

Keyword(s):

Abstract:

©

The HP Universal CMDB SPARQL Adapter

Steve Battle, David Booth

HP Laboratories
HPL-2009-349

CMDB, SPARQL, ITSM, ITILv3, CMS, RDF, OWL, JENA

IT Service Management (ITSM) is about making IT accountable to business. IT and business functions
meet at the service interface where business functions define themselves in terms of the services they
deliver to their customers. The IT function, in turn, must provide the infrastructural capabilities and
resources necessary to support it. The IT Infrastructure Library (ITIL) proposes that the IT configuration
should be explicitly modeled within a Configuration Management System (CMS). The HP Universal
Configuration Management Database (UCMDB) is one component of a CMS; maintaining a
comprehensive and up-to-date snapshot of all managed assets and their inter-relationships across the IT
environment. The UCMDB is not particularly web-friendly; there is no easy way to access configuration
data using a conventional browser. Another drawback is that configuration records do not correspond
directly to the language of business. This report addresses the first of these issues; making the IT
configuration navigable on the web.

External Posting Date: November 6, 2009 [Fulltext] Approved for External Publication
Internal Posting Date: November 6, 2009 [Fulltext]

Presented at HP Software Universe 2007.

Copyright 2009 Hewlett-Packard Development Company, L.P.

The HP Universal CMDB SPARQL Adapter∗

Steve Battle
HP Labs, Bristol

steven.a.battle@googlemail.com

David Booth
http://www.dbooth.org/

david@dbooth.org

1 IT Service Management

IT Service Management (ITSM) is about making IT accountable to busi-
ness. IT and business functions meet at the service interface where business
functions define themselves in terms of the services they deliver to their
customers. The IT function, in turn, must provide the infrastructural capa-
bilities and resources necessary to support it. Service management is defined
[14] as “a set of specialized organization capabilities for providing value to
customers in the form of a service.”

The aim is to align an organization’s IT infrastructure with the busi-
ness services it provides, so that the running of any server, network, or
database is justified by its support for these services. This is not merely
a paper excercise. The IT Infrastructure Library (ITIL) [9] proposes that
the IT configuration should be explicitly modeled within a Configuration
Management System (CMS). The CMS is the place where the enterprise
reflects upon itself; recalling past configurations, displays an awareness of
its present state, and plans for future change.

The HP Universal Configuration Management Database (UCMDB) is
one component of a CMS; maintaining a comprehensive and up-to-date
snapshot of all managed assets and their inter-relationships across the IT
environment. It maintains this model using real-time discovery and asset
tracking. The failure of any one of these assets would be spotted, and the
impact of this failure on service delivery could be immediately assessed.

The UCMDB is not particularly web-friendly; there is no easy way to
access configuration data using a conventional browser. Another drawback
is that configuration records do not correspond directly to the language of
business. We are beginning to see the emergence/convergence of a number of
business ontologies including ITILv3 and COBIT that enable business users
to describe services in terms of customer value and outcomes, rather than
the technical language of web-services. It will become increasingly important
for users to be able to engage with the CMS in their own language rather

∗This work was presented at HP Software Universe 2007 [1].

than the language of IT. This report addresses only the first of these issues;
making the IT configuration navigable on the web.

This work builds on the Joseki SPARQL server, the ARQ query engine,
the Jena RDF framework, the Mercury Application Mapper (MAM) 6.5
functional demo, and the Mercury UCMDB SOAP API.

2 Configuration data

Figure 1: Topological view
of configuration data show-
ing a server (middle) as mem-
ber of a network (top) hosting
database (bottom).

Service assets come in two varieties. Re-
sources include commoditities such as fi-
nancial capital, information, infrastructure
including IT and facilities, software appli-
cations, and people. Capabilities are an
organization’s ability to manage resources
to their competitive advantage and include
softer assets such as management, organiza-
tion, processes, knowledge and people. This
wide ranging (and overlapping) set of inter-
ests provides a rich problem domain for en-
terprise knowledge management. Each as-
set, or configuration item, has a set of at-
tributes that depend on the CI involved and
the information required to manage the ser-
vice. Some attributes are specific to a single
CI type, whereas others are common to all
configuration items. In addition to these at-
tributes a CI will also be linked by relation-
ships to other configuration items including
changes, incidents, and known problems.

