

Keyword(s):

Abstract:

©

High Speed Raster Image Streaming For Digital Presses Using the Hadoop File
System
Russell Perry

HP Laboratories
HPL-2009-345

Print, VDP, Hadoop, Binary Integer Programming

An application of the distributed Hadoop file system to very high rate variable data printing is described.
The raster image processing of a large variable data document is represented as a MapReduce process. The
key challenge addressed by this paper is how to stream the resulting raster images off the Hadoop file
system to a digital press at multi-gigabit data rates. To achieve this, efficient scheduling of the order in
which file blocks are read by the client is beneficial. An approach to scheduling based on binary integer
programming is described which generates more efficient schedules compared to a naive approach. The
scheduling model allows the exploration of system design choices and helps to identify file block
distributions that are problematic to read at high rates. Measured stream rates approaching 4Gb/s were
achieved which is close to the required rate for streaming pages containing rich designs to a digital press.
This required only a minor extension to the Hadoop client to allow file blocks to be read in parallel from
the Hadoop data nodes.

External Posting Date: October 21, 2009 [Fulltext] Approved for External Publication
Internal Posting Date: October 21, 2009 [Fulltext]

Copyright 2009 Hewlett-Packard Development Company, L.P.

High Speed Raster Image Streaming For Digital
Presses Using the Hadoop File System1

 Russell Perry, Member IEEE

Abstract—An application of the distributed Hadoop file

system to very high rate variable data printing is described.
The raster image processing of a large variable data document
is represented as a MapReduce process. The key challenge
addressed by this paper is how to stream the resulting raster
images off the Hadoop file system to a digital press at
multi-gigabit data rates. To achieve this, efficient scheduling of
the order in which file blocks are read by the client is beneficial.
An approach to scheduling based on binary integer
programming is described which generates more efficient
schedules compared to a naïve approach. The scheduling model
allows the exploration of system design choices and helps to
identify file block distributions that are problematic to read at
high rates. Measured stream rates approaching 4Gb/s were
achieved which is close to the required rate for streaming pages
containing rich designs to a digital press. This required only a
minor extension to the Hadoop client to allow file blocks to be
read in parallel from the Hadoop data nodes.

Index Terms—Print, VDP, Hadoop, Binary Integer
Programming.

I. INTRODUCTION
Variable data and document customization are

increasingly being used in printed marketing and other
publications [1][2]. As a result, every page to be printed is
potentially unique. A print press must therefore be fed the
rasterized image of each page rather than just a single
repeated page design. Increasingly powerful digital print
presses place growing demands on the IT and software
infrastructure that supports the raster image processing and
subsequent streaming of the ripped pages to the press. For
example, digital web presses can support print throughputs of
122m/min [3]. At such rates, the supporting IT infrastructure
costs become significant. Sharing common IT infrastructure
between multiple, lower throughput, presses is also desirable
to lower costs.

To contain the cost of the press’ supporting software and

IT infrastructure, an architecture approach is considered here
offering a potential low cost of implementation. The
approach is based on the Hadoop file system [4] in
conjunction with MapReduce [5]. MapReduce is used to
implement parallel raster image processing after which the
rasterized images, stored on the Hadoop file system, are
streamed to the print press. The Hadoop file system splits
files into blocks and stores the blocks across a cluster of data
nodes. The file blocks are stored on the file system of a data
node’s operating system and their location is recorded by a

name node server. Each file can be replicated a configurable
number of times. Examination of this approach is motivated
by the fact that the Hadoop file system was developed with
deployment on low cost commodity servers in mind. Hadoop
was also developed to easily scale-out. As such using
Hadoop provides an alternative approach to using a high
performance SAN with shared file system to store the
rasterized images. Whilst SAN systems are designed to be
robust to individual component failures, should the SAN
suffer a system-level failure then the printing operation will
be interrupted. Certain failures in the Hadoop system can be
tolerated with only an incremental loss in performance. The
Hadoop File System supports redundancy (through block
replication and operation retries) to allow for recovery from
individual data node failures. However, whilst retries are
acceptable in batch processing applications without tight time
constraints, they are not acceptable in the print press domain
where continuous real time streaming of raster images is
required.

1 Prepared for International MultiConference of Engineers and Computer

Scientists 2010.

The specific challenge addressed in this paper is how to

reliably stream files containing raster images from off a
Hadoop file system (HDFS) to a print press at very high data
rates. The raster image processing is not as time critical and
therefore, is not the main focus of this paper. The task of
streaming data to the press is usually performed by a press
client. The press client’s main function is to read data from a
file system, buffer pages in memory and write the pages, in
order, to the print press. Typical data rates are in the multiple
Gbps range and once a stream starts it cannot be interrupted
without disrupting the entire print run. For example, the Web
Press can require input data rates in excess of 5Gb/s even
with compression, assuming complex page layouts. When
streaming at high rates, scheduling the transfers of file blocks
in parallel from the HDFS to avoid resource contention is
beneficial. E.g. reading different blocks from the same disk
at the same time will slow data transfers and is ideally best
avoided. This problem is a focus of the paper and is
described in greater detail in section IV.

This paper’s first contribution lies in the development of a

model and algorithm for efficiently reading, in parallel, the
sequence of file blocks making up a file to maximize transfer
rates. The model is represented as a timetabling problem that
is amenable to solution using binary integer programming
(BIP). Solving the scheduling problem for a range of file
block distributions allows various system design trade-offs to
be explored and cost effective configurations identified. The
BIP algorithm is compared with a simple naïve scheduling
algorithm indicating the value of using the former, more

sophisticated, approach.

The paper’s second contribution is to provide

measurements of the file transfer rates when reading multiple
file blocks in parallel from a HDFS deployment. For
comparison, data rate measurements are provided using both
Netperf [14] and Java’s non-blocking IO when transferring
data using a single stream.

