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ABSTRACT

Device identification, the ability to discern the (separate)
devices by which a document was produced and/or imaged,
can be leveraged in the design of quality assurance (QA) sys-
tems as well as the practice of forensic analysis. It is shown
that QA metrics associated with printed security markings
provide a useful approach for performing multiple device
identification, i.e., printer-scanner identification. While some
previous methods have focused on properties of sensors to
extract signatures from general image data, the proposed
approach leverages the highly structured nature of color tile
deterrents to predict device (combination) signatures based on
a limited amount of information. Constraints introduced by
the deterrent structure yield a relatively simple classification
strategy with strong performance using a 10-dimensional fea-
ture vector. Sixteen printer-scanner combinations (composed
from 4 printers and 4 scanners) are tested using this method.
Results illustrate device signature prediction performance
that is competitive with current state-of-the-art approaches
based on physical models of the devices involved.

Index Terms— device identification, quality assurance,
security printing, color tile deterrents

1. INTRODUCTION

Device identification is the process by which the type of hard-
ware used to create/capture an image is detected via image
analysis. While this functionality provides advantages in
forensic studies of images data, it can also be a useful tool
in quality assurance (QA) tasks, such as those that perform
device-specific inspection, whether or not it is in a security
context. For any system that analyzes barcodes [1], color
tile deterrents [2], or other printed security markings, it is
helpful to know on what device the markings were produced
in order to calibrate the system appropriately. Furthermore,
if the inspection system is to be deployed in any real-world
ecosystems, it is reasonable to assume that different imaging
devices will be used in different situations. Simultaneous
device identification strategies, i.e., methods that can deter-
mine on what device a security marking was printed and on
what device the printed marking was imaged, yield a number

of benefits including (1) ease of deployment, (2) the abil-
ity to perform on-the-fly device-specific calibration and (3)
potential to generate a level of trust between the core of an
inspection system and an attached capture device.

Much of the work related to the problem of capture device
identification has focused on cameras. Some particularly ef-
fective approaches have been based on analyzing artifacts in-
troduced by sensor noise [3, 4]. More recent approaches have
applied sensor-noise modeling to scanner identification [5,6].
One of these is of particular interest because it demonstrates
performance that is robust under various enhancement opera-
tions as well as JPEG compression artifacts [6]. Printer char-
acterization has been achieved by a variety of techniques, in-
cluding analysis of periodic banding artifacts resulting from
half-tone patterns [7] and computation of a distance trans-
form [8]. Another method that has demonstrated strong per-
formance has been based on analyzing print defects surround-
ing glyphs [9]. This approach is of particular interest not only
because of its classification performance, but also due to its
inherent efficiency; very little content is required in order to
make a very accurate classification decision. Reviews of iden-
tification techniques for capture devices and printers can be
found in [6, 10].

A key difference between previous approaches and the
proposed algorithm is that it is not designed to work with arbi-
trary image data. Rather, it leverages the fact that printed se-
curity markings represent highly structured information. The
structured nature of this data imposes constraints on the pos-
sible outputs captured by a scanner; the proposed algorithm
takes advantage of this fact to perform simultaneous device
identification using limited amounts of data. This approach is
similar in spirit to the glyph-based printer classification pro-
cedure [9], though a larger number of effective device classes
are addressed and the total number of pixels involved in the
input data is considerably smaller. Instead of explicitly fo-
cusing on the physical modeling of the production and cap-
ture systems, the proposed approach generates features based
on QA metrics designed to analyze various aspects of perfor-
mance of the security markings themselves.

This paper is organized as follows. Section 2 describes in-
spection systems and reviews color tile deterrents in the con-
text of the device identification problem. Features based on
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Fig. 1. Example of a color-tile deterrent (top) where the non-
payload indicia (NPI), used for calibration during authenti-
cation, are indicated with dotted lines. The bottom images
represent the same color deterrent produced with three differ-
ent printer-scanner combinations (HP AiO C3180 + HP AiO
C3180, Xerox Phaser 7760 + HP ScanJet 5550c, HP LaserJet
4550 + Epson 1660 Photo). Each deterrent is composed of
8x8 pixel tiles, and was scanned at 600 dots-per-inch (dpi).

these data, and approaches used to classify them are presented
in Section 3. Experimental results are discussed in Section 4,
and Section 5 concludes the paper.

