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Abstract—An application of the distributed Hadoop file 

system to very high rate variable data printing is described.  
The raster image processing of a large variable data document 
is represented as a MapReduce process.  The key challenge 
addressed by this paper is how to stream the resulting raster 
images off the Hadoop file system to a digital press at 
multi-gigabit data rates.  To achieve this, efficient scheduling of 
the order in which file blocks are read by the client is beneficial.  
An approach to scheduling based on binary integer 
programming is described which generates more efficient 
schedules compared to a naïve approach.  The scheduling model 
allows the exploration of system design choices and helps to 
identify file block distributions that are problematic to read at 
high rates.  Measured stream rates approaching 4Gb/s were 
achieved which is close to the required rate for streaming pages 
containing rich designs to a digital press.  This required only a 
minor extension to the Hadoop client to allow file blocks to be 
read in parallel from the Hadoop data nodes.   
 

Index Terms—Print, VDP, Hadoop, Binary Integer 
Programming. 

I. INTRODUCTION 
Variable data and document customization are 

increasingly being used in printed marketing and other 
publications [1][2].  As a result, every page to be printed is 
potentially unique.  A print press must therefore be fed the 
rasterized image of each page rather than just a single 
repeated page design.  Increasingly powerful digital print 
presses place growing demands on the IT and software 
infrastructure that supports the raster image processing and 
subsequent streaming of the ripped pages to the press.  For 
example, digital web presses can support print throughputs of 
122m/min [3].  At such rates, the supporting IT infrastructure 
costs become significant.  Sharing common IT infrastructure 
between multiple, lower throughput, presses is also desirable 
to lower costs.   

 
To contain the cost of the press’ supporting software and 

IT infrastructure, an architecture approach is considered here 
offering a potential low cost of implementation.  The 
approach is based on the Hadoop file system [4] in 
conjunction with MapReduce [5].  MapReduce is used to 
implement parallel raster image processing after which the 
rasterized images, stored on the Hadoop file system, are 
streamed to the print press.  The Hadoop file system splits 
files into blocks and stores the blocks across a cluster of data 
nodes. The file blocks are stored on the file system of a data 
node’s operating system and their location is recorded by a 

name node server.  Each file can be replicated a configurable 
number of times.  Examination of this approach is motivated 
by the fact that the Hadoop file system was developed with 
deployment on low cost commodity servers in mind.  Hadoop 
was also developed to easily scale-out.  As such using 
Hadoop provides an alternative approach to using a high 
performance SAN with shared file system to store the 
rasterized images.  Whilst SAN systems are designed to be 
robust to individual component failures, should the SAN 
suffer a system-level failure then the printing operation will 
be interrupted.  Certain failures in the Hadoop system can be 
tolerated with only an incremental loss in performance.  The 
Hadoop File System supports redundancy (through block 
replication and operation retries) to allow for recovery from 
individual data node failures.  However, whilst retries are 
acceptable in batch processing applications without tight time 
constraints, they are not acceptable in the print press domain 
where continuous real time streaming of raster images is 
required.   

 
1 Prepared for International MultiConference of Engineers and Computer 

Scientists 2010.   

 
The specific challenge addressed in this paper is how to 

reliably stream files containing raster images from off a 
Hadoop file system (HDFS) to a print press at very high data 
rates.  The raster image processing is not as time critical and 
therefore, is not the main focus of this paper.  The task of 
streaming data to the press is usually performed by a press 
client.  The press client’s main function is to read data from a 
file system, buffer pages in memory and write the pages, in 
order, to the print press.  Typical data rates are in the multiple 
Gbps range and once a stream starts it cannot be interrupted 
without disrupting the entire print run.  For example, the Web 
Press can require input data rates in excess of 5Gb/s even 
with compression, assuming complex page layouts.  When 
streaming at high rates, scheduling the transfers of file blocks 
in parallel from the HDFS to avoid resource contention is 
beneficial.  E.g. reading different blocks from the same disk 
at the same time will slow data transfers and is ideally best 
avoided.  This problem is a focus of the paper and is 
described in greater detail in section IV.   

