

Keyword(s):

Abstract:

©

Vivisecting LUBM

Paolo Castagna, Chris Dollin, Andy Seaborne

HP Laboratories
HPL-2009-348

lubm, inference, rdf, parallel processing

This report describes an implementation of a parallel inference engine for LUBM. Starting from the
Univ-Bench ontology, we derive a specialized ruleset which captures its semantics. This ruleset can be
simplified using simple transformations to remove data dependencies between rules. Finally, a parallel
implementation of a custom LUBM reasoner, which performs inference in a streaming fashion using a
small cluster, is described. Only preliminary results are presented, more experiments are necessary and an
investigation on how to apply the same approach to OWL ter-Horst and OWL 2 RL profile is suggested.

External Posting Date: November 6, 2009 [Fulltext] Approved for External Publication
Internal Posting Date: November 6, 2009 [Fulltext]

Copyright 2009 Hewlett-Packard Development Company, L.P.

1

Vivisecting LUBM

Paolo Castagna, Chris Dollin, Andy Seaborne

Hewlett-Packard Laboratories, Long Down Avenue, Stoke Gifford, Bristol BS34 8QZ, UK

Abstract

This report describes an implementation of a parallel inference engine for

LUBM. Starting from the Univ-Bench ontology, we derive a specialized ruleset

which captures its semantics. This ruleset can be simplified using simple

transformations to remove data dependencies between rules. Finally, a parallel

implementation of a custom LUBM reasoner, which performs inference in a

streaming fashion using a small cluster, is described. Only preliminary results

are presented, more experiments are necessary and an investigation on how to

apply the same approach to OWL ter-Horst and OWL 2 RL profile is suggested.

Keywords: lubm, inference, rdf, parallel processing

1 Introduction

In terms of scalability, inference is one of the most challenging types of RDF

processing. Issues arise from the size and the complexity of ontologies as well as from

the amount of data to process.

Often inference, or some sort of data cleansing similar to inference, needs to be

performed over large datasets at ingestion time when no indexes over the data are yet

available. The complexity of inference varies with the expressivity of the language

used to describe a vocabulary or ontology (RDF Schema, OWL Lite, DL or Full,

OWL ter-Horst [12], OWL 2 RL1, etc.) as well as with the specific ontology, which

might use only a limited set of constructs from an ontology language.

This report focuses on a scenario which involves relatively simple ontologies;

however, the amount of instance data to process is considerably large. The Lehigh

University Benchmark (LUBM) [1][2][3], although limited [4][5], has been chosen

because it is one of the oldest and, probably because of that, one of the most used

benchmarks to compare inference engines. LUBM specifies a fairly simple OWL Lite

ontology, called Univ-Bench2, which describes the university domain. The datasets,

which are random but repeatable, are synthetically generated and the benchmark

describes fourteen test queries, most of which require inference, and their expected

1 http://www.w3.org/TR/owl2-profiles/#OWL_2_RL
2 http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl

2

results. Benchmarks3 can be a valid tool to compare performance of RDF systems.

However, a careful examination of a benchmark is necessary in order to understand

its value, usefulness and limits.

Since LUBM is used by many open source projects as well as commercial products

(such as: BigOWLIM4, Oracle5 or OpenLink Virtuoso6) to advertise and compare the

performances of their RDF storage and inference systems, this report presents an in

depth analysis of the characteristics of LUBM and it describes two scalable solutions

(one serial and one parallel) to perform the necessary inference to answer all the

fourteen queries correctly.

Parallel stream processing as well as advanced indexing techniques are two key

factors to remove scalability issues related to inference with simple ontologies over

large datasets. As shown by this report, it is relatively straightforward to implement a

specialized and scalable reasoner for LUBM. While the implementation techniques

described in this report are limited to the LUBM benchmark, some of the heuristics

and aspects of the proposed approach might be extended to broader scenarios and,

hopefully, to OWL ter-Horst or the newer OWL 2 RL profile.

The report is organized as follows. Section 2 describes related work focusing on

the scalability issues related to inferencing. Section 3 illustrates the steps that have

been followed to implement a scalable solution for doing inference over large LUBM

datasets. Section 4 reports some of the measurements and evaluations of the solution

proposed. Finally, section 5 provides our conclusions and future work directions

relatively to scalable inferencing systems.

2 Related Work

The solution described in this report has been inspired by the work done by Soma and

Prasanna [6][7] with the important difference that while they partition the data into

groups and organize the processing into multiple rounds, we implemented our

solution using a streaming technique.

Another approach has been proposed by Oren, Kotoulas et. al. [8]. Their solutions

similarly partition the data to be processed and repartition the output between the

processors. However, the processing does not exploit streaming techniques.

A completely different approach is described by Urbani [9][10] who proposes the

use of Hadoop and the MapReduce model to perform RDF Schema inference and

OWL ter-Horst. Hadoop has certainly better scalability and fault tolerance properties

than the solution we propose in this report. However, multiple scans over the entire

dataset are needed and faster implementations seem possible with fewer machines.

3 http://esw.w3.org/topic/RdfStoreBenchmarking
4 http://www.ontotext.com/owlim/benchmarking/lubm.html
5 http://www.oracle.com/technology/tech/semantic_technologies/htdocs/performance.html
6 http://virtuoso.openlinksw.com/dataspace/dav/wiki/Main/VOSArticleLUBMBenchmark

3

Finally, Kiryakov [11] suggests a target loading and inferencing speed of 100,000

triples/s for LUBM-8000 on a system which will cost less than 10,000 € by the end of

2010.

3 A Parallel Reasoner for LUBM

This section describes the Univ-Bench ontology and how to derive a specialized

ruleset which captures the entire semantics of the Univ-Bench ontology. Once a

ruleset is produced, simple techniques to transform a ruleset into an equivalent one

are listed as well as motivations why it is convenient applying those transformations.

A further optimization is possible, if the access patterns are known in advance, as it

happens for LUBM and its fourteen queries.

At the end of the section, a serial and a parallel implementation of an inference

engine for LUBM are described. Even if the proposed implementations are specific to

LUBM, the approach and the overall architecture are applicable to broader scenarios

and might be applicable to OWL 2 RL profiles; however, this is not the aim of this

report.

