.8x speedup over
MineBench implementation.

GPU acceleration
The K-M eans algorithm spends majority of itstime in Step 1, data partitioning, which isrelatively easy to

paralelize for both CPU and GPU. For example,

dataset MineBench, time (s Optimized, time (s) speed ups (x)
both MineBench and our own |mp|ementat|0n of Z000500] 2700 50 153‘;_ L % I
K-Means on CPU achieved close to linear speedup 53000001 o1 1001 S0 31417l 78401308t sa s sse: Taaal 525130
R 2000000 400 0] 1214.45| 304.16| 152.25| 354.34) 89.47| 45.34 4 .4 .4
on our 8-core workstation [Table 1, PIS03]. RS Emamme e
. ‘ . e e e e o e] I
However, due to the dramatic differences in —)
architecture, implementing an algorithm to take full Table td, Pelfforman(_‘-e comparison between MineBench and
. : optimized implementation
advantage of GPU requires careful designs. Some N: Number of data points
strategies and principles we discovered and used D: Number of dimensions for each data point
are dlxum hqe K: number of clusters

M: number of iterations before stopping

Use of the Share-nothing principle

Share-nothing is a strategy for implementing data parallelism by avoiding the use of shared update
variables. This strategy is critical to algorithms designed for distributed systems. In the case where the
shared variables are used to hold global sufficient statistics, it's been shown that it is possible to first
calculate the local sufficient statistics in parallel without the use of shared variables, and then compute the
global sufficient statistics and update those globally shared variables as a final step by aggregating from
the locally computed statistics. Even though modern GPUs have the globa onboard memory shared
among all multi-processors, the cost of synchronization for shared update variables usually outweighs its
benefits. We have found that following the share-nothing principle in algorithm design is equally
important in shared-memory parallel systems [ZHAOQQ].

Beware of the memory hierarchy
GPU has added its own memory hierarchy, which is very different from the CPU’s cache/memory

hierarchy. Understanding GPU’s memory hierarchy is crucial in algorithm design. Several key principles
we found crucia are:

arranging the data to maximize the utilization of memory bandwidth,

using constant and texture memory for the data that remains constant during one kernel
invocation to utilize the cache mechanism, and

using shared memory for the data that will be accessed multiple times during one kernel
invocation.

GPU offers much better memory bandwidth compared to CPU. But the high bandwidth can only be fully
utilized by coalesced memory access. GPU favours that multiple threads work together on continuous

memory addresses, rather than having each thread work on its own, while the latter is a common practice
in CPU multi-thread optimization. In other words, it is important to design GPU data structure to be
column-based instead of row-based as commonly found in algorithms designed for CPU (In the case of
K-Means, each row is a data point, while each column is a dimension).

Take full advantage of the asymmetric architecture

GPU and CPU excel in different areas. It isimportant to partition the problem so that both CPU and GPU
are doing what they are best at. In our K-Means example, we found that in many cases a quad-core CPU
can do equaly well for Step 2, even with the cost of shipping the intermediate result (which is the
membership vector) between CPU and GPU. Some of the communication time can be hidden by using
asynchronous memory transfers.

Resultswith a Smaller Data Set - In-GPU-Memory Data Set

In our K-Means implementation, for smaller problems the data has been kept in both GPU’s and CPU’s
memory. The data on GPU has been rearranged to be column-based to avoid non-coalesced memory
access. We have identified that the best way to partition the tasks among CPUs and GPUs is to let the
CPU calculate the new centroids in each iteration (i.e., Step 2), and let the GPU calculate the data point’s

membership to the clusters (i.e, Step 1). This is e e S)

. . . . N D K| M| Mir HPL CPU| HPL GPU| Mii HPLC|
essentially a CPU-GPU hybrid implementation. At each 200000 o SO 13g?|) —1
iteration, CPU sends new centroids down to GPU, and 200000 0 ;32‘ el mnl e w5
GPU returns the updated membership vector back to 000001410 Wg:;% =
CPU, and CPU will then check the stoppi ng rule and 40000008400 ggl 20003 ;g;s;gl ‘;ﬁil o

