

Keyword(s):

Abstract:

©

Garbage Collection in the Next C++ Standard

Hans-J. Boehm, Mike Spertus

HP Laboratories
HPL-2009-360

C++, garbage collection

C++ has traditionally relied on manual memory management. Sometimes this has been augmented by
limited reference counting, implemented in libraries, and requiring use of separate pointer types. In spite of
the fact that conservative garbage collectors have been used with C for decades, and with C++ for almost as
long, they have not been well-supported by language standards. This in turn has limited their use. We have
led an effort to change this by supporting optional "transparent" garbage collection in the next C++
standard. This is designed to either garbage collect or detect leaks in code using normal unadorned C++
pointers. We initially describe an ambitious effort that would have allowed programmers to explicitly
request garbage collection. It faced a number of challenges, primarily in correct interaction with existing
libraries relying on explicit destructor invocation. This effort was eventually postponed to the next round of
standardization. This initial effort was then temporarily replaced by minimal support in the language that
officially allows garbage collected implementations. Such minimal support is included in the current
committee draft for the next C++ standard. It imposes an additional language restriction that makes it safe
to garbage collect C++ programs. Stating this restriction proved subtle. We also provide narrow interfaces
that make it easy to both correct code violating this new restriction, and to supply hints to a conservative
garbage collector to improve its performance. These provide interesting implementation challenges. We
discuss partial solutions.

External Posting Date: November 6, 2009 [Fulltext] Approved for External Publication
Internal Posting Date: November 6, 2009 [Fulltext]

Presented at ISMM 2009, Dublin, Ireland, June 2009

Copyright ACM 2009

Garbage Collection in the Next C++ Standard

Hans-J. Boehm
HP Laboratories

Hans.Boehm@hp.com

Mike Spertus
Symantec

mike spertus@symantec.com

Abstract
C++ has traditionally relied on manual memory management.
Sometimes this has been augmented by limited reference count-
ing, implemented in libraries, and requiring use of separate pointer
types. In spite of the fact that conservative garbage collectors have
been used with C for decades, and with C++ for almost as long,
they have not been well-supported by language standards. This in
turn has limited their use.

We have led an effort to change this by supporting optional
“transparent” garbage collection in the next C++ standard. This is
designed to either garbage collect or detect leaks in code using
normal unadorned C++ pointers.

We initially describe an ambitious effort that would have al-
lowed programmers to explicitly request garbage collection. It
faced a number of challenges, primarily in correct interaction with
existing libraries relying on explicit destructor invocation. This ef-
fort was eventually postponed to the next round of standardization.

This initial effort was then temporarily replaced by minimal
support in the language that officially allows garbage collected im-
plementations. Such minimal support is included in the current
committee draft for the next C++ standard. It imposes an addi-
tional language restriction that makes it safe to garbage collect
C++ programs. Stating this restriction proved subtle.

We also provide narrow interfaces that make it easy to both
correct code violating this new restriction, and to supply hints to
a conservative garbage collector to improve its performance. These
provide interesting implementation challenges. We discuss partial
solutions.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Dynamic storage
management

General Terms languages, standardization, algorithms

Keywords garbage collection, C++

1. Introduction
Most recently designed programming languages such as Java and
C# provide for automatic reclamation of the memory associated
with unreachable objects, commonly referred to as garbage collec-
tion. However, languages such as C and C++ , which commonly
still dominate for the development of systems software, traditional

Copyright ACM, 2009. This is the author’s version of the work. It is
posted here by permission of ACM for your personal use. Not for redistri-
bution. The definitive version was published in the ISMM 2009 Proceedings,
http://doi.acm.org/10.1145/1542431.1542437

desktop applications, and embedded systems, do not intrinsically
provide such a facility. Instead the programmer is expected to ex-
plicitly deallocate objects when they are no longer needed.

Such explicit memory management is widely recognized as
error-prone. Especially in applications that manipulate complicated
linked data structures, it may be difficult to identify the last use
of an object. Mistakes lead to either duplicate deallocations and
possible security holes, or memory leaks.

This problem becomes more severe in multithreaded applica-
tions. Consider a program that maintains an atomically updatable
pointer P to a rarely modified object O. Concurrent threads fre-
quently access O by simply dereferencing P , using suitable atomic
pointer operations. This typically adds little overhead to accesses.
And O can be updated by simply allocating a new copy, initializing
it with the updated values, and atomically updating the pointer P
to point to the new version. In a garbage collected setting, this just
works.

However, there is no easy way to explicitly deallocate the old
object O in this scheme. The thread performing the update cannot
immediately deallocate the old object, since another thread may
still be reading it. And indeed, adapting this technique to explicit
memory management in an OS kernel setting constitutes the core
of a recent Ph.D. dissertation [26].

Unlike C, C++ already simplifies memory management in a
number of ways, none of which is a complete solution:

• Libraries are generally designed to export values that can be
passed around and manipulated as simple values, without the
explicit use of pointers or memory allocation. Any memory
allocated by the implementation is implicitly deallocated as
these value objects are destroyed. This may require techniques
such as reference counting of shared objects, but they are hidden
from the library users. Although useful, this does not help the
library implementor, nor the user who has to invent new pointer-
containing data structures.

• C++ implementations commonly support a reference-counted
“smart pointer” library called shared ptr[18]. This library
facility is expected to become part of the next C++ standard,
which is conventionally referred to as C++0x.1 This effec-
tively allows data structures that use shared ptr pointer
types to be garbage collected. The programmer is required to
avoid shared ptr cycles, possibly with the aid of a provided
weak ptr type.
For small objects and multithreaded executables, this approach
is often much more expensive than tracing garbage collec-
tors [10], though this is expected to improve somewhat as a
result of other C++0x language facilities. It is barely applica-
ble at all in cases like our example above, where atomic pointer
assignments are required.

1 We are not deterred by the fact that it is now essentially impossible for the
standard to be formally approved before 2010.