 
This paper’s first contribution lies in the development of a 

model and algorithm for efficiently reading, in parallel, the 
sequence of file blocks making up a file to maximize transfer 
rates.  The model is represented as a timetabling problem that 
is amenable to solution using binary integer programming 
(BIP).  Solving the scheduling problem for a range of file 
block distributions allows various system design trade-offs to 
be explored and cost effective configurations identified.  The 
BIP algorithm is compared with a simple naïve scheduling 
algorithm indicating the value of using the former, more 



 
 

 

sophisticated, approach.   
 
The paper’s second contribution is to provide 

measurements of the file transfer rates when reading multiple 
file blocks in parallel from a HDFS deployment.  For 
comparison, data rate measurements are provided using both 
Netperf [14] and Java’s non-blocking IO when transferring 
data using a single stream.   

 
The structure of the rest of the paper is as follows.  

Section II discusses prior work.  Section III then describes the 
print streaming problem in detail and the application of 
Hadoop along with a brief overview of the experimental test 
bed.  In section IV, the model of the scheduling problem is 
specified and two algorithms are developed to solve the 
scheduling problem.  Section V presents results for algorithm 
performance across a range of file block distributions from 
both analysis and experiment.   

II. PRIOR WORK 
In [6], the problem of scheduling a university timetable 

was modeled as a binary integer programming problem.  The 
problem addressed here is also amenable to such an approach 
and is described fully in section IV.    

 
BitTorrent provides a file transfer protocol underpinned by 

a peer-to-peer network [7].  If multiple peers have a copy of a 
file, then a BitTorrent client can discover which peers are 
currently hosting the file and begin downloading different 
parts of the file from each peer in a non-sequential manner.  
This avoids flash loads occurring on a single server hosting 
the file.  At a conceptual level this approach is similar to 
using HDFS with multiple file replicas such that a client has 
multiple locations from which it can read a file block.   

 
Other higher speed file transfer mechanisms have been 

proposed including GridFTP [10].  Performance 
improvements over ftp and scp protocols have been reported 
by splitting a TCP connection into multiple segments.  
GridFTP also makes use of parallel TCP connections at the 
application layer, which increases the TCP recovery rate 
from errors whilst decreasing the rate at which it slows 
throughput in response to errors.   It also increases the total 
effective TCP-buffer space available.  Alternatively using 
UDP for file transfers with reliability and error recovery 
provided by the application layer appropriate to the files to be 
transferred is also possible.   

 
Striping, either by file or by disk has a long history.  The 

original term RAID (redundant array of inexpensive disks) 
was introduced by Patterson et. al. in 1988 [8].  The goal is to 
provide greater reliability and/or bandwidth by combining 
multiple physical disks to provide a single logical, high 
performance disk.  Hadoop is most similar to the RAID-1 
configuration albeit the data striping is at the file system 
rather than disk level.  In a RAID-1 configuration, data is 
mirrored across all available disks, whereas in Hadoop the 
number of replicas can be configured on a file by file basis.  
Later, striped network file systems were introduced which 
generally provide better performance with larger files.  An 

early example was Zebra [9] which striped files according to 
the client rather than by file.  Fault tolerance was also 
provided by making redundant copies of files, at the expense 
of increasing complexity needed to maintain synchronization 
between file copies.  In this application, the raster image files 
are large, but not subject to change so file synchronization is 
not an issue.   

 
Although in this paper the Hadoop File System is used, the 

approach is likely to be suitable for other distributed virtual 
file systems that support file replication.   

III. PRINT STREAMING PROBLEM 
The MapReduce programming model introduced in [5] 

and also implemented by Hadoop [4], is tailored to 
implementing large-scale data intensive processing which 
can be performed in parallel with the processing results then 
combined.  It provides an abstraction that shields the 
developer from the intricacies of scheduling program 
execution across many machines and handling data 
distribution and management.  The “map” and “reduce” are 
operations where the map operation takes as input a key (e.g. 
a document reference) and value (the document contents).  
The key/value pair is essentially a record from an input file.  
The output of the map is one or more intermediate key values.  
The reduce operation combines the intermediate values 
sharing the same key and emits zero or one outputs.  The 
input to the MapReduce system is a configuration object.  It 
specifies the set of files to be processed and other items such 
as the number of map and reduce operation instances to use 
and how the records in the input file should be interpreted.  
As well as the map and reduce operations, many of the 
internal MapReduce processes can be customized by the 
user.   