. . . 190.4 49.
starts the r_1ext |'terat_| on if needed. The dat_a transf (_erred Table 2 Speedups, compared to CPU versions running on 1
for each iteration includes centroids (with a sizeof core

k*D*4 bytes) and membership (with a size of N*4

bytes), but not the full data set itself, which has a size of N*D*4 bytes. Our results are shown in Table 2
(for comparison with 1-core CPU) and Table 3 (for comparison with 8-core CPU). The speedup ratio of
GPU over CPU increases as the number of dimensions (D) and the number of clusters (k) increase. For
the set of parameters being experimented, we achieved an average of 190x speedup over the MineBench
implementation on a 1-core CPU, and 49x over our own optimized implementation on a 1-core CPU. Our
experiments have shown that each of the design principles discussed above played a crucia role in
achieving this level of speedup.

It is interesting to note that, when the number of clusters e SRl MisBser FPLCPUTRALGED aberet] PG
is relatively small (e.g. k<70), a pure GPU-version of the 1
implementation actually outperforms the hybrid version. oo 100 S0l e el 0.4 *’?‘ —
Since our main focus was to investigate K-Means 4500000) o Z;é'i| ios : :
agorithm on large data sets and large numbers of e e R)
clusters, we will focus on the CPU-GPU hybrid version Table 3 Speedups, compare to CPU versions running on 8

cores

of implementation in this paper.

Large Data Sets — Multi-taksed Streaming

Compared to the CPU’s main memory, which can go up to 128GB now, GPU’s onboard memory is very
limited. With the ever increaseing problem size, it is often the case that GPU’s onboard memory is too
small to hold the entire data set. This has posed a few challenges:

The problem has to be data-partitionable and each partition processed seperately,

If the algorithm requires going over the data set with multiple iterations, the entire data set has to
be copied from CPU’s main memory to GPU’s memory at every iteration, while the PCle bus is
the only connection between CPU’s main memory and GPU’s memory.

The first one has to be answered by algorithm design, and in our case, K-M eans can be data-partitioned in
a straightforward manner. The only communication needed between partitions is the local sufficient
statistics [ZHAOQ]. However, in the current generation of GPUs, the GPU’s memory sub-system is
connected to the main memory system via a PCle bus. The theoretic bandwidth limit is about 4GB/s for
PCle 1.1x16, and the observed limit is about 3.2GB/s [VOLO08]. Heavy data transfer can pose a
significant delay.

CUDA offers the APIs for asynchronous memory transfer and streaming. With these capbilities it is
possilbe to design the agorithm that allows the computation to proceed on both CPU and GPU, while
memory transfer isin progress.

Fig. 1isamuch smplified algorithm we used.

Mentpy(dgc, hgc);
while (1)
{
while (ns = streamAvail () && !done)
{
hnb = next Bl ock();
MencpyAsync(db, hnb, ns);
DTranspose(db, dtb, ns);
DAssi gnCl uster (dtb, dc, ns);
MencpyAsync(hc, dc, ns);

}
while (ns = streanDone())
aggr egat eCentroi d(hc, hb, ns);

if (done)
br eak;

yield();

}
cal cCentroid(hgc);

el se

Figure 1: Our implementation for stream based K-Means (per iteration)

Streaming K-Means Algorithm:

The data set is partitioned into large blocks. At every iteration, we process these blocks in turn, with
overlap, until all of them have been processed. Each block has to be transferred from CPU to GPU,
transposed to a column-based layout, have cluster membership computed for each data point, and then
transferred back to CPU, where CPU does a partial aggregation for each centroid. In addition, CUDA
streams have been used to keep track of the progress on each stream. Note that all calls are asynchronous,
which allows computation and memory tranfers to proceed concurrently

Another issue has to do with handling of data transposition (from row-based to column-based). When the
data size fits into the GPU memory, the data set is transposed once and used for all iterations. When the
data does not fit into the GPU memory, either transposition has to be performed per iteration, which
proved too high in overhead, or the CPU memory has to keep 2 copies of the data set, one row-based and
the other column-based, which is also not practical. Avoiding transposition altogether and force GPU to
work on row-based data proved to be unaccpetable in GPU performance. We solved this problem by
inventing a method for a separate GPU kernel to transpose the data block once it transferred. Our

experiments have shown that thisis the best solution to this problem.