The structure of the rest of the paper is as follows.

Section II discusses prior work. Section III then describes the
print streaming problem in detail and the application of
Hadoop along with a brief overview of the experimental test
bed. In section IV, the model of the scheduling problem is
specified and two algorithms are developed to solve the
scheduling problem. Section V presents results for algorithm
performance across a range of file block distributions from
both analysis and experiment.

II. PRIOR WORK
In [6], the problem of scheduling a university timetable

was modeled as a binary integer programming problem. The
problem addressed here is also amenable to such an approach
and is described fully in section IV.

BitTorrent provides a file transfer protocol underpinned by

a peer-to-peer network [7]. If multiple peers have a copy of a
file, then a BitTorrent client can discover which peers are
currently hosting the file and begin downloading different
parts of the file from each peer in a non-sequential manner.
This avoids flash loads occurring on a single server hosting
the file. At a conceptual level this approach is similar to
using HDFS with multiple file replicas such that a client has
multiple locations from which it can read a file block.

Other higher speed file transfer mechanisms have been

proposed including GridFTP [10]. Performance
improvements over ftp and scp protocols have been reported
by splitting a TCP connection into multiple segments.
GridFTP also makes use of parallel TCP connections at the
application layer, which increases the TCP recovery rate
from errors whilst decreasing the rate at which it slows
throughput in response to errors. It also increases the total
effective TCP-buffer space available. Alternatively using
UDP for file transfers with reliability and error recovery
provided by the application layer appropriate to the files to be
transferred is also possible.

Striping, either by file or by disk has a long history. The

original term RAID (redundant array of inexpensive disks)
was introduced by Patterson et. al. in 1988 [8]. The goal is to
provide greater reliability and/or bandwidth by combining
multiple physical disks to provide a single logical, high
performance disk. Hadoop is most similar to the RAID-1
configuration albeit the data striping is at the file system
rather than disk level. In a RAID-1 configuration, data is
mirrored across all available disks, whereas in Hadoop the
number of replicas can be configured on a file by file basis.
Later, striped network file systems were introduced which
generally provide better performance with larger files. An

early example was Zebra [9] which striped files according to
the client rather than by file. Fault tolerance was also
provided by making redundant copies of files, at the expense
of increasing complexity needed to maintain synchronization
between file copies. In this application, the raster image files
are large, but not subject to change so file synchronization is
not an issue.

Although in this paper the Hadoop File System is used, the

approach is likely to be suitable for other distributed virtual
file systems that support file replication.

III. PRINT STREAMING PROBLEM
The MapReduce programming model introduced in [5]

and also implemented by Hadoop [4], is tailored to
implementing large-scale data intensive processing which
can be performed in parallel with the processing results then
combined. It provides an abstraction that shields the
developer from the intricacies of scheduling program
execution across many machines and handling data
distribution and management. The “map” and “reduce” are
operations where the map operation takes as input a key (e.g.
a document reference) and value (the document contents).
The key/value pair is essentially a record from an input file.
The output of the map is one or more intermediate key values.
The reduce operation combines the intermediate values
sharing the same key and emits zero or one outputs. The
input to the MapReduce system is a configuration object. It
specifies the set of files to be processed and other items such
as the number of map and reduce operation instances to use
and how the records in the input file should be interpreted.
As well as the map and reduce operations, many of the
internal MapReduce processes can be customized by the
user.

A model for parallel raster image processing using

MapReduce is now described. Initially, the large variable
data PDF source document to be printed (it could contain
>105 pages), is logically divided into a sequence of
sub-documents. The sub-document size is chosen such that
the time to rasterize it is sufficiently long so as to limit the
overhead of the raster image processor initialization time.
The input to the MapReduce engine is a text file containing
key/value pairs specifying the list of all the sub-documents
by their start and end byte positions in the source document.
The MapReduce engine splits the list and distributes each
part to an available map instance. During the map stage, each
sub-document is read from the source document made
available from a single URL address. The address is
provided as a property to the MapReduce job. Within the
map stage, the document is ripped and the resultant raster
image is written to a file on the HDFS. Each map operation
then returns an intermediate key/value pair using the same
key name, but with the value set to the raster image output
filename. The filename is chosen to indicate the original
sub-document. Using the same key name ensures all map
outputs are sent to a single reduce operation.

For the reduce phase, a single reduce instance is used

which orders the raster files from each map stage according

to their original position in the source document and emits a
single text file hereafter called the stream list. The stream list
contains the set of files that need to be streamed to the print
press. Note that the stream list collectively represents the
complete rasterized source document, so henceforth the
problem may be considered to be that of streaming a single
rasterized source file even though it is decomposed into
separate sections.

Using an active open source project is in itself attractive,

whilst, in addition, many features of Hadoop (e.g. block
replication) are also useful in addressing the problem.
However, certain aspects of the problem are not ideally
matched with the MapReduce paradigm. For example, the
volume of output data produced by a MapReduce process is
typically much smaller than the original input data. In the
case here, the intermediate raster image files are very large
and so the map stage actually yields a greater volume of
output data. Another significant difference is that the map
nodes read their input data from a common source file, albeit
from different positions within that file (the input key/value
pairs indicate which part of the source document to read).
The source document is thus hosted on a web server
accessible to all mapper nodes. Finally, the set of key/value
pairs emitted by the map stage are interpreted as file
references to the raster images which strictly speaking
contain the actual intermediate values. This allows large
intermediate values to be handled analogous to the way that
the iterator type for the reduce operation input parameter,
allows long lists of intermediate values to be handled. The
reduce stage is used to collate the file references to produce
the stream list. In effect, the reduce stage is actually carried
out by the press client since it generates the final print stream
based on the stream list.