Perhaps more significantly, this approach is not really applica-
ble if the existing code base involves libraries that already traffic
directly in C++ pointers, as most existing code does.

• Although not part of the C++ standard per se, Microsoft’s
C++ /CLI supports both regular C++ pointers as well as a dif-
ferent class of pointers to a “managed”, i.e. garbage-collected
heap. Although this allows a wider variety of garbage collec-
tion techniques of the managed heap, existing code, even tem-
platized generic libraries, can no longer be used for objects
residing in this heap.

Along with Demers, and Weiser, we originally developed tech-
niques more than 20 years ago [15]2 that allow C programs to also
rely on garbage collection. The same techniques can be used to
identify memory leaks [15] in programs using explicit deallocation,
an approach used by Purify[21] and other systems. The basic solu-
tion is to “conservatively” treat everything as a potential pointer,
with a fast filtering mechanism that recognizes bit patterns that ac-
tually could be pointers to valid objects.

This approach was subsequently explored and refined over sev-
eral decades (cf. [11, 7, 6, 29, 4, 19, 5, 27, 23, 20, 8]), and has
worked sufficiently well to have enjoyed some significant suc-
cesses. It has been used directly in some C or C++ applications, and
has often been used in runtimes for garbage collected languages
(e.g. in gcj, the GNU static Java compiler and in the Mono CLR
implementation), both because it allows a faster initial implemen-
tation, and because it usually supports better interoperability with
C.

Most Linux distributions include at least one version of our
garbage collection library[3], along with a few C or C++ applications
that rely on them.

The second author started a company, eventually indirectly ac-
quired by Symantec, that used the approach to fix memory leaks in
existing large applications.

In spite of its successes, most C and C++ applications clearly
do not rely on such conservative garbage collection. In many cases,
this is entirely appropriate, since libraries such as our garbage
collector[3] often cannot satisfy some application constraint, e.g.
guaranteed required bounds on response times or space usage [8].

But for many other applications, the main objection to adoption
of garbage collection has been its poor support by language stan-
dards and vendor implementations.

There are rare C and C++ programs, arguably supported by ex-
isting standards, that will fail in the presence of a garbage collector
like ours. These effectively “disguise” pointers sufficiently that the
garbage collector is unable to recognize them, and hence mistak-
enly identifies the referenced objects as unreachable, recycling the
memory while it is still in use. The most common instance of this
are data structures that combine, usually by exclusive-oring them,
two pointers in a single pointer-sized field.

Similarly, few existing vendor C or C++ implementations di-
rectly support garbage collection. (Notable exceptions are the Sun
Studio and Digital Mars compilers[25, 16]).

Thus our goal was to provide for proper garbage collection sup-
port in the language standard, in this case the C++0x standard. In-
terestingly, in the process of trying to make this approach more
palatable to the standards committee, and in developing a proto-
type implementation based on our garbage collection library[3], we
ended up addressing a number of technical issues that we believe
had previously been under-appreciated.

2 Doug McIlroy independently explored similar approaches somewhat ear-
lier. Less extreme approaches were also pursued in [28] and [1]. Much
later, the initial Java implementations used a related, but much lower per-
formance, approach.

2. Our Initial Proposal
We initially proposed comprehensive garbage collection support
for C++0x, as a required feature of the implementation, but whose
use by the programmer is optional [13]. Although this approach
was repeatedly supported by a majority of the committee and was
approved as part of the Registration Draft for C++0x, a subsequent
vote removed it from the draft standard, largely based on concerns
of integrating such a complex language feature on the tight sched-
ule remaining in the C++0x time-frame. Open issues relating to
the interaction between distinct libraries and ensuring invocation
of C++ destructors that explicitly deallocate non-memory resources
in a garbage collected environment figured prominently among the
concerns.3 Resolving these concerns would take more time, leading
to a consensus that the comprehensive garbage collection proposal
would be best addressed in an upcoming technical report contain-
ing extensions.

The proposal was designed to support transparent operation
while simultaneously allowing programmer control.

2.1 Transparent Garbage Collection
Transparency enables easy use of garbage collection of existing
source and object files. In typical cases, no changes to source code
are required. Transparent garbage collection enables a number of
important use cases.

Pure garbage collection We feel that if C++ is not an implemen-
tation option for the many programs that have no need for an ex-
plicit memory management, C++ will be excluded from many
mainstream projects for which it is otherwise suitable [2]. We
feel transparent support for the simple case of pure garbage col-
lection is critical as garbage collection support that relies on
distinct pointer types, allocators, and the like tends to result in
opportunities for programmer error, incompatibility with exist-
ing libraries, and overall second-class support for pure garbage
collected styles in C++ .

Standards support for leak detectors By providing a standard-
ized definition of what constitutes a memory leak, leak detec-
tors can produce more accurate and reliable reports on existing
manually managed programs. For this reason, garbage collec-
tion is of considerable interest even to those programmers who
do not intend to deploy garbage collected programs.4

Litter collection Since many existing programs leak memory, a
common use for C++ garbage collection is to protect existing
programs against memory leaks. Such “litter collection” cycles
do not significantly affect application throughput since they
only need to be run infrequently (often on the order of one per
hour).

2.2 Programmer Control
While adding transparent support for pure garbage collection, we
did not wish to impose garbage collection where it is not desired
and so included explicit control mechanisms for disabling garbage
collection or mixing it with explicit memory management. We
did not include any support for scheduling the garbage collector
explicitly, as this has proven problematic in languages such as Java,
where explicit collection commands are typically treated as null
operations.

3 Statements here about C++ committee actions clearly reflect the under-
standing of the authors, who were proponents of this change, and active
participants in discussions. Biases and misunderstandings are certainly pos-
sible.
4 Indeed, leak detectors frequently use garbage collection as their underly-
ing implementation technology

One of the most important control mechanisms is not a new one:
Existing C++ memory reclamation commands always function as
normal. In particular, the C++ delete command frees memory and
calls destructors as expected. This ability to apply both garbage
collection and explicit management to the same heap provides
some notable benefits.

• Existing code can be easily used without modification in both
garbage collected and non-garbage collected contexts.

• The amount of memory that the garbage collector needs to re-
claim is greatly reduced, with the potential for greatly improv-
ing performance over pure garbage collected languages when
space is at a premium or when the average object size is large.

• The Litter Collection scenario from the previous subsection
relies on this, as does the Leak Detection scenario.

It is not specified whether garbage collection is enabled for
unannotated source code. This allows existing programs to be eas-
ily used with leak detectors and litter collectors as described above.
A program can explicitly request that garbage collection be enabled
or disabled through use of specific annotation keywords.

gc forbidden This keyword specifies that the code may not be
used in a garbage collected environment.

gc safe This keyword specifies that the code is safe to use in a
garbage collected program or in a program without garbage
collection. It is the default, and can be loosely expressed as
signifying that the code uses explicit memory management
but does not hide pointers from a garbage collector (e.g., by
exclusive or’ing two pointers).

gc required This keyword specifies that the code relies on
garbage collection to reclaim unused memory.

gc strict This keyword specifies that the non-pointer types de-
clared in the code, such as integers, will not be used to store
pointers. This allows the collector to use type information to re-
duce conservatism. We believe that gc strict C++ programs
can make effective use of precise or nearly-precise collection
algorithms.

gc relaxed This keyword specifies that the code may store point-
ers in non-pointer types. gc relaxed code generally requires
conservative collection techniques. To maximize compatibility
with existing programs, this is the default setting.

While these directives can, and typically will, be applied to en-
tire programs in accordance with a preferred garbage collection
policy, the gc strict and gc relaxed annotations can also be
applied on a finer grain. In this case, the directive applies to all ob-
ject definitions of integral type in its scope. Consider the following
structure definition.

gc_strict struct A {
A *next;
B b;
int video_data[100000000];

};

The garbage collector does not need to scan the video data
member of A objects for pointers, but will need to scan the next
member and the b member. This is very nice because it allows
the author of struct A to avoid needlessly scanning of 400MB
of video data without worrying about whether B stores pointers in
integral types internally.

By contrast, the gc forbidden and gc required directives
apply to the entire program. This restriction arises because pointer
chains may traverse memory created by arbitrary combinations of
modules. Pointers hidden in one module can make it unsafe for a

garbage collector to reclaim memory allocated in another. There-
fore, the proposal does not allow the garbage collection decision to
be encapsulated so that a module or library can use garbage collec-
tion internally without impact on the external program. Symmet-
rically, if a small garbage collected program loads a large library,
such as libjvm that provides its own memory management, perfor-
mance can suffer as the entire libjvm heap is needlessly scanned
for pointers to the C++ heap.

While there do not appear to be any fundamental obstacles
to developing suitable annotations that allow encapsulating the
garbage collection decision within a single module or library, this
would require more time than was available in the C++0x time-
frame. This was a significant contributor to deferring the compre-
hensive proposal to a subsequent TR, which would likely include
such annotations and appeal to the upcoming Modules Technical
Report [30] to improve support in mixed environments.

2.3 Finalization
The support of finalization in the proposal was controversial. Hence
finalization was eventually split into a separate proposal [12]. We
believe it is especially important for C++ that garbage collectors
support finalization for a variety of reasons.

• It is fairly common to use per-object locks for thread synchro-
nization. Indeed, Java provides explicit syntax to support this.
For some very common operating systems, the lock resource
consists of more than just memory in the object. Thus, without
finalization, we may lose much of the benefit of garbage collec-
tion, at least in multi-threaded programs.

• Opaque objects returned by a third-party library whose inter-
face calls for them to be properly destroyed require finalization.

• Mixing garbage collected and explicitly managed memory may
result in memory leaks without finalization. For example, if a
std::vector member of a garbage class uses a non-garbage
collected allocator, the data structures of the vector will be
leaked.

• When supporting the “leak detector” use case for garbage col-
lection, finalizers are useful for implementing reports on leaked
memory and non-memory resources.

Although tempting, it is not desirable to equate finalizers and
destructors because they may be called in different synchroniza-
tion contexts in multi-threaded programs.5 In addition, many de-
structors just release memory and would be wasteful to track with
garbage collection enabled.

Finalizer methods are defined by prefixing the class name with
~~ to reflect the kinship with destructors. In many cases, they will
just call the corresponding destructor after acquiring appropriate
locks.

std::mutex m; // Mutex protecting global resource
// required by destructor

class A {
public:

~A(); // destructor
~~A() { // finalizer

std::lock_guard<std::mutex> protect(m);
~A();

}
};

Unfortunately, finalization is difficult to support in a way that
neither degrades performance of the vast majority of code that does

5 This issue also arises in other C++ techniques for supporting automatic
memory management, as in the use of destructors by C++0x shared ptrs.

not use it, nor is likely to introduce subtle bugs into the majority of
code.

As was pointed out in [9] and repeated in [12], there is a fun-
damental tension between compiler optimizations, and specifically
elimination of dead pointer variables, on one side, and easily usable
finalization on the other.6

To see this, consider a finalizable class that maintains some of
the state of each object in an external data structure E, which is in-
dexed with an index value stored in the object. Thus E[p->index]
is the state associated with object p. Assume that p’s finalizer de-
stroys this state in some way that renders it unsafe to access, e.g.
by explicitly deallocating part of it.

Now assume that the final method call on p executes the follow-
ing code:

int i = index;
a:
foo(E[i]);

If a garbage collection takes place at point a, there is no guar-
antee that a pointer to p, i.e. to this will be visible to the garbage
collector. The this pointer is not subsequently accessed and hence
there is no reason for the compiler to preserve it. Modern calling
conventions increasingly allow it to reside only in registers, which
are fairly likely to be reused, e.g. to store i. Thus p may be finalized
at point a, and the call to foo may fail unexpectedly.

We suggest a spectrum of solutions in [12]. These include

• Forbidding dead-variable elimination on essentially all point-
ers. Surprisingly to us, this was viewed as having very mod-
est and acceptable cost by some of the compiler experts in the
room, though actual measurements are lacking.

• Requiring the programmer to insert keepAlive() calls, as is
essentially required by both Java and C#.7

• A hybrid based on an argument that it is almost always possible
to identify when this might be an issue based on static type
information.8

Unfortunately none of these is unambiguously the correct solu-
tion, and the uncertainty clearly contributed to the postponement of
this proposal.

3. A Much More Modest Proposal
Although adoption of the comprehensive proposal was moved be-
yond the next C++ standard, there remained a desire to improve
support for garbage collection in the C++0x time frame. This
gave rise to our current compromise proposal [14, 22], which
has been adopted. Its goal is simply to allow garbage collecting
C++ implementations to completely conform to the standard, while
ensuring that existing applications either remain compatible with
such an implementation or, in rare cases, have an easy path to be-
come compatible with such implementations. It primarily makes
three changes to the language and library:

1. It restricts the language so that only “safely derived” (undis-
guised) pointers to objects allocated with the built-in new oper-
ator may be safely dereferenced (or deallocated). For example,

6 There are also still ongoing discussions about better addressing this in
Java, where we conjecture that a large number (majority?) of deployed
classes using finalization exhibit the problem described below in some form.
7 However few Java and C# programmers seem to understand this fully.
And Java currently spells keepAlive(this) as synchronized(this),
with some added restrictions.
8 This unfortunately appears to be false in Java, since java.lang.ref ef-
fectively allows any object to be registered for finalization-like processing.

this prevents a program from storing the only copy of a pointer
in a file on disk, and then dereferencing it. This effectively al-
lows implementations to garbage collect objects that appear to
the garbage collector to be unreachable, and yet remain fully
conforming. However, it provides no guarantees that a garbage
collector is provided.

2. It provides a declare reachable() call to explicitly inform
a garbage collector that an object must be treated as reach-
able although all pointers to it are hidden from the collector.
Effectively this provides an escape from the above restriction
to safely-derived pointers. An undeclare reachable() call
is also provided to undo the effect. In a non-garbage-collected
implementation, both may be implemented as no-ops.

3. It provides a declare no pointers() call (along with its
inverse) to tell the garbage collector that certain regions of
memory never contain valid pointers, and hence do not need
to be scanned.

The current proposal only allows garbage collection of objects
allocated with the system-provided new operator. In particular it
does not restrict pointers to malloc-allocated objects, although
it would clearly be desirable for implementations to provide an
option to collect those as well. These were excluded for now,
both because the use of malloc by some low-level systems code
imposes particular implementation challenges, and because we felt
that such a change should really involve the C committee, not just
the C++ committee.

Even this modest proposal breaks backwards compatibility
with a few existing C++ programs. We impose new restrictions
on pointer use. Past experience with conservative garbage collec-
tors and leak detectors in C and C++ suggests that the vast majority
of code satisfies these restrictions. But small amounts of existing
code may need to be updated. This is fundamentally unavoidable: If
we want to provide garbage collection, or even reliable leak detec-
tion, for existing unmodified code, we must make the assumptions
necessary to guarantee that a tracing garbage collector can work.

As a practical matter, we expect such backwards compatibility
issues to be minor. We would be very surprised if any implementa-
tions in the near term supported only a garbage collected runtime.
Effectively, the programmer will be required to make changes, if
any are needed, only in order to take advantage of newly provided
garbage collection support.

4. Disallowing Access to Unreachable Objects
A major concern with retrofitting a garbage collector to existing
C++ code is that the code might “hide pointers” such that the
garbage collector cannot see those pointers, and hence reclaims the
referenced object, in spite of the fact that the pointer may still be
dereferenced. This might occur for two very distinct reasons:

1. The compiler may perform code transformations that temporar-
ily hide pointers to an object. For example, the last reference to
a[i-1] might be compiled as a = a - 1, a[i]. If a garbage
collection were to take place just after decrementing the pointer
to the beginning of the array a, it might reclaim the array before
its last access.

2. The programmer may explicitly hide pointers. For example,
linked list nodes occasionally store a single link field containing
the exclusive-or of the pointers to the previous and next nodes,
so that either pointer canbe recovered if the other is known,
and hence the list can be traversed in both directions while only
requiring a single pointer-sized link field. Unless the garbage
collector is somehow informed of this convention, none of the

nodes in the middle of the list will appear referenced to the
collector, and hence may be reclaimed prematurely.

The first problem must be addressed by any implementation that
supports garbage collection. The techniques for doing so are well-
known [5].

The second problem is more interesting. Historically it has been
somewhat unclear whether a strictly conforming program could
hide pointers in a way that could not be handled through extremely
conservative garbage collection techniques. But the recent intro-
duction of the intptr t type makes it clear that it is possible to
convert pointers to integers and back, with arbitrary computation on
the integers in the middle. Independent of standards conformance
issues, such techniques have always been used by a few applica-
tions.

Our first attempts were to craft language requiring that all
objects allocated with new must be reachable from recognizable
pointers at all times. However, this would impose significant re-
strictions on optimization.

Consider the following function:

int f()
{

int *p = new int();
int *q = (int *)((intptr_t)p ^ 0x555);

a:
q = (int *)((intptr_t)q ^ 0x555);
return *q;

}

The object allocated at the beginning of the function is clearly
reachable via p throughout f(). Nonetheless, a garbage collection
at label a might reclaim it, since p is dead at that point, and would
probably no longer be stored due to dead variable optimizations,
while q contains only a disguised pointer to the object. This is
closely related to the premature finalization problem described
above and in [9].

Wholesale restrictions on dead variable elimination were re-
garded as too intrusive for (at least) the type of modest proposal
adopted into the draft standard. C++0x implementations support-
ing garbage collection will still need to respect the more modest
restrictions on optimizations described in [5].

