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ALGEBRAIC TOPOLOGY FOR COMPUTER VISION

DANIEL FREEDMAN∗ AND CHAO CHEN†

Abstract. Algebraic topology is generally considered one of the purest subfields of mathematics.
However, over the last decade two interesting new lines of research have emerged, one focusing on
algorithms for algebraic topology, and the other on applications of algebraic topology in engineering
and science. Amongst the new areas in which the techniques have been applied are computer vision
and image processing. In this paper, we survey the results of these endeavours. Because algebraic
topology is an area of mathematics with which most computer vision practitioners have no experience,
we review the machinery behind the theories of homology and persistent homology; our review
emphasizes intuitive explanations. In terms of applications to computer vision, we focus on four
illustrative problems: shape signatures, natural image statistics, image denoising, and segmentation.
Our hope is that this review will stimulate interest on the part of computer vision researchers to
both use and extend the tools of this new field.
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1. Introduction. Algebraic topology, with roots dating to Poincare at the turn
of the twentieth century, has traditionally been considered one of the purest subfields
of mathematics, with very few connections to applications. The last decade, however,
has witnessed an explosion of interest in computational aspects of algebraic topology,
and with the development of this computational machinery, a concomitant interest
in applications. In this paper, we review some of these developments, and show how
methods of computational algebraic topology may be fruitfully applied to problems
of computer vision and image processing. We hope that this review will stimulate
interest on the part of computer vision researchers to both use and extend these
tools.

As we have noted, the new interest in algebraic topological tools has been fueled
by two parallel developments: the design of new algebraic topological algorithms, and
the application of these algorithms to various scientific and engineering fields. The
new algorithms have focused almost exclusively on computations involving homology
groups; without going into detail at this point (we defer a formal description of ho-
mology theory until Section 2), we may note that homology groups are topological
invariants which, roughly speaking, count the number of holes of various dimensions
that a topological space has. The great advantage conferred by homology groups is
that these groups are relatively straightforward to compute with, as opposed to other
topological concepts such as homotopy groups, or worse, homeomorphism equivalence
classes. In particular, the concept of persistent homology as introduced by Edelsbrun-
ner et al. [20], has proven to be very useful. The new framework has been applied to
a number of fields, including molecular biology [16, 10], sensor networks [25], robotics
[13], graphics [14], geometric modeling [17], machine learning [35], as well as computer
vision and image processing.

Why use topological tools in computer vision? One answer is that, generally
speaking, topological invariants tend to be very robust. If the topological space is
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2 DANIEL FREEDMAN AND CHAO CHEN

stretched and deformed continuously, without any tearing or gluing, then the topo-
logical invariants of the space will be preserved. This is, of course, by design: topology
is essentially the study of invariants of spaces under this group of transformations –
continuous bijections with continuous inverses, also known as homeomorphisms. This
property might be quite useful in the design of shape signatures, where the goal is to
find a compact description of a shape which does not change much (if it all) when the
shape undergoes some types of deformation.

In fact, though, topological invariants do suffer from some problems. On the one
hand, such invariants are perhaps “too robust:” in the shape signature example, it is
easy to see that quite different shape may share the same invariant. For example, the
curve describing a hand-like shape and a circle are topologically equivalent, see Figure
1.1. Thus, the topological space often needs to be augmented by extra geometric
information before the invariant becomes useful; we will see an example of this type
of augmentation in Section 3.1. On the other hand, topological invariants can –
strangely – be quite sensitive to noise. An example of this phenomenon is shown in
Figure 1.1, in which a space (a torus), and the same space with a tiny handle attached,
are shown. Clearly, the two objects are very similar, but due to the presence of the
tiny handle, their topological invariants will not agree. Persistent homology is the tool
that deals with this type of “topological noise,” by examining not only the topological
features of a space, but also their “lifetime,” or significance.

 
 

(a) (b) (c) (d)

Fig. 1.1. The problems with topological invariants. The hand-like shape in (a) and the circle
in (b) are quite different shapes, but they possess the same topology. On the flip side, the ordinary
torus in (c) is similar to the two-handled torus in (d), due to the fact that the second handle is very
small (i.e. is “topological noise”). However, their topological descriptors will be different.

The fields of applied and computational algebraic topology are quite new, with
most of the key developments having taken place in the last decade. The applications
of these ideas to computer vision and image processing are even newer, with most
of the relevant work have appeared in the last five years. As a result, this paper
is perhaps slightly different from a traditional survey or review of the literature.
We focus on two goals: presenting the mathematical material – which can be quite
daunting at first blush – in an accessible fashion, and reviewing some of the most
interesting applications of this material to computer vision and image processing.
The main goal of the paper is to stimulate interest in these new algebraic topological
tools on the part of the computer vision community, so that the tools may be applied
to new problems, and perhaps computationally and theoretically extended as well.

The remainder of the paper is organized as follows. In Section 2, we review
the relevant material from algebraic topology, focusing in particular on homology
theory and persistent homology. Although the material is presented in a way to
make it as intuitive as possible, references to various standard texts and papers are
given, to aid the reader interested in pursuing the topic further. Section 3 presents
four interesting and illustrative applications of the topological techniques to computer
vision and image processing. In Section 3.1, the problem of designing a shape signature



ALGEBRAIC TOPOLOGY FOR COMPUTER VISION 3

is considered. Section 3.2 examines the problems of natural image statistics, and shows
that the new topological techniques can contribute to a more accurate characterization
of these statistics. Section 3.3 discusses the traditional problem of noise reduction, and
simultaneously examines the problem of image segmentation. Persistent homology
leads to a Mean Shift like algorithm, but one which has a rigorous way of merging
segments. Finally, Section 4 concludes.

2. A Review of Persistent and Computational Homology. In this section,
we provide the necessary background in algebraic topology, including a discussion of
simplicial complexes, homology groups, and persistent homology. We will try to give
an accessible introduction to the relevant notions, but given the space limitations our
discussion will necessarily be somewhat brief. The interested reader is referred to
[34, 27] for further details in general algebraic topology and [18, 24] for surveys of
persistent homology.

2.1. Simplicial Complex. A d-dimensional simplex or d-simplex, σ, is the con-
vex hull of d+ 1 affinely independent vertices, which means for any of these vertices,
vi, the d vectors vj−vi, j 6= i, are linearly independent. In other words, given a set of
(d+1) vertices such that no m-dimensional plane contains more than (m+1) of them,
a simplex is the set of points each of which is a linear combination of these vertices,
with all coefficients nonnegative and summing to 1. A 0-simplex, 1-simplex, 2-simplex
and 3-simplex are a vertex, edge, triangle and tetrahedron, respectively (Figure 2.1).
The convex hull of a nonempty subset of vertices of σ is its face.

Fig. 2.1. Simplices of dimension 0, 1, 2 and 3.

A simplicial complex K is a finite set of simplices that satisfies the following two
conditions.

1. Any face of a simplex in K is also in K.
2. The intersection of any two simplices in K is either empty or is a face for

both of them.
The dimension of a simplicial complex is the highest dimension of its simplices. If a
subset K0 ⊆ K is a simplicial complex, it is a subcomplex of K.

Please see Figure 2.2 for an example simplicial complex. The triangulation of
the cube provides 3-dimensional simplices. Therefore the simplicial complex is 3-
dimensional.

2.2. The Chain Group. In this paper, we only use simplicial homology of Z2

coefficients, which is introduced in this section. For completeness, in Section 2.5, we
briefly discuss simplicial homology of other coefficient rings.

Within a given simplicial complex K, a d-chain is a linear combination of d-
simplices in K, formally,

c =
∑
σ∈K

aσσ, aσ ∈ Z2.

Note that since the field is Z2, the set of d-chains is in one-to-one correspondence with
the set of subsets of d-simplices. A d-chain corresponds to a nd-dimensional vector,
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Fig. 2.2. An example simplicial complex. It is the combination of the triangulation of a tube
(open in both ends), an annulus and a cube. Note that the tube and the annulus share a common
edge.

whose nonzero entries correspond to the included d-simplices. Here nd is the number
of d-simplices in K. For example, in Figure 2.3, the red edges form a 1-chain and the
dark grey triangles form a 2-chain.

If we define the addition of chains as the addition of these vectors, all the d-
chains form the group of d-chains, Cd(K). Note that addition is using Z2 (i.e. mod
2) arithmetic.

2.3. The Cycle and Boundary Groups. The boundary of a d-chain is the
mod 2 sum of the (d − 1)-faces of all the d-simplices in the chain. For example, in
Figure 2.3, the green edges form the boundary of the 2-chain formed by the three
dark grey triangles. Two out of seven 1-dimensional faces (edges) of the triangles do
not appear in the boundary due to the mod 2 addition. Similarly, tetrahedra of the
cube form a 3-chain whose boundary is the triangles of the box bounding the cube.

Fig. 2.3. The green cycle is a boundary. The two blue cycles belong to a nontrivial class. The
red cycle represents another nontrivial class.

The boundary operator ∂d : Cd(K)→ Cd−1(K) is a group homomorphism, which
means that the boundary of the sum of any two d-chains is equal to the sum of their
boundaries, formally,

∂d(c1 + c2) = ∂d(c1) + ∂d(c2), ∀c1, c2 ∈ Cd(K).