A. System Setup
The test infrastructure on which Hadoop and the press

client are deployed is shown in Figure 1. For illustration
purposes, the locations of file blocks (replication factor 2) are
indicated by the small green numbered rectangles shown
above the set of 8 data nodes. Each green rectangle
symbolizes a file block and the number represents the block
sequence identifier. In general there are N blocks stored
across M data nodes. In our system there are 31 data nodes
and one name node (not shown). The Hadoop nodes are HP
blade servers (bl2x220c) with 300GB of local disk storage
and 16GB of memory. They have 4CPUs. The name node
server is identical to the data nodes. The press client is an HP
blade server (bl460c) with 64GB of memory and 8CPUs.
Each server runs Red Hat Enterprise Linux 5 (v2.6.18).

At the press client a process runs containing multiple

readers (R) for reading file blocks off the HDFS according to
a pre-computed schedule. This is illustrated in the expanded
blue bubble. The blocks, once read, are buffered by the press
client before they are streamed to the press. The press client
has two HP NC512m Dual Port 10GbE network interface
cards; one is connected to the print press and the other
connects to a switch that connects each data node over a
1Gb/s link. The Hadoop client code was extended to allow

the data nodes on which each file block is stored to be
determined and to allow file blocks to be read independently,
not just sequentially as part of reading the complete file.

Figure 1: System Architecture for Streaming File Blocks off the HDFS

In production, the infrastructure must support ripping of

new documents whilst rasterized images of previous
documents are read from the file system. This could reduce
block read speeds if a write operation on the same node
occurred at the same time. To avoid such contention it would
be reasonable to deploy multiple instances of Hadoop on
separate groups of servers and to alternate which deployment
is used for ripping whilst streaming data from another
instance. This would avoid disk writes occurring on nodes at
the same time as disk reads during when the time critical file
streaming is on-going.

B. Design Options
Since there are multiple replicas of each file block

(normally maintained for redundancy), it is possible for the
readers to read blocks from different data nodes during the
same time period and so avoid a read collision i.e. reading
from the same disk at the same time. This can allow higher
data transfer rates subject to disk, network and processor
limitations. Conversely, it might be possible to use lower
speed and therefore, lower cost disks in conjunction with a
greater number of readers to maintain a given throughout.

There are various system trade-offs that can be made. A

low replication factor, reduces the total disk storage occupied
by the raster image files. Also it will reduce the time taken to
save each raster image to file during the map stage because
fewer replicas need to be created. Given the size of rasterized
image files, the cost of replication can be considerable.
However, with fewer replicas, it can be more difficult to
schedule reads to avoid read collisions. To counter this, the
press client buffer size and delay streaming the output
(stream delay) can be increased to smooth out scheduling
bottlenecks. The number of data nodes used in the HDFS
deployment is a major cost factor. More data nodes allow file
blocks to be more widely spread and can help simplify
scheduling. It also allows more parallel raster image
processing to be performed which is more CPU intensive. In

fact the raster image processing workload may demand more
nodes than are required by the scheduling algorithm to
achieve a given throughput. In summary, there are several
key design parameters that will affect system cost and
performance. The scheduling analysis and experimentation
can be used to explore the design trade-offs and to determine
the most cost effective system configurations to use.

IV. MODELING THE PRINT STREAMING SCHEDULE
The problem of reading file blocks off the HDFS is

modeled as a timetable scheduling problem. Each reader
(1...R) is instructed to read specified file blocks from the data
nodes and cache them in a local buffer. An output stream
writer will read the blocks from the cache and write them to

an output stream connected to the press at a rate R times the
rate that blocks are read individually. Two scheduling
algorithms are compared; a simple naive algorithm and a
binary integer programming algorithm. To model the
scheduling problem several variables are introduced which
are summarized in Table 1.

It is assumed that blocks can be read in a bounded time
period called a time slot. There may be some variation in the
time taken to read a block, but this is not an issue if a block
can be read in the next time slot without colliding with an
on-going read then it can proceed immediately. In fact, if
each reader is assigned to read blocks from just one node
throughout the whole schedule, then there cannot be a read
collision irrespective of the overlap between timeslots. This
is the preferred implementation approach. For example, with
reference to Figure 2, a reader assigned to node 1 would read

blocks 1, 3, 6 and 10 whilst a second reader assigned node 2
would read blocks 5, 4, 7 and so on. This is only possible if
the complete schedule is computed in advance rather than
scheduling read tasks to each reader during streaming.

Each set of blocks read by the readers are scheduled to

occur within a single time slot. The scheduling problem
amounts to deciding which block should be read from which
node during which time slot. Geometrically, the decision
variables can be visualized as points in a three dimensional
space with axes of time, node index and block index. The
binary decision variable denotes whether to read (1) the
ith block at time t from node n or not (0). This is represented
in the two dimensional plot in Figure 2 with the block index
axes projected onto the time-node plane with the block index
shown rather than the binary decision variable. E.g. the time
slot containing number 5 corresponds to decision variable
b522=1, which indicates that block 5 is read during time slot 2
from node 2.

itnb

Figure 2: Visualisation of the block read schedule in two dimensions

The schedule is subject to certain constraints that are

modeled in the integer programming model. The naïve
algorithm incorporates the read collision constraints
explicitly within the algorithm and subject to those
constraints, aims to read blocks in order as much as possible.
In both algorithms, the aim is to read as many blocks in
parallel without read collisions, thus maximizing data
streaming rates with as least buffering and stream delay as
possible.