So what does configuration data actually
look like? The Mercury Application Mapper
provides a topological view of configuration
data as illustrated in figure 1. This shows
a server (middle), which is a member of a
network (top), hosting a database (bottom). This configuration is viewed
as a simple graph where each node represents a so-called configuration item
(CI). Each CI has a 128 bit ID that uniquely identifies it within the CMS.
CIs are also associated with a display label which is used to name each CI
in the graph of figure 1.

3 The UCMDB Query Interface

Figure 2: Topological query
selecting simple network,
host, server configurations
(screenshot from MAM TQL
builder).

The HP UCMDB offers a sophisticated set
of tools for monitoring and querying con-
figuration records. Users working with the
Mercury Application Mapping tool are able
to create graphical topological queries that
express the configuration topologies they
are interested in. TQL is primarily a graph-
ical language; The XML serialization used
at the SOAP API was not developed as a
stand-alone query language, so is not par-
ticularly human readable. This includes the
Topological Query Language (TQL) that al-
lows end-users to express queries graphi-
cally. Configuration data is viewed, not in
terms of relations, but as a user configurable
graph. A TQL query is a graphical template
that enables us to search the configuration
graph for all subgraph instances of a given
pattern graph. The graphical query illus-
trated in figure 2 represents a graph pat-
tern that will match the configuration data
of figure 1. Each node of this query is a CI
type that will match only instances of that
type.

The UCMDB presents a comprehensive
SOAP API that enables it to be programmatically queried and updated from
a client language such as Java. In this report we consider only the query
aspects of this interface. This API is described in WSDL (Web Services
Description Language) detailing the operations available at the interface.
To support the use of the SOAP API from Java, we use Apache Axis to
generate the appropriate framework classes and stub code directly from the
WSDL. The UCMDB API supports a wide variety of operations, but we
are primarily intersted in executing a topological query (TQL) expressed in
XML.

4 Configuration metadata

One man’s data is another’s metadata. The data/metadata distinction is
not an absolute but a relative distinction. The UCMDB doesn’t provide
access to the data in a database but instead provides metadata about the
database. The W3C has established frameworks for handling metadata that

are a good fit for the graphical model we see in the UCMDB. According to
Sir Tim Berners-Lee [4] - inventor of the world-wide web - “The Semantic
Web is a web of data, in some ways like a global database.” In the case of
the UCMDB, this data is not published globally, but could be thought of as
part of a Semantic IntraWeb.

The semantic web is a new take on the web where online content can be
read & understood not only by humans using browsers, but also by software
agents. The original vision of the web as a vast global hyper-text is largely
opaque to machine understanding. The semantic web builds on this vision,
first and foremost, by adding labels to the links that capture the kind of
relationship that exists between a pairs of resources; transforming the web
into a global knowledge-base. At the heart of this vision are W3C stan-
dards: the Resource Description Framework (RDF) [11], the Web Ontology
Language (OWL) [2], and the SPARQL Protocol and RDF Query Language
(SPARQL) [15]. However, it is not the use of any particular language that is
key to understanding the semantic web. The semantic web provides a logical
(model theoretic) semantics for the web which serves as the foundation for
model-driven activities drawing on web data.

The Jena Semantic Web toolkit developed in HP Labs is a comprehen-
sive Java based platform for manipulating RDF graphs and their associated
ontology, as well as providing sophisticated query and inference capabilities.
Jena is available under a liberal BSD-style license. Jena is also embedded in
a number of tools including the popular Protégé [7] and TopBraid Composer
[16] ontology editors, the Metatomix MetaStudio semantic development en-
vironment for eclipse [13], and most recently EulerGUI, ”a lightweight IDE
for Artificial Intelligence” [17].

The semantic web technology stack is often visualized as a layer-cake,
spanning XML, metadata, query, ontology, and rules. We analyse the issues
of mapping configuration data into the semantic web by climbing the stack
from it’s XML foundations upwards.