Thus the correct restriction here is to first define a notion of a
safely derived pointer, that has been derived from a pointer returned
by new, and then modified only by a sequence of operations such
that none of the intermediate results could have “disguised” the
pointer. In addition we require that all of these intermediate values
only be stored in fields in which they could be recognized as such
by the garbage collector. We allow them to be stored in pointer
fields, integer fields of sufficient size, and aligned subsequences of
char arrays.9

Note that this is a property of pointer expressions, not values.
At the end of the block in our example above p and q will typically
contain the same binary value. Clearly p is safely derived, and
hence would have been safe to dereference, while q is not.

We then insist that only safely derived pointers may be derefer-
enced or used for deallocation with delete.

5. Performance challenges for
declare reachable

A call to declare reachable(p) is specified to ensure that the
entire allocated object containing the object referenced by p be

9 Both C and C++ allow arbitrary data to be temporarily moved into char
arrays and relax typing rules to facilitate that.

retained even if it appears to be unreachable. More precisely, a
call to declare reachable(p) requires that p itself be a safely
derived pointer, but allows subsequent dereferences of pointers q
to the same “complete” object as p, even if q is not safely derived.

This is undone by a call to undeclare reachable(r), where
r points to the same complete object as a prior argument p to
declare reachable().

Undeclare reachable() returns a safely-derived copy of its
argument. If the programmer wants to temporarily hide a pointer, it
can be safely done through code such as

declare_reachable(p);
p = (foo *)((intptr_t)p ^ 0x5555);
// p is disguised here.
p = undeclare_reachable((foo *)

((intptr_t)p ^ 0x5555));
// p is once again safely derived here and can
// be dereferenced.

In a non-garbage-collected implementation both calls turn into
no-ops, and hence the resulting object code is very similar to what it
would have been in the GC-unsafe version. In a garbage collected
implementation declare reachable(p) effectively adds p to a
global, GC-visible data structure.

Multiple declare reachable() and undeclare reachable()
calls on the same object may be nested. Thus the natural implemen-
tation keeps a multiset of all pointers that were declared reachable.
In our prototype implementation, the multiset is implemented as a
chained hash table, with each linked list node containing a small
number m of pointers in a single node.

The implementation does however pose several performance
challenges, addressed in the next two subsections.

5.1 Arguments need not be equal
The effect of a declare reachable() call may be undone by a
call to undeclare reachable() with a slightly different pointer
to the same complete object. Since these calls really affect complete
objects, this yields a significantly less contorted specification. Since
our prototype is implemented in the context of the our conservative
garbage collector, which can map pointers to the base address of
the object, this is not a fundamental problem. We could simply map
every argument to either call to the base of the corresponding heap
object.

We expect that in the vast majority of use cases the work to
perform this mapping is useless. Even C++ programs typically
traffic in pointers to the beginning of the object. Even when they
don’t, it is very likely that they will use the same pointer value for
both calls.

Hence we instead include the original unmodified
declare reachable() argument in the multiset representa-
tion. If an undeclare reachable call cannot find its argument
in the multiset, we map the argument to the base address of the
object. Thus undeclare reachable proceeds by trying three
increasingly time consuming approaches in turn:

1. We look for the specific argument x passed to
undeclare reachable(x) in the hash table. For most
usage, we expect this to succeed roughly all the time.

2. We look up the base address of the object x in its hash bucket,
looking up the base address of each object in the bucket as
we go. This is not guaranteed to succeed, since we may be
looking in the wrong hash bucket. However, the hash function
is designed to ignore a few of the least significant bits in the

pointer value10 Thus if x is close to the corresponding table
entry, there is a high probability of the lookup succeeding.

3. We look through all other hash buckets corresponding to ad-
dresses within the object x, looking for an object with the same
base address. Assuming O(1) elements in each bucket, this pro-
cess takes O(s) time, where s is the size of the object. Thus its
asymptotic complexity is still similar to that of allocating and
collecting the object.

5.2 Concurrent access to multiset
We would like to maintain the efficiency of declare reachable()
and undeclare reachable() in the presence of threads. We
would like to minimize the chances that either becomes a scal-
ability bottleneck when these functions are called from multiple
threads.

Unfortunately, it is not easily possible to keep a separate mul-
tiset for each thread, since corresponding declare reachable()
and undeclare reachable() calls may not be made by the same
thread.

We currently address this issue by keeping lightweight per-
chain locks for our chained hash table. We dynamically increase
the size of the hash table, using the technique described in [17].

This has the disadvantage that the fast path for both calls still re-
quires a lock acquisition and release, which is usually a significant
cost. Techniques similar to those in the next section might alleviate
that, but it is unclear that these calls will be performance critical
enough to warrant that effort.

6. Performance challenges for
declare no pointers

In most garbage-collected programming languages, objects in the
heap contain type descriptors that can be used to locate pointers
in the object to facilitate tracing during garbage collection. The
type descriptors are derived from the type of the object when it
was constructed.

In C and C++ , type information itself may be insufficient. For
example, a char array may be used to temporarily hold a pointer-
containing structure. Certain integral types may be used to hold
pointers.

We address this issue primarily by assuming a conservative
garbage collector that can determine at run-time whether a particu-
lar bit-pattern is a valid object address. Nonetheless, such collectors
may perform much better, particularly in densely occupied address
spaces, if the collector can disregard certain fields when locating
pointers during tracing. Large arrays containing compressed, and
thus seemingly random, data are the most egregious example of
this.

Since we cannot rely on static type information, the C++0x draft
instead provides a simple call declare no pointers(p, n). It
declares that no pointers are stored in the memory region consisting
of n bytes starting at p. More precisely, any pointers that are stored
there are no longer considered to have been safely derived, and
hence may no longer be dereferenced.

The region passed to declare no pointers() will typically
reside either in the heap, or inside a statically allocated object that
would otherwise have been treated as part of the root set. This
interface was chosen largely because of its simplicity.

The effect of declare no pointers(p, n) may be undone
by a call to undeclare no pointers(p, n) with the same val-

10 To avoid excessive collisions for consecutive allocations, the number of
ignored bits shouldn’t be much more than roughly log(m)+log(g), where
m is the number of pointers in a hash chain node, and g is the minimum
allocation size.

ues. These calls do not nest. A no-pointers range must be unregis-
tered before an object is explicitly deallocated. When an object is
garbage-collected, any corresponding no-pointers ranges must be
automatically removed.

This interface makes it relatively convenient to exclude address
ranges from scanning by invoking declare no pointers() in
an object’s constructor, and then to remove the information with
undeclare no pointers() in its destructor. Since these calls
apply to any region of memory, the constructor importantly does
not need to know whether the object is allocated in the heap, on the
stack, or statically. The object layout information does not leak to
the client.

Unlike prior approaches, such as those supported by our exist-
ing collector (e.g GC malloc atomic), this call modifies the col-
lector’s pointer location information after the object has been al-
located. This is precisely what makes the interface a much better
match for C++ ’s constructor and destructor facilities, but it also
makes the implementation 11 considerably more challenging.

An implementation could accommodate this kind of dynamic
information in one of two ways:

1. It could dynamically store the information in the object. In
the normal case for our collector, there is no meta-information
stored in the object. Objects allocated with explicit pointer lo-
cation information are identified by segregating them into a
separate “heap block” or chunk, roughly a page. Thus this
appeared impossible without adding appreciable overhead,
even for the case in which declare no pointers is un-
used. It may still be the most effective way to accommodate
declare no pointers for large quantities of small heap ob-
jects, so if this interface becomes widely used, this decision
may eventually have to be revisited.

2. It can store no-pointers information in a separate data struc-
ture, which is processed at garbage collection time. This also
promises to add less overhead for information that is added and
removed entirely between garbage collections. Since we expect
calls to be made from constructors and destructors, we expect
this to be the common case for stack allocated objects. We chose
this route for now.

In order to accommodate fast addition and removal of no-
pointers ranges by multiple independent threads, we go out of
our way to allow threads to process the easy cases independently.
This is likely to be even more important here than in the case of
declare reachable() since we expect no-pointers calls to be
significantly more frequent.

6.1 The no-pointers data structure
The data structures required here are again complicated
by the fact that matching declare no pointers() and
undeclare no pointers() calls need not be made by the
same thread. To accommodate this without requiring a lock acqui-
sition on every call, we record the information in four separate data
structures:

1. Per-thread arrays Dt containing a fixed number of recently
added no-pointers ranges. We also store an associated index
IDt. Based on a tag bit, it stores either the index of what
might be the next available slot (a hint) or the index of an entry
currently being removed by this thread.

2. Per-thread arrays Ut containing a fixed number of no-pointers
ranges that were recently removed by thread t, but could not be
found in Dt.

11 Declare no pointers may be correctly implemented as a no-op, but
this is not useful.

TD

D

U

U

0

n

0

n

UL

.

.

.

.

.

.

Remove

Remove

Remove

Indexed by
high address
bits

Indexed by
low address

bits

Figure 1. No-pointers data structures

3. A linked list of no-pointers ranges UL containing no-pointers
ranges representing the combined overflow from all the Ut. The
only reason for separating these is that UL is protected by a lock
shared with the garbage collector, while Ut can be accessed
using light-weight lock-free techniques. Since the entire array
Ut is processed at once, the separation greatly reduces the
number of lock acquisitions.

4. A more complex shared data structure T containing no-pointers
ranges that either overflowed from Dt, or were in effect at the
last garbage collection.

Figure 1 gives a pictorial representation of the data structure.
Wide arrows indicate propagation of data between the different
elements. Note that for Ut and UL, ”propagation” means that data
is removed from T . Ranges are propogated from Ut to UL only if
they cannot be found in T for removal. This may happen if they
reside in another thread’s Dt.

Our garbage collector already uses a two-level tree data struc-
ture, reminiscent of hardware page tables, to map each heap chunk
to its meta-information. We abstracted this data structure out, so
that we could use a separate instance of it to represent T . Since the
data structure is indexed by addresses, independent of whether they
are inside or outside the heap, it is easy to add addresses in the root
set.

Each “leaf” in our two level tree contains a pointer to a sorted
doubly-linked list of no-pointers ranges associated with the corre-
sponding chunk-sized region (think page) of memory. No-pointers
ranges spanning these regions are split and inserted separately into
each list. The pointer at the leaf of the tree may point to anywhere
in the list, and is left at the last accessed location, so that searches
for ranges corresponding to adjacent memory regions are relatively
fast.

6.2 Managing asynchronous thread suspension
Since the shared data structures UL and T are currently protected
by the main allocator/GC lock, the trickiest “concurrency” issue
arises with updates to Dt, the per-thread arrays of no-pointers
ranges. Each Dt may be accessed in four different ways:

Insertion Thread t may add an entry by atomically replacing a null
element of the array with a pointer to a no-pointers range. No
other thread ever replaces a null entry with a non-null one, so
this does not require an atomic compare-and-swap. We do insist
that the update become visible atomically to a signal handler
invoked as the result of a GC request to stop the thread.

Flush Thread t may acquire the allocator/GC lock and flush Dt by
copying them into the shared T . This happens when it cannot
immediately find an empty slot.

GC Flush The garbage collector may scan and move the Dt con-
tents into T , thus clearing Dt, while thread t is stopped in a
signal handler. While doing so, it will ignore (and not clear) an
entry marked by IDt as currently being removed. (Since the re-
moval call has not yet completed, it is acceptable to treat the
corresponding no-pointers range as still being in effect.)

Removal Thread t may remove an entry from Dt in response to
an undeclare no pointers call from the same thread on the
same range. IDt is set to the index of the element being re-
moved before the actual removal, and reset afterwards. Suit-
able care is exercised to prevent compiler reordering of these
assignments, since a signal handler must see a consistent state.
Hardware memory fences are not required, since there is no real
concurrency. The only accesses from outside t occur while t is
stopped.