3.1 Specialized Rulesets

The Univ-Bench ontology is a fairly simple OWL Lite ontology. It is composed by 43

OWL classes7, 24 object properties8 and 7 datatype properties9. Only a subset of the

OWL Lite classes and properties has been actually used. Moreover, the ontology

employs only a limited number of patterns.

The notions of a chair or a dean are defined as follows (throughout all this

document, Turtle10 syntax is used to represent serialized RDF):

:Chair

 A owl:Class ;

 rdfs:label "chair" ;

 rdfs:subClassOf :Professor ;

 owl:intersectionOf (

 :Person [

 a owl:Restriction ;

 owl:onProperty :headOf ;

 owl:someValuesFrom :Department

])

:Dean

 A owl:Class ;

 rdfs:label "dean" ;

 rdfs:subClassOf :Professor ;

 owl:intersectionOf (

7 grep "owl:Class rdf:ID" univ-bench.owl | wc -l
8 grep "owl:ObjectProperty rdf:ID" univ-bench.owl | wc -l
9 grep "owl:DatatypeProperty rdf:ID" univ-bench.owl | wc -l
10 http://www.w3.org/TeamSubmission/turtle/

4

 :Person [

 a owl:Restriction ;

 owl:onProperty :headOf ;

 owl:someValuesFrom :College

])

The notion of a graduate student is defined as:

:GraduateStudent

 a owl:Class ;

 rdfs:label "graduate student" ;

 rdfs:subClassOf :Person ;

 rdfs:subClassOf [

 a owl:Restriction ;

 owl:onProperty :takesCourse ;

 owl:someValuesFrom :GraduateCourse

] .

Range and domain are specified for almost all of the object properties, for

example:

:researchProject

 a owl:ObjectProperty ;

 rdfs:label "has as a research project" ;

 rdfs:domain :ResearchGroup ;

 rdfs:range :Research .

A few object properties are declared as inverse properties of another one, for

example:

:degreeFrom

 a owl:ObjectProperty ;

 rdfs:label "has a degree from" ;

 rdfs:domain :Person ;

 rdfs:range :University ;

 owl:inverseOf :hasAlumnus .

Subclasses and subproperties are specified for most of the classes and properties,

for example:

:VisitingProfessor

 a owl:Class ;

 rdfs:label "visiting professor" ;

 rdfs:subClassOf :Professor . :worksFor

 a owl:ObjectProperty ;

 rdfs:label "Works For" ;

 rdfs:subPropertyOf :memberOf .

Only one property is defined as a transitive property and that is:

:subOrganizationOf

 a owl:TransitiveProperty ;

 rdfs:domain :Organization ;

 rdfs:label "is part of" ;

 rdfs:range :Organization .

From these ontology fragments inference rules can be derived, as follows (these

rules are written using the Jena2 syntax for rules).

5

From the fragments which include owl:intersectionOf and owl:Restriction used to

define the notions of chair and dean, we derive respectively these rules:

(?x rdf:type ub:Chair) -> (?x rdf:type ub:Professor) .

(?x rdf:type ub:Person) (?x ub:headOf ?y) (?y rdf:type ub:Department)

-> (?x rdf:type ub:Chair) .

(?x rdf:type ub:Chair) -> exists ?y : (?x rdf:type ub:Person) (?x

ub:headOf ?y) (?y rdf:type ub:Department) .

(?x rdf:type ub:Dean) -> (?x rdf:type ub:Professor) .

(?x rdf:type ub:Person) (?x ub:headOf ?y) (?y rdf:type ub:College) ->

(?x rdf:type ub:Dean) .

(?x rdf:type ub:Dean) -> exists ?y : (?x rdf:type ub:Person) (?x

ub:headOf ?y) (?y rdf:type ub:College) .

The third rule on both examples is not actually a rule. It has no practical

consequence for the inference required by LUBM and it represents the necessary

condition that if a chair or a dean exists then it must be a person and it must be

necessarily be a head of a department or a college.

A similar situation arises from the use of rdfs:subClassOf in conjunction with

owl:Restriction. For example, for graduate students the rules are:

(?x rdf:type ub:GraduateStudent) -> (?x rdf:type ub:Person) .

(?x rdf:type ub:GraduateStudent) -> exists ?y : (?x ub:takesCourse

?y) (?y rdf:type ub:GraduateCourse) .

Only the first rule has an effect from a point of view of the implementation of a

forward inference engine.

The rules derived from ranges, domains, inverse or transitive properties or

subclasses/subproperties are trivial and, for the examples shown above, are:

(?x ub:researchProject ?y) -> (?x rdf:type ub:ResearchGroup) .

(?x ub:researchProject ?y) -> (?y rdf:type ub:Research) .

(?x ub:degreeFrom ?y) -> (?x rdf:type ub:Person) .

(?x ub:degreeFrom ?y) -> (?y rdf:type ub:University) .

(?x ub:degreeFrom ?y) -> (?y ub:hasAlumnus ?x) .

(?x ub:hasAlumnus ?y) -> (?y ub:degreeFrom ?x) .

(?x rdf:type ub:VisitingProfessor) -> (?x rdf:type ub:Professor) .

(?x ub:worksFor ?y) -> (?x ub:memberOf ?y) .

(?x ub:subOrganizationOf ?y) -> (?x rdf:type ub:Organization) .

(?x ub:subOrganizationOf ?y) -> (?y rdf:type ub:Organization) .

(?x ub:subOrganizationOf ?y) (?y ub:subOrganizationOf ?z) -> (?x

ub:subOrganizationOf ?z) .

Given the simplicity of the Univ-Bench ontology and the limited number of

patterns used, it is possible to automatically generate a specialized ruleset which

captures the semantics of the Univ-Bench ontology. The author successfully used

SPARQL queries over the ontology and a template engine (Velocity), in order to

automatically generate the ruleset included in Appendix A. An example of SPARQL

query and corresponding Velocity template is also included in Appendix A.

6

3.2 Rulesets Transformations

Given a ruleset, there are data dependencies between rules since a rule might generate

triples which trigger other rules. Some of these data dependencies can be removed

applying simple transformations from a ruleset into an equivalent one.

For example, in the LUBM ruleset there are these rules:

R1: (?x rdf:type ub:AdministrativeStaff) -> (?x rdf:type

ub:Employee) .

R2: (?x rdf:type ub:SystemsStaff) -> (?x rdf:type

ub:AdministrativeStaff) .

R3: (?x rdf:type ub:ClericalStaff) -> (?x rdf:type

ub:AdministrativeStaff) .

There is a data dependency between R2 and R1 and between R3 and R1, because

the deductions of R2 or R3 always trigger the execution of R1. Therefore, the

deductions of R1 can be added to the deductions of R2 and R3. This simple

transformation removes any data dependency between R1, R2 and R3. The equivalent

rulset is:

R1: (?x rdf:type ub:AdministrativeStaff) -> (?x rdf:type

ub:Employee) .

R2: (?x rdf:type ub:SystemsStaff) -> (?x rdf:type

ub:AdministrativeStaff) (?x rdf:type ub:Employee) .

R3: (?x rdf:type ub:ClericalStaff) -> (?x rdf:type

ub:AdministrativeStaff) (?x rdf:type ub:Employee) .

Another type of transformation between rulesets can be described using the

following rules as example:

R1: (?x rdf:type ub:Person) (?x ub:headOf ?y) (?y rdf:type

ub:College) -> (?x rdf:type ub:Dean) .

R2: (?x ub:headOf ?y) -> (?x ub:worksFor ?y) .

R3: (?x ub:worksFor ?y) -> (?x ub:memberOf ?y) .

R4: (?x ub:memberOf ?y) -> (?y ub:member ?x) .

R5: (?x ub:member ?y) -> (?y rdf:type ub:Person) .

This chain of rules is sufficient to show that the triple pattern (?x ub:headOf ?y)

implies the triple pattern (?x rdf:type ub:Person), therefore we can eliminate the first

triple pattern from the premises of R1. The following rules are equivalent to the

previous ones, but they have no data dependencies:

R1: (?x ub:headOf ?y) (?y rdf:type ub:College) -> (?x rdf:type

ub:Dean) .

R2: (?x ub:headOf ?y) -> (?x ub:worksFor ?y) (?x ub:memberOf ?y) (?y

ub:member ?x) (?x rdf:type ub:Person) .

R3: (?x ub:worksFor ?y) -> (?x ub:memberOf ?y) (?y ub:member ?x) (?x

rdf:type ub:Person) .

R4: (?x ub:memberOf ?y) -> (?y ub:member ?x) (?x rdf:type ub:Person)

.

R5: (?x ub:member ?y) -> (?y rdf:type ub:Person) .

Transformations which maintains equivalence between rulesets but reduce data

dependencies between rules are useful because allow partitioning of a ruleset into

multiple rulesets that can be executed independently, one after the other or in parallel.

7

Similarly, the absence of dependencies between rules allows exploiting data

parallelism for the inferencing. The complete simplified and equivalent LUBM ruleset

is included in Appendix B. Although this can be automated, a general solution to

apply transformations to rulesets in order to reduce data dependencies between rules

has not been implemented yet.

3.3 Minimal Ruleset

The LUBM benchmark specifies fourteen queries. From each triple pattern that

appears in a query we can derive the closure of all the rules that might generate a

matching triple. In other words, we can use the fourteen LUBM queries to derive a

minimal subset of rules which contains only the necessary inference to correctly

answer all the LUBM queries.

The complete list of triple patterns used by the fourteen LUBM queries is:

?x rdf:type ub:Professor

?x rdf:type ub:Person

?x rdf:type ub:Student

?x rdf:type ub:Course

?x rdf:type ub:Faculty

?x rdf:type ub:Chair

?x ub:memberOf <http://www.Department0.University0.edu>

?x ub:memberOf ?y

?x ub:subOrganizationOf ?y

?x ub:subOrganizationOf <http://www.University0.edu>

<http://www.University0.edu> ub:hasAlumnus ?x

Therefore, all the rules that might generate a triple that matches any of these triple

patterns must be included in a minimal ruleset. This can be automated, however the

solution would depends on the particular data structure used to represent the rules.

The minimal LUBM ruleset is included in Appendix C.

We invite the reader to notice that the only data dependencies between the rules in

the minimal LUBM ruleset are for the following rules:

R1: (?x rdf:type ub:GraduateCourse) -> (?x rdf:type ub:Course) (?x

rdf:type ub:Work) .

R2: (?x ub:takesCourse ?y) (?y rdf:type ub:Course) -> (?x rdf:type

ub:Student) .

R3: (?x ub:teachingAssistantOf ?y) (?y rdf:type ub:Course) -> (?x

rdf:type ub:TeachingAssistant) .

R4: (?x ub:subOrganizationOf ?y) (?y ub:subOrganizationOf ?z) -> (?x

ub:subOrganizationOf ?z) .

There is a data dependency between R1 and R2 and between R1 and R3 because

R2 and R3 have a triple pattern in their premises that is included in the consequences

of R1. These data dependencies cannot be removed. Finally, R4 depends on itself; this

is the typical self dependency for transitive properties over instance data.

8

3.4 Serial Reasoner

Looking at the minimal LUBM ruleset in Appendix C, it is immediate to notice that

the majority of rules have only one triple pattern in their premises: these rules can

easily be implemented processing the dataset one triple at the time (i.e. in a streaming

fashion). There are only 7 rules with two triple patterns in their premises:

(?x ub:headOf ?y) (?y rdf:type ub:Department) -> (?x rdf:type

ub:Chair) (?x rdf:type ub:Professor) (?x rdf:type ub:Faculty) (?x

rdf:type ub:Employee) .

(?x ub:headOf ?y) (?y rdf:type ub:College) -> (?x rdf:type ub:Dean)

(?x rdf:type ub:Professor) (?x rdf:type ub:Faculty) (?x rdf:type

ub:Employee) .

(?x ub:headOf ?y) (?y rdf:type ub:Program) -> (?x rdf:type

ub:Director) (?x rdf:type ub:Person) .

(?x ub:worksFor ?y) (?y rdf:type ub:Organization) -> (?x rdf:type

ub:Employee) .

 (?x ub:takesCourse ?y) (?y rdf:type ub:Course) -> (?x rdf:type

ub:Student) .

(?x ub:teachingAssistantOf ?y) (?y rdf:type ub:Course) -> (?x

rdf:type ub:TeachingAssistant) .

(?x ub:subOrganizationOf ?y) (?y ub:subOrganizationOf ?z) -> (?x

ub:subOrganizationOf ?z) .

Each one of these rules requires a join. For the ub:subOrganizationOf property the

results needs to be fed back to the rule itself.

A specialized LUBM reasoner that implements only the minimal ruleset and

performs reasoning in a streaming fashion has been implemented and it can process

LUBM-8000 dataset at a speed of about 45,000 triples/s on a single machine. TDB

indexing subsystem has been used to implement symmetric hash joins [13]. TDB uses

memory mapped files to manage its indexes; however, while the amount of memory

is not a limiting factor, it is appropriate to avoid swapping.

This custom serial reasoner is not a general reasoner and it implements LUBM

reasoning only. However, it can be envisaged a system which, given an ontology, for

which it is possible an implementation using rules, derives a ruleset and generates

custom code to perform the reasoning.

Probably, it is also possible to apply the same approach to RDF Schema reasoning,

OWL ter-Horst and, perhaps, OWL 2 RL profile.

3.5 Parallel Reasoner

Although many optimizations and improvements to the trivial implementation briefly

described in the previous section are possible, to achieve an order of magnitude

improvement we looked at how to parallelize the processing using more than one

machine in a cluster of industry standard machines configured according to a shared

nothing architecture.

The cluster we are referring to is a small one, on the order of 10 machines rather

than hundreds or thousands. In this situation, the probability of a failure during the

processing is low. The processing also involves datasets on the order of billions of

9

triples rather than tens billion triples. No fault tolerance techniques or replication have

been considered.

The authors are well aware of the, so called, eight fallacies11 of distributed

computing and the implementation described in this section has almost all of them.

However, the aim has been to explore possibilities and the design space rather than

provide a production ready solution. Correctness, soundness and processing speed

have been the priorities during this investigation.

Data can be partitioned across multiple machines as well as rules. We decided to

implement a solution which allows for random partitioning of the data and which does

not partition the rules. All the machines in the cluster have the complete ruleset and

they perform LUBM reasoning using the serial reasoner described in the previous

section.

However, in front of and after each serial reasoner running on each machine there

is a partitioner which decides for each triple if the triple should be processed locally

or if it should be sent to a remote machine. The pseudo code of the partitioner is the

following:

for each triple (s, p, o):

if (p is LUBM.headOf) or (p is LUBM.takesCourse)

 send triple to machine abs(hash(o)) % N

else if (p is LUBM.subOrganizationOf)

 send triple to machine abs(hash(s)) % N

 send triple to machine abs(hash(o)) % N

else if (p is RDF.type)

 if (o is LUBM.Department) or (o is LUBM.College) or (o is LUBM.Course)

 send triple to abs(hash(s)) % N

 else

 process triple locally

else

 process triple locally

This is nothing more than hash partitioning over the join variable for the rules with

two triple patterns. The partitioning must be applied to all the inferred triples which

may need to be forwarded to remote machines as well as stored locally as result.

This custom parallel reasoner is not a general reasoner and it implements LUBM

reasoning only. However, once again, the partitioning function can be automatically

generated from a ruleset and the same approach might be adopted for RDF Schema,

OWL ter-Horst and, possibly, OWL 2 RL profile.

4 Preliminary Results

This section reports only preliminary results using a small cluster of 8 machines. Each

machine is an HP bl460c running Linux RHEL 5 and it has 2 x Dual Core Intel Xeon

5160 @ 3GHz, 8 GB of RAM and about 130 GB hard drive. They are interconnected

with 1 Gigabit Ethernet network ports.

11 http://blogs.sun.com/jag/resource/Fallacies.html

10

One first set of experiments consisted in running the serial reasoner over different

sizes of the LUBM datasets. This was done to check that the processing speed does

not change significantly as the dataset size grows. The processing speed using one

single machine was about 45,000 triples/s and it took about 24,000 seconds to infer

about 869,000,000 triples over LUBM-8000 (i.e. about 1,000,000,000 triples). The

TDB indexes were about 15 GB.

Another set of experiment consisted in splitting the LUBM-8000 dataset into

multiple chunks and using the parallel reasoner to perform inference. The aggregate

processing speed using 8 machines was about 330,000 triples/s (i.e. about 41,000

triples/s per node) and it took less than 3,600 seconds to process the entire LUBM-

8000.

The code of an initial prototype used to gather these preliminary results has been

published on a personal scratch area12 of the Jena repository on SourceForge.

5 Conclusions

We described how, starting from the LUBM ontology, we derived a specialized

ruleset and how we applied simple transformations to generate an equivalent ruleset

but with less data dependencies between rules.

We presented a simple serial implementation of a reasoner which performs

inference in a streaming fashion and we described how a serial reasoner can be used

in a parallel implementation which simply uses hash partitioning over variables of

triple patterns which involves joins. This approach to parallel processing does not

depend on the particular serial reasoner running at each machine in the cluster.

The implementation has not been heavily optimized; for example, no compression

has been used to stream triples between machines. Despite this, processing speeds in

the order of hundred thousand triples per second are possible even with relatively

small clusters.

Although LUBM requires only limited inference capabilities, it is used by others

and it is has been helpful to compare different solutions and approaches.

Finally, more experiments will be necessary to better characterize the proposed

approach in terms of scalability, network traffic and load balancing properties. It

would be interesting to verify if the same approach can be used for RDF Schema,

OWL ter-Horst and OWL 2 RL profile.