4.1 XML foundations

One of the key concepts that XML brings to RDF is the concept of the
namespace providing a context in which local names are defined. When we
need to introduce different naming contexts such as ITIL and COBIT, it
becomes essential to have a mechanism for disambiguating different termi-
nologies. The UCMDB itself defines a naming context which will be used in
conjunction with the Configuration Item ID, a unique numeric identifier, to
define a URI for each named resource. The UCMDB namespace is arbitrary
(but should be stable) and for our experiments is defined as follows:

ci = 〈http : //cmdb.mercury.com#〉

For ease of distinguishing the namespace from the fragement identifier post-
fix, the namespace is terminated with the ‘#’ character. The CI ID is
prefixed with a label representing it’s unique primary type name. For ex-
ample, the full URI for a CI representing a Windows NT server would be as
follows:

〈http : //cmdb.mercury.com#nt.35014541〉

In future this URI mapping may help to resolve the identity of configuration
items across multiple, federated CMDB. This contrasts with the current
approach that designates a single UCMDB as the master system.

The use of an HTTP reference in metadata does not imply that the URI
is dereferenceable. However, depending upon the underlying architecture
we could opt to serve representations of individually addressed resources,
or return HTTP response code 303 (See Other) to indicate explicitly that
there is no representation for the accessed URI [10].

The names of object types, attributes, and inter-object links are similarly
mapped onto named URIs. To avoid name clashes they are defined in three
separate, but related, namespaces:

object = 〈http : //cmdb.mercury.com/object#〉
attr = 〈http : //cmdb.mercury.com/attribute#〉
link = 〈http : //cmdb.mercury.com/link#〉

Another XML foundation that RDF builds on is the use of XML schema
datatypes. The primitive dataypes used in the UCMDB: Boolean, Byte,
Date, Double, Float, Integer, Long, String are mapped into the XML Schema
datatypes: xs:boolean, xs:base64Binary, xs:date, xs:double, xs:float, xs:integer,
xs:long, xs:string respectively, where the ‘xs’ prefix is defined as follows:

xs = 〈http : //www.w3.org/2001/XMLSchema#〉

The UCMDB datatype for XML data is mapped to the new RDF datatype
rdf:XMLLiteral. Attributes may also be lists of primitive types. Additional
structured datatypes for String & Integer Lists may be represented by RDF
sequences. The label associated with the windows server referred to above
is the string typed value:

“MBADIR-IL”ˆˆ〈http : //www.w3.org/2001/XMLSchema#string〉

Figure 3: Resource description of Windows host ‘MBADIR-IL’.

4.2 Metadata: a Resource Description Framework

RDF is not the syntax. Neither is it the way the metadata is stored. RDF
provides standard ways to disseminate metadata with standard serializa-
tions including RDF/XML [6] and N3 (Notation 3) [3] preferred by many
for its readability. However, the subtlety of RDF lies in the logical model
underlying the metadata, best imagined as a graph. It may be stored di-
rectly as RDF/XML or in an RDF triple store, but we may also create
wrappers around existing data sources like the UCMDB. RDF allows us to
pull together a description of a resource, from possibly many different data
sources, into a single model.

An RDF description is a summary of everything we know about a given
resource. At its simplest, this description will comprise a set of name &
primitive value pairs. An RDF graph contains many resource descriptions
and is composed of triples, comprising the resource being described, a prop-
erty, and the object of the statement. Many of these properties will be
so-called datatype properties, with a simple typed value. For example, we
saw above that a CI representing a host server has a string typed label. The
name of this property is itself named by a URI, attr:host dnsname. Other
object properties reference other CIs. The ‘MBADIR-IL’ server is host to
(link:container f) the Microsoft SQLServer database. In the N3 notation

we may list the different property/values belonging to the same resource
description with the semicolon separator. The description may also include
the subject type, here object:nt. In N3 the keyword ‘a’ is simply shorthand
for rdf:type. The resource description is terminated with a full-stop.

ci : nt.35014541 a object : nt;
attr : host dnsname “MBADIR-IL”ˆˆxs : string;
link : container f ci : sqlserver.77593429.

This information and more is captured in the graphical representation of
a resource description shown in figure 3. Literal datatyped values are shown
as rectangular boxes, while CIs are rounded boxes. Instances of Network,
Host, and Database are highlighted in orange. Each graph edge corresponds
to a triple read from left to right.

4.3 Ontology

The UCMDB defines a type hierarchy, including the types ‘network’, ‘host’
& ‘database’ which are themselves configuration items, meaning that new
types can be added. A CI must be assigned a single type from this hierarchy.
The type defines the attributes a CI may have; for example the host server
has an attribute, host os, that describes the type of operating system and
would have a simple string value, such as “Linux”.