If IDt were not used to guard against simultaneous removals
by the garbage collector and undeclare no pointers(), the
undeclare no pointers() call may effectively be lost. Unlike
declare no pointers() calls, this is unsafe, since a pointer-
containing region may no longer be scanned.

The treatment of Ut is fundamentally similar, but easier,
since elements are only removed while holding the allocation/GC
lock. Thus this coordination with the garbage collector is not
an issue. Note that in the easy cases that we particularly want
to optimize, Ut is updated much less frequently than Dt. If
undeclare no pointers() can directly remove an element from
Dt it does not touch Ut.

6.3 Handling no-pointers data while tracing
The actual garbage collection code in our collector was only mini-
mally modified. As before, the garbage collector stops other threads
during the GC mark phase by sending them signals. (We do not yet
handle incremental GC mode well, but it is relatively rarely used.)
Once threads are stopped, the collector invokes a routine that trans-
fers all no-pointers information into the shared tree T . This is ac-
complished by first flushing all Dt arrays into the tree, and then
processing all pending removals from both the Ut arrays and UL.

Note that this may temporarily result in duplicate or overlapping
entries in T , if similar no-pointers ranges are repeatedly added and
removed during the GC interval. This is fine; if we are asked to
remove a range, we remove the first copy we find.

Since it would be very expensive to constantly check against no-
pointers ranges during marking in our scheme, we currently limit
the number of such checks in two ways. Both of these effectively
cause us to ignore certain declare no pointers() calls:

1. We currently check for no-pointers regions only the last time we
split large blocks in the marker. (Our collector normally does
such splitting both in order to avoid mark stack overflows when
pushing objects referenced from large blocks, and to facilitate
tracing the pieces in parallel.) Currently we split blocks larger
than 512 bytes. This normally causes no-pointers regions in the
root set, and no-pointers regions containing substantial amounts
of compressed data (e.g. images) to be respected. Empirically,
these are probably the most important applications. It does
render efforts to declare no-pointers ranges inside small heap
objects ineffective.

2. We can explicitly ignore no-pointers regions below a certain
size. We currently ignore requests of less than 2 words, though
we have no real reason to believe that’s an appropriate value.

When we do need to look up no-pointers ranges within an ob-
ject, it is relatively efficient: It takes us as little as two memory
references to retrieve the pointer to the doubly linked list of no-
pointers ranges for that memory region. And that pointer will typ-
ically be positioned close to the address we are looking for. This
no-pointers list is then used to trace only those regions outside any
of the ranges.

The collector was already structured so that this same scheme
handles both root segments and heap objects.

Finally, we added a post-pass to the garbage collector that re-
moves no-pointers regions corresponding to unmarked objects.

7. Evaluation
We expect that nearly all code will pass matching arguments to
declare reachable and undeclare reachable nearly all of
the time. Thus the performance-critical implementation path re-
duces to that of implementing a concurrent map. Since there are
good known solutions, we expect reasonable performance and pro-
cessor scalability.

Our initial implementation of declare no pointers() from
above also appears sufficiently useful to justify the facility. We
expect it to be tolerant of aggressive use of the facility, and to
perform quite reasonably, although it will not take advantage of
all such calls. We expect that in many aggressive use scenarios it
will not inhibit scalability to a reasonable number of processors,
since many scenarios involving very large number of calls to these
functions can be handled locally to the thread.

If declare no pointers() becomes heavily used, it is quite
likely that further improvements will be necessary. Clear areas
in which one might wish for improvement are reducing the use
of the main GC lock when requests cannot be handled locally
to the thread, and finding a way to better accommodate small
declare no pointers() requests on heap objects, possibly by
using compiler analysis or profile feedback to reserve space for
layout information in certain heap objects.

We measured performance on some microbenchmarks to con-
firm the above observations. The benchmarks were run on a 16
core (4 sockets times 4 cores/socket) server blade using Intel Xeon
E7330 processors running at 2.4 GHz. We measured overall com-
pletion time of a simple test running various numbers of threads
each performing a total of 10 million declare / undeclare op-
eration pairs each. Results are reported as nanoseconds per pair of
declare / undeclare operations. Each value represents the av-
erage of three runs.

The results for higher thread counts on the declare reachable
tests were observed to vary by as much as about 30% from the av-
erage. We conjecture that this is attributable to some combination
of differences in hash bucket occupancies, their impact on hash
table growth, different maximum hash table occupancies due to
phase differences between threads, and a locking scheme involving
somewhat unpredictable back-offs.

For the no pointers tests, we alternately declared N ranges,
and then undeclared all of them, and then repeated the process. We
measured with both N = 10 and N = 100. The former can be
handled entirely by the per thread arrays Dt. The latter requires
mostly accesses to the global tree, and hence performs much worse.

For the reachable tests, we measured a case in which both
declare and undeclare calls were passed pointers to the base of
100 byte objects, and the case in which they were given 40 and 80
byte offsets respectively. We expect the latter to represent a bad case
that will rarely or never arise in practice. Somewhat surprisingly,
its performance is not that much worse, in part because in our
environment the hash function could safely ignore the bottom 8
bits of addresses, so that it was still rare that more than one bucket
needed to be considered.

 0

 500

 1000

 1500

 2000

 16 8 4 2 1

no_pointers, 100 active
no_pointers, 10 active

reachable 40/80 offsets
reachable no offsets

Figure 2. Performance of API implementations, nsecs/op-pair

The results are given in figure 2.12 For reference, the
declare reachable times with different offset are roughly sim-
ilar to allocation round-trip times. The results for no pointers
with 100 simultaneous live ranges are intentionally truncated; the
value for 4 threads is almost 9 microseconds.