12 https://jena.svn.sf.net/svnroot/jena/Scratch/PC/LUBM/

11

References

1. Guo, Y., Pan, Z., Helfin, J., An Evaluation of Knowledge Base Systems for Large OWL

Data Sets. In Proc. of the 3rd International Semantic Web Conference, 2004

2. Guo, Y., Pan, Z., Helfin, J., LUBM: A Benchmark for OWL Knowledge Base Systems.

Journal of Web Semantics, vol. 3, no. 2, pp. 158-182, 2005

3. http://swat.cse.lehigh.edu/projects/lubm/

4. Weithoner, T., Liebig, T., et. al., What’s Wrong with OWL Benchmarks?. In Proc. of the

Second Int. Workshop on Scalable Semantic Web Knowledge Base Systems, pp. 101-114,

2006

5. Ma, L., Yang, Y., et. al., Towards a Complete OWL Ontology Benchmark. In Proc. of the

third European Semantic Web Conference, pp. 124-139, 2006

6. Soma, R., Prasanna, V., Parallel inferencing for OWL knowledge bases. In Proc. of the

International Conference on Parallel Processing, pp. 75-82, 2008

7. Soma, R., Prasanna, V., A Data Partitioning Approach for Parallelizing Rule Based

Inferencing for Materialized OWL Knowledge Bases. In Proc. of the 21st International

Conference on Parallel and Distributed Computing and Communication Systems, pp. 19-

25, 2008

8. Oren, E., Kotoulas, S., et. al., Marvin: A platform for large-scale analysis of Semantic

Web data. In Proc. of the International Web Science conference, 2009

9. Urbani, J., Scalable Distributed RDFS/OWL Reasoning using MapReduce. Mather’s

thesis, Vrije Universiteit Amsterdam, 2009

10. Urbani, J., Kotoulas, S., et. al., Scalable Distributed Reasoning using MapReduce. To

appear in Proc. of the International Semantic Web Conference, 2009

11. Kiryakov, A., Measurable Targets for Scalable Reasoning, D5.5.1 deliverable, LarKC

project, 2008

12. ter Horst, H. J., Completeness, decidability and complexity of entailment for RDF schema

and a semantic extension involving the OWL vocabulary. Journal of Web Semantics, vol.

3(2-3), pp. 79-115, 2005

13. Wilschut, A.N. and Apers, P.M.G., Dataflow query execution in a parallel main-memory

environment. Distributed and Parallel Databases, vol. 1, no. 1, pp. 103-128, 1993

12

Appendix A

The following is a Jena2 syntax ruleset which capture the semantic of Univ-Bench

ontology. This ruleset has been automatically generated using SPARQL queries and

Velocity templates.

@prefix ub: <http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#> .

owl:intersectionOf

(?x rdf:type ub:Person) (?x ub:teachingAssistantOf ?y) (?y rdf:type ub:Course) -> (?x

rdf:type ub:TeachingAssistant) .

(?x rdf:type ub:Person) (?x ub:takesCourse ?y) (?y rdf:type ub:Course) -> (?x rdf:type

ub:Student) .

(?x rdf:type ub:Person) (?x ub:worksFor ?y) (?y rdf:type ub:Organization) -> (?x rdf:type

ub:Employee) .

(?x rdf:type ub:Person) (?x ub:headOf ?y) (?y rdf:type ub:Program) -> (?x rdf:type

ub:Director) .

(?x rdf:type ub:Person) (?x ub:headOf ?y) (?y rdf:type ub:College) -> (?x rdf:type ub:Dean)

.

(?x rdf:type ub:Person) (?x ub:headOf ?y) (?y rdf:type ub:Department) -> (?x rdf:type

ub:Chair) .

Subproperties

(?x ub:worksFor ?y) -> (?x ub:memberOf ?y) .

(?x ub:undergraduateDegreeFrom ?y) -> (?x ub:degreeFrom ?y) .

(?x ub:mastersDegreeFrom ?y) -> (?x ub:degreeFrom ?y) .

(?x ub:headOf ?y) -> (?x ub:worksFor ?y) .

(?x ub:doctoralDegreeFrom ?y) -> (?x ub:degreeFrom ?y) .

Inverse properties

(?x ub:memberOf ?y) -> (?y ub:member ?x) .

(?x ub:member ?y) -> (?y ub:memberOf ?x) .

(?x ub:hasAlumnus ?y) -> (?y ub:degreeFrom ?x) .

(?x ub:degreeFrom ?y) -> (?y ub:hasAlumnus ?x) .

(?x ub:degreeFrom ?y) -> (?y ub:hasAlumnus ?x) .

(?x ub:hasAlumnus ?y) -> (?y ub:degreeFrom ?x) .

Subclasses

(?x rdf:type ub:TechnicalReport) -> (?x rdf:type ub:Article) .

(?x rdf:type ub:University) -> (?x rdf:type ub:Organization) .

(?x rdf:type ub:FullProfessor) -> (?x rdf:type ub:Professor) .

(?x rdf:type ub:AdministrativeStaff) -> (?x rdf:type ub:Employee) .

(?x rdf:type ub:Chair) -> (?x rdf:type ub:Professor) .

(?x rdf:type ub:Professor) -> (?x rdf:type ub:Faculty) .

(?x rdf:type ub:Faculty) -> (?x rdf:type ub:Employee) .

(?x rdf:type ub:Manual) -> (?x rdf:type ub:Publication) .

(?x rdf:type ub:JournalArticle) -> (?x rdf:type ub:Article) .

(?x rdf:type ub:Course) -> (?x rdf:type ub:Work) .

(?x rdf:type ub:UndergraduateStudent) -> (?x rdf:type ub:Student) .

(?x rdf:type ub:Program) -> (?x rdf:type ub:Organization) .

(?x rdf:type ub:ConferencePaper) -> (?x rdf:type ub:Article) .

(?x rdf:type ub:SystemsStaff) -> (?x rdf:type ub:AdministrativeStaff) .

(?x rdf:type ub:ResearchGroup) -> (?x rdf:type ub:Organization) .

(?x rdf:type ub:Book) -> (?x rdf:type ub:Publication) .

(?x rdf:type ub:Specification) -> (?x rdf:type ub:Publication) .

(?x rdf:type ub:Software) -> (?x rdf:type ub:Publication) .

(?x rdf:type ub:Department) -> (?x rdf:type ub:Organization) .

(?x rdf:type ub:Research) -> (?x rdf:type ub:Work) .

(?x rdf:type ub:Dean) -> (?x rdf:type ub:Professor) .

(?x rdf:type ub:AssociateProfessor) -> (?x rdf:type ub:Professor) .

(?x rdf:type ub:Lecturer) -> (?x rdf:type ub:Faculty) .

(?x rdf:type ub:ResearchAssistant) -> (?x rdf:type ub:Student) .

(?x rdf:type ub:College) -> (?x rdf:type ub:Organization) .

(?x rdf:type ub:PostDoc) -> (?x rdf:type ub:Faculty) .

(?x rdf:type ub:Institute) -> (?x rdf:type ub:Organization) .