A. The Naïve Algorithm
The general strategy taken by the naïve algorithm is to read

each block in index order, but without colliding with any
other reads in the same time slot from the same node. If the
next block cannot be read without a read collision, then the
reader will be allocated the next block to read and so on. All
readers are allocated blocks to read at each time slot if at all
possible. Let numToAssign be the number of blocks to read
in the tth timeslot, then the naïve algorithm can be
summarized as follows.

1=t # start at the first time slot
{ }Mb bbS1= # list of all indices of all blocks to be read

while ∅≠bS # while there are sill blocks to be scheduled

 ∅=tS , # set of indices of blocks to be read in time slot t
 # number of blocks to assign in this time slot

TABLE I

VARIABLES USED TO MODEL THE SCHEDULING PROBLEM

Variable Description

R The number of client side readers.

M The number of data nodes in the HDFS deployment.

N The number of file blocks to read.

maxT The maximum number of time slots in the schedule.

bS The ordered set of indices of blocks still to be
scheduled. Sb(k) represents the kth element from the
ordered set.

TN A M×Tmax matrix representing the schedule timetable
generated by the naïve algorithm

TIP A M×Tmax matrix representing the schedule timetable
generated by the binary integer programming
algorithm (see Figure 2 for illustration)

ib The ith block, an integer value.

itnb A binary decision variable that represents whether to
read (1) the ith block at time t from n or not (0).

inb Indicates that a replica of the block with index i, is
stored on node n (1) or not (0).

bx The vector form of the timetable schedule for the
integer programming based algorithm. This is a vector
of the binary decision variables bitn. The mapping of
the decision variables to a one dimensional vector is
done first by block index, then data node number and
finally by time slot. Thus the decision variable bitn is
stored at location i+(n-1)N+(t-1)NM.

c The cost vector for the set of decision variables.

()itb , The buffer cost function.

()bSRnnumToAssig ,min=
skip to next timeslot when there are no possible assignments for one
of more remaining readers.

0=skip

 while () (()00 ≡)∧> skipnnumToAssig
 , 1=k 0=assigned
 # iterate through remaining blocks in order

 while () ()(bSkassigned <∧≡ 0)

)

 ,)(kSi b= 1=n
 while () (()Mnassigned <∧≡ 0

 if () () (()01 ≡∧∉∧≡ nttiin TNSbb)
 , { }itt bSS ∪= iTN =
 1=assigned
 end
 1+= nn
 end

1+= kk
end

assignedskip −=1
assignednnumToAssignnumToAssig −=

 end
 # advance to next time slot 1+= tt
 # ∆ is the set difference operator tbb SSS Δ=
end

B. The Binary Integer Programming Algorithm
Integer programming formulations require that a cost

function is minimized subject to some set of constraints. The
cost function, C, in this case is

[]∑∑∑
= = =

×++=
max

1 1 1

),(),(
T

t

M

n

N

i
itnbitsitbtC (1)

where

⎡ ⎤
⎡ ⎤ ⎡ ⎤
⎡ ⎤() ⎡ ⎤
()()2

2

),(

;),(

;0),(
00),(

Ntbits

WtRiwheretRiitb

WtRiwheretRiitb
constraintbyreadseetRiwhereitb

i −=

>−−=

≤−≤−=
−<−=

,

and W is an integer number of time slots (in the reported
experiments a value of 2 was used). The equations (1) can be
converted into vector form bxcC .= where the decision

variables are mapped into the vector itnb bx firstly by block
index, then node index and finally time index. The values of
c are pre-computed and are constant coefficients as required
for integer programming. The terms from (1) involving the
ceiling function are used to map the block index i, to the time
slot t, since R blocks are to be read per time slot; blocks 1…R
should be read during time slot 1 and so on. The cost
function encourages blocks to be read as soon as possible, by
weighting the decision variables by their associated time slot.
At the same time, a cost b(t, i) is applied for buffering blocks

far in advance of when they will be written to the output
stream. Specifically, when a block is read more than W time
slots before it is required, the cost function coefficients in (1)
are generated from a quadratic rather than linear function.
The term is a small bias to ensure that block i will be
read before block j when i < j, with all other costs equal.

),(its

1
∑
=

N

i
itnb

The set of constraints are now considered in turn. The

read-once constraints

∑∑
= =

∀=
max

1 1

,1
T

t

M

n
itn ib , (2)

ensure that each block is read only once. The read collision
constraints are defined by

0,,1 ≠∀≤ inbwherent (3)

which ensures that only one block can be read from a node

during a timeslot. The completion time constraints are given
by

max0 Ttforbitn >= (4)

To support this constraint, the number of time slots is

limited to , which should be set to a little larger than maxT
RN to allow for a feasible solution to be obtained even

with problematic block distributions that may prevent R
blocks being read in one or more time slots.

The read-by constraints are required to ensure that each

block has been read before it will be written to the output
stream. This can be expressed in the form

10
1

=∀=∑ ∑
= =

in

M

n
itn bwhereib

max

min

T

Tt

 (5)

where ()⎣ ⎦ minminT DRi ++= δ and is a fixed

delay allowed before the block must be read and
minD

δ is a small
arbitrary fraction to ensure the floor function evaluates to the
required integer value. A hard buffer constraint can be
enforced as

tiandmti
timtbitn

>−<∀=
≤≤−

bitn

∀≤≤
0

,10
 (6)

to ensure that a block is only read within some fixed window
prior to it being streamed. Note the cost function
incorporates a soft buffer constraint by raising the cost of
reading a block far in advance of it being streamed.

The number of readers is constrained according to

∑∑
= =

∀≤
M

n

N

i
itn tRb

1 1

 (7)

Finally the number and distribution of blocks across the
Hadoop data nodes is a function of the number of replicas
specified in the Hadoop configuration and the random
assignment of blocks to data nodes. The distribution of the
file’s blocks represents the final set of constraints limiting
which blocks can be read from each node. In these cases the
decision variable is set to 0 if the block is not readable from
the associated node.