The OWL Web Ontology Language is the W3C standard for defining
the classes and properties that can be used within RDF. They are a shared,
formal, conceptualization of an application domain. Ontologies encourage
users to create and re-use common models, enhancing the value of shared
metadata. OWL builds on RDF schema (RDFS) [5], used to declare its
vocabulary, adding additional terminology to define the logical conditions
for class membership.

For the UCMDB the ontology defines the objects and relationships in
the application universe, defining CI classes and link taxonomies. These
are configured within the UCMDB and may be automatically converted
into OWL or RDFS representations for use with standard semantic web
tools. The ontology will assert the subclass relationship between a Windows
NT server object:nt and the more generic concept of an object:host. This
information enables a user to interactively build a query by supporting a
drop-down list (see figure 4) of the available classes and relationships that
may be found in the data. This information is presented hierarchically; to
locate the Host class as required in our query, the user would begin at the
Root type, and drill down through Data, Object, IT Universe, and System.

Figure 4: Snapshot of UCMDB taxonomy.

Note that these names are based on user-friendly class labels rather than
the formal class URI.

object : data rdfs : subClassOf object : root.

object : object rdfs : subClassOf object : data.

object : it world rdfs : subClassOf object : object.

object : system rdfs : subClassOf object : it world.

object : host rdfs : subClassOf object : system.

object : nt rdfs : subClassOf object : host.

The links are directed, binary relationships between a pair of CIs. The
domain and range of such a link may each be restricted to specific types.
As we saw above, an NT server may host (be a container for) services such
as databases and other host resources such as disks and cpus. This is rep-
resented in OWL as a class restriction on a specific property in the context
of a given class. This information may be used by query builders to pro-
vide contextual support for class selection, in this case offering only host
resources (and its subclasses) as options for the object of the containment
relationship when querying a host.

object : nt a owl : Class; rdfs : subClassOf

[a owl : Restriction;
owl : allV aluesFrom object : hostresource;
owl : onProperty link : container f].

4.4 Query

With the underlying configuration data reflected as RDF and described with
OWL, we need a mechanism to replicate the query capabilities of TQL.
We are investigating the use of SPARQL (SPARQL Protocol And RDF
Query Language) as an alternative way to access these configuration records.
SPARQL is the W3C recommended metadata query language, providing a
powerful SQL-like syntax for RDF queries. Unlike SQL, the graph patterns
used in a SPARQL query are understood in terms of the underlying, triple-
oriented, RDF model rather than the n-ary relational model. The results of
a query may be returned in one of the standard RDF serializations, including
RDF/XML and N3. For web-services it is possible to return data bindings
using the JSON result serialization.

The written form of SPARQL will be superficially familiar to SQL de-
velopers, making it easy for them to make the switch. However, given this
similarity, we consider later why we do not use SQL from the get-go. The
SPARQL query below represents the same search pattern as the TQL query
shown earlier in figure 2. Variables, prefixed by ’?’, are bound to resources
in the matching graph, generating a result set that lists all the matching
combinations in the queried graph.

PREFIX object: <http://cmdb.mercury.com/object#>;
PREFIX link: <http://cmdb.mercury.com/link#>;

SELECT ?network ?host ?database
WHERE {
?network a object:network; link:member ?host.
?host a object:host; link:container_f ?database.
?database a object:database.

}

There are essentially two steps in the process of presenting a SPARQL
query to the UCMDB. The first step is to translate the SPARQL query
into the XML form of TQL. SPARQL queries may contain complex nested
patterns which would be difficult to translate directly into TQL. The ARQ
query engine handles the basic parsing and processing of queries, breaking
the problem down into separate stages each of which represents a basic graph
pattern. These stages are then composed into a pipeline with the output of

each stage feeding into the input of the next. The queries generated at each
stage are presented to the UCMDB which returns a sub-graph containing all
the resources that match the query. This sub-graph may contain multiple
solutions to the original query, and the ARQ query engine contains the
logic to iterate through and recombine the results from the different query
stages. Looking at the example above, the resulting sub-graph may contain
multiple network, host and database objects from which all possible binding
combinations for ?network, ?host & ?database are returned.