(?x rdf:type ub:Article) -> (?x rdf:type ub:Publication) .

(?x rdf:type ub:UnofficialPublication) -> (?x rdf:type ub:Publication) .

(?x rdf:type ub:VisitingProfessor) -> (?x rdf:type ub:Professor) .

13

(?x rdf:type ub:GraduateCourse) -> (?x rdf:type ub:Course) .

(?x rdf:type ub:AssistantProfessor) -> (?x rdf:type ub:Professor) .

(?x rdf:type ub:GraduateStudent) -> (?x rdf:type ub:Person) .

(?x rdf:type ub:ClericalStaff) -> (?x rdf:type ub:AdministrativeStaff) .

Ranges of properties

(?x ub:affiliatedOrganizationOf ?y) -> (?y rdf:type ub:Organization) .

(?x ub:teacherOf ?y) -> (?y rdf:type ub:Course) .

(?x ub:advisor ?y) -> (?y rdf:type ub:Professor) .

(?x ub:softwareDocumentation ?y) -> (?y rdf:type ub:Publication) .

(?x ub:teachingAssistantOf ?y) -> (?y rdf:type ub:Course) .

(?x ub:member ?y) -> (?y rdf:type ub:Person) .

(?x ub:researchProject ?y) -> (?y rdf:type ub:Research) .

(?x ub:affiliateOf ?y) -> (?y rdf:type ub:Person) .

(?x ub:orgPublication ?y) -> (?y rdf:type ub:Publication) .

(?x ub:mastersDegreeFrom ?y) -> (?y rdf:type ub:University) .

(?x ub:degreeFrom ?y) -> (?y rdf:type ub:University) .

(?x ub:hasAlumnus ?y) -> (?y rdf:type ub:Person) .

(?x ub:subOrganizationOf ?y) -> (?y rdf:type ub:Organization) .

(?x ub:publicationResearch ?y) -> (?y rdf:type ub:Research) .

(?x ub:publicationAuthor ?y) -> (?y rdf:type ub:Person) .

(?x ub:undergraduateDegreeFrom ?y) -> (?y rdf:type ub:University) .

(?x ub:doctoralDegreeFrom ?y) -> (?y rdf:type ub:University) .

(?x ub:listedCourse ?y) -> (?y rdf:type ub:Course) .

Domains of properties

(?x ub:publicationAuthor ?y) -> (?x rdf:type ub:Publication) .

(?x ub:undergraduateDegreeFrom ?y) -> (?x rdf:type ub:Person) .

(?x ub:telephone ?y) -> (?x rdf:type ub:Person) .

(?x ub:doctoralDegreeFrom ?y) -> (?x rdf:type ub:Person) .

(?x ub:mastersDegreeFrom ?y) -> (?x rdf:type ub:Person) .

(?x ub:emailAddress ?y) -> (?x rdf:type ub:Person) .

(?x ub:advisor ?y) -> (?x rdf:type ub:Person) .

(?x ub:age ?y) -> (?x rdf:type ub:Person) .

(?x ub:softwareVersion ?y) -> (?x rdf:type ub:Software) .

(?x ub:softwareDocumentation ?y) -> (?x rdf:type ub:Software) .

(?x ub:publicationResearch ?y) -> (?x rdf:type ub:Publication) .

(?x ub:affiliateOf ?y) -> (?x rdf:type ub:Organization) .

(?x ub:title ?y) -> (?x rdf:type ub:Person) .

(?x ub:affiliatedOrganizationOf ?y) -> (?x rdf:type ub:Organization) .

(?x ub:orgPublication ?y) -> (?x rdf:type ub:Organization) .

(?x ub:teacherOf ?y) -> (?x rdf:type ub:Faculty) .

(?x ub:degreeFrom ?y) -> (?x rdf:type ub:Person) .

(?x ub:listedCourse ?y) -> (?x rdf:type ub:Schedule) .

(?x ub:member ?y) -> (?x rdf:type ub:Organization) .

(?x ub:hasAlumnus ?y) -> (?x rdf:type ub:University) .

(?x ub:tenured ?y) -> (?x rdf:type ub:Professor) .

(?x ub:researchProject ?y) -> (?x rdf:type ub:ResearchGroup) .

(?x ub:subOrganizationOf ?y) -> (?x rdf:type ub:Organization) .

(?x ub:teachingAssistantOf ?y) -> (?x rdf:type ub:TeachingAssistant) .

(?x ub:publicationDate ?y) -> (?x rdf:type ub:Publication) .

Transitive properties

(?x ub:subOrganizationOf ?y) (?y ub:subOrganizationOf ?z) -> (?x ub:subOrganizationOf ?z) .

Subclasses via owl:Restriction

(?x rdf:type ub:ResearchAssistant) -> ThereExists ?y suchThat { (?x ub:worksFor ?y) (?y

rdf:type ub:ResearchGroup) } .

(?x rdf:type ub:GraduateStudent) -> ThereExists ?y suchThat { (?x ub:takesCourse ?y) (?y

rdf:type ub:GraduateCourse) } .

An example of SPARQL query and corresponding Velocity template follows:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

SELECT ?t0 ?t1 ?t2 ?p1 {

 ?t0 owl:intersectionOf (?t1 ?b) .

 ?b rdf:type owl:Restriction .

 ?b owl:onProperty ?p1 .

14

 ?b owl:someValuesFrom ?t2 .

}

Corresponding Velocity template:

#foreach ($row in $result)

(?x rdf:type ub:$row.get("t1").getLocalName())

(?x ub:$row.get("p1").getLocalName() ?y)

(?y rdf:type ub:$row.get("t2").getLocalName()) ->

(?x rdf:type ub:$row.get("t0").getLocalName()) .

#end

Appendix B

@prefix ub: <http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#> .

(?x rdf:type ub:Course) -> (?x rdf:type ub:Work) .

(?x rdf:type ub:Research) -> (?x rdf:type ub:Work) .

(?x rdf:type ub:GraduateCourse) -> (?x rdf:type ub:Course) (?x rdf:type ub:Work) .

(?x rdf:type ub:UndergraduateStudent) -> (?x rdf:type ub:Student) .

(?x rdf:type ub:ResearchAssistant) -> (?x rdf:type ub:Student) .