A d-cycle is a d-chain with zero boundary. The set of d-cycles forms a subgroup
of the chain group, which is the kernel of the boundary operator, Zd(K) = ker(∂d).
The set of d-boundaries forms a group, which is the image of the boundary operator,
Bd(K) = img(∂d+1). A d-cycle which is not a d-boundary, z ∈ Zd(K)\Bd(K), is a
nonbounding cycle. In Figure 2.3, both the green and red chains are 1-cycles. (The
red chain goes around the interior of the tube, but some parts are necessarily occluded
in the rendering.) But only the red chain is nonbounding. It is not hard to see that
a d-boundary is also a d-cycle. Therefore, Bd(K) is a subgroup of Zd(K).
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In our case, the coefficients belong to a field, namely Z2; when this is the case,
the groups of chains, boundaries and cycles are all vector spaces.1 Computing the
boundary of a d-chain corresponds to multiplying the chain vector with a boundary
matrix [b1, ..., bnd

], whose column vectors are boundaries of d-simplices in K. By
slightly abusing notation, we call the boundary matrix ∂d.

See Figure 2.4 for a simplicial complex whose boundary matrices are

∂1 =


ab ac ad ae bc cd ce

a 1 1 1 1 0 0 0
b 1 0 0 0 1 0 0
c 0 1 0 0 1 1 1
d 0 0 1 0 0 1 0
e 0 0 0 1 0 0 1

 and ∂2 =



acd ace
ab 0 0
ac 1 1
ad 1 0
ae 0 1
bc 0 0
cd 1 0
ce 0 1


.

This simplicial complex has 1 nontrivial homology class, represented by three different
nonbounding cycles, (ab+ bc+ cd+ da), (ab+ bc+ ca) and (ab+ bc+ ce+ ea), whose
corresponding vectors are (1, 0, 1, 0, 1, 1, 0)T , (1, 1, 0, 0, 1, 0, 0)T and (1, 0, 0, 1, 1, 0, 1)T

respectively.

Fig. 2.4. A simplicial complex K containing five 0-simplices, seven 1-simplices and two 2-
simplices.

2.4. The Homology Group. In algebraic topology, we want to capture all
the nonbounding cycles, and more importantly, to classify them. We classify cycles
into equivalence classes, each of which contains the set of cycles whose difference is a
boundary. A homology class is the set of cycles

{z | z = z0 + ∂d+1c, c ∈ Cd+1(K)},

for a fixed z0. It is not hard to verify that this set is closed, that is, for any two
elements of the same set, their sum also belongs to the set. This set, denoted as [z0] =
z0+Bd(K), is called a coset. Any cycle belonging to the class can be the representative
cycle, z0. When the representative cycle z0 is a boundary, [z0] = 0 + Bd(K) is the
boundary group itself.

1Note that this is not true when the homology is over a ring which is not a field, such as Z.
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The set of equivalence classes, together with the boundary group, under addition
defined by the addition of their representative cycles, forms a nice group structure.
This group of equivalent classes is the quotient group Hd(K) = Zd(K)/Bd(K), and
is called the d-dimensional homology group. The boundary group 0 + Bd(K) is the
identity element of Hd(K). Otherwise, when z0 is a nonbounding cycle, [z0] is a
nontrivial homology class represented by z0. Cycles of the same homology class are
said to be homologous to each other, formally, z1 ∼ z2.

In Figure 2.3, the two blue cycles are homologous to each other, but not to the
red and green cycles. The 1-dimensional homology group has four different members,
represented by the green cycle (corresponding to the boundary group), the red cycle,
one of the blue cycles, and the sum of a red cycle and a blue cycle, respectively.

The dimension of the homology group is referred to as the Betti number,

βd = dim(Hd(K))
= dim(Zd(K))− dim(Bd(K)).

By linear algebra, the Betti number can be computed by computing the ranks of all
boundary matrices.

βd = (nd − rank(∂d))− rank(∂d+1).

As the dimension of the chain group is upper bounded by the cardinality of K, n, so
are the dimensions of Bd(K), Zd(K) and Hd(K).

2.5. Extensions of Homology Theory. Whereas the simplicial homology stud-
ies a topological space by studying its triangulation, for a general topological space,
we could use the singular homology. In singular homology, a simplex is defined as
a continuous mapping (not necessarily injective) from the standard simplex to the
topological space. The definition is extended to chains, boundary operations and sin-
gular homology groups. It can be proven that the simplicial homology of a simplicial
complex is isomorphic to the singular homology of its geometric realization (the un-
derlying space). This implies, in particular, that the simplicial homology of a space
does not depend on the particular simplicial complex chosen for the space. In the
figures in this paper, we may sometime ignore the simplicial complex and only show
the continuous images of chains.

We restrict our discussion of simplicial homology to be over Z2 field. In general,
the coefficients may belong to arbitrary abelian groups. In such cases, the group
structure of the homology can be more complicated. See [34] for more details.

2.6. Computation of Homology. Through a sequence of row and column
operations, we can transform the boundary matrices into the so-called Smith Normal
Form. We do not explain the structure of the Smith Normal Form [30] here; instead,
we simply note that in the example of the simplicial complex of Figure 2.4, the
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boundary matrices can be rewritten as

∂′1 =


ab ac ad ae ab+ ac+ bc ac+ ae+ ce ac+ ad+ cd

a+ b 1 0 0 0 0 0 0
a+ c 0 1 0 0 0 0 0
a+ d 0 0 1 0 0 0 0
a+ e 0 0 0 1 0 0 0
a 0 0 0 0 0 0 0

 and

∂′2 =



acd ace
ac+ ad+ cd 1 0
ac+ ae+ ce 0 1
ab+ ac+ bc 0 0

ae 0 0
ad 0 0
ac 0 0
ab 0 0


.

Note that we have effectively changed the bases of the chain groups (0- and 1-
dimensional chain groups in the case of ∂1, and 1- and 2-dimensional chain groups
in the case of ∂2) by the above operations. For the d-dimensional boundary matrix,
the set of zero columns corresponds to a basis of the d-dimensional cycle group, i.e.
{ab + ac + bc, ac + ae + ce, ac + ad + cd}. The set of nonzero rows corresponds to a
basis of the (d−1)-dimensional boundary group. There is a one-to-one correspondence
between this boundary basis and the set of d-chains corresponding to nonzero columns,
specified by these nonzero diagonal entries in the new boundary matrix.2 Each element
of this (d−1)-dimensional boundary basis is the boundary of its corresponding d-chain.
In our example, the chains ac + ad + cd and ac + ae + ce are the boundaries of the
2-chains acd and ace, respectively.

The idea of reducing the boundary matrices into canonical forms [34] has been
extended to various reduction algorithms for different purposes [29, 18, 44]. Next, we
will introduce one specific reduction, namely, the persistent homology reduction.

2.7. Persistent Homology. We first give the intuition. Given a topological
space X and a filter function f : X → R, persistent homology studies changes in the
topology of the sublevel sets, Xt = f−1(−∞, t]. In Figure 2.5 the topological space
is the 2-dimensional plane R2 and the filter function is the peaks function in matlab.
Sublevel sets with different threshold t appear to have different topology (Figure 2.6).

As we increase the threshold t from −∞ to +∞, the sublevel set grows from
the empty set to the entire topological space. During the growth, different homology
classes may be born and then die. For example, in Figure 2.6(a), a new component is
born. This component dies later (Figure 2.6(b)), when it merges into some component
born earlier. In Figure 2.6(c), a new hole is born when a same component contacts
itself. The newborn hole dies (Figure 2.6(d)) when it is sealed up.

The purpose of persistent homology is to capture the birth and death times of
these components (0-dimensional homology classes) and holes (1-dimensional classes),
and more generally, higher dimensional homology classes. By birth, we mean a ho-
mology class comes into being; by death, we mean it either becomes trivial or becomes
identical to some other class born earlier. The persistence, or lifetime of a class is the

2The relationship may be more complicated if the homology is not over Z2 field.
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difference between its death and birth times. Those with longer lives tell us something
about the global structure of the space X, as described by the filter function.

Fig. 2.5. Persistent homology of the 2D plane filtered by a filter function (the peaks function
in matlab).

(a) t = −0.03, a new com-
ponent is born (the patch
in the center).

(b) t = 0.42, the new
component dies. A new
hole is born at almost the
same time.

(c) t = 2.24, a new hole
(on the right) is born.

(d) t = 3.58, the new hole
dies.

Fig. 2.6. Sublevel sets and their homologies. We draw the continuous sublevel sets whereas the
persistence is computed through the simplicial complex.

Next, we introduce formal definition. Edelsbrunner et al. [20, 43] defined the
persistent homology of a simplicial complex K filtered by a scalar function. (In the
example of Figure 2.6, we may imagine a triangulation of the relevant topological
space, i.e. the plane.) A filter function f : K → R assigns each simplex in K a real
value, such that the function value of a simplex is no smaller than those of its faces.
Without loss of generality, we assume that the filter function values of all simplices
are different. Simplices of K are sorted in ascending order according to their filter
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function values,

(σ1, σ2, · · · , σm), f(σi) < f(σi+1), ∀1 ≤ i ≤ m− 1,

namely, the simplex-ordering of K with regard to f . This is the order in which
simplices enter the sublevel set f−1(−∞, t] as t increases. Any sublevel set is a
subcomplex, denoted as Ki, which has and only has σ1, · · · , σi as its simplices. The
nested sequence of sublevel sets

∅ = K0 ⊂ K1 ⊂ · · · ⊂ Km = K

is called a filtration of K. Let fi = f(σi) and f0 = −∞, Ki = f−1(−∞, fi].
For any 0 ≤ i < j ≤ m, the inclusion mapping of Ki into Kj induces a group

homomorphism of the corresponding homology groups,

F i,jd : Hd(Ki)→ Hd(Kj).