A series of experiments have also been run to determine — —]
what is the optimal number of streams, as shown in L) " y— ”%
Table 4. It turns out that with the current GPU hardware, 2300000 e —— - o
. . . 2000000 400 0 .98 .88 A1 36|
running with two streams works the best, offering much 4000000 tool—sol 508380l osa et
. . 4000000 2| 400 50 .88 .89 .09 .56
better performance then the running with only one e B B e e et
stream (no overlapping), while running with more than Table4 performance comparison, number of streams

two streams does not bring in any additional benefit.

In enabling stream processing, we have observed that the

. . . dataset [time (s)

extra overhead in the form of a('jdlt'lonal transposition ol —2 K Mlnonstream] strean (2)]siowdown (9
work, kernel launch, and synchronization, has imposed a 2000000l 2 400 50 216 248 115
) T 2000000 8 100 50 2.48 5.95 2.40

1.1-2.5x degradation when compared to the original 20000000 of”—anol 5 [Iz
implementation where the entire data set fits into GPU 2000000 2| 00| 50| 43| 489 112
. . . 4000000 8 100 50 4.95 11.94 2.41

memory, as shown in Table 5. However, even with this 4000000] 8] 400] 50 903 1373 152

overhead, the use of GPU till offers significant speedup Table5 performance comparison, vs. non-stream version

over pure CPU implementation, and it is signficant that
GPU can now be applied to bigger data sets.

Use of Constant vs Texture Memory — Accommodating Large Number of Clusters

At each iteration, since we postpone the centroids GTX280 — S—
. . PR . atase Ime (seconds slowdown (X
calculation until we finish al the membership N[B[K| M| CMem| T.Mem| G:Mem| T vs.C[G vs.C
assignments, it is best to keep the centroids in constant e B e
i i i 2000000| 8| 100| 50 248 5.06 5.45 2.0 22,
memqry which is caghed. In the current generathn of e,
NVidia s GPUs, the size of the constant memory is 64 4000000(2| 100] 50| 288] 398 666 14| 23
. . . . 4000000| 2| 400| 50 4.36 8.73| 10.56 2.0 24
KB for every multi-processor. This is a resonable size 4000000 8| 100] 50| 4.95] f0.09] 1088] 20| 22
and in most cases suffcient for our purposes (i.e., to hold 40000001 81 4001 S0i 9.0 284 1908 55 21
shared read—only data-) HOWQ/H, as the_ number of Table 6 Cost for keeping centroids in other type of
clusters and the number of dimensions increase, the memory
constant memory will eventually become too small to €.Mem: Constant Memory
T.Mem: Texture Memory
hold these data. We therefore explore the use of texture G.Mem: Global Memory

memory, whose limit in current hardware is 128MB.

However, while the texture memory is usually faster than the global memory, it is still much slower than
constant memory. In our experiments running on GeForce GTX 280, as shown in Table 6, overally
speaking the program is about 2.2x slower using texture memory than using constant memory. (It is
interesting to also note that, as shown in Table 6, the globa memory can even be faster than texture
memory when the centroid array becomes large enough to cause too many cache misses on the texture

memory, making it a tossup between texture and global

memory.) o Coom

. . . . 2000000] 2| 100] 50| 1.58] _ 4.2| 24.44] 27| 155
It is also interesting to see the same comparsion on an 20000001 2T 400 sl amelanelmgae o1 1.0
earlier CUDA-enabled hardware, Quadro FX 4600, 2000000] 8| 400] 50 _9.42] 54.86] 25096] 58] 266
shown in Table 7. Here the texture memory is about 4.1 L e
times slower than the constant memory, while the global 4000000l 5] 100l So 716 20.72] 127001 42l 178
memory is about 18.2 times slower! Furthermore, the use 41182
of gl oba memory appears to get even worse in Table 7 Costs for keeping centroids in other type of
comparison as the centroid array increases its size. So memory

while in the current hardware, the distinction between global memory and texture memory has been
narrowed, the difference is much bigger on the earlier hardware. This illustrates the importance of
understanding the tradeoffs in managing the GPU memory hierarchy in performance-oriented
implementation and algorithm design.