(?x rdf:type ub:GraduateStudent) -> (?x rdf:type ub:Person) .

(?x rdf:type ub:Faculty) -> (?x rdf:type ub:Employee) .

(?x rdf:type ub:Professor) -> (?x rdf:type ub:Faculty) (?x rdf:type ub:Employee) .

(?x rdf:type ub:AssistantProfessor) -> (?x rdf:type ub:Professor) (?x rdf:type ub:Faculty)

(?x rdf:type ub:Employee) .

(?x rdf:type ub:AssociateProfessor) -> (?x rdf:type ub:Professor) (?x rdf:type ub:Faculty)

(?x rdf:type ub:Employee) .

(?x rdf:type ub:Dean) -> (?x rdf:type ub:Professor) (?x rdf:type ub:Faculty) (?x rdf:type

ub:Employee) .

(?x rdf:type ub:FullProfessor) -> (?x rdf:type ub:Professor) (?x rdf:type ub:Faculty) (?x

rdf:type ub:Employee) .

(?x rdf:type ub:Chair) -> (?x rdf:type ub:Professor) (?x rdf:type ub:Faculty) (?x rdf:type

ub:Employee) .

(?x rdf:type ub:VisitingProfessor) -> (?x rdf:type ub:Professor) (?x rdf:type ub:Faculty)

(?x rdf:type ub:Employee) .

(?x rdf:type ub:Lecturer) -> (?x rdf:type ub:Faculty) (?x rdf:type ub:Employee) .

(?x rdf:type ub:PostDoc) -> (?x rdf:type ub:Faculty) (?x rdf:type ub:Employee) .

(?x rdf:type ub:AdministrativeStaff) -> (?x rdf:type ub:Employee) .

(?x rdf:type ub:ConferencePaper) -> (?x rdf:type ub:Article) (?x rdf:type ub:Publication) .

(?x rdf:type ub:JournalArticle) -> (?x rdf:type ub:Article) (?x rdf:type ub:Publication) .

(?x rdf:type ub:TechnicalReport) -> (?x rdf:type ub:Article) (?x rdf:type ub:Publication) .

(?x rdf:type ub:Book) -> (?x rdf:type ub:Publication) .

(?x rdf:type ub:Software) -> (?x rdf:type ub:Publication) .

(?x rdf:type ub:Specification) -> (?x rdf:type ub:Publication) .

(?x rdf:type ub:UnofficialPublication) -> (?x rdf:type ub:Publication) .

(?x rdf:type ub:Manual) -> (?x rdf:type ub:Publication) .

(?x rdf:type ub:Department) -> (?x rdf:type ub:Organization) .

(?x rdf:type ub:Institute) -> (?x rdf:type ub:Organization) .

(?x rdf:type ub:College) -> (?x rdf:type ub:Organization) .

(?x rdf:type ub:ResearchGroup) -> (?x rdf:type ub:Organization) .

(?x rdf:type ub:University) -> (?x rdf:type ub:Organization) .

(?x rdf:type ub:Program) -> (?x rdf:type ub:Organization) .

(?x rdf:type ub:ClericalStaff) -> (?x rdf:type ub:AdministrativeStaff) .

(?x rdf:type ub:SystemsStaff) -> (?x rdf:type ub:AdministrativeStaff) .

(?x ub:advisor ?y) -> (?x rdf:type ub:Person) (?y rdf:type ub:Professor) (?y rdf:type

ub:Faculty) (?y rdf:type ub:Employee) .

(?x ub:affiliateOf ?y) -> (?x rdf:type ub:Organization) (?y rdf:type ub:Person) .

(?x ub:age ?y) -> (?x rdf:type ub:Person) .

(?x ub:degreeFrom ?y) -> (?x rdf:type ub:Person) (?y rdf:type ub:University) (?y rdf:type

ub:Organization) (?y ub:hasAlumnus ?x) .

(?x ub:doctoralDegreeFrom ?y) -> (?x rdf:type ub:Person) (?y rdf:type ub:University) (?y

rdf:type ub:Organization) (?x ub:degreeFrom ?y) (?y ub:hasAlumnus ?x) .

(?x ub:emailAddress ?y) -> (?x rdf:type ub:Person) .

(?x ub:mastersDegreeFrom ?y) -> (?x rdf:type ub:Person) (?y rdf:type ub:University) (?y

rdf:type ub:Organization) (?x ub:degreeFrom ?y) (?y ub:hasAlumnus ?x) .

15

(?x ub:hasAlumnus ?y) -> (?x rdf:type ub:University) (?x rdf:type ub:Organization) (?y

rdf:type ub:Person) (?y ub:degreeFrom ?x) .

(?x ub:member ?y) -> (?x rdf:type ub:Organization) (?y rdf:type ub:Person) (?y ub:memberOf

?x) .

(?x ub:memberOf ?y) -> (?y rdf:type ub:Organization) (?x rdf:type ub:Person) (?y ub:member

?x) .

(?x ub:worksFor ?y) -> (?x ub:memberOf ?y) (?y ub:member ?x) (?y rdf:type ub:Organization)

(?x rdf:type ub:Person) .

(?x ub:headOf ?y) -> (?x ub:worksFor ?y) (?x ub:memberOf ?y) (?y ub:member ?x) (?y rdf:type

ub:Organization) (?x rdf:type ub:Person) .

(?x ub:title ?y) -> (?x rdf:type ub:Person) .

(?x ub:undergraduateDegreeFrom ?y) -> (?x rdf:type ub:Person) (?y rdf:type ub:University)

(?y rdf:type ub:Organization) (?x ub:degreeFrom ?y) (?y ub:hasAlumnus ?x) .

(?x ub:telephone ?y) -> (?x rdf:type ub:Person) .

(?x ub:publicationAuthor ?y) -> (?x rdf:type ub:Publication) (?y rdf:type ub:Person) .

(?x ub:tenured ?y) -> (?x rdf:type ub:Professor) (?x rdf:type ub:Faculty) (?x rdf:type

ub:Employee) .

(?x ub:teacherOf ?y) -> (?x rdf:type ub:Faculty) (?x rdf:type ub:Employee) (?y rdf:type

ub:Course) (?y rdf:type ub:Work) .

(?x ub:teachingAssistantOf ?y) -> (?x rdf:type ub:TeachingAssistant) (?y rdf:type ub:Course)

(?y rdf:type ub:Work) .