A persistent homology class, h, is born at the time fi if h ∈ Hd(Ki) but h /∈
img(F i−1,i

d ). Given h is born at fi, h dies at time fj if F i,j−1
d (h) /∈ img(F i−1,j−1

d ) but
F i,jd (h) ∈ img(F i−1,j

d ). Any class in the coset h + img(F i−1,i
d ) is born at fi and dies

at fj .
The persistence of a persistent homology class is defined as the difference between

its death and birth times, which quantifies the significance of the feature. Not all the
persistent homology classes die. Those which never die are essential classes, which
correspond to nontrivial homology classes of K. An essential homology class has the
+∞ death time, and thus, an infinite persistence. For example, in the example of
Figure 2.5, there are three 0-dimensional persistent classes. Only one of them has
infinite persistence and the other two are relatively less significant and eventually die.
The three 1-dimensional persistent classes also have different significances, measured
by their persistences. In next section, we will discuss this in further detail.

An essential justification of the usefulness of persistence is its stability [9]. It has
been proved that for a given topological space, the difference between the persistent
homologies of two separate filter functions is upper bounded by the difference between
the filter functions, as measured by the sup-norm. The distance between persistent
homologies is defined as the distance between their persistent diagrams, which will
be introduced in the next section. In a recent work [5], restrictions on the space and
filter functions have been relaxed. Furthermore, the stability has been extended to
two different topological spaces, e.g. a manifold and its finite sampling.

The definition of persistent homology can be naturally extended to general topo-
logical space with mild assumptions. The stability guarantees that the persistence of
a general topological spaces filtered by a scalar function can be approximated by the
persistence of its finite approximation (triangulation of the space and finite sampling
of the filter function).

2.8. The Persistence Diagram and Barcodes. The persistent homology can
be visualized and studied using a persistence diagram, in which each persistent ho-
mology class corresponds to a point whose x and y coordinates are its birth and death
times, respectively. Its persistence is equal to its vertical or horizontal distance from
the diagonal. Important features correspond to points further away from the diagonal
in the persistence diagram. Please see Figure 2.7(a) for the persistent diagram of the
previous example. We plot 0-dimensional and 1-dimensional persistent classes with
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round and square marks, respectively. From the diagram, we call see that there are
two important persistent classes, corresponding to the component of the space itself,
and the hole which is sealed up very late (when t = 8.06). For convenience, persistence
classes with infinite death time (essential) are plotted on a horizontal line, whose y
coordinate is infinity (the thickened line in the figure).

Formally, the persistence diagram includes all the points corresponding to persis-
tent homology classes, as well as the diagonal line. It is proven to be stable to changes
in the filter function [9]. This stability of persistence implies that the persistence di-
agram remains almost the same if we introduce noise into the filter function (Figure
2.7(c)).

Alternatively, we could plot the life intervals of persistent classes in the real line.
For a persistent class, the birth and death time are the start and end points of the
interval. We call this representation a persistent barcode. See Figure 2.7(b) for the
persistent barcode representation of the persistent homology in the preceding example.
0-dimensional classes (resp. 1-dimensional) are drawn in solid (resp. dashed) lines with
round (resp. square) marks on the start and end points. The essential 0-dimensional
class has no death time.

(a) The persistent diagram. (b) The persistent barcode.

(c) Noise is introduced.

Fig. 2.7. Persistent diagram, barcode and the filter function with noise.



ALGEBRAIC TOPOLOGY FOR COMPUTER VISION 11

2.9. Computing Persistence. Edelsbrunner et al. [20] devised an O(n3) algo-
rithm to compute the persistent homology. Its input are a simplicial complex and a
filter function f . Its output are the birth and death times of all the persistent homol-
ogy classes. The latest version of this algorithm [10, 18] unifies boundary matrices
of different dimensions into one overall incidence matrix D. Rows and columns of D
correspond to simplices of K, indexed in the simplex-ordering. An entry of D is 1 if
and only if its corresponding entry is 1 in the corresponding boundary matrix. The
algorithm performs column reductions on D from left to right. Each new column is
reduced by addition with the already reduced columns, until its lowest nonzero entry
is as high as possible.

More specifically, during the reduction, record low(i) as the lowest nonzero entry
of each column i. To reduce column i, we repeatedly find column j satisfying j < i
and low(j) = low(i); we then add column j to column i, until column i becomes a
zero column or we cannot find a qualified j anymore. If column i is reduced to a zero
column, low(i) does not exist. This is equivalent to reducing each boundary matrix
into a canonical form, whose nonzero columns all have different lowest nonzero entries,
and thus are linearly independent. Despite the order of reduction, as long as we only
use columns on the left for reduction, the pair of each column and its lowest nonzero
entry is unique.

The reduction of D can be written as a matrix multiplication,

R = DV, (2.1)

where R is the reduced matrix and V is an upper triangular matrix. The reduced
matrix R provides rank(D) many pairs of simplices, (σi, σj) : low(j) = i. In such a
pair, we say σj is paired on the right, σi is paired on the left. Each simplex appear in
at most one pair, either on the left or on the right (cannot be both). For simplices that
are not paired with any other simplex, we say they are paired with infinity: (σk,∞).
Simplices paired on the right are negative simplices. Simplices paired on the left, with
other simplices or with infinity, are positive simplices.

A pair (σi, σj) corresponds to a persistent class, whose birth and death time are
fi = f(σi) and fj = f(σj), respectively. A pair (σk,∞) corresponds to an essential
class, whose birth time is fk = f(σk).

The reduction is completely recorded in the matrix V . Columns of V corre-
sponding to positive simplices form bases of cycle groups. Columns corresponding to
positive simplices paired with +∞ are cycles representing essential classes and form
homology cycle bases.

3. Applications to Computer Vision. In this section, we sketch out appli-
cations of the algebraic topological apparatus from the previous section to problems
in computer vision and image processing. We focus on four illustrative applications:
computation of shape signatures, the statistics of natural images, noise reduction, and
image segmentation. In the case of the latter two, we treat them simultaneously, as
the topological treatments of the two problems are closely related. For each of the
problems of shape signatures and natural image statistics, we describe the technique
of a single paper; in the case of noise reduction and image segmentation, we describe
the results of a number of papers, as these latter problems have received somewhat
more treatment in the still nascent literature.

3.1. Shape Signatures. A shape signature is a compact representation of the
geometry of an object. An ideal signature should be the same for all of the objects
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within a particular class of objects. For example, if the class is the set of objects which
are rigid motions (rotations plus translations) of a given template curve in the plane,
then the curvature function is a good signature. In fact, in this example, the curvature
function is the ideal signature, as it is equal for all objects in the set, and is different
from the signature for an object from any other such set. Such ideal signatures3

are difficult to find in most cases of interest, so instead researchers have settled on
a compromise: signatures which are similar within a class of interest, and dissimilar
between classes, where similarity is measured by a particular distance function on
signatures. For a survey of shape signatures, see [42, 39] and references therein.

In this section, we review the work of Collins et al. [4, 11] on shape signatures.
The method presented in this work has the advantage that it is applicable to manifolds
of any dimension; and with small modifications, to non-manifold spaces as well. Before
delving into the details of this method, a natural question may arise: is the homology,
on its own, sufficient to act as a shape signature? The answer is no, for two reasons.
The first reason is that homology groups are sensitive to topological noise: as we have
already seen in Figure 1.1, adding a small handle to a surface will completely change
the homology of that surface. However, as we have noted, persistence is able to deal
neatly with this problem. Thus, we may wonder whether persistent homology – with
an appropriate filtration – is sufficient to act as a shape signature. The answer again
is no, and this is the second reason homology (and persistent homology) is insufficient:
homology is too coarse a description of an object, as very different objects may have
the same or similar homology groups. (This issue was also illustrated in Figure 1.1.)
The key to the method of Collins et al. is to augment the underlying space to create
a geometrically more informative space, and then to use the tools of persistence to
compute signature of this space.
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Fig. 5. X ⊂ R3 is the boundary of the positive octant. We show the fibers at three types of points.

(3) Corner point: T (X)(0,0,0) is the union of three circles. The circles, shown in Fig-
ure 5(c), intersect pairwise at pairs of antipodal points. T (X) contains the fiber
at the corner point as a deformation retract, so they have the same homotopy
type.

Example 3.4 (cone). Let X denote the cone given by z2 = x2 + y2, and z ≤ 0.
We would like to distinguish the cone point at the origin from the other regular
points using the tangent complex. Every regular point p is smooth, so the fiber
T (X)p is a full circle. In fact, two regular points that lie on the same line through
the origin have the same fiber, as shown in Figure 6. The fiber at the origin consists
of the union of all circles occurring at the regular points, or equivalently, the set of
points (x, y, z) in S2 with |z| ≤

√
2

2 . This set is homeomorphic to an annulus, which
is homotopy equivalent to a circle, as shown in Example 2.3. Therefore, we cannot
distinguish the cone point from the regular points using the tangent complex T (X).

The features detected by homology of the tangent complex are sharp features:
they are unaffected by smooth diffeomorphisms of the ambient space Rn. How-

Fig. 6. Bottom half of cone x2 + y2 = z2. The fiber Tδ(X)p at each smooth point p is a full circle

(left). These fibers sweep out an annulus (right), which is the fiber at the origin.

place a vertex in V for each interval in B1 [ B2: After

sorting the intervals, we scan the intervals to compute all

intersecting pairs between the two sets [28]. Each pair

ðI ; JÞ 2 B1 
 B2 adds an edge with weight jI \ Jj to E.