8. Current Status
The current C++0x committee draft[24] is intended as a vehicle to
both allow feedback to the committee, and to make it easier for ven-
dors to implement some of the more time critical features (notably
thread support) sooner rather than later. It was not labeled by the
committee as “final”, and hence was not intended to be approved in
its present form. Our current best guess is that an official standard,
containing this minimal form of garbage collection support, will be
approved in late 2010 or 2011. We hope and expect that a number of
vendors will be encouraged to provide garbage collection support,
perhaps initially based on our prototype implementation.

Acknowledgments
This work benefited significantly from many in-person and email
discussions in the context of the C++ ISO standards committee.
Particularly insightful contributions, not always in support of our
proposal, were made by Sean Parent, Herb Sutter, and Dave Abra-
hams. Clark Nelson contributed substantially to the formal proposal
accepted into the current draft standard. The anonymous reviewers
made many useful suggestions for improving this paper.

References
[1] J. F. Bartlett. Compacting garbage collection with ambiguous roots.

Lisp Pointers, pages 3–12, April-June 1988.

[2] D. Blake. Programming languages: Everyone has a favorite one. Dr.
Dobb’s Journal, 18(3), April 2008.

[3] H.-J. Boehm. A garbage collector for C and C++. http:
//www.hpl.hp.com/personal/Hans_Boehm/gc/.

[4] H.-J. Boehm. Space efficient conservative garbage collection. In
SIGPLAN ’93 Conference on Programming Language Design and
Implementation, pages 197–206, June 1993.

[5] H.-J. Boehm. Simple garbage-collector-safety. In SIGPLAN ’96
Conference on Programming Language Design and Implementation,
pages 89–98, June 1996.

[6] H.-J. Boehm. Fast multiprocessor memory allocation and garbage
collection. Technical Report HPL-2000-165, HP Laboratories,
December 2000.

12 Due to a a temporary implementation restriction, these numbers assume
only one collecting thread. This should have minimal impact.

[7] H.-J. Boehm. Reducing garbage collector cache misses. In
Proceedings of the 2000 International Symposium on Memory
Management, pages 59–64, 2000.

[8] H.-J. Boehm. Bounding space usage of conservative garbage
collectors. In Proceeedings of the Twenty-Ninth Annual ACM
Symposium on Principles of Programming Languages, pages 93–
100, 2002.

[9] H.-J. Boehm. Destructors, finalizers, and synchronization. In
Proceeedings of the 30th Annual ACM Symposium on Principles
of Programming Languages, pages 262–272, 2003.

[10] H.-J. Boehm. The space cost of lazy reference counting. In
Proceeedings of the 31st Annual ACM Symposium on Principles
of Programming Languages, pages 210–219, 2004.

[11] H.-J. Boehm, A. J. Demers, and S. Shenker. Mostly parallel garbage
collection. In SIGPLAN ’91 Conference on Programming Language
Design and Implementation, pages 157–164, June 1991.

[12] H.-J. Boehm and M. Spertus. N2261: Optimization-robust final-
ization. http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2007/n2261.html.

[13] H.-J. Boehm and M. Spertus. N2310: Transparent programmer-
directed garbage collection for c++. http://www.open-std.org/
jtc1/sc22/wg21/docs/papers/2007/n2310.pdf.

[14] H.-J. Boehm, M. Spertus, and C. Nelson. N2670: Minimal support
for garbage collection and reachability-based leak detection (revised).
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/
2008/n2670.htm.

[15] H.-J. Boehm and M. Weiser. Garbage collection in an uncooperative
environment. Software Practice and Experience, 18:807–820,
September 1988.

[16] W. Bright. Digital mars. http://www.digitalmars.com/.

[17] B. Cantrill and J. Bonwick. Real-world concurrency. ACM Queue,
6(5):16–25, September 2008.

[18] G. Colvin, B. Dawes, P. Dimov, and D. Adler. Boost smart pointer
library. http://www.boost.org/libs/smart ptr/.

[19] D. Detlefs, A. Dosser, and B. Zorn. Memory allocation costs in large
C and C++ programs. Software Practice and Experience, 24(6):527–
547, 1994.

[20] J. R. Ellis and D. L. Detlefs. Safe, efficient garbage collection for
C++. Technical Report CSL-93-4, Xerox Palo Alto Research Center,
September 1993.

[21] R. Hastings and B. Joyce. Purify: Fast detection of memory leaks and
access errors. In Winter Usenix Conference, pages 125–136, 1992.

[22] H. Hinnant. N2771: Lwg issues. http://www.open-std.org/
jtc1/sc22/wg21/docs/papers/2008/n2771.html.

[23] M. Hirzel and A. Diwan. On the type accuracy of garbage
collection. In Proceedings of the International Symposium on
Memory Management 2000, pages 1–11, October 2000.

[24] ISO/IEC JTC1/SC22/WG21. ISO/IEC 14882, Programming Lan-
guage - C++ (Oct 2008 committee draft). http://www.open-std.
org/jtc1/sc22/wg21/docs/papers/2008/n2800.pdf.

[25] M. Kapur. Using the c/c++ garbage collection library, libgc. http:
//developers.sun.com/solaris/articles/libgc.html.

[26] P. E. McKenney. Exploiting Deferred Destruction: An Analysis of
Read-Copy-Update Techniques in Operating Systems Kernels. PhD
thesis, OGI School of Science and Engineering at Oregon Health &
Science University, 2004.

[27] G. Rodriguez-Rivera, M. Spertus, and C. Fiterman. Conservative
garbage collection for general memory allocators. In Proceedings of
the International Symposium on Memory Management 2000, pages
71–79, October 2000.

[28] P. Rovner. On adding garbage collection and runtime types to a
strongly-typed, statically-checked, concurrent language. Technical
Report CSL-84-7, Xerox Palo Alto Research Center, July 1985.

[29] M. Serrano and H.-J. Boehm. Understanding memory allocation
of Scheme programs. In Proceedings of the 2000 International
Conference on Functional Programming (ICFP), pages 245–256,
2000.

[30] D. Vandevoorde. N2073: Modules in c++ (revision 4). http:
//www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/
n2073.pdf.