Some of the constraints described above are implicitly

handled in the naïve algorithm. The other constraints could
be built in to the algorithm, at the cost of increased
complexity.

The size of the integer program grows with increasing

numbers of nodes and file blocks making solution more
difficult. However, the scheduling problem can be readily
sub-divided into a sequence of smaller sub-problems with the
end state of one sub-problem imposing additional constraints
on the next sub-problem. If during the last time slot in the
first sub-problem there are one or more unallocated readers,
then that time slot will become the first time slot of the next
sub-problem. In such a case the constraints (2) and (7) are
adjusted for the first time slot according to the remaining
number of available readers and free nodes. In this way
several sub-problems can be stitched together to provide a
tractable means of solution for very large files containing
many blocks.

C. Constraints for Fault Tolerance
A key feature provided by Hadoop is automatic replication

of file blocks to provide fault tolerance. In the current
application, this redundancy is used to allow non-sequential
blocks belonging to the same file to be read in parallel. Each
replica provides an extra degree of freedom providing
flexibility in the schedule. However, the redundancy is still
valuable to recover from a data node failure part way through
printing a document. In this case, it is possible to amend the
approach described above to allow block reads to be
rescheduled in the event of a failed read.

The general approach to provide data node fault tolerance

is to insert contingency time slots in the schedule to allow
time to read a block from another data node. Contingency
can also be provided by increasing the number of block
replicas, but this would slow down the time taken to store the
rasterized images. Using contingency time slots requires that
after every Tc time slots, a spare time slot is reserved, to
provide an opportunity to re-read blocks, scheduled to be
read from a failed data node, from the other nodes. This
requires additional client side buffering, and requires
adjustment to the constraints above. Firstly, the read once
constraint is relaxed to allow blocks to be read multiple times.
Secondly, additional constraints must be satisfied such that
the schedule will allow all of the blocks scheduled to be read
from any failed data node in the preceding Tc -1 time slots to
be re-read from other the remaining data nodes. Thus the
collision constraint at the contingency time slots should be
relaxed to allow up to Tc -1 blocks to be read from each
remaining active node, but noting that the non zero entries

represent alternative blocks to be read depending on which
node fails.

The contingency periods, do not have to be used if there

are no data node failures. Thus in the absence of failures, the
contingency period can be skipped, but the aggregate data
transfer rate will be reduced according to the frequency of
contingency periods.

D. Scheduling for Multiple Streams
As noted in the introduction, sharing the same IT

infrastructure across multiple print presses is attractive. To
support this, the scheduling approaches described above can
be adapted to allow multiple streams for different presses to
be generated in parallel. There are various approaches that
can be taken such as dividing resources evenly between
streams and running independent algorithms, or adapting the
algorithms to share the available resources between multiple
competing streams. E.g. blocks read from a node by one
stream will prohibit the other streams from reading from the
same node in that same time slot. It is relatively
straightforward to adapt of some of the constraints (e.g.
read-by constraints) to support parallel streams.

E. Smart Placement
It is possible to invert the scheduling problem described

above by ensuring that blocks are written to nodes in such a
way as to permit efficient streaming of the data off the HDFS.
This will require modifying the block distribution algorithm
used by the file system to allocate blocks to data nodes in the
first instance. This may conflict with fault tolerance concerns
such as replicating blocks on nodes hosted on different
equipment racks with independent power supplies.
Optimally writing blocks on nodes to allow efficiently
reading those blocks at a later time will require solution of a
similar optimization problem to that described.

V. RESULTS
Sets of test cases were generated by randomly generating

different block distributions across data nodes for varying
numbers of nodes, replication factor, file sizes and readers.
Then the two scheduling algorithms are applied to each test
case to generate a schedule. From each schedule, the stream
delay and last time slot that the final block was read are
determined under the condition that blocks are written to the
stream at a continuous rate of R blocks per time slot. This
ensures that the cache utilization will remain relatively stable.
The stream delay is defined as the number of time slots
elapsed before the output stream can be written. The prior
condition requires that the stream delay is sometimes
increased to ensure continuity of the data stream once started.
The frequency with which the stream delay is increased is
reflected in the average values shown later. The average size
of the buffer, measured in blocks, is calculated and
normalized by the number of readers. Normalization is
applied to allow comparison for varying R, because as R
increases the number of blocks that need to be buffered is
necessarily greater, but relative to the read rate the buffer size
may be smaller. All the results are averaged over 500 test
cases.

The experiments were performed using MATLABTM and
the binary integer programming solver provided in the
Optimization Toolkit [12].

A. Scheduling Algorithm Results
In Figure 3, the performance obtained using the BIP

algorithm is shown for varying numbers of replicas and
readers. In the key, the first digit is the number of readers, the
second digit is the number of replicas and the last digit is the
number of nodes. 16 data blocks had to be scheduled in each
case. The same performance data is shown in Figure 4 for the
naïve algorithm. The best results are closest to the origin i.e.
no buffering and no stream delay required. The dash lines
represent contours of circles of radius 3 through 6 centered
on the origin to help identify points at equi-distance from the
origin. Points which represent tests using the same number
of readers are grouped inside the numbered ellipsoids for
clarity.

Figure 3: Performance of the binary integer programming scheduling
algorithm with varying numbers of replicas and readers

Figure 4: Performance of the naive scheduling algorithm with varying
numbers of replicas and readers

The BIP algorithm generally provides better results unless

the file was nearly or, fully replicated on every data node. In
general for a given number of readers, the naïve algorithm
requires more replicas to support the same data rate (hence
the greater number of data points shown for the naïve
algorithm). This is a benefit of using BIP since reducing the
number of replicas reduces both storage capacity and the time

taken to save each raster image file.