 
A model for parallel raster image processing using 

MapReduce is now described.  Initially, the large variable 
data PDF source document to be printed (it could contain 
>105 pages), is logically divided into a sequence of 
sub-documents.  The sub-document size is chosen such that 
the time to rasterize it is sufficiently long so as to limit the 
overhead of the raster image processor initialization time.  
The input to the MapReduce engine is a text file containing 
key/value pairs specifying the list of all the sub-documents 
by their start and end byte positions in the source document.  
The MapReduce engine splits the list and distributes each 
part to an available map instance.  During the map stage, each 
sub-document is read from the source document made 
available from a single URL address.  The address is 
provided as a property to the MapReduce job.  Within the 
map stage, the document is ripped and the resultant raster 
image is written to a file on the HDFS.  Each map operation 
then returns an intermediate key/value pair using the same 
key name, but with the value set to the raster image output 
filename.  The filename is chosen to indicate the original 
sub-document.  Using the same key name ensures all map 
outputs are sent to a single reduce operation.  

 
For the reduce phase, a single reduce instance is used 

which orders the raster files from each map stage according 



 
 

 

to their original position in the source document and emits a 
single text file hereafter called the stream list.  The stream list 
contains the set of files that need to be streamed to the print 
press.  Note that the stream list collectively represents the 
complete rasterized source document, so henceforth the 
problem may be considered to be that of streaming a single 
rasterized source file even though it is decomposed into 
separate sections.   

 
Using an active open source project is in itself attractive, 

whilst, in addition, many features of Hadoop (e.g. block 
replication) are also useful in addressing the problem.  
However, certain aspects of the problem are not ideally 
matched with the MapReduce paradigm.  For example, the 
volume of output data produced by a MapReduce process is 
typically much smaller than the original input data.  In the 
case here, the intermediate raster image files are very large 
and so the map stage actually yields a greater volume of 
output data.  Another significant difference is that the map 
nodes read their input data from a common source file, albeit 
from different positions within that file (the input key/value 
pairs indicate which part of the source document to read).  
The source document is thus hosted on a web server 
accessible to all mapper nodes.  Finally, the set of key/value 
pairs emitted by the map stage are interpreted as file 
references to the raster images which strictly speaking 
contain the actual intermediate values.  This allows large 
intermediate values to be handled analogous to the way that 
the iterator type for the reduce operation input parameter, 
allows long lists of intermediate values to be handled.  The 
reduce stage is used to collate the file references to produce 
the stream list.  In effect, the reduce stage is actually carried 
out by the press client since it generates the final print stream 
based on the stream list.   

A. System Setup 
The test infrastructure on which Hadoop and the press 

client are deployed is shown in Figure 1.  For illustration 
purposes, the locations of file blocks (replication factor 2) are 
indicated by the small green numbered rectangles shown 
above the set of 8 data nodes.  Each green rectangle 
symbolizes a file block and the number represents the block 
sequence identifier.  In general there are N blocks stored 
across M data nodes.  In our system there are 31 data nodes 
and one name node (not shown).  The Hadoop nodes are HP 
blade servers (bl2x220c) with 300GB of local disk storage 
and 16GB of memory.  They have 4CPUs.  The name node 
server is identical to the data nodes.  The press client is an HP 
blade server (bl460c) with 64GB of memory and 8CPUs.  
Each server runs Red Hat Enterprise Linux 5 (v2.6.18).   

 
At the press client a process runs containing multiple 

readers (R) for reading file blocks off the HDFS according to 
a pre-computed schedule.  This is illustrated in the expanded 
blue bubble.  The blocks, once read, are buffered by the press 
client before they are streamed to the press.  The press client 
has two HP NC512m Dual Port 10GbE network interface 
cards; one is connected to the print press and the other 
connects to a switch that connects each data node over a 
1Gb/s link.  The Hadoop client code was extended to allow 

the data nodes on which each file block is stored to be 
determined and to allow file blocks to be read independently, 
not just sequentially as part of reading the complete file.   

 

 
Figure 1: System Architecture for Streaming File Blocks off the HDFS 

 
In production, the infