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counterfeit images from the same source) for initial training, and thereafter adaptively classifies and
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multiple sources of counterfeit images are identified, and secondary links between the non-compliant
samples are provided. The system currently uses a set of 420 metrics which are filtered to a smaller set of
metrics that can reliably describe our known set. This filtered set of metrics, or metric signature, is used for
the search and clustering thereafter. We describe the use of this system to streamline and enhance
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ABSTRACT

Variable Data Printing (VDP) offers the ability to uniquely
tag each item in a serialized list, which increases product
security. However, it is often not cost-effective or practical
to employ VDP, in which case each item is printed with the
same set of images. The brand owner should be able to use
such “static” printed areas to gauge if the printing was
performed by an authentic or a counterfeit printer/label
converter. In this paper, we describe a system that uses a
small set of pre-classified images (either authentic or
counterfeit images from the same source) for initial training,
and thereafter adaptively classifies and aggregates images
from multiple sources as they join the population to be
classified. Authentic images and multiple sources of
counterfeit images are identified, and secondary links
between the non-compliant samples are provided. The system
currently uses a set of 420 metrics which are filtered to a
smaller set of metrics that can reliably describe our known
set. This filtered set of metrics, or metric signature, is used
for the search and clustering thereafter. We describe the use
of this system to streamline and enhance investigations for a
global brand protection program. For such an application, the
system is tuned for high precision.

Index Terms— Image classification, image forensics,
counterfeiting, security printing

1. INTRODUCTION

According to the recent World Economic Forum,
counterfeiting currently comprises 8% of world trade [1].
This is a significant health, safety and security threat for the
world’s people. As with other broad security concerns,
counterfeiting cannot be eliminated. A more practical and
proactive plan is to attempt to determine the relative size of
each counterfeiter, and target the largest counterfeiters for
elimination first. Since counterfeit material shows up
through different channels, we are working to create a
method useful for identifying commonalities between these
various samples. Samples exhibiting similar characteristics
are logically suspected of originating from the same source.
Selecting the proper sample sets for further investigation

leads investigators to larger counterfeiting operations,
potentially creating the largest possible disruption in the
counterfeiting chain of operations for the amount spent in
investigation and legal response. Optimizing return-on-
investment (ROI) in brand protection is important to offset
the disadvantages brands face, since counterfeiters do not
spend money on brand development, marketing, quality
control, etc.

To provide an effective ROI, we need to both classify
suspect samples as authentic or counterfeit, and
automatically detect clusters (aggregates of related images)
in our suspect sample set. Although the system we have
designed, built and deployed is not necessarily a final
forensic tool, it is an effective front-end to traditional
forensic analysis. The system discovers sets of samples that
should be examined in greater detail, and determines the
relative size of each potential counterfeit source: clusters
formed are assumed to be part of the same counterfeit
network, or at minimum having a supplier in common.

Our data to date supports this assumption. HP has
deployed our approach internally to aid in its anti-
counterfeiting efforts. While we cannot provide specific data
on HP’s counterfeit rates or intervention statistics, we
describe how our access to “known” counterfeits is used to
optimize our system settings. We describe the methods used
in our “image forensics” in Section 2. Results are provided
in Section 3. A brief discussion comprises Section 4.

2. METHODS USED

Variable Data Printing (VDP) is an excellent means to
incorporate high-density security material directly on a
physical object of value (package, label, document, ticket,
etc.). In some cases, VDP may not be available or affordable,
obviating the use of printing for authentication. However,
due to the “variable” nature of static printing (color, ink,
substrate, and finishing variability), even static printed areas
can be analyzed to gauge authenticity of the print. By
extracting such non-variable images and comparing them to
known-authentic sets of the same images, we can determine
the authenticity of an unassigned sample. For example, on
HP’s Inkjet cartridge packages, a suitable image is that of the
girl that appears on a variety of SKUs (Figure 1).



Figure 1. Scan of an image from an authentic sample (left)
and a counterfeit sample (right).

Once an image of interest (IOI) is selected, a population
of related samples is analyzed to initiate the system. These
may be a selection of authentic samples of the same SKU, or
a selection of samples seized from a single counterfeiter.
Once those samples are processed, they will comprise the
initial, or base, population.

2.1 Describing Samples

The initial version of the Image-Based Forensic System
(IBFS) uses a feature set of 420 image metrics, from which
an image class-specific “signature” of metrics is selected.
These metrics, once defined, provide a description of the
population of interest. The same set of metrics can be also
used, comparatively, to find additional clustering
information of the suspect samples.