2. FORENSICS AND QA VIA COLOR TILES

In the context of this work, an inspection system could be
considered any system that analyzes printed and imaged doc-
ument data. Often composed of a scanner attached to a com-
puter, a key functionality it provides is forensic analysis of
image data. Nevertheless, such systems are versatile enough
to provide a range of other QA features, such as the ability to
monitor different aspects of print quality or the effectiveness
of printed security deterrents (designed for track and trace,
authentication, or data embedding). It is thus important to
note that many analytical techniques proposed in support of
forensic services are also useful in this setting as well.

The device identification strategy herein relies on the
presence of a color tile security deterrent. Color tiles have
initially been proposed as an authentication strategy [2].
Since they demonstrate a high data density [11], these de-
terrents enable security services, including authentication,
for packaging and labels. This work focuses on utilizing the
presence of such a deterrent to implement printer-scanner
identification. An example of a color tile is illustrated in Fig-
ure 1, which includes the original digital representation of the

deterrent as well as several variants produced with different
printer-scanner combinations. A unique identifier is encoded
by setting the colors of each of the 56 payload sub-regions to
one of six different choices; authentication can be performed
by any device capable of successfully decoding this unique
identifier. The corner tiles are used strictly for calibration
purposes, and do not carry any information, i.e., they are
non-payload indicia (NPI).

It has been shown that a variety of no-reference distortion
metrics can be used to predict the outcome of this authenti-
cation procedure [12], and are designed to analyze different
aspects of the decoding process. Along with other QA met-
rics and qualification parameters described in the next section,
these measurements form feature vectors that are used for de-
vice identification. The NPI play a key role in computing
these measurements.

3. FEATURE VECTORS AND CLASSIFICATION
STRATEGY

This section introduces notation and formulae used to de-
scribe feature vector components. It also summarizes how
the resulting feature vectors are used for classification.

3.1. Notation

Each deterrent is made up of a number of different tiles. Let
i index each tile, j index each pixel, and k ∈ {R,G,B}
index each color channel of each pixel. Pixels in the dis-
torted deterrents are given by p̂i,j = [p̂i,j,R, p̂i,j,G, p̂i,j,B ].
The index c represents the pixel colors in the deterrent, given
by pc ∈ {R,G,B,C,M,Y}, where boldface indicates the
vector nature of these colors. The operators avgn{sn} and
stdn{sn} denote the first and (square-root) second moments,
respectively, empirically computed over any set {sn}.

3.2. QA Metrics as Features

A number of different quality grading algorithms are de-
scribed, all of which are used as feature vector entries.
Acronyms are given with each definition for convenience.
The NPI play an important role in defining the features since
every deterrent has 6 NPI tiles of predefined colors. The mean
component pixel values for all pixels in each NPI tile of color
c serve as a first set of features:

MC (mean color) p̂c = (1)
(avgj{p̂ic,j,R}, avgj{p̂ic,j,G}, avgj{p̂ic,j,B}).

With 6 NPI color and 3 color channels, these first moment
component values account for 18 features. The second mo-
ment component values account for another 18.

Once the colors of the NPI tiles are determined, the color
of all other tiles in the deterrent can determined by calculating
the difference between the mean tile color and each one of the



Fig. 2. Illustration of two target colors in hue space, red and
magenta, associated with color tile deterrents. The large circle
represents the continuum of colors that can be represented in
hue space. The dotted lines indicate differently-sized neigh-
borhoods which include hues of other tiles with the same tar-
get color. The printer-scanner combination used to process a
deterrent has a significant effect on these neighborhoods. The
mean colors avgj{pi,j,k} in each color class fall within them.
Authentication errors essentially occur when neighborhoods
“overlap”, and the mean color variation (MCV) metric mea-
sures this effect.

mean NPI colors; this distance can be measured in a vector
space (such as RGB) or in hue space. The color of a candidate
tile is given as the color of the NPI tile measured to be closest
to the candidate. The next two features consist of two metrics
that measure different aspects of variation in tiles grouped by
assigned color. One measures the mean variation over each
collection of tiles associated with a given color:

MCV (mean color variation) = (2)

avg
k
{(

∑
c

nc · std
tiles i of color c

{ avg
j
{p̂i,j,k}})(

∑
c

nc)−1},

where nc is the number of tiles i of color c, that is, nc =
#{i; c = argmind ||p̂d − avgj{p̂i,j}||}, and p̂c is given by
(1). The MCV metric is particularly useful for predicting au-
thentication performance, because when the variation of col-
ors gets large enough, tiles are misclassified and authentica-
tion can fail. Figure 2 illustrates this behavior. If only one tile
i of color c is present in the deterrent, the standard deviation
of avgj{p̂i,j,k} is 0. A metric measuring the variation of color
means (VCM), which can be thought of as a dual of MCV, is
used as well.