Once the query has been processed the XML graphs returned by the
UCMDB must be translated into standard RDF before being passed back
to the query engine. At this point there is a discrepancy between the classes
expressed in the query and those in the data. The query requests a host
object of type object:host whereas the graph returned from the UCMDB
contains objects of type object:nt. The UCMDB is smart enough to iden-
tify these Windows NT servers as kinds of Host (object:nt is a sub-class of
object:host), but this inference remains implicit in the returned graph. To
enable the ARQ query engine to make use of this inference it must be made
explicit in the graph. This requires the use of Jena inference, described in
the next section.

4.5 Rules

Jena includes a general purpose rule-based reasoner which is used to imple-
ment both the RDFS and OWL reasoners but is also available for general use.
This reasoner supports rule-based inference over RDF graphs and supports
forward chaining, backward chaining or a hybrid execution model combining
the two. There are two rule engines; a forward chaining Rete [8] engine and
a tabled datalog engine. They can be used independently, or the forward
chaining engine can be used to prime the backward chaining engine which
in turn can be used to answer queries.

Rather than use the generic OWL reasoner, we make use of the general-
purpose forward chaining reasoner. This allows us to fine-tune the rule-base
and optmize performance. The input to the inference engine combines the
sub-graph returned by the UCMDB with ontology generated earlier. This
provides us with two key facts:

ci : nt.35014541 rdf : type object : nt.

object : nt rdfs : subClassOf object : host.

We are interested in hierarchical closure over classes and properties as
they apply to instance data. These rules are a small subset of the RDFS
closure rules. We have two rules (rdfs6 & rdfs9) each of which has an an-
tecedent (if-part) and a consequent (then-part) on the left and right-hand

sides of the implication operator ‘→’. Each logical term is a triple enclosed
in brackets, any may contain variables (prefixed with ’?’) local to the clause
they appear in.

RDFS Closure rules
[rdfs6: (?a ?p ?b), (?p rdfs:subPropertyOf ?q) -> (?a ?q ?b)]
[rdfs9: (?a rdf:type ?x), (?x rdfs:subClassOf ?y) -> (?a rdf:type ?y)]

Using the rule rdfs9 with ?a, ?x, and ?y bound to ci:nt.35014541, object:nt,
and object:host respectively, we may infer the additional triple:

ci : nt.35014541 rdf : type object : host

With this information the ARQ query engine is now able to bind the Win-
dows NT host ci:nt.35014541 to the ?host variable in the query.

4.5.1 SPARQL vs. SQL

Why isn’t SQL the language of choice rather than SPARQL. Jim Melton
of Oracle puts it succinctly [12], “Because typical questions asked of RDF
involve several, sometimes many, join operations, SPARQL provides a more
compact notation that is perhaps easier to get right with less debugging
time spent.” What does this mean in practice? The RDF model is, funda-
mentally, relational. Yet it is a relational model that is normalised to the
extent that it captures only binary relations (ternary if you count language
attributes on literals).

The following SPARQL query is designed to select only networked Linux
servers with a database. It demonstrates how we may specify simple con-
ditions on object attributes. This is modelled as a pair of links between a
network object and a host object link:member, and between the host object
and a database object link:container f. The example also includes datatype
attributes of these configuration items attr:host os, attr:display label. These
links can be modeled as a pair of binary relations, whereas the classifications
object:network, object:host, object:database are thought of logically as unary
relations.

PREFIX object: <http://cmdb.mercury.com/object#>
PREFIX link: <http://cmdb.mercury.com/link#>
PREFIX attr: <http://cmdb.mercury.com/attribute#>
PREFIX xs: <http://www.w3.org/2001/XMLSchema#>

SELECT ?hostname
WHERE {
?network a object:network; link:member ?host.
?host a object:host; link:container_f ?database;
attr:host_os "Linux"^^xs:string; attr:display_label ?hostname.
?database a object:database.

}

We will compare this SPARQL query with an equivalent SQL query. It
should be made clear that this comparison is made in the context of data
already modeled as a highly normalized graph. The nodes and links in
this graph may be hierarchically classified which makes the problem even
harder than it appears at face value. The properties that define the links can
be sub-properties of other properties, and the classes can be sub-classes of
other classes. Relational hierarchies are not native to relational databases,
so to avoid masive duplication of data, this hierarchy must be explicitly
represented some way. In the Common Data Model (CDM) used by the
UCMDB, both the member and container f links are sub-properties of a
common, top-level link property. The super-relation comprising all the
member and container f property instances are recorded just once in the
link relation. Individual link instances are then identified and classified ac-
cording to which property relation they belong to using CDM MEMBER 1
and CDM CONTAINER F 1.

The database has a single table for each configuration item class
CDM NETWORK 1, CDM HOST 1, CDM DATABASE 1. However, these
are not unary relations. Attributes are associated with classes and are de-
fined as additional columns in these tables. The example is concerned with
two attributes of the host server; the host os is associated with the host
specifically as a ’host’, while the display label is associated with the host
as a generic ’data’ item CDM DATA 1, the superclass to all CDM classes.
These must be joined on the host ID to ensure that the attribute values
pertain to the same configuration item.

Neither does the relational model or SQL provide support for names-
paces. SPARQL is a web technology so is built on a foundation of URI
naming. This ranges from the names of classes, properties, and datatypes
to the identifiers used for individual configuration items. SPARQL simplifies
namespace management by allowing namespace prefix definitions. In SQL
we can resort to tricks like adding CDM to table names, but in a federated,
distributed world we have to move to a new mindset where we have globally
scoped identifiers instead of local IDs.

The SQL query below performs an equivalent query against the database
underlying the UCMDB. It is described as a sequence of inner joins, together
with a single ‘WHERE’ clause selecting only hosts running the ‘Linux’ op-
erating system. By sacrificing n-ary relations, SPARQL achieves simplicity
by dispensing with column names. The subject, predicate and object of
a relation are identified positionally rather than by name (e.g. END1 ID,
END2 ID). One benefit of this approach is that things that only appear
once, like the network, the host and database, may remain anonymous. Not
so in SQL, where the explicit join requires everything to be named.

In addition, the joins are explicit (...INNER JOIN... ON...). As can
be seen below, the overall sense of the query is obscured by the number of
join operations. At best we could remove ‘INNER JOIN’s, moving the join

conditions into the ‘WHERE’ clause but this would have the additional dis-
advantage of splitting individual graph edges across the ‘FROM’ (containing
the predicates) and ‘WHERE’ clauses containing the subjects, and objects.

SELECT CDM_DATA_1.A_DISPLAY_LABEL AS hostname
FROM
CDM_MEMBER_1
INNER JOIN CDM_LINK_1 AS member
ON CDM_MEMBER_1.CMDB_ID = member.CMDB_ID
INNER JOIN CDM_CONTAINER_F_1
INNER JOIN CDM_LINK_1 AS container_f
ON CDM_CONTAINER_F_1.CMDB_ID = container_f.CMDB_ID
ON member.END2_ID = container_f.END1_ID
INNER JOIN CDM_NETWORK_1
ON member.END1_ID = CDM_NETWORK_1.CMDB_ID
INNER JOIN CDM_HOST_1
ON member.END2_ID = CDM_HOST_1.CMDB_ID
INNER JOIN CDM_DATABASE_1
ON container_f.END2_ID = CDM_DATABASE_1.CMDB_ID
INNER JOIN CDM_DATA_1
ON member.END2_ID = CDM_DATA_1.CMDB_ID
WHERE (CDM_HOST_1.A_HOST_OS = ‘Linux’)

Because of these differences, we contend that it is much easier to see
the SPARQL query as a graph, albeit flattened into the serial confines of
a written language. Another difference we observe is that in the relational
model, the data type of an attribute is implicitly associated with the column,
as defined by the database schema. In the SQL query, ‘Linux’ can only be
a string because of the type of the ‘A HOST OS’ attribute. In SPARQL
this is not the case; an attribute or link could have a range of valid types.
Consequently, we have to be explicit about the datatype, declaring it to be
an XML schema string.

Perhaps more significantly, SQL is primarily suited to tabular data, re-
turning only variable bindings over structured relations. SPARQL, however,
is desgned not only to match graph patterns, but to return complete graphs
in the results (describe queries), even when that graph structure is not ex-
pressed in the query.

5 SPARQL vs. TQL

SPARQL is at least as expressive as the graphical TQL. The SPARQL
queries shown so far have demonstrated support for basic topological query
over nodes & links, and simple conditions on object attributes. TQL includes
additional constructs for querying link attributes, simple, disjunctive & neg-
ative attribute conditions, minimum & maximum cardinality constraints,

and qualifier conditions. We show how these constructs may be represented
in RDF & SPARQL.

5.1 Link attributes

Links between CIs are themselves a kind of CI, are defined in the same
type hierarchy as other CIs, and may have attributes of their own. This is
similar to the UML technique of defining an association class for complex
n-ary relations. For example, the membership link between the network and
host server carries additional information about the actual network address,
recorded as the member netaddress attribute on the link itself. Ordinarily, in
RDF, the relationship between a pair of resources may not have properties
of its own. However, RDF includes the idea of reification where an abstract
relationship may be given concrete form and treated as a resource in its own
right.

PREFIX object: <http://cmdb.mercury.com/object#>;
PREFIX link: <http://cmdb.mercury.com/link#>;
PREFIX attr: <http://cmdb.mercury.com/attribute#>;
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>;

SELECT ?hostname ?ip
WHERE {
?network a object:network; link:member ?host.
?host a object:unix; attr:display_label ?hostname.
?member attr:member_netaddress ?ip.
relationship reified as ?member
?member rdf:subject ?network;
rdf:predicate link:member; rdf:object ?host.

}

In the query above, the reified relationship between network and host,
bound to ?member, is related to its respective subject, predicate & object
by the rdf:subject, rdf:predicate, & rdf:object relationships (the presence of
these relationships signals the process that lifts the UCMDB data into RDF
to assert these reifications). As can be seen in the query we may use this
reified link to access the attr:member netaddress property.

5.2 Conditional filters

The semantic web exhibits what is known as an open-world semantics; the
absence of a fact doesn’t prove the negation. What it shares with the
UCMDB is that there is no way to express a negative fact in the config-
uration data. Nevertheless, conditional filters provide a limited form of
negation allowing users to express disjunctive and negative conditions on
attribute values. For example, the query below filters for either “Linux” or
“Windows XP” servers.

PREFIX attr: <http://cmdb.mercury.com/attribute#>
PREFIX object: <http://cmdb.mercury.com/object#>
PREFIX link: <http://cmdb.mercury.com/link#>

SELECT * WHERE {
?network a object:network; link:member ?host.
?host a object:host; attr:host_os ?os; link:container_f ?database.
?database a object:database.
FILTER (str(?os)="Linux" || str(?os)="Windows XP")

}

We could adapt this example to select anything but “Linux” servers
by replacing the filter condition with “FILTER afn:not(str(?os)=”Linux”)”.
This uses SPARQL’s extensibility merchanisms to allow new conditional
filters to be added. This extension is defined in the namespace afn =
〈java : com.hp.hpl.jena.sparql.function.library.〉

5.3 Cardinality constraints

TQL provides the facility to place conditions on the number of times a
particular relationship occurs. In this case we need to provide a custom
filter to support this behaviour. The cardinality function is a custom ex-
tension designed to mimic the functionality found in TQL. The example
below demonstrates the use of a minimum cardinality constraint to search
for multi-processor unix hosts. It counts the number of container f links
between the host and any CPU (a kind of host resource).

PREFIX attr: <http://cmdb.mercury.com/attribute#>
PREFIX object: <http://cmdb.mercury.com/object#>
PREFIX link: <http://cmdb.mercury.com/link#>
PREFIX fun: <java:com.hp.hpl.cmdb.sparql.function.>

SELECT DISTINCT ?host ?cpu
WHERE {
?host a object:unix; link:container_f ?cpu. ?cpu a object:cpu.
FILTER (fun:cardinality(?host, link:container_f, object:cpu) > 1).

}

5.4 Qualifier conditions

The simple UCMDB class taxonomy is augmented with the idea of qualifiers
which are non-inheritable properties of types. To give a familiar example
from programming, a given class may be qualified as an ‘abstract class which
wouldn’t be inherited by its (concrete) sub-classes. However, where these
qualifiers tend to be fixed in programming languages, the UCMDB is exten-
sible, allowing a customer to add domain specific qualifiers.