Maximizing the similarity is equivalent to the well-

known maximum weight bipartite matching problem. In

our software, we solve this problem with the function

MAX_WEIGHT_BIPARTITE_MATCHING from the

LEDA graph library [29,30]. We then sum the dissim-

ilarity of each pair of matched intervals, as well as the

length of the unmatched intervals, to get the distance.

4. Algebraic curves

Having described our methods for computing the

metric space of barcodes, we examine our shape

descriptor for PCDs of families of algebraic curves.

Throughout this section, we use a neighborhood of k ¼

20 points for computing fibers and estimating curvature.

4.1. Family of ellipses

Our first family of spaces are ellipses given by the

equation x2

a2 þ
y2

b2 ¼ 1: We compute PCDs for the five

ellipses shown in Fig. 4 with semi-major axis a ¼ 0:5 and

semi-minor axes b equal to 0.5, 0.4, 0.3, 0.2, and 0.1,

from top to bottom. To generate the point sets, we select

50 points per unit length spaced evenly along the x- and

y-axis, and then project these samples onto the true

curve. Therefore, the points are roughly Dx ¼ 0:02

apart. We then add Gaussian noise to each point with

mean 0 and standard deviation equal to half the inter-

point distance or 0.01. For our metric, we use a scaling

factor o ¼ 0:1: To determine an appropriate value for �
for computing the Rips complex, we utilize our rule-of-

thumb: Eq. (2) from Section 3.2. The maximum

curvature for the ellipses shown is kmax ¼ 50; so � �
0:02

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 52

p
=2 � 0:05: This value successfully connects

points with close basepoints and tangent directions,

while still keeping antipodal points in the individual

fibers separated.

4.2. Family of cubics

Our second family of spaces are cubics given by the

equation y ¼ x3 � ax: The five cubics shown in Fig. 5

have a equal to 0, 1, 2, 3, and 4, respectively. In this case,

the portion of the graph sampled is approximately three

by three. In order to have roughly the same number of

points as the ellipses, we select 15 points per unit length

spaced evenly along the x- and y-axis, and project them

as before. The points of P are now roughly 0.06 apart.

We add Gaussian noise to each point with mean 0 and

standard deviation half the inter-point distance or 0.03.

For our metric, we use o ¼ 0:5; primarily for aesthetic

reasons as the fibers are then more spread out. The

maximum curvature on the cubics is kmax � 8; and our

rule-of-thumb suggests that we need � � 0:4: However,

� ¼ 0:2 is sufficient in this case.

5. Extensions

In Section 3, we assumed that our PCD was sampled

from a closed smooth curve in the plane. Our PCDs in

the last section, however, violated our assumption as

both families had added noise, and the family of cubics

featured boundary points. Our method performed quite

well, however, and naturally, we would like our method

to generalize to other misbehaving PCDs. In this section,

we characterize several such phenomena. For each

problem, we describe possible solutions that are restric-

tions of methods that work in arbitrary dimensions. In
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curvature, and b0-barcode.

A. Collins et al. / Computers & Graphics 28 (2004) 881–894 887

place a vertex in V for each interval in B1 [ B2: After

sorting the intervals, we scan the intervals to compute all

intersecting pairs between the two sets [28]. Each pair

ðI ; JÞ 2 B1 
 B2 adds an edge with weight jI \ Jj to E.

Maximizing the similarity is equivalent to the well-

known maximum weight bipartite matching problem. In

our software, we solve this problem with the function

MAX_WEIGHT_BIPARTITE_MATCHING from the

LEDA graph library [29,30]. We then sum the dissim-

ilarity of each pair of matched intervals, as well as the

length of the unmatched intervals, to get the distance.
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y-axis, and then project these samples onto the true
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apart. We then add Gaussian noise to each point with

mean 0 and standard deviation equal to half the inter-

point distance or 0.01. For our metric, we use a scaling
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points with close basepoints and tangent directions,
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Our second family of spaces are cubics given by the

equation y ¼ x3 � ax: The five cubics shown in Fig. 5

have a equal to 0, 1, 2, 3, and 4, respectively. In this case,

the portion of the graph sampled is approximately three

by three. In order to have roughly the same number of

points as the ellipses, we select 15 points per unit length

spaced evenly along the x- and y-axis, and project them

as before. The points of P are now roughly 0.06 apart.

We add Gaussian noise to each point with mean 0 and

standard deviation half the inter-point distance or 0.03.

For our metric, we use o ¼ 0:5; primarily for aesthetic

reasons as the fibers are then more spread out. The

maximum curvature on the cubics is kmax � 8; and our

rule-of-thumb suggests that we need � � 0:4: However,

� ¼ 0:2 is sufficient in this case.

5. Extensions

In Section 3, we assumed that our PCD was sampled

from a closed smooth curve in the plane. Our PCDs in

the last section, however, violated our assumption as

both families had added noise, and the family of cubics

featured boundary points. Our method performed quite

well, however, and naturally, we would like our method

to generalize to other misbehaving PCDs. In this section,

we characterize several such phenomena. For each

problem, we describe possible solutions that are restric-

tions of methods that work in arbitrary dimensions. In
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Fig. 3.1. Two visualizations of the tangent complex. Left: the space is the blue cone, and the
unit tangent vectors, which augment each point, are visualized as red circles. Middle and Right: the
space is circle, here represented as a point cloud (middle); in this 1-dimensional case, the tangent
complex can be represented explicitly (right). (Left figure taken from [4]. Copyright c©2005 World
Scientific. Reprinted with permission. All rights reserved. Middle and right figures taken from [11].
Copyright c©2004 Elsevier. Reprinted with permission. All rights reserved.)

We begin by describing the augmented space. Let X be the space of interest,
which is a subset of Rn. Define T 0(X) ⊂ X× Sn−1 as

T 0(X) =
{

(x, ξ)
∣∣∣∣limt→0

d(x+ tξ,X)
t

= 0
}

Then the tangent complex of X, T (X), is the closure of T 0(X). In the case of a

3Note, however, that the curvature function has many problems of its own: in particular, it
amplifies noise.
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manifold, the tangent complex is similar to the tangent bundle of the manifold4 –
that is, each point is augmented with the set of unit tangent vectors to the manifold
at that point. Thus, for example, in the case of a smooth surface living in R3, each
point is augmented by a circle of tangent vectors, see Figure 3.1 (left). In the case of
a smooth closed curve, each point is augmented by exactly two vectors (i.e., the two
elements of S0), and the tangent complex can be visualized more explicitly, see Figure
3.1 (middle and right). The case of non-manifold behaviour is somewhat different. If
a surface has a crease – e.g. imagine two planes meeting in a line – then at the crease,
each point is augmented with not one, but two circles of tangent vectors. See Figure
3.2 for an illustration.
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Fig. 5. X ⊂ R3 is the boundary of the positive octant. We show the fibers at three types of points.

(3) Corner point: T (X)(0,0,0) is the union of three circles. The circles, shown in Fig-
ure 5(c), intersect pairwise at pairs of antipodal points. T (X) contains the fiber
at the corner point as a deformation retract, so they have the same homotopy
type.

Example 3.4 (cone). Let X denote the cone given by z2 = x2 + y2, and z ≤ 0.
We would like to distinguish the cone point at the origin from the other regular
points using the tangent complex. Every regular point p is smooth, so the fiber
T (X)p is a full circle. In fact, two regular points that lie on the same line through
the origin have the same fiber, as shown in Figure 6. The fiber at the origin consists
of the union of all circles occurring at the regular points, or equivalently, the set of
points (x, y, z) in S2 with |z| ≤

√
2

2 . This set is homeomorphic to an annulus, which
is homotopy equivalent to a circle, as shown in Example 2.3. Therefore, we cannot
distinguish the cone point from the regular points using the tangent complex T (X).

The features detected by homology of the tangent complex are sharp features:
they are unaffected by smooth diffeomorphisms of the ambient space Rn. How-

Fig. 6. Bottom half of cone x2 + y2 = z2. The fiber Tδ(X)p at each smooth point p is a full circle

(left). These fibers sweep out an annulus (right), which is the fiber at the origin.

Fig. 3.2. The tangent complex for non-manifolds. Left: where the space is a 2-manifold, each
point is augmented by a single circle of unit tangent vectors. Middle and right: where there is non-
manifold behaviour, the space may be augmented by more than one circle of unit tangent vectors.
(Figures taken from [4]. Copyright c©2005 World Scientific. Reprinted with permission. All rights
reserved.)

In order to apply the tools of persistent homology, we will need a filter function
for the space T (X); ideally, the filter function should be geometric. Let us begin by
focusing on the case when X is a curve, and consider the curvature κ(x) at each point
x ∈ X. For any point in the tangent complex, t = (x, ξ) ∈ T (X), we extend the
curvature from the curve itself to the tangent complex in the natural way, κ(t) =
κ(x, ξ) ≡ κ(x). Then we may use the curvature as our filtration function. In the
case of curves, this has the effect of focusing on the flat parts of the curve first, while
adding in increasingly more curvy segments as we increase the value of κ. This idea
is illustrated in Figure 3.3 (middle column), for a family of ellipses. To extend this
definition to arbitrary manifolds – and indeed, arbitrary spaces – one may, for each
t = (x, ξ), define a circle of second order contact (akin to a classical osculating circle).
The reciprocal of the radius of this circle gives an analogue to the curvature, which
we may then use as a filter function. The interested reader is referred to [4, 11] for
further details.