The initial 420 metric set consists of 42 metrics that are
computed for each of ten representations of the image. These
“maps” transform the original RGB (red, green, blue) images
as follows: (1) R channel, (2) G channel, (3) B channel, (4)
Cyan, C = (G+B-R+255)/3, channel, (5) Magenta, M =
(R+B-G+256)/3, channel, (6) Yellow, Y = (R+G-B+255)/3,
channel, (7) Hue, (8) Saturation = max(R,G,B) * (1 –
min(R,G,B)/sum(R,G,B) ), (9) Intensity = (R+G+B)/3, and
(10) Pixel Variance (“edge” space), the latter defined as the
as mean difference (in intensity) between a pixel and its four
diagonally closest neighboring pixels. For each of these 10
maps, there are 42 metrics, assigned to one of three broad
sets of metrics:

(1.) Histogram metrics: Mean, Entropy, StdDev, Variance,
Kurtosis, Pearson Skew, Moment Skew, 5% Point (value of
index in histogram below which 5% of the histogram lies),
95% Point (value of index in histogram below which 95%
of the histogram lies), and 5% to 95% Span.

Projection Profile Metrics for both (2.) the horizontal and
(3.) the vertical profiles: Entropy, StdDev, Entropy, Delta
StdDev, Mean, Mean Longest Run, Kurtosis, Skew, Moment
Skew, Delta Kurtosis, Delta Pearson Skew, Delta Moment
Skew, Lines Per Inch, Graininess, Pct In Peak, Delta Mean.
For the “Delta” metrics, the differences between consecutive
profiles in the projection data are used as the primary
statistics.

These metrics are computed for each IOI.
Once metrics are computed for each of the samples, the

expected population description for each of the metrics is
computed. The set of 420 metrics is a large set to quickly
comb through with traditional methods such as SVD, PCA,
etc. It is distilled to a more manageable set rapidly by taking
into account the fact that each of the metrics is not fully
independent. Our goal is to select a set of metrics that are
most independent.

The final set of metrics is selected based on the
individual metric independence; that is, 1.0-μ(ρi

2), where
μ(ρi

2) is the mean correlation of the metric with the set of
other metrics. The metrics are initially grouped together in
logical (related) sets to extract the most independent metrics.
For example, we correlate histogram Kurtosis, Moment
Skew and Pearson Skew and select the metrics according to
Equation 1. The same method is used then to prune on the
metric set level, and then one more time on all of the
remaining metrics. This approach provides a fast filtering
mechanism and a variety of metrics for the signature. These
metrics can be selected using different filtering approaches
(e.g. favoring at least one metric from each map), with
similar performance. Regardless, for purposes of statistical
testing, the final set of metrics obeys Equation 1:

1.0 <= ∑i=1…S μ(ρi
2) <= 2.0 and ≈ 1.0 Equation 1

That is, we add metrics based by their ranked mean
independence until the sum just exceeds 1.0. The final set of
“surviving” N metrics, along with their population statistics,
provides the description of a referent sample population.

2.2 Classifying samples

This set of “surviving” N metrics is then compared
statistically to the different aggregated (known) populations
of images. Each statistical comparison (t-test) is performed
with a pre-set p-value of α, and a sample differs from a
known population with statistical significance for M (where
0 <= M <= N) of these metrics. We now wish to know if the
sample is statistically significantly different from the known
population. For this, there are two settings: (1) α, as
described above, and (2) the experiment-wise confidence, or
ε. We then note that the probability that a given number of
metrics, M, which varies from 0 to the number of metrics, N,
will be statistically significant for a new sample is given by:

αM *(1- α )N-M Equation 2

which is then multiplied by the number of combinations of
M metrics that are statistically significantly different, which
is NCM, or N!/[M!*(N-M)!]. Thus, for each value of M, the
probability that a random sample will have M metrics
statistically significantly different at probability α is:

αM *(1- α )N-M * N!/[M!*(N-M)!] Equation 3



Finally, the minimum M required for which the experiment-
wide error rate (ε), or the accepted probability of making a
Type I error in declaring a new sample different, is:

ΣM…N{αM *(1- α )N-M * N!/[M!*(N-M)!]} < ε Equation 4

Equations 2-4 describe the means by which different
sample groups are compared, and how new (unclassified)
samples are compared to existing sets of samples. Additional
aspects of the service are outlined in Section 2.4.

2.3 Aggregating Samples

To aggregate samples, an additional metric MWMD, based
on the mean weighted distance of metrics defining the
referent set, is calculated. A sample can belong to an
aggregate only if its MWMD belongs to the population of the
aggregate’s MWMDs.

metric
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Equation 5

This metric, MWMD, aggregates samples with an existing
constrained aggregate (aggregates that are specifically
defined as belonging together; e.g., known authentic or
known counterfeit images). If the MWMD belongs to the
population, then the sample also belongs to the aggregate.