VCM (variation of color means) = (3)
avg

k
{std

c
{ avg

tiles i of color c
{ avg

j
{p̂i,j,k}}}.

The last two features are metrics computed from measure-
ments averaged over all pixels in the deterrent, mean tile vari-
ation (MTV) and mean tile entropy (MTE), which represent
the per-pixel standard deviation and entropy, respectively, av-
eraged over each color component. (The formulae for met-
rics are straightforward and can be found in [12].) Thus, the

most general form of the proposed approach yields a length-
40 feature vector: the (3) mean color channel values from
each 6 NPI tiles, the second moments of the same sets of color
channel values, and the four metrics mentioned above (MCV,
VCM, MTV and MTE).

3.3. Classification Engine

Many state-of-the-art device identification strategies use ei-
ther support vector machines (SVMs) or k-nearest-neighbor
(k-NN) classifiers, and both methods are evaluated in the
following section. The proposed approach is in fact simple
enough that a 1-NN classifier can be used to represent the
data. The LibSVM package [13] was used to implement the
tested SVM classifiers. Unless otherwise specified, radial
basis functions were used for kernels.

4. RESULTS AND DISCUSSION

Test data to evaluate the proposed algorithm was created by
placing 117 randomly generated color tiles (with 8 × 8 pixel
sub-regions) on a series of test sheets. Sheets were printed
and scanned at 600 dots-per-inch (dpi) by one of 16 differ-
ent printer-scanner combinations. Printers tested included the
HP Photosmart C3180 All-In-One (AiO), HP LaserJet 4550,
Xerox Phaser 7760 and Xerox Phaser 6250; scanners used
were the HP Photosmart C3180 AiO, HP ScanJet 5550c, Ep-
son 1660 Photo and Epson Perfection 1640SU. Color tiles
were segmented out of each printed and scanned test sheet,
and classification was performed based only on the segmented
information. Half of the collected samples were (randomly)
used for training and the other half was used for testing. Re-
sults reported represent the mean statistics achieved over ten
iterations of the training/testing process. Table 1 includes
key symbols used to represent printer-scanner combinations
in subsequent results.

4.1. Device Identification Accuracy

Device identification accuracy achieved with the proposed
features was evaluated by using a classifier to separate the
test data samples into 16 respective classes; classification was
performed with an SVM for this purpose. The confusion ma-
trix associated with this approach is given in Table 2. Clearly,
the method achieves accurate device identification using fea-
tures computed from only the color tile region. In particular,
the prediction accuracy of this method is 0.97. This result
is in rough agreement with results previously achieved in a
printer-only classification framework [9]. It should be noted
that if the classification is performed in a two-step process,
i.e., using two SVM classifiers to separately determine the
printer and scanner choices, the overall accuracy achieved is
almost identical. While there are practical reasons to enter-
tain this type of implementation, this paper is more focused



scanner printer model
model HP Photosmart C3180 AiO HP LaserJet 4550 Xerox Phaser 7760 Xerox Phaser 6250

HP Photosmart C3180 AiO C1,1 C1,2 C1,3 C1,4

HP ScanJet 5550c C2,1 C2,2 C2,3 C2,4

Epson 1660 Photo C3,1 C3,2 C3,3 C3,4

Epson Perfection 1640SU C4,1 C4,2 C4,3 C4,4

Table 1. Printer-scanner combination key.

actual predicted devices
devices C1,1 C1,2 C1,3 C1,4 C2,1 C2,2 C2,3 C2,4 C3,1 C3,2 C3,3 C3,4 C4,1 C4,2 C4,3 C4,4