Finally, the shape signature for the space X is found by computing the persistent
homology of the filtered tangent complex. This leads to a set of persistent barcodes,
one set for each dimension. Recall, from Section 2.7, that the barcodes consist of
intervals of the real line: the beginning of the interval is the birthtime and the end
of the interval is the deathtime of the feature in question. These barcodes can be
visualized by stacking the intervals, see Figure 3.3 (right column). (A historical note:
the language of persistence diagrams has by and large replaced that of barcodes,
although the two formalisms are equivalent. The reason that the papers [4, 11] use
barcodes is that they preceded the development of the compact language of persistence

4Though not exactly the same, due to the use of unit vectors Sn−1 in the definition of the tangent
complex.
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Maximizing the similarity is equivalent to the well-

known maximum weight bipartite matching problem. In

our software, we solve this problem with the function

MAX_WEIGHT_BIPARTITE_MATCHING from the

LEDA graph library [29,30]. We then sum the dissim-

ilarity of each pair of matched intervals, as well as the

length of the unmatched intervals, to get the distance.

4. Algebraic curves

Having described our methods for computing the

metric space of barcodes, we examine our shape

descriptor for PCDs of families of algebraic curves.
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20 points for computing fibers and estimating curvature.
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equation x2

a2 þ
y2

b2 ¼ 1: We compute PCDs for the five

ellipses shown in Fig. 4 with semi-major axis a ¼ 0:5 and

semi-minor axes b equal to 0.5, 0.4, 0.3, 0.2, and 0.1,

from top to bottom. To generate the point sets, we select

50 points per unit length spaced evenly along the x- and

y-axis, and then project these samples onto the true

curve. Therefore, the points are roughly Dx ¼ 0:02

apart. We then add Gaussian noise to each point with

mean 0 and standard deviation equal to half the inter-

point distance or 0.01. For our metric, we use a scaling

factor o ¼ 0:1: To determine an appropriate value for �
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thumb: Eq. (2) from Section 3.2. The maximum
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points with close basepoints and tangent directions,
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fibers separated.
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have a equal to 0, 1, 2, 3, and 4, respectively. In this case,

the portion of the graph sampled is approximately three

by three. In order to have roughly the same number of

points as the ellipses, we select 15 points per unit length

spaced evenly along the x- and y-axis, and project them

as before. The points of P are now roughly 0.06 apart.

We add Gaussian noise to each point with mean 0 and

standard deviation half the inter-point distance or 0.03.

For our metric, we use o ¼ 0:5; primarily for aesthetic

reasons as the fibers are then more spread out. The

maximum curvature on the cubics is kmax � 8; and our

rule-of-thumb suggests that we need � � 0:4: However,

� ¼ 0:2 is sufficient in this case.
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In Section 3, we assumed that our PCD was sampled

from a closed smooth curve in the plane. Our PCDs in

the last section, however, violated our assumption as

both families had added noise, and the family of cubics

featured boundary points. Our method performed quite

well, however, and naturally, we would like our method

to generalize to other misbehaving PCDs. In this section,

we characterize several such phenomena. For each

problem, we describe possible solutions that are restric-

tions of methods that work in arbitrary dimensions. In
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Fig. 3.3. The persistence barcodes of shapes. Left: various ellipses, represented as point clouds.
Middle: the filtered tangent complexes of these point shapes. The filter function is represented using
colour, where the colour code is given at the bottom of the figure. Right: the corresponding barcodes
(dimension 0), computing using persistent homology. (Figures taken from [11]. Copyright c©2004
Elsevier. Reprinted with permission. All rights reserved.)

diagrams [9].)
In order to compare two shapes, the barcode of a given dimension of the first

shape is compared with the barcode of the same dimension of the second shape. The
metric between barcodes is given by a matching algorithm: the cost of matching
two intervals is given by the length of their symmetric difference, while the cost of
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unmatched intervals is simply their length. The distance between two barcodes is then
given by the cost of the minimal matching; this distance, which can be computed by
a bipartite graph matching algorithm, can be shown to be a metric, as desired.

We briefly mention some of the implementation details that are necessary for
computing this signature when the shape of interest is given by a point cloud, which
is a common case in practice. The tangent complex can be computed by using PCA
on points in the neighbourhood of a given point (taken by the k nearest neighbours for
a parameter k); if the space is not smooth, this information can be backed out of the
eigenanalysis of the PCA, though this is more complicated. To compute the curvature
at a given point, a circle of second order contact is fit to the data. To compute the
persistence, a simplicial complex is first computed as the Cech complex [34, 27], which
is the dual to the union of balls where each ball (of a fixed radius ε) is centered around
a point in the tangent complex. The complex is the dual in the sense that where two
balls intersect, an edge is placed; where three balls intersect, a triangle is placed; and so
on. This complex can be shown to be homotopy equivalent, and hence homologically
equivalent, to the the union of balls [15]. Finally, the standard persistent homology
algorithm (see Section 2.9) can be applied to this simplicial complex. For further
details, the reader is referred to [4, 11].

Results of applying the algorithm to the problem of computing shape signatures of
a set of handwritten letters are shown in Figure 3.4. Quite obviously, there are mature
technologies available for the OCR problem, and this technique does not outperform
them. Nonetheless, the results illustrate the power of the approach. In this example,
there are eight letters, of which there are ten examples of each; in the experiments,
the algorithm described above is augmented with simple information about the Betti
numbers β0 and β1 (see [11] for details). The resulting distance matrix for these
80 elements is shown in Figure 3.4: clearly, the shape signatures have the ability to
capture the shape characteristics of the handwritten letters.

distances between respective barcodes of two shapes. We

then combine the information from the different

barcodes for shape comparison.

In the rest of this section, we demonstrate our

framework through the letter classification example.

We must emphasize, however, that the key aspect of our

framework is its generality: it does not rely on detailed

ad-hoc analysis of a particular classification problem,

but rather on a family of signatures that are potentially

useful for solving other problems. Our methods also

have a conceptual nature that extend naturally to higher

dimensional settings.

We begin by extracting information from the topol-

ogy of the letters. As already discussed, the letters are

partially classifiable using the number of loops or b1: We

compute b1 for each letter via a simple method that does

not require a filtration, although we may employ more

robust methods for its calculation. We include all points

of the PCD and use balls of radius 0.08 to construct

a complex. We then create a mask matrix, shown in

Fig. 13(b), where the distance between two shapes is 0 if

they have identical b1 and infinite otherwise. Observe

that the mask allows us to distinguish ‘D’ from ‘V’, and

‘O’ from ‘U’, ‘C’, and ‘I’. We now apply this mask to the

matrix of tangent information in Fig. 13(a) that we

obtained in the last section to get Fig. 13(c). Our new

matrix classifies ‘D’, ‘V’, and ‘I’ correctly, but still has

two blocks that group ‘A’ and ‘R’, and ‘U’, ‘C’, and ‘I’,

respectively.

We next examine separating ‘U’ and ‘C’. An

important characteristic of our metric is that it is

invariant under both small elastic and large rigid

motions. Since a ‘C’ is basically a ‘U’ turned on its

side, we should not expect any topological method to

separate them. However, as the alphabet illustrates,

there are situations where it is necessary to distinguish

between an object and a rotated version of itself. One

way to do so is to employ a directional Morse function

and examine the evolution of the excursion sets X f ¼

fðx; yÞ 2 X j y4f g: As with all our techniques, this

method for directional distinction extends in an obvious

way to higher dimensional point clouds. In this case, we

consider a vertical top-down filtration. Note that

b0ðUf Þ ¼ 2 while b0ðCf Þ ¼ 1 for most values of f.

Therefore, the corresponding b0-barcodes allow us

to distinguish between ‘U’ and ‘C’, as seen in Fig. 14.

This filtration gives us the distance matrix shown in

Fig. 13(d).

Our final filtration employs a horizontal right-left

Morse function. This filtration sharpens the distinction

between the pairs f‘A’; ‘R’g and f‘C’; ‘I’g: We show the

resulting b0-barcodes for representatives of each pair in

Fig. 15, and the resulting distance matrix is shown in

Fig. 13(e).

Having described our filtrations, we combine the

multiple signatures into a single measure, depicted by

the distance matrix in Fig. 13(f). This measure is based

on the four invariant signatures:

(1) b0-barcodes of the tangent complex, filtered by

curvature, in Fig. 13(a),

(2) b1 of the letters in Fig. 13(b),
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Fig. 14. Filtering the original point clouds from top to bottom

gives different b0 barcodes for ‘C’ and ‘U’.

(a) (b)

(c) (d)

(e) (f)

Fig. 13. Distance matrices for 10 scanned instances of the

letters ‘A’, ‘R’, ‘D’, ‘V’, ‘U’, ‘C’, ‘I’ and ‘O’. We map the

distance between each pair to gray-scale. (a) b0-barcodes for the

tangent complex T(P) filtered by curvature, (b) a mask matrix,

where distance is 0 if the letters have the same b1; and 1;
otherwise, (c) the combination of (a) and (b), (d) b0 of original

space filtered top-down distinguishes ‘U’ from ‘C’, (e) b0 of

original space filtered right-left distinguishes pairs f‘A’; ‘R’g and

f‘C’; ‘T’g; (f) the combination of all four distance functions

distinguishes all letters.

A. Collins et al. / Computers & Graphics 28 (2004) 881–894892

Fig. 3.4. The distance matrix for the 80 letters (10 examples of each of 8 letters); dark
represents a small value, and light represents a large value. (Figures taken from [11]. Copyright
c©2004 Elsevier. Reprinted with permission. All rights reserved.)