When adding samples to an unconstrained aggregate (an
aggregate created automatically by the software without user
interference), the system still uses MWMD to group the
samples. However, some assumptions must be made. Since
we need a metric population to calculate MWMD values, a
known constrained aggregate is used as a referent. By
calculating the MWMD using the referent aggregate’s metric
population, groups of samples that cluster in the MWMD
space can be considered for aggregation. Figure 2 shows the
MWMD distribution for several sample populations in a
single aggregate space.

Since the MWMD collapses the large set of metrics to a
single primary metric, it is not sufficient to cluster by
MWMD only. While two samples can have the same
MWMD, they can be far away from each other in metric
space (see Figure 3). To get around this problem, a second
aggregation step is performed: the new aggregate must be
self-consistent. Self-consistency is determined by calculating
the best set of metrics describing the new aggregate and then
verifying that the MWMD population of the new aggregate
has no outliers. The speculative aggregate is then recursively
pruned (i.e., outliers are removed and the signature is re-
calculated) until there are no outliers or there are too few
samples in the aggregate. Samples that were pruned out are
returned to the unassigned samples pool. Thus, the system is
dynamic (changing with each new sample added) and learning
(increases its confidence as aggregates change in size and
correlation).
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Figure 2. MWMD mean and standard deviation for several
sample populations in the metric space of the Authentic
aggregate. Since the metric space used is calculated based on
the Authentic aggregate, the corresponding Authentic
MWMD values are very small (0.75 ± 0.1). Note the lack of
overlap in comparing the Authentic and Counterfeit samples.
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Figure 3. Samples with the same MWMD should not
necessarily be aggregated together. Sample sets SA1 and SA2
have the same MWMD (single aggregate in MWMD space)
but are far away from each other in the full metric space.

2.4 System Description

The system consists of two parts. A sample database and an
aggregation system (see Figure 4 for a simplified diagram).
The database contains all samples collected, their pedigree
and any other metadata associated with them. The data base
keeps track of known populations in the sample collection.
These aggregates are not necessarily comprised of authentic
or counterfeit samples, but may be aggregated based on
properties of interest to the end-user.

To determine links between samples one or more
referent aggregate(s) is(are) selected from the database. Then
the samples of interest are determined and the initial
aggregation is performed. The new aggregates and are then



output and presented to the operator. If warranted, the new
aggregates can be stored in the database for future use.

Figure 4. Simplified system diagram for the Image-Based
Forensic Service.

3. RESULTS

A common scenario for the use of IBFS is the classification
of samples into pre-determined, or “known”, groups. In this
example, we start with 30 authentic images of the girl with a
ball and 29 actual counterfeits. We then create two
constrained aggregates with 15 authentic and 15 counterfeit
samples, respectively. We then added the remaining 15
authentic and 14 counterfeits into the system. The
classification result is shown in Table 1.

Set Authentic Counterfeit
Training set (constrained
aggregate)

15 15

Number of samples
correctly classified

15 8

Number of samples
incorrectly classified

0 0

Number of samples
unclassified.

0 6

Table 1. Classification results for simple two group
classification.

The data in Table 1 have a recall rate of r=.79, a
precision of p=1.0, and a corresponding accuracy,
(2pr/(p+r)), of A=.88. The above example leaves several
counterfeit samples in the “unclassified” pool. This is
acceptable, since, based on preferences of HP’s global
security operations, 100% or near-100% precision is
preferred at the expense of recall. That is, preferred output of
the IBFS is to have no false positives, as a false positive can
lead investigators in a wrong direction. We are less

concerned about unassigned samples, as they may aggregate
precisely as more samples are added to the population.

The second major application of IBFS is the
classification of samples when the only information available
is a set of samples from one population. This is, in fact, the
reason for the MWMD-based approach, and is a novel
classification workflow. In this case, we are interested in
whether samples cluster correctly when we have training data
only for one of the classes. For an example of this workflow,
we start with the following 4 classes:

Authentic ( 30 samples )
Real Counterfeits (29 samples)
In-house generated Inkjet (IJet) copies ( 59 samples)
In-house generated LaserJet (LJet) copies (60 samples)

Table 2, below, shows the actual results.

Group Authentic Counterfeit IJet LJet
Training set
(constrained
aggregate)

20

Number of
samples
correctly
classified

10 25 59 54

Number of
samples
incorrectly
classified

0 0 0 0

Number of
samples
unclassified

0 4 0 6

Table 2. Classification of 4 classes in a presence of training
data from one class (authentics).