Note the performance using 5 readers is not markedly

better than using 4 readers for this particular experiment
simply because with 16 blocks to be scheduled the last block
will always need to be read in the 4th time slot. Figures, 3 and
4 also show the average normalized buffer sizes at less than
1. Strictly speaking the steady-state average normalized
buffer size should approach 1. This is because with a
minimum required stream delay of 1 and R readers there will
always be at least R blocks buffered at the end of each time
slot. After normalization by R, this is equivalent to a
normalized buffer size of 1. However, at the end of the
schedule, the number of blocks remaining in the buffer will
decrease as the last few are read by the output stream writer.
If, for example, in the penultimate time slot, only the last
block remains in the cache, this will reduce the average
buffer size. This is most apparent in the case of 5 readers. In
the ideal schedule 5 blocks are read and written each time
period. However, when reading 16 blocks, there is always
one remaining block to be read in the 4th time slot. This gives
an average buffer size of 4 blocks and therefore a normalized
buffer size of 0.8. Over a longer schedule the impact of the
artifact would be less pronounced. The impact of this is to
shift the plotted points downwards.

It is observed that just increasing the number of readers

ultimately provides diminishing returns, assuming a fixed
number of replicas i.e. the scheduling algorithms are unable
to realize the maximum theoretical increase in stream rates.
This is because of the increasing likelihood of read conflicts
when using many readers. This issue can be particularly
acute in certain cases e.g. where the distribution of a block’s
replicas are similar for many sequential blocks such that the
read collision constraints limit scheduling options. There are
many other less obvious block distributions that are difficult
to schedule efficiently. By determining a schedule in
advance of streaming can allow for these problematic
distributions to be identified and for remedial steps to be
taken (see later).

Average statistics do not fully characterize the relative

performance of the two algorithms. When specifying the
system configuration, the possible peak stream delays and
maximum buffer sizes need to be determined. However, the
average values do indicate the relative frequency of longer
stream delays and consequently the need for larger buffer
sizes.

In Figure 5 the performance of a 4-node cluster using 4

readers and either 2 or 3 replicas for a varying number of file
blocks are compared. A smaller number of blocks were
chosen for this experiment to allow schedules to be generated
for a larger numbers of file blocks.

As the number of blocks is increased, the out-performance

of the BIP algorithm is reduced. This is thought to be due to
an averaging effect whereby large groups of blocks tend to
contain sub groups which cannot be scheduled efficiently
irrespective of the scheduling algorithm. Also when the ratio

of number of replicas to number of nodes is lower (in this
case 2 replicas and 4 nodes), the schedules generated using
the BIP algorithm are only slightly more efficient. This is
because the read collision constraint more frequently limits
scheduling options when there are few block replicas as
noted previously. This is examined in more detail next.

Figure 5: Performance comparison of the BIP and naïve scheduling
algorithms for a 4 node Hadoop cluster using 4 readers and varying numbers
of replicas and blocks. Normalized Last Time Slot (top) and Average
Normalized Buffer Size (bottom)

In the next experiment, minimum stream delays were
obtained from schedules derived using 5 readers and 2
replicas for a varying number of nodes. The minimum stream
delay is the delay (in time slots) required before the files
blocks can be written to the output stream without
interruption assuming a sustained output stream rate of 5
(=R) times the average transfer rate from the Hadoop data
nodes. Note that a stream delay of 1 is the minimum; a delay
of 1 time slot is required to allow the blocks read during the
first timeslot to be cached before writing them to the output
stream.

It is very clear that the BIP algorithm results in schedules

with many fewer stream delays of 2 compared to the naïve
algorithm. The naïve algorithm also resulted in stream delays
of 3 time slots when using just 5 nodes. A longer stream
delay will require additional cache capacity to be provided.
For both algorithms, increasing the number of nodes reduces
the number of stream delays greater than 1. This general
pattern is observed across a range of system configurations.

It is possible to reduce the occurrence of long stream

delays by pre-reading a few selected blocks which are
problematic to schedule owing to poorly distributed blocks
(e.g. as noted above a sequence of blocks that are distributed
across broadly similar nodes is problematic to schedule).
Examining a schedule to identify problematic blocks and
pre-caching them can avoid long stream delays at the expense
of slightly more buffering. With fewer cases of long stream
delays, this additional step is required less often. It’s worth
noting that it is only by determining a schedule up-front that
any problematic block distributions can be identified.

Figure 6: Distribution of stream delays for schedules generated by the BIP
(top) and naïve (bottom) algorithms for a 5 node Hadoop cluster with 5
readers, 2 replicas and varying numbers of nodes

The number of Hadoop nodes required in a deployment
may be dictated by the RIP speed requirements where
performance is CPU bound rather than IO bound. If this is
the case, a benefit of using the extra nodes for raster image
processing is the potential for reducing the buffer
requirements at the press client. Conversely, if the number of
nodes utilized during the RIP stage is relatively low then it
may be necessary to consider higher degrees of file
replication.

B. Measured Results
To test the rate at which file blocks can be transferred from

the HDFS, several measurements of data transfer rates were
carried out using the arrangement shown as ‘Test Path 3a/b’
in Figure 7. The version of Hadoop used in these tests is
0.18. The application running on the press client is expanded
in the blue rectangle. In this test, multiple parallel
connections to R different data nodes are established and data

blocks are read from each data node in parallel by the readers
executing on the press client. To provide an upper bound on
transfer rates, the same data block is read repeatedly from
each data node (practically rates would be limited by the
underlying disk performance). The readers write the files
blocks to files on tmpfs [15], a RAM-based filesystem with
16GB of memory allocated, which serves as the block buffer.
When a file block has been successfully written to a data file
in tmpfs, a second zero-length ‘notification’ file is also
created which indicates that the associated data file, is
available to be read by the output stream writer. This
provides a simple, but effective means of notification. The
output stream writer polls for each notification file in order
and if available then proceeds to read the associated data file.
The output stream writer thus reads the blocks in order from
tmpfs and writes them to an output stream. In this case the
data is written to either a socket connected to a server running
on Test Node 2, or to /dev/null, the latter acting as a control
case measuring the transfer rate in the absence of additional
outbound network traffic being generated as in path 3b.