C1,1 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C1,2 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C1,3 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C1,4 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00
C2,1 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C2,2 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C2,3 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C2,4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00
C3,1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.98 0.01 0.00 0.01 0.00 0.00 0.00 0.00
C3,2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.93 0.04 0.01 0.00 0.02 0.00 0.00
C3,3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.95 0.00 0.00 0.00 0.04 0.01
C3,4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.90 0.00 0.00 0.00 0.08
C4,1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
C4,2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.96 0.00 0.00
C4,3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.95 0.00
C4,4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.95

Table 2. Probability of actual class as a function of predicted class, when using an SVM-based version of the proposed approach
with radial basis functions. The accuracy associated with this approach (the mean diagonal probability) is 0.97.

actual predicted devices
devices C1,1 C1,2 C1,3 C1,4 C2,1 C2,2 C2,3 C2,4 C3,1 C3,2 C3,3 C3,4 C4,1 C4,2 C4,3 C4,4

C1,1 0.85 0.00 0.02 0.12 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C1,2 0.01 0.95 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C1,3 0.02 0.01 0.93 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C1,4 0.09 0.01 0.01 0.89 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C2,1 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C2,2 0.00 0.00 0.00 0.00 0.00 0.94 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C2,3 0.00 0.00 0.00 0.00 0.00 0.03 0.96 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C2,4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C3,1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.61 0.01 0.01 0.00 0.37 0.00 0.00 0.01
C3,2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.44 0.10 0.11 0.01 0.20 0.06 0.07
C3,3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.08 0.55 0.04 0.00 0.03 0.26 0.03
C3,4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.02 0.00 0.46 0.04 0.03 0.00 0.41
C4,1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.95 0.00 0.00 0.00
C4,2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.24 0.01 0.02 0.00 0.65 0.03 0.05
C4,3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.36 0.02 0.00 0.02 0.57 0.01
C4,4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.04 0.24 0.01 0.12 0.08 0.40

Table 3. Probability of actual class as a function of predicted class, achieved with a two-stage approach using implementations
of the sensor-noise-based scanner identification procedure in [6] and a version of the glyph-based printer identification algorithm
in [9]. The accuracy associated with this two-stage method is 0.76.

on demonstrating the separability of deterrents using the
proposed features.

Table 3 illustrates the results achieved with a two-stage

approach that uses two state-of-the-art device identification
algorithms (with different classifiers and different features) to
determine the scanner and printer associated with each deter-



rent. The scanner identification algorithm is the sensor-noise-
based approach in [6], which analyzes statistics that take into
account properties such as noise correlation, and uses an SVM
classifier. The printer identification algorithm measures as-
pects of joint histograms associated with pixels located near
one another [9] and performs classification with a 5-NN clas-
sifier; in the original paper this procedure is applied on re-
gions with glyphs, but herein, color tile regions are considered
instead. The scanner identification and printer identification
accuracies are 0.84 and 0.89, respectively, and the overall ac-
curacy of this approach is 0.76.

Given that the pre-existing methods involved [6, 9] were
designed for other applications (general photographic data,
or images with glyphs, respectively) and for use with larger
blocks of data, the accuracy achieved is reasonable. Because
the new method proposed herein is designed to address a nar-
rower class of images, however, it leverages the associated
constraints to create a simple, effective solution. The resulting
advantage is considerable, since the accuracy of the proposed
approach is about twenty percent higher and the resulting er-
ror is considerably smaller. The caveat that accompanies this
performance improvement is that it can be achieved only in
the presence of color tile security deterrents, and not with any
general image data.

4.2. Reduced Complexity Classification

To illustrate the flexibility of the proposed approach, as well
as the appropriateness of the feature set, a subset of the pre-
sented features and a very simple classifier is constructed.
In order to train this classifier, the mean feature vector for
each class is computed by linearly averaging all samples in
the class. The classifier then assigns the class of a candi-
date feature vector as that associated with the mean feature
vector closest to the candidate feature vector. (This classifier
is equivalent to a 1-NN classifier, trained with a single fea-
ture vector per class.) The reduced feature set consists only
of the first order red and green NPI statistics coupled with
the four QA metrics in [12]; the statistics associated with this
pair of colors yields the best performance of any pair in con-
junction with the QA metrics. The accuracy associated with
this reduced complexity approach is 0.87. This performance
indicates that the candidate samples are highly separable in
the feature space, since this simple classifier outperforms the
more sophisticated two-stage approach tested earlier.