For this problem, the trained data is classified with
r=1.0, p =1.0, A = 1.0. For the untrained data, the
classification statistics are r= .9324, p=1.0, and A = .965.
The overall classification has the statistics r=.9367, p=1.0,
and A=.9673. These results compare favorably with reported
data on multi-class classification [2] and even binary image
classification [3].

In all of our experiments, the IBFS is readily tuned to
achieve 100% or near-100% precision. In sample
populations where MWMD in the referent aggregate space is
discontinuous (comprised of two or more logical
groupings), logical groupings are often assigned to
(multiple) aggregates that are actually subsets of the original
grouping. While we can adjust the sensitivity to the MWMD
discontinuity to limit the emergence of such sub-grouping,
this has a tendency to lower the precision as it can cause two
unrelated classes to merge together. For these situations, of
course, the highest overall accuracy is normally achieved by
breaking original groups into logical sub-groupings prior to
initialization of the IBFS.



4. DISCUSSION

Counterfeit detection in printed materials can be approached
in multiple ways. Buchanan et al. propose a unique
“fingerprint” for each document to be authenticated based on
its physical properties [4]. Clarkson et al. show a way to
fingerprint a specific piece of paper [5], while Mikkilineni et
al. concentrate on identification of the printer [6]. In our
case, a more general approach is taken. Rather than
examining a specific sample (though this can be also
performed) and performing forensic-level analysis to confirm
its authenticity, the IBFS is used to flag non-obvious
similarities between samples, thus helping investigators
interested in pursuing the largest counterfeiters at the onset.

Our approach to detection of counterfeits is not tied to a
specific set of metrics. While our implementation uses 420
metrics and selects preferred set, other metrics can be readily
used. The metric filtering process for the selection of
aggregates can be based on partial independence as presented
here. Additionally, filtering can be performed using an
ontology or graph-driven selection (e.g. weighting the
selection to ensure all histograms are represented).

The performance of the IBFS can be tuned to the needs
of the end-user. Depending on the type of application, the
IBFS can be tuned either for precision or recall. For example,
in the case of pharmaceutical packaging—for which false
negatives (not detecting counterfeits) should be minimized—
the system is tuned to recall. In less critical applications, such
as non-edible, non customer-threatening products (HP inkjet
cartridges, for example), tuning for precision is generally
more desirable to avoid unproductive investigations. In fact,
tuning for precision is the deployment choice for HP’s
printing supplies business--unassigned samples can be
aggregated later when additional sample populations are
entered into the IBFS.

The metric selection does not need to be automated as
we have chosen here. Instead, the set of metrics used to
describe the constrained aggregate can be selected based on a
key encoded on the packaging, and can vary between
printer/label converter, thereby allowing for print-shop
specific “signatures” of metrics. Just as the metric
winnowing can be customized for each of the clients, the
actual metrics used could be changed. This flexibility is a
consequence of our approach not being tied to specific
metrics, and overall provides a novel approach to counterfeit
detection by using minimum-training classification
techniques. Our results to date, in fact, indicate that the IBFS
performs as well (or better) when trained on a single
aggregate (with an open-ended number of classes) rather than
the more traditional training approach. For the latter, 96.7%
accuracy was obtained. For the former, 88.0% accuracy—in
line with 88-90% accuracy for multi-class classification
[2]—was obtained.

Our approach is especially suitable for detecting non-
compliant populations with low variance (i.e. presumably

from a single source). High quality counterfeits (possibly
from more sophisticated, larger-scale counterfeiters) will
cluster more readily than poor reproductions on low quality
paper. This is because in a low variance population, the
MWMD metric will also have low variance, thus allowing
for more exact clustering in the initial phase. For example, in
Figure 2, the LaserJet samples have a large variance for the
MWMD metric. Due to this high variance, several of the
LaserJet samples cannot be classified and are left as
unassigned in Example 2. In the case of the counterfeit
samples (in the same Example 2), the sample population has
a low variance in the MWMD for its metric population.
Thus, the MWMD values in Figure 2 for counterfeit samples
are very consistent, and are correctly clustered in the first
aggregation attempt, even though several of the samples turn
out to be outliers that are further away in the full metric
space, and thus can be disaggregated . By manipulating how
outliers are detected we can skew the system towards
precision or recall as required.

Our current work is focused on optimizing the metric
selection approach further, as well as further characterizing
the impact of the classification parameters on aggregation
precision, recall, and iterations to convergence. We are also
integrating the technique into more traditional—inspection,
quality assurance and authentication—brand protection
image analysis workflows.
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