Results with Very Large Data sets

The results with very large data sets are shown in Table 8, where the number of data points has been
increased to up to 100 million. The results are further explained below:

MineBench runs on a 32-bit system and is no

Iongq applicable Wher] data H sze 906 Jatasel N D K| M ::ATr\ee(Bs;nch HPL CPU|HPL GPU-IfIIF:r?:g:r?sh XI)'i\F/:‘SL CPU

beyond 50 million of 2-d data elements. This is O N 0 O - 1 3 N 4

why MineBench numbers are missing in the last Tooooool ol o0l —solgotes s asl sl — el

few rows. “HPL CPU” is based on the optimized RO 0902] 2 2 mmoome

CPU implementation on a 64-bit system and is 20000000141 —7000] 80| 3otz 0s| 881657 ‘31‘1‘2 0o 1027

able to go up to 100 million of 2-d data 20000000 5| —7000]—s0] G819 341 308 00| Tasdo]—ssas 079

50000000 4 1000 0 2048.92 158.99 75

elements. 50000000 4] _2000] 50 3793.58] 26337 03|

100000000 2 1000 0 3919.02] 20 8_5| 69.0

. 100000000 2| 2000 0 7211.69] 341.27| 79.7

At the point where D x k = 16,000, constant [_aos8] @55
memory can no longer hold the read-only shared Table8 Performance on large data sets

centroid data, and the implementation switches
over to using texture memory. This is shown in row 4 of Table 8. (This is the only scenario where
texture memory is used in this set of experiments.) Observe the drop in speedup performance when
this switch happens.

At the point when N x D = 200 million (which are shown at the last 4 rows in Table 8), the data set
can no longer fit in the GPU’s memory, and the implementation switches to mutli-tasked streaming.
Observe the moderate drop in speedup performance in these scenarios due to overhead of muilti-
tasked streaming.

The algorithm benefits from the larger number of clusters, and more than 478 times speedup can be
achieved vs. MineBench. The speedup drops by a few times when a switch to texture memory occurs
(i.e, shown in row 4), but it is still about 88 times faster. Overal, the GPU accelerated version offers
400x speedup over the baseline benchmark based on MineBench, and 88 times against our highly
optimized CPU-only version.

Compared to MineBench, our baseline benchmark program, the GPU-accelerated version is about
200x-400x faster than the CPU version running on a single core, data setwith higher speedups for
larger data sets. It is about 40x-80x faster than MineBench running on a single Quad-core chip, and
about 20x-40x faster than MineBench running on an 8-core workstation (see Table 1 for 8-core
results). Compared to our own highly optimized CPU version on a single core, the GPU accelerated
version is still about 50x-88x faster, or 12x-22x vs. quad core, and 6x-11x vs. 8 cores workstation.
These represent significant performance gains. In addition, more than one GPU board can be installed
into one machine, which will provide even more performance boost.

Compare to Previous Work on Using GPU for Clustering

We have downloaded the latest version from University of Virginia and have made changes so that we
can run same benchmark tests. It has shown a very respectable performance. Table 9 shows the results,
both programs was compiled using the same compiler and same compiler flags, running on the same

hardware with GTX280 GPU installed.

Our version is about 2 to 4x faster, with an average of 2.7x.

It also shows that the performance gap increases with the] 7 s - IR 1)
data set size, dimensionality, and the number of clusters. e B B) v Ry =
2000000 8] 400 50[16.32 4.53 36
We have also downloaded Gminer from their website. 2 o = 22
Again, we have used the same compiler and same compiler doooonol &l Toof_sof Tagel 495 28
flags, running on same hardware'. The results we obtained 27
have shown that both our solution and UoV’s solution are Table 9 Comparison with results reported by U. of
much faster than GMiner, which is also consistant with Virginia
UoV’s reports [FANOS]. The bitmap approach, while elegant N[D] KW Gminer] __FPL] Specdupst)
in expressing the problem, seems not a good choice for D] B B B B - E—r
performance consideration. It take more space as well when oot o0l 288 2
kislarge. This approach also requires to use shared memory I000000] 5| —400] S0 fas B[—da8[750
during centroids calculation, which has atighter limit (16KB e T By e T s
vs. 64KB). %05
Table 10 Comparison with GMiner

None of the works reported have dealt with the problem of a
large data set which can’t fit inside GPU’ s memory.