Prior to carrying out Test 3, the networking configuration

was tested and optimized using Netperf 2.4.5 [14]. Netperf
was used to measure the transfer rates between the press
client and a second identical server in place of the press
(Test-Node-2) and the date rates between an HDFS data node
(Test-Node-1) and the press client. The latest version of the
NetXen Driver and firmware (v4.0.406-4, released Jun 2009)
for the HP NC512m NIC was used. In the experiments
described here, earlier driver versions resulted in slower
transfer speeds.

Figure 7: Data Transfer Rate Measurements for three different network paths

To achieve the highest rates possible several modifications

were made to the TCP/IP configuration on each node. Useful
suggestions are available from [16]. The most impactful
change was to increase the MTU (minimum transmission
unit) from 1500 to 8000 blocks (i.e. Jumbo Frames). The
TCP max buffer size for send and receive was increased to
16777216. TCP Segmentation Offload was enabled. The
interface queue length was set to 65535. The TCP
auto-tuning buffer limits (net.ipv4.tcp_rmem and
net.ipv4.tcp_wmem) were set to (4096 87380 16777216).

The measurements taken when transferring data along

paths “Test Path 1” and “Test Path 2” as illustrated in Figure
7 are shown in Table II. Bandwidth and CPU utilization
measurements were taken using both Netperf and a Java
application. Java was used for measuring transfer rates as

this would be the likely development language for a future
implementation. The Netperf script tcp_stream_script was
used to measure the data transfer rate across a single stream
between the press client and test nodes 1 and 2. The highest
rates were obtained using send and receive buffer sizes of
512K and a message size of 32-64KB. The CPU utilization
(CPU), measured at the sender and receiver are denoted as
CPU TX and CPU RX respectively. The peak rate for Test
Path 1 is close to 1Gb/s which is as expected. For the Test
Path 2, the transfer rate averaged at ~6.2Gb/s which is
comparable with the measurements presented in [13]. Table
II, also shows results using the Java based application using
Non-Blocking IO. The test writes data across a single stream
between a client and server instance. Using this test, data
rates less than, but comparable to Netperf were obtained.

TABLE II

The tests were also repeated using multiple instances of the

java application executing in parallel. An instance of the java
client was run on each data node, with the server instances
running on the same press client. In this case (not shown in
the Table), the data rate per client connection was maintained
at 940Mb/s for up to 8 clients giving an aggregate transfer
rate of approximately 7.5Gb/s. Using Test Node 2, two
clients were run on the test node and two server instances
were run on the press client. The measured aggregate data
transfer rate was ~8.3Gb/s.

For the tests relating to Test Path 3a/b, each reader was run
as a separate java processes. The modified Hadoop client
code was used by the readers to establish connections to the
HDFS and to read the blocks. Note the connections to the
Hadoop data nodes do not use non-blocking IO as this was
not supported by Hadoop at the time of writing. The output
stream writer begins to stream blocks from tmpfs as soon as
each reader has completed reading a first block. A larger
delay may cause the measured to be artificially inflated
because it allows the output stream writer to read blocks from
tmpfs faster than the readers are actually writing them, at
least for a period of time.

The measured transfer rate along paths 3a and 3b for
varying numbers of readers are shown in Figure 8. The
typical data rate for a single reader, reading a file block off
HDFS was approximately 700Mb/s. This is the rate along
Test Path 1 and is significantly less than the rates obtained
using Netperf and the test java application (see Table II).

NETWORK PERFORMANCE RESULTS

Test BW CPU
TX (Gb/s)

CPU
RX

Test-Path 1, Netperf 0.98 2% 3.3%
Test-Path 2, Netperf 6.2 12.5% 8.2%
Test-Path 1, Java 0.94 N/A N/A
Test-Path 2, Java 5.6 N/A N/A
Test-Path 2, Java (2 Streams) 8.3 N/A N/A

This is partly due to the more complex code path of the reader
application, but indicates a possible point of future
optimization. Along path 3a, there is a slightly less than
linear increase in the aggregate output rate as the number of
readers is increased, reaching approximately 4Gb/s (500Mb/s
per reader). Using more than 8 readers (the number of CPUs
on the press client), the data rate only increases marginally.

Figure 8: Data transfer rate measurements over Test-Paths 3a and 3b when

reading file blocks from Hadoop with varying numbers of readers. The
blocks are cached before writing over Test-Paths 3a and 3b.

When transferring data over path 3b, the rate of increase

with respect to R follows a similar slope to 3a, but after R=4,
the data rate no longer increases. This limit is because the
same network interface was used for both reading blocks
from DHFS and writing the file blocks (the second 10Gb/s
networking interface was not available for testing). In effect
the network interface is supporting roughly 5Gb/s transfer
rates in total. The results for 3a indicate strongly the scope
for higher data rates if the second network interface was used
for writing data to the press. The data rates presented in
Figure 8 represent an upper bound on achievable data rates in
a working system since the same block on each data node is
repeatedly read in the tests.