3.2. Statistics of Natural Images. The problem of characterizing the statis-
tics of natural images is a traditional topic in computer vision [22, 36, 40, 28, 31, 41].
The goal is to find the basic “rules” which describe images of natural scenes; these
rules, once found, serve two purposes. The first purpose is an engineering one: the
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rules serve as a prior on images, which can be used in probabilistic or energy for-
mulations of a variety of problems. For example, in the case of the so called Patch
Transform [8], the goal is to reassemble the patches of an image in a jigsaw puzzle-like
fashion while satisfying some user constraints. The natural image statistics provided
by the Gaussian Mixture Model Field of Experts model [41] are used to ensure that
the assembly process leads to a sensible image. In contrast to such an engineering
view, the second purpose of the study of image statistics is a scientific one. In this
setting, the characterization of natural image statistics is interesting in its own right,
and can lead to information about the way in which animals process visual data.

In this section, we review the work of Carlsson et al. [3], which uses a persistent
homological approach to characterizing natural image statistics. The data used in
this paper is the same as that of Lee et al. [31], which we briefly review. A set of 3×3
image patches is taken from a collection of more than 4, 000 images of natural scenes.
The top 20% of the patches, as measured by within-patch contrast, are retained,
leading to a collection of about 8 million patches. Each patch is naturally represented
as a vector in R9; however, in order to better elucidate the structure two further
transformations are performed on each patch. First, the mean intensity is subtracted
off of each patch, leading to the patches inhabiting an 8-dimensional subspace of R9.
Second, the patches are normalized so that each has unit norm. (Note that the process
by which this normalization occurs is more complex than simply dividing by the norm
of the vector; the interested reader is referred to [31] for details.) Finally, then, the
transformed patches live in S7, the 7-sphere.

In this setting, the goal is thus to characterize the statistics of the dense point
cloud lying on S7. In order to do so, a filter function related to the density of the
points is introduced. For each point x in the point cloud, let δk(x) be the distance
from x to its kth nearest neighbour. Thus, δk(x) is inversely related to the density: the
smaller is δk(x), the more densely represented is the area around a point. k itself is a
parameter: setting k to have a small value results in a focus on the fine-scale structure
of the data; whereas for k large, the coarse-scale structure of the point cloud becomes
more apparent. For a fixed k, the function δk(x) is used as the filter function, with
one caveat: the filtration ends when we have accumulated a fraction T of the points,
where T is usually taken as 0.25. The reason for this latter restriction is that the
high density points (i.e., the fraction T of points with the smallest values of δk(x))
are said to form a “stable core,” which best represent the image statistics. Finally, to
speed up the computation, 5, 000 points at random are sampled from the data, and
the persistence computation is performed on this subset. Many random samplings
are taken to ensure consistency.

Given this filter function, what statistics are discovered? The first important
discovery is that with a k value of 300 – that is, a large k value corresponding a
relatively coarse scale – there is a single long-lived 1-dimensional homology class, see
Figure 3.5 (top). To what does this circle on S7 correspond? An examination of the
patches making up this circle indicates that they are patches with a light region on
one side of the patch, and a dark region on the other: that is, they are edges. The
circular structure turns out to be derived from the angle of the line separating the
dark and the light regions; the angle can effectively take on all value from 0 to π. See
Figure 3.5 (bottom) for an illustration.

The second important discovery uses a k value of 25, for a more fine scale analysis.
At this scale, it is observed that there are 5 long-lived generators of the 1-dimensional
homology group, see Figure 3.6 (top). There are several structures which can give
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Figure 5. The H1 barcode for a random sampling of 5000 points
of M[300, 25] yields a single generator. This generator indicates
the nodal line between a single light and single dark patch as being
the dominant feature of the primary circle in M.

hard to visualize? While the work of Carlsson et al. is very recent, there are several
applications of the topological approach to data analysis which argue in favor of
the proposition that homological structures in high dimensional data sets are of
scientific significance. Besides the Mumford data set reviewed here, persistent ho-
mology computations are being applied to geometric features of curves (e.g., optical
character recognition) [5] and visual cortex data from primate experiments [4].

With regards to the natural image data, it is instructive to think of the persistent
homology ofM as something akin to a Taylor approximation of the true space. The
reduction of the full data set to an S7 via projection is really a normalization to
eliminate the zero-order (or “single patch”) terms in the data set. Following this
analogy, the H1 primary generator fills the role of a next term in the expansion of the
homotopy type of the data set, collating the nodal curve between two contrasting
patches. The secondary circles, interpolating between single and dual nodal curves,
act as higher-order terms in the expansion, in which horizontal and vertical biases
arise.

It is here that one gets deeper insight into the data set. Inspired by the meaning
of the H1 barcodes of M, further investigation reveals what appears to be an
intrinsic bias toward horizontal and vertical directions in the natural image data, as
opposed to an artifact of the (right) angle at which the camera was held: [3] reports

Fig. 3.5. Coarse scale structure of the image statistics, corresponding to k = 300. Top: at
this scale, the persistence barcode indicates that the data has one long-lived 1-dimensional homology
class. Bottom: this single circle in S7 corresponds to edges, with the angle in the circle giving
the angle of the edge. (Figures taken from [24]. Copyright c©2008 Robert Ghrist. Reprinted with
permission. All rights reserved.)

rise to β1 = 5 on the 7-sphere; on examination of the data, it turns out that the
relevant structure is a series of three interlocking circles, see Figure 3.6 (bottom).
The first circle is the same as that already discovered at the coarse scale; the other
two each intersect the original circle twice, but are disjoint from each other. It turns
out that these two new circles represent patches which include three stripes, in which
the stripes are not necessarily monotonic by grayscale, see Figure 3.7. Because they
intersect the original circle, they include the edge patches described above (which
are three stripe patterns, but where the stripes are monotonic by grayscale); but
they also include non-edge patches, such as a patch consisting of two dark stripes
sandwiching a light stripe. What is the difference between the two new circles? One
circle represents horizontal stripes, and the other vertical stripes. Note that these
horizontal and vertical stripes are not due to pixellization effects – if the images are
all rotated by an angle of π/4, the true horizontal and vertical directions, represented
as diagonals in this coordinate system, are still discovered [3].

Two more points deserve mention. First, more complex information can also be
gleaned from the data, by looking at higher-order homology groups. For example, in
looking at the 2-dimensional persistent homology, one finds a Klein Bottle structure.
This structure has an explanation in terms of the underlying patches, but one which is
somewhat involved to explain. The interested reader is referred to [3, 24] for a more in
depth exposition. Second, this type of analysis has not been limited to natural image
statistics; in a recent paper [38], Singh et al. have applied the same set of techniques
to visual cortex data from experiments on primates. The latter should be of interest
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Figure 6. The H1 barcode for M[15, 25] reveals five persistent
generators. This implies the existence of two secondary circles,
each of which intersects the third, large-k, primary circle twice.

Figure 7. The secondary generators of H1 for M[15, 25] have
an interpretation as regulating changes from dual-patch to triple-
patch high contrast regions in horizontal and vertical biases respec-
tively.

that a repetition of the experiment with a camera held at a constant angle π/4 yields
a data set whose secondary persistent H1 generators exhibits a bias towards true
vertical and true horizontal: the axis of pixellation appears less relevant than the
axis of gravity in natural image data.

Is there any predictive power in the barcodes of the data set? Recent progress
[3] demonstrates the insight that a persistent topology approach can yield. The
barcodes for the second persistent homology H2 are more volatile with respect to

Fig. 3.6. Fine scale structure of the image statistics, corresponding to k = 25. Top: at this
scale, the persistence barcode indicates that the data has five long-lived 1-dimensional homology
classes. Bottom: β1 = 5 results from a series of three interlocking circles, in which the first circle
is the coarse scale circle, while the other two each intersect the original circle twice, but are dis-
joint from each other. (Figures taken from [24]. Copyright c©2008 Robert Ghrist. Reprinted with
permission. All rights reserved.)
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Figure 6. The H1 barcode for M[15, 25] reveals five persistent
generators. This implies the existence of two secondary circles,
each of which intersects the third, large-k, primary circle twice.

Figure 7. The secondary generators of H1 for M[15, 25] have
an interpretation as regulating changes from dual-patch to triple-
patch high contrast regions in horizontal and vertical biases respec-
tively.

that a repetition of the experiment with a camera held at a constant angle π/4 yields
a data set whose secondary persistent H1 generators exhibits a bias towards true
vertical and true horizontal: the axis of pixellation appears less relevant than the
axis of gravity in natural image data.

Is there any predictive power in the barcodes of the data set? Recent progress
[3] demonstrates the insight that a persistent topology approach can yield. The
barcodes for the second persistent homology H2 are more volatile with respect to

Fig. 3.7. Analyzing the fine scale structure. The two new circles represent patches which include
three stripes, in which the stripes are not necessarily monotonic by grayscale. (Figures taken from
[24]. Copyright c©2008 Robert Ghrist. Reprinted with permission. All rights reserved.)

to the biological vision community.

3.3. Noise Reduction and Segmentation. The problem of noise reduction in
images is an old one. The literature on this subject is vast, so no attempt will be made
to survey it here; instead, let us simply note that classical approaches tend to be based
on ideas from signal processing, estimation theory, and diffusion. In some instances,
there are distinct features which one wishes to preserve in the image. For example,
in terrain images, it is critical to preserve the large peaks, valleys, and passes, which
correspond to maxima, minima, and saddles, respectively; see Figure 3.8. In ordinary
images, it may also be useful to preserve “important” critical points, as this allows
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the image to retain a certain sharpness while noise is removed.

simplices of {P}, Cv and Cw can only grow in G, i.e Cv ⊆ C ′
v and Cw ⊆ C ′

w. Suppose for the purpose of
contradiction that e is not paired with v in G, and that v is the lowest vertex of F \ {P} whose pairing is
di�erent in G. Then the lowest vertex u of C ′

v in G is not v. If u ∈ Cv, u ∈ {P} (its value changed). Since
the simplices of {P} are paired with vertices of {P} in G (they form local pairs), e cannot be paired with u,
so it must be paired with the lowest vertex w′ of C ′

w which is at least as low as w and then lower than v.
For the same reason as before, w′ /∈ {P}. w′ is then a vertex of F \ {P} whose pairing is di�erent in G and is
lower than v which contradicts our hypothesis. Assuming now that u ∈ C ′

v \ Cv, the path from v to u must
contain an edge of C ′

v whose f -value is larger than the f -value of e in F (otherwise that path would already
be in Cv). Consider the edge η on this path with largest f -value. This edge must be an edge of {P}. It
merges in F two components, one contains w and the other one contains u. So η must be paired in F with
a vertex ν lower than u or w. But this implies [v, e]F ⊆ [ν, η]F and contradicts that P is closed by inclusion.

D Application to the topological simpli�cation of terrains

We wrote an implementation of our algorithms using the python language. It is specialized to the topological
simpli�cation of terrains. The terrain is a triangulated 2D grid whose simplices are assigned a height value in
[0, 1]. The terrain is made manifold by gluing dummy triangles from the boundary of the terrain to a dummy
vertex, thus forming a topological 2-sphere. The dummy simplices are assigned height greater that one. In
practice, this is not ideal, as the many dummy triangles and edges tend to interfere with the pairing of the
actual terrain's simplices; it would be preferable to use a single dummy 2-dimensional face whose boundary
spans the whole terrain boundary edges. Such a dummy face would become the only positive (and un-paired)
2-simplex, and would therefore not interfere with the pairing of the actual simplices. Figure 2 shows two
simpli�cations of the height function of a terrain. Additional views of the same terrain, including 3D views,
can be found at the following URL: http://www-sop.inria.fr/members/Samuel.Hornus/simplif/ .

Figure 2: (This is a color �gure) Left : a 80x80 terrain. Heights range from blue (low = 0.0), through
cyan, green, yellow to red (high = 1.0). Middle: A 0.2-simpli�cation of the height function has been
computed. Right : A 1-simpli�cation of the height function has been computed. The terrain has
38396 simplices. The computation of the spanning tree took 1.32 seconds. Each computation of
the persistence pairs took roughly 2.37 seconds. Each simpli�cation step took roughly 0.41 seconds.
Timings were measured on a Core 2 duo 2.6 GHz processor.
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Fig. 3.8. Simplification of a terrain image. Left: the original terrain image, in which heights
range from blue (low) through cyan, green, yellow, and to red (high). Middle and right: simplifica-
tions of the terrain image which preserve large critical points. (Figures taken from [1]. Copyright
c©2009 Dominique Attali. Reprinted with permission. All rights reserved.)

What is the connection between critical points and the homological tools that
we have thus far discussed? The answer is that the critical points of a function and
the persistent homology of that function are intimately related. In particular, the
topology of the sublevel set of the function changes whenever there is a critical point;
this can be seen in the example of Figure 2.6 and corresponding discussion in Section
2.7. As we know, the persistent homology itself is defined based on the changing
homology of the sublevel sets. In fact, then, it turns out that the critical points
of a function are in two-to-one correspondence with the points of the persistence
diagram. That is, every birth time and every death time of a homological feature
corresponds to a critical point of the relevant function. (Recall that each point in the
persistence diagram consists of both a birth and death coordinate, which is why the
correspondence is two-to-one.)

Note that this relationship between the homology of a space and the critical
points of a function on that space dates to Morse and his eponymous Morse Theory
[33, 32]. Classical Morse Theory assumes a smooth function, which in addition satisfies
a mild condition known as the Morse condition. The advantage of the persistent
homology approach is that no smoothness is assumed for the function, so that a
sensible definition of critical points exists even when the underlying function is not
smooth. That is, a homological critical value [9] of a function is a value at which the
homology of the sublevel set of the function changes. This definition corresponds with
the traditional critical point (at which the derivative vanishes) for smooth functions,
but is more general. For example, it can be applied to a piecewise linear function,
which is a standard case seen in applications.

Having established the relationship between critical points and points in the per-
sistence diagram, we may now formulate the problem of feature-sensitive noise reduc-
tion as that of removing points with small persistence from the persistence diagram,
while leaving other points in the persistence diagram alone. This has the effect of
retaining important critical points, while discarding other, less significant ones. This
problem has been addressed in the persistent homology literature, and goes under the
title persistence simplification. The formal problem of persistence simplification, as
described in [21, 1] is as follows:

Definition 3.1. Given a topological space X and function f : X→ R, a function
g : X → R is an ε-simplification of f if the two functions are close, ‖f − g‖∞ ≤ ∞,
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and the persistence diagram D(g) contains only those points in the diagram D(f) that
are more than ε away from the diagonal.
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Fig. 3.9. Persistence simplification. Left: the original persistence diagram for a given function
f . Right: the persistence diagram for the ε-simplification g of the function f . Here ε = 0.3.

It should be clear that if such a g can be found, it will have solved the problem of
feature-sensitive noise reduction, see Figure 3.9. Before examining algorithms for this
general problem, however, we observe an interesting connection with the seemingly
unrelated problem of segmentation. It will turn out that an important problem in
segmentation admits a simpler version of persistence simplification, for which an al-
gorithm has been developed. We will then return to a high-level discussion of results
for the more general persistence simplification problem.

3.3.1. Segmentation. The connection between persistence simplification and
segmentation comes about through the Mean Shift algorithm. In Mean Shift seg-
mentation [23, 7, 12], each pixel in the image is assigned a feature vector – generally
speaking, colour, texture, or some combination of the two, which is then often aug-
mented by position. A non-parametric estimate of the probability density in this
feature space – the Kernel Density Estimate (KDE) – is then constructed. Given this
KDE, the image is segmented according to the modes, or local maxima, of the KDE.
In particular, each local maximum of the KDE represents a segment of the image,
and each pixel is assigned to the local maximum in whose basin of attraction the pixel
lies.

Despite its success in many applications, the Mean Shift algorithm is known to
generally yield an oversegmentation; that is, it produces too many segments. In some
applications, this is tolerable; Mean Shift is sometimes used as preprocessing for a
more sophisticated clustering algorithm, and is used simply to reduce the complexity
of this second algorithm. On the other hand, it would be desirable if Mean Shift
were able to yield a more precise segmentation on its own. Since Mean Shift tends
to oversegment, the results might be corrected by forcing the algorithm to produce
fewer clusters. Since each cluster corresponds to a local maximum of the KDE, the
problem of mitigating oversegmentation is equivalent to the problem of filtering the
KDE so as to preserve the most important local maxima, while eliminating smaller
ones. In this sense, this problem is formally similar to a simpler version of the feature-
sensitive noise reduction and persistence simplification outlined above. In particular,
we are interested not in preserving all large critical points, but rather, only large local
maxima.

Chazal et al. [6] present an elegant and practical method for attacking this prob-
lem. Before discussing their method, however, it is worth pointing out the contribution
of Paris and Durand [37], who also attempt to tackle this problem. The basic idea
of the paper is roughly in consonance with the approach of persistence simplification,
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and is the first work, to our knowledge, to try to tackle this problem in relation to
segmentation. However, there are problems: the method is very “digital,” in that it
attempts to find basins of attraction and then to use a topological persistence ori-
ented criterion for eliminating modes, by just using the digital grid, without a true
simplicial complex (or other appropriate cell complex) underlying the analysis. The
digitality proves to be a problem, both in theory and in practice. In theory, there is
not much one can prove here; and in practice, some grid points are never classified as
belonging to any basin of attraction, and a heuristic must be used.

The method of Chazal et al. [6], by contrast, is well-founded theoretically, and
provides some nice practical properties as well. The set up is as follows. It is assumed
that the topological space X is given to the user as a sampled space, that is as a finite
subset L. In fact, the representation of L is entirely coordinate-free; all that is needed
is the set of pairwise distances between all points in L.5 The goal is to compute the
persistence of this sampled representation, and to simplify it, in the sense above: to
eliminate local maxima whose persistence is smaller than a given threshold.

The first contribution is to show how the persistence diagram itself may be com-
puted for the sampled representation. The details of this procedure are highly tech-
nical (relying on many algebraic concepts, such as persistence modules, not described
here), so we will only give a rough sketch; the interested reader is referred to [6]
for the full treatment. The Rips Complex of a finite point set L and a positive real
number δ is denoted Rδ(L) and is defined as follows. A k-simplex σ with vertex set
v0, . . . , vk ∈ L belongs to Rδ(L) if the distance between all pairs of vertices is less
than or equal to δ: d(vi, vj) ≤ δ for all i, j. It turns out that there is no value of δ for
which the persistent homology of the Rips Complex Rδ(L) matches that of X, even
for well-sampled spaces. Instead, the relationship between a pair of Rips Complexes,
Rδ(L) and R2δ(L), is sufficient to yield the persistent homology of the original space
X. We do not formally define the nature of this relationship here, as it depends on
very advanced algebraic concepts; we merely note that it can proven that if the space
is well sampled, the persistence diagram of X can be computed.

Note that this result on its own is quite important, as it allows for the computation
of persistence in high dimensional spaces, when an approach based on a simplicial
complex would be too expensive (note that the size of the simplicial complex generally
grows exponentially with the embedding dimension). In addition, though, the authors
show how to use this scheme to simply deal with the oversegmentation problem from
Mean Shift. First, a sampled version of Mean Shift is proposed: at any point, a
steepest ascent vector is defined by looking at the highest (by function value) point in
the neighbourhood of the point, where the neighbourhood is defined using 1-skeleton
of the the Rips Complex R2δ(L). The point is then moved according to this steepest
ascent vector, unless the point itself is the highest point in its own neighbourhood,
in which case it is deemed a local maximum. The persistences of each such local
maximum have already been computed using the algorithm sketched in the previous
paragraph. In fact, the result of that algorithm is a diagram in which neighbouring
maxima are linked. More formally, the diagram consists of pairs (v, e), where v is a
local maximum and e is an edge of the 1-skeleton of the Rips Complex R2δ(L) that
links the connected component created by v in R2δ(L) to the one created by some
higher maximum u. If the lifespan of the connected component of v is shorter than
some threshold, then the cluster of v is merged into that of u.

5Thus, X must also be a metric space; in practice, this is never a restriction, and most relevant
spaces have even more structure, that is they are Riemannian manifolds.
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This algorithm, in addition to its provable properties (under appropriate sam-
pling), can be shown to have a reasonable complexity. In particular, the complexity
of the first part of the algorithm, the computation of persistence, is O(n3), where n
is the number of points in L, whereas the second part is close to linear in n. Results
of applying the algorithm are illustrated in Figure 3.10.
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Figure 1: Top row, left: a noisy scalar fieldf defined over a sampled
planar square domainX; center and right: approximations of the 0- and
1-dimensional persistence barcodes of(−f) generated by our method from
the values off at the sample points and from their approximate pairwise
geodesic distances inX. The six long intervals in the 0-dimensional barcode
correspond to the six prominent peaks off (including the top of the crater),
while the long interval in the 1-dimensional barcode reveals the ring shape
of the basin of attraction of the top of the crater. Bottom row: approximate
basins of attraction of the peaks off , before (left) and after (right) merging
non-persistent clusters, thus revealing the intuitive structure off .

settings. We also show how to find the basins of attraction
of the peaks off inside the point cloudL, and how to merge
them according to the persistence information, as shown in
Figure 1 (right). Our algorithms are based on variants [11,
12] of the celebrated persistence algorithm [16, 26]. They
can be easily implemented, have reasonable complexities,
and are provably correct. Finally, we show experimental
results in a variety of applications (Section 5): while we do
not provide definitive solutions to these problems, the results
demonstrate the potential of our method and its possible
interest for the community.

Related work. Topological persistence has already been
used in the past for the analysis and simplification of scalar
fields. The original persistence paper [16] showed how to
simplify the graph of a piecewise-linear (PL) real-valued
function f defined over a simplicial complexX in R3, by
iteratively cancelling the pairs of critical points provided
by the persistence barcode off . This approach was later
refined, in the special case whereX is a triangulated 2-
manifold, to only cancel the pairs corresponding to short
intervals in the barcode, thus removing the topological noise
up to a certain prescribed amplitude [17]. In parallel,
others have considered computing complete or simplified
representations of Morse-Smale complexes, which capture
important information about the structure of scalar fields.
Building upon the idea of iterative cancellations of pairs
of critical points, it is possible to construct hierarchies
of increasingly coarse Morse-Smale complexes from PL
functions defined over triangulated 2- or 3-manifolds [1, 5,
15, 20, 21]. All these methods are restricted to the low-

dimensional PL setting, and in this respect our work suggests
a way of extending the approach to a more general class
of spaces via finite sampling and modulo some (controlled)
errors in the output. Although finding and merging the basins
of attraction of the peaks of a scalar fieldf is simpler than
computing a full hierarchy of Morse-Smale complexes, it is
already a challenge in our context, where the knowledge off
is very weak, and where the potentially high dimensionality
of the data makes PL approximations prohibitively costly.

Another line of work in which persistence has played
a prominent role is homology inference from point cloud
data, where the goal is to recover the homological type of
some unknown compact setX ⊂ Rd from a finite setL
of sample points. Under a sufficient sampling density, the
distance toL in Rd approximates the distance toX, therefore
their persistence diagrams are close, by a stability resultof
[10]. This makes the inference of the homology ofX from
the persistence of the distance toL theoretically possible
[8, 10]. In practice, computing this distance at every point
of the ambient spaceRd is prohibitively expensive. It is then
necessary to resort to auxiliary algebraic constructions,such
as theRips complexRδ(L), defined as the abstract simplicial
complex whose simplices correspond to non-empty subsets
of L of diameter less thanδ. As proved in [9], a pair
of nested Rips complexesRδ(L) ⊆ Rδ′(L) can provably
capture the homology of the underlying spaceX, though the
the individual complexes do not. Our algebraic construction
(see Section 3) is directly inspired from this property, andin
fact our theoretical analysis is articulated in the same way
as in [9], namely: we first work out structural properties
of unions of geodesic balls, which we prove to also hold
for their nerves (also calleďCech complexes); then, using
the strong relationship that exists betweenČech and Rips
complexes, we derive structural properties for families of
Rips complexes. Note that the core of our analysis differs
significantly from [9], because our families of complexes are
built differently. In particular, the classical notion of stability
of persistence diagrams, as introduced in [10], is not broad
enough to encompass our setting, where it is replaced by a
generalized version recently proposed by Chazalet al. [6].

2 Background

Throughout the paper we use singular homology with co-
efficients in a commutative ringR, assumed to be a field
and omitted in the notations. We also use elements of Rie-
mannian geometry and of Morse theory (in Section 4.2).
Thorough introductions to these topics may be found in
[4, 22, 23].

2.1 Persistence modules and filtrations.The main alge-
braic objects under study here are persistence modules. A
persistence module is a family{Φα}α∈R of R-modules to-
gether with a family{φβ

α : Φα → Φβ}α≤β∈R of homo-

Fig. 3.10. Segmentation. Top left: the function. Top right: the persistence barcode, illustrating
the six large local maxima. Bottom left: the results of (discrete) Mean Shift. Bottom right: the
results after merging clusters using persistence. (Figures taken from [6]. Copyright c©2009 Society
for Industrial and Applied Mathematics. Reprinted with permission. All rights reserved.)

3.3.2. General Persistence Simplification. As opposed to our treatment of
the problems in the previous sections, in which we focused on one particular algorithm,
we will, in this case, proceed to summarize the state of existing results in this field.
This is mainly due to the fact that a somewhat larger literature has developed to tackle
the problem of persistence simplification, though open problems certainly remain.

The first paper to introduce persistent homology [20] had already considered the
problem of persistence simplification. In this paper, the setting is purely simplicial,
and the filtration itself is given by an ordering of the simplices. An algorithm is
given there for reordering of the simplices which simplifies the persistence. The main
problem with this algorithm is that it reduces the persistence of all features; that is,
all points in the persistence diagram are moved closer to the diagonal, not just the
smaller ones. This is not really desirable, as we wish to preserve the large features as
precisely as possible, while removing the smaller ones.

Another series of papers tackle the problem of simplification of Morse-Smale com-
plexes [19, 2, 26]. Briefly, the Morse-Smale complex bears a close relationship to the
problem of Mean-Shift segmentation. The stable manifolds which are key ingredients
in the construction of the Morse-Smale complex are essentially the same as the basins
of attraction of the modes in Mean Shift; however, the Morse-Smale complex also
uses the concept of unstable manifolds, which do not have a direct analogy in Mean
Shift. (Unstable manifolds essentially allow points to run “down the hill” instead of
up; this can be seen as performing mean shift on the negative KDE. The Morse-Smale
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complex then takes intersections of stable and unstable manifolds to build up a cell
complex.) In any case, these methods are somewhat different than what we are after,
as they simplify the complex, rather than the filter function. That is, they change
the domain of the function, rather than the function itself. This can sometime be
useful, for example when we are interested in simplifying a surface; but in the case
of noise reduction and reducing the effects of oversegmentation, the main issue is to
simplify the function itself. Another issue related to these results for simplification
is that they are highly dependent on the low-dimension of the underlying topological
space; the cases of dimension 2 and 3 are considered in the previously cited papers. In
many cases, clustering occurs in spaces of somewhat higher dimension; for example, a
common choice in image segmentation is d = 5, where each vector comprises 3 colour
and 2 spatial dimensions.

The original paper to pose the problem of persistence simplification as in Defini-
tion 3.1 was that of Edelsbrunner et al. [21]. In this paper, the problem was solved for
piecewise linear 2-manifolds (surface meshes); the main problem with the approach
is simply that it is very complicated, with many subcases considered. A more recent
paper of Attali et al. [1] also tackles the problem of simplification on surfaces and
provides a simple algorithm, which is relatively simple to implement, and has a low
complexity – linear in the number of simplices. Both of these papers are restricted to
the low-dimensional setting.

4. Conclusions and Future Directions. In this survey, we have reviewed the
new algorithms for computing with algebraic topology, in particular those of persistent
homology; and the application of these algorithms to problems in computer vision and
image processing. These techniques require some effort to master, but we believe that
the effort is worth it: the techniques represent powerful new ways to attack interesting
problems in vision. Furthermore, the methods have an inherent elegance which should
be appealing to many vision researchers.

We believe that this is just the beginning of the application of the new topolog-
ical ideas to image related problems. This paper ought merely to be an entryway
for interested researchers into the exciting new developments in computational and
applied algebraic topology. It is our hope that in five years, another survey will be
required to cover the much larger number of developments that will have taken place
over that time.
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