DiscussION

There are other ways to accelerate analytics, for example, using a large cluster of machines and specialy
designed hardware accelerators. However, it will need a very large cluster to offer equivalent
performance, or very expensive custom designed hardware. Our research shows that the GPU based
approach offers the best cost-performance ratio (About $400 for NVidia GeForce 280). It also offers a
much better energy-performance ratio than clusters. (NVidia GeForce 280's peak power consumption is
at about 180Ws))

While there has been considerable interest in using GPU in high performance computing [LUPQOS], there
is relatively little work so far in exploring the use of GPU in business intelligence. Some work has been
done to GPU to speed up decompression in data warehouses [LEHO8], however the results are at thistime
inconclusive. It is our thesis that with research insights in design principles, using GPU on the server side
to accelerate Bl has a great deal of potential.

CONCLUSION

We have reported our research on using GPU to accelerate large scale Bl analytics and the design and
implementation principles. For problems that can fit inside GPU’s memory, our GPU-accel erated version
can be 200-400x faster than MineBench, our baseline benchmark, running on a single CPU core, and
about 50x-88x faster than our highly optimized CPU version running on a sinlge core. These results are
better than previous works.

For larger problems whose data sets do not fit in the GPU’s memory, we further showed that GPUs can
dtill offer significant performance gains. For example, a very large data set with one hundred million 2-
dimensional data points, and two thousand clusters, can be processed by GPU in less than 6 minutes,
compared to 450 minutes with our highly optimized CPU version on a single core, representing an 80x
speedup.

! Asof today, Dec 15, 2008, the downloaded source contained a few bugs. The results shown was after our own
bug-fixing without contacts to the original authors. However, the performance reported (time per iteration) should
not change because of this.

In addition to K-Means, we are exploring implementation of other Bl agorithms, such as EM, K-
Harmonic Menans, Support Vector Machines, and Combinatorial optimization, as well as data
management algorithms such as index search and database layout and compression. Our hypothesisis that
a sweet spot exists for exploiting the GPGPU technology in Business Intelligence, and this work will be
furthered to derive the general principles in agorithm and implementation design as well as in
infrastructure software support to enable GPGPU technology to be utilized in BI.

References

[ARTO7] K-Meanst++ The Advantages of Careful Seeding. D. Arthur, S. Vassilvitskii, 2007 Symposium
on Discrete Algorithms, 2007.

[CHEQ7] A performance Study of General Purpose Application on Graphics Processors. S. Che et d,
Workshop on GPGPU, Boston, 2007

[CHEO8] A Performance Study of General-Purpose Application on Graphics Processors Using CUDA. S.
Cheet d, J. Pardlel-Distrib. Comput. 2008.

[CUAQ8] CUDA Zone. http://www.nvidia.com/object/cuda_home.html

[FANOS] Parallel Data Mining on Graphics Processors. W. Fang et a. Technical Report HKUST-CS08-
07, Oct 2008.

[GAROQ7] http://www.gartner.com/it/page.jsp?d=501189 2007

[INTO8] Intel® 64 and 1A-32 Architectures Software Devel oper's Manuals.
http://www.intel.com/products/processor/manuals’ 2008.

[KHAO3] Exploring VLSI Scalability of Stream Processors’, D. Khailany et a, Stanford and Rice
University, 2003.

[LEHO08] Exploiting Graphic Card Processor Technology to Accelerate Data Mining Queriesin SAP
NetWeaver BIA”, W. Lehner et a. Workshop on High Performance Data Mining (HPDM),
2008.

[LUPO8] Acclerating HPC Using GPU’s. G. Lupton and D. Thulin,
http://www.hp.com/techservers/hpcen/hpccollaboration/A DCatalyst/downl oads/accel erating_H
PC_Using_GPU's.pdf, June 2008.

[PISO5] NU-MineBench 2.0, Tech. Rep. CUCIS-2005-08-01, J. Pisharath, et a, Northwestern University,
2005.

[VOLO8] LU, QR and Cholesky Factorizations using Vector Capabilities of GPUs. V. Volkov and J.
Demmel, Technical Report No. UCB/EECS-2008-49, 2008.

[ZHAOO] Accurate Recasting of Parameter Estimation Algorithms Using Sufficient Statistics for Efficient
Parallel Speed-up: Demonstrated for Center-based Data Clustering Algorithms, Zhang, B, Hsu,
M., and Forman, G. , PKDD 2000.