In the example below, we select for sub-classes of object:host that are
qualified as network devices. This would select for routers, load-balancers,
firewalls, and networked printers, which are all classified as hosts. It does
not match servers which are not suitably qualified. Qualifiers augment the
UCMDB taxonomy providing it with a limited form of multiple classifica-
tion. If we were to re-engineer the ontology from the ground up we might well
model this as a fully-fledged OWL ontology. However, to maintain compat-
ibility with the UCMDB and the non-inheritability of these qualifiers they
are captured as a meta-model on top of the existing class hierarchy. It is the
classes themselves that are appropriately classified, hence the test below for
a class that is itself an instance of a qualifier.

PREFIX object: <http://cmdb.mercury.com/object#>;
PREFIX link: <http://cmdb.mercury.com/link#>;
PREFIX qual: <http://cmdb.mercury.com/qualifier#>;

SELECT ?network ?host
WHERE {
?network a object:network; link:member ?host.
?host a object:host; a [a qual:NETWORK_DEVICES].

}

6 Conclusion

In this report we have demonstrated the ability to bring existing service
management tools like the UCMDB into the semantic web. We have seen
how this is a suitable basis for presenting a standard and web-friendly query
interface in SPARQL. Given that configuration data is intrinsically a graph-
based model then SPARQL appears to be a more suitable query language
than SQL. Finally, we have shown that many capabilities of the graphical
TQL can be translated into SPARQL so there need be no loss of function-
ality in moving from TQL to SPARQL. Combined with graphical tools for
building SPARQL queries and visualising the results this shows the poten-
tial for making the exploration of configuration data as easy as surfing the
web.

References

[1] Steve Battle and David Booth. Integrating with the hewlett
packard universal CMDB using semantic web technologies.
http://h41112.www4.hp.com/events/su2007/technical_
tutorials_tmp.php?id=0184, November 2007.

[2] Sean Bechhofer, Frank van Harmelen, Jim Hendler, Ian Horrocks,
Deborah L. McGuinness, Peter F. Patel-Schneider, and Lynn Andrea

Stein. OWL web ontology language reference. http://www.w3.org/
TR/owl-ref/, 2004.

[3] Tim Berners-Lee. Notation 3. http://www.w3.org/DesignIssues/
Notation3.html, 1998.

[4] Tim Berners-Lee. Semantic web road map. http://www.w3.org/
DesignIssues/Semantic.html, September 1998.

[5] Dan Brickley and R.V. Guha (eds). RDF vocabulary description lan-
guage 1.0: RDF schema. http://www.w3.org/TR/rdf-schema/, 2004.

[6] Dave Beckett (ed). RDF/XML syntax specification. http://www.w3.
org/TR/rdf-syntax-grammar/, 2004.

[7] Stanford Center for Biomedical Informatics Research. The Protg on-
tology editor and knowledge aquisition system. http://protege.
stanford.edu/.

[8] Charles Forgy. Rete: A fast algorithm for the many pattern/many
object pattern match problem. Artificial Intelligence, 19:1737, 1982.

[9] The IT Service Management Forum. An Introductory Overview of
ITIL R© V3. itSMF Ltd, 2007.

[10] W3C Technical Architecture Group. Dereferencing HTTP uris.
http://www.w3.org/2001/tag/doc/httpRange-14/2007-08-31/
HttpRange-14.html#associating-info-resources, August 2007.

[11] Graham Klyne and Jeremy J. Carroll (eds). Resource description frame-
work (RDF): Concepts and abstract syntax. http://www.w3.org/TR/
rdf-concepts/.

[12] Jim Melton. Sql, xquery, and sparql. http://www.nesc.ac.uk/talks/
683/SQL-XQuery-and-SPARQL.pdf, 2005.

[13] Metatomix. Metatomix MetaStudio (m3t4 studio). http://www.
metatomix.com/360solutions/application/.

[14] Office of Government Commerce (GB). Service Design. The Stationary
Office, 2007.

[15] Eric Prud’hommeaux and Andy Seaborne. SPARQL query language for
RDF. http://www.w3.org/TR/rdf-sparql-query/, January 2008.

[16] TopQuadrant. TopBraid Composer. http://www.topquadrant.com/
products/TB_Composer.html.

[17] Jean-Marc Vanel. EulerGUI. http://eulergui.sourceforge.net/.