5. CONCLUSION

A device classification scheme was presented that leverages
existing printed security deterrents coupled with existing
quality assurance metrics designed to predict the outcome
of an authentication procedure. Preliminary results indicate
that this method yields a classification accuracy competitive
with other state-of-the-art approaches, and suggest that highly

accurate printer-scanner identification is indeed possible by
devoting a small portion of a printed document to a structured
signal. In fact, a classifier based only on the distances to mean
feature vectors (from each class) can improve upon the sepa-
rability of device combinations achieved using state-of-the-art
methods designed for more general data. It is important to
consider that in a security ecosystem, the benefit associated
with the presented ideas is not necessarily just the ability to
perform simple device identification on images created by
ever-growing combinations of devices, but also the ability to
identify images that were produced outside the ecosystem.
Future work will involve investigation of meta-algorithmic
classification patterns [14] for improved accuracy.

6. REFERENCES

[1] Microsoft Research, High Capacity Color Barcode Technol-
ogy, 2009, available at http://research.microsoft.com/
en-us/projects/hccb/about.aspx.

[2] S. J. Simske and J. S. Aronoff, “Spectral pre-compensation and security
deterrent authentication,” JIST, vol. 51, no. 1, pp. 86–95, 2007.

[3] J. Lukas, J. Fridrich, and M. Goljan, “Determining digital image origin
using sensor imperfections,” in Proc. SPIE International Conference
on Image and Video Communications and Processing, 2005, vol. 5685,
pp. 249–260.

[4] J. Lukas, J. J. Fridrich, and M. Goljan, “Digital camera identification
from sensor pattern noise,” IEEE Transactions on Information Foren-
sics and Security, vol. 1, no. 2, pp. 205–214, June 2006.

[5] H. Gou, A. Swaminathan, and M. Wu, “Robust scanner identification
based on noise features,” in Proc. SPIE International Conference on Se-
curity, Steganography, and Watermarking of Multimedia Contents IX,
2007, vol. 6505.

[6] N. Khanna, A. K. Mikkilineni, and E. J. Delp, “Scanner identification
using feature-based processing and analysis,” IEEE Transactions on
Information Forensics and Security, vol. 4, no. 1, pp. 123–139, 2009.

[7] G. N. Ali, P-J Chiang, A. K. Mikkilineni, J. P. Allebach, G.T.-C. Chiu,
and E. J. Delp, “Intrinsic and extrinsic signatures for information hiding
and secure printing with electrophotographic devices,” in Proc. IS&Ts
NIP19, September 2003, vol. 19, pp. 511–515.

[8] W. Deng, Q. Chen, F. Yuan, and Y. Yan, “Printer identification based
on distance transform,” in Proc. First International Workshop on Intel-
ligent Networks and Intelligent Systems, November 2008, pp. 565–568.

[9] A. K. Mikkilineni, P-J Chiang, G. N. Ali, G. T.-C. Chiu, J. P. Allebach,
and E. J. Delp, “Printer identification based on textural features,” in
Proc. IS&Ts NIP20, October/November 2004, vol. 20, pp. 306–311.

[10] N. Khanna, A. K. Mikkilineni, A. F. Martone, G. N. Ali, G. T.-C. Chiu,
J. P. Allebach, and E. J. Delp, “A survey of forensic characterization
methods for physical devices,” Digital Investigations, vol. 3, pp. 17–28,
2006.

[11] S. J. Simske, M. Sturgill, and J. S. Aronoff, “Effect of copying and
restoration on color barcode payload density,” in Proc. ACM DocEng
2009, September 2009, pp. 127–130.

[12] M. D. Gaubatz, S. J. Simske, and S. Gibson, “Distortion metrics for
predicting authentication functionality of printed security deterrents,”
in Proc. ICIP (to appear), 2009.

[13] Chih-Chung Chang and Chih-Jen Lin, LIBSVM: a library for support
vector machines, 2001, software available at http://www.csie.
ntu.edu.tw/˜cjlin/libsvm.

[14] S. J. Simske, D. W. Wright, and M. Sturgill, “Meta-algorithmic systems
for document classification,” in Proc. ACM DocEng, 2006, pp. 98–106.