(?x ub:affiliatedOrganizationOf ?y) -> (?x rdf:type ub:Organization) (?y rdf:type

ub:Organization) .

(?x ub:orgPublication ?y) -> (?x rdf:type ub:Organization) (?y rdf:type ub:Publication) .

(?x ub:subOrganizationOf ?y) -> (?x rdf:type ub:Organization) (?y rdf:type ub:Organization)

.

(?x ub:researchProject ?y) -> (?x rdf:type ub:ResearchGroup) (?x rdf:type ub:Organization) .

(?x ub:listedCourse ?y) -> (?x rdf:type ub:Schedule) (?y rdf:type ub:Course) (?y rdf:type

ub:Work) .

(?x ub:publicationResearch ?y) -> (?x rdf:type ub:Publication) (?y rdf:type ub:Research) (?y

rdf:type ub:Work) .

(?x ub:researchProject ?y) -> (?y rdf:type ub:Research) (?y rdf:type ub:Work) .

(?x ub:softwareDocumentation ?y) -> (?x rdf:type ub:Software) (?x rdf:type ub:Publication)

(?y rdf:type ub:Publication) .

(?x ub:softwareVersion ?y) -> (?x rdf:type ub:Software) (?x rdf:type ub:Publication) .

(?x ub:publicationDate ?y) -> (?x rdf:type ub:Publication) .

(?x ub:headOf ?y) (?y rdf:type ub:Department) -> (?x rdf:type ub:Chair) (?x rdf:type

ub:Professor) (?x rdf:type ub:Faculty) (?x rdf:type ub:Employee) .

(?x ub:headOf ?y) (?y rdf:type ub:College) -> (?x rdf:type ub:Dean) (?x rdf:type

ub:Professor) (?x rdf:type ub:Faculty) (?x rdf:type ub:Employee) .

(?x ub:headOf ?y) (?y rdf:type ub:Program) -> (?x rdf:type ub:Director) (?x rdf:type

ub:Person) .

(?x ub:worksFor ?y) (?y rdf:type ub:Organization) -> (?x rdf:type ub:Employee) .

(?x ub:takesCourse ?y) (?y rdf:type ub:Course) -> (?x rdf:type ub:Student) .

(?x ub:teachingAssistantOf ?y) (?y rdf:type ub:Course) -> (?x rdf:type ub:TeachingAssistant)

.

(?x ub:subOrganizationOf ?y) (?y ub:subOrganizationOf ?z) -> (?x ub:subOrganizationOf ?z) .

Appendix C

(?x rdf:type ub:FullProfessor) -> (?x rdf:type ub:Professor) .

(?x ub:headOf ?y) (?y rdf:type ub:Department) -> (?x rdf:type ub:Chair) .

(?x rdf:type ub:Chair) -> (?x rdf:type ub:Professor) .

(?x rdf:type ub:Person) (?x ub:headOf ?y) (?y rdf:type ub:College) -> (?x rdf:type ub:Dean)

.

(?x rdf:type ub:Dean) -> (?x rdf:type ub:Professor) .

(?x rdf:type ub:AssociateProfessor) -> (?x rdf:type ub:Professor) .

(?x rdf:type ub:VisitingProfessor) -> (?x rdf:type ub:Professor) .

(?x rdf:type ub:AssistantProfessor) -> (?x rdf:type ub:Professor) .

(?x ub:advisor ?y) -> (?y rdf:type ub:Professor) .

(?x ub:tenured ?y) -> (?x rdf:type ub:Professor) .

(?x rdf:type ub:GraduateCourse) -> (?x rdf:type ub:Course) .

(?x rdf:type ub:GraduateStudent) -> (?x rdf:type ub:Person) .

(?x ub:member ?y) -> (?y rdf:type ub:Person) .

(?x ub:affiliateOf ?y) -> (?y rdf:type ub:Person) .

(?x ub:hasAlumnus ?y) -> (?y rdf:type ub:Person) .

(?x ub:publicationAuthor ?y) -> (?y rdf:type ub:Person) .

16

(?x ub:undergraduateDegreeFrom ?y) -> (?x rdf:type ub:Person) .

(?x ub:telephone ?y) -> (?x rdf:type ub:Person) .

(?x ub:doctoralDegreeFrom ?y) -> (?x rdf:type ub:Person) .

(?x ub:mastersDegreeFrom ?y) -> (?x rdf:type ub:Person) .

(?x ub:emailAddress ?y) -> (?x rdf:type ub:Person) .

(?x ub:advisor ?y) -> (?x rdf:type ub:Person) .

(?x ub:age ?y) -> (?x rdf:type ub:Person) .

(?x ub:title ?y) -> (?x rdf:type ub:Person) .

(?x ub:degreeFrom ?y) -> (?x rdf:type ub:Person) .

(?x ub:takesCourse ?y) (?y rdf:type ub:Course) -> (?x rdf:type ub:Student) .

(?x rdf:type ub:UndergraduateStudent) -> (?x rdf:type ub:Student) .

(?x rdf:type ub:ResearchAssistant) -> (?x rdf:type ub:Student) .

(?x rdf:type ub:Professor) -> (?x rdf:type ub:Faculty) .

(?x rdf:type ub:Lecturer) -> (?x rdf:type ub:Faculty) .

(?x rdf:type ub:PostDoc) -> (?x rdf:type ub:Faculty) .

(?x ub:teacherOf ?y) -> (?x rdf:type ub:Faculty) .

(?x ub:headOf ?y) -> (?x ub:worksFor ?y) .

(?x ub:worksFor ?y) -> (?x ub:memberOf ?y) .

(?x ub:member ?y) -> (?y ub:memberOf ?x) .

(?x ub:subOrganizationOf ?y) (?y ub:subOrganizationOf ?z) -> (?x ub:subOrganizationOf ?z) .

(?x ub:mastersDegreeFrom ?y) -> (?x ub:degreeFrom ?y) .

(?x ub:doctoralDegreeFrom ?y) -> (?x ub:degreeFrom ?y) .

(?x ub:undergraduateDegreeFrom ?y) -> (?x ub:degreeFrom ?y) .

(?x ub:degreeFrom ?y) -> (?y ub:hasAlumnus ?x) .