A few additional measurements were taken to estimate the

transfer rates if using a second network interface. In a first
test, a large number of blocks were first pre-cached in the
tmpfs buffer. The average transfer rate obtained when
reading files from tmpfs and writing them directly to a server
along path 3b was measured. This test ensured that the
stream being written along 3b was no longer competing for
network bandwidth with the readers reading blocks from the
Hadoop file system. The measured rate was ~3.7Gb/s which
is more representative of the data rate that could be achieved
in the previous experiment if a second network interface was
available. A second test, similar to the first, repeatedly wrote
the contents of an in-memory buffer over path 3b. An
average rate of 4.4Gb/s was measured indicating that reading
the cached file blocks from tmpfs significantly reduced
transfer rates. In both cases, the rate was less than the
5.6Gb/s reported in Table II, because the test used the more
complex output stream writer code and so is not directly
comparable.

VI. CONCLUSION
This paper describes an application of the Hadoop file

system [4] to high speed digital printing. Hadoop provides a
large scale distributed fault tolerant file system made up of a
set of data nodes, running on low cost servers with direct
attached storage. Fault tolerance is provided by storing
multiple replicas of each file block across different data
nodes. The redundancy provided by Hadoop is used in the
present application to enable high speed raster file streaming
over a 10Gb/s LAN to a press. The paper shows how to apply
a binary integer programming algorithm to make use of
Hadoop’s file block replication to derive efficient schedules
for reading file blocks in parallel from the Hadoop file
system. Based on the schedule, a set of readers running in
parallel on a press client, are directed to each read file blocks
from a specific data node and write them to a local
in-memory cache. The blocks can then be written from the
cache to the print press over a single higher rate stream.
Transfer rates up to 4Gb/s were measured when using 8
parallel file block readers with only a few minor extensions to
the Hadoop client code. The scheduling results suggest that
when using 8 readers, at least 3 and preferably 4 replicas can
be beneficially used to limit the buffer size required at the
press client.

ACKNOWLEDGMENT
I would like to acknowledge Eduardo Ceballos and Jon

Brewster of HP for introducing the problem and motivating
the use of Hadoop. I would also like to thank Stephen
Pearson, Niall Saunders and Stuart Martin for their help
setting up the infrastructure and Tony Wiley for supporting
the work.

REFERENCES
[1] L. Chudzinski, A. Peck, A. Hale, C. Sherburne, E. Padula, “Customized

Communications: Advanced VDP”, Infotrends 2008,.
[2] F. R. Meneguzzi, L. L. Meirelles, F. T. M. Mano, J. B. de Souza

Oliveira, A. C. Benso da Silva, “Strategies for Document Optimization
in Digital Publishing,” in Proceedings of the 2004 ACM symposium on
Document engineering, ACM, 2004, pp. 163-170.

[3] HP Ink jet Web Press http://www.hp.com/go/inkjetwebpress
[4] Apache Hadoop http://hadoop.apache.org/
[5] J. Dean, S. Ghemawat, “MapReduce: Simplified Data Processing on

Large Clusters,” in OSDI'04: Sixth Symposium on Operating System
Design and Implementation. 2004.

[6] S. Daskalaki, T. Birbas, E. Housos, “An integer programming
formulation for a case study in university timetabling,” in European
Journal of Operational Research, vol. 153, Elsevier B.V., 2003, pp
117-135.

[7] BitTorrent http://www.bittorrent.com/
[8] D. A. Patterson, G. Gibson, R. H. Katz , “A Case for Redundant Arrays

of Inexpensive Disks (RAID),” in Proceedings of the 1988 ACM
SIGMOD international conference on Management of data, 1988, pp.
109-116.

[9] J. H. Hartman, J. K. Ousterhout, “Zebra: A Striped Network File
System,” in Proceedings of the USENIX Workshop on File Systems, in
ACM Transactions on Computer Systems, May 1992.

[10] P. Rizk, C. Kiddle, R. Simmonds “A GridFTP Overlay Network
Service,” in Proceedings of the 7th IEEE/ACM International
Conference on Grid Computing, 2006, pp. 41-48.

[11] http://h20000.www2.hp.com/bizsupport/TechSupport/Document.jsp?l
ang=en&cc=us&taskId=120&prodSeriesId=3432831&prodTypeId=3
29290&objectID=c01073636

[12] MATLAB http://www.mathworks.com/products/matlab/
[13] S. Pope, D. Riddoch, “10Gb/s Ethernet performance and

retrospective,” in SIGCOMM Computer Communication Review ,
Volume 37 Issue 2, March 2007.

http://www.hp.com/go/inkjetwebpress
http://hadoop.apache.org/
http://www.bittorrent.com/
http://h20000.www2.hp.com/bizsupport/TechSupport/Document.jsp?lang=en&cc=us&taskId=120&prodSeriesId=3432831&prodTypeId=329290&objectID=c01073636
http://h20000.www2.hp.com/bizsupport/TechSupport/Document.jsp?lang=en&cc=us&taskId=120&prodSeriesId=3432831&prodTypeId=329290&objectID=c01073636
http://h20000.www2.hp.com/bizsupport/TechSupport/Document.jsp?lang=en&cc=us&taskId=120&prodSeriesId=3432831&prodTypeId=329290&objectID=c01073636
http://www.mathworks.com/products/matlab/

[14] R. Jones, “Netperf Homepage” http://www.netperf.org/netperf/ .
[15] D. Robbins, “Common threads: Advanced filesystem implementor's

guide, Part 3” http://www.ibm.com/developerworks/library/l-fs3.html
[16] Lawrence Berkely National Laboratory “TCP Tuning

Guide” http://fasterdata.es.net/TCP-tuning/linux.html.

http://www.netperf.org/netperf/
http://www.ibm.com/developerworks/library/l-fs3.html
http://fasterdata.es.net/TCP-tuning/linux.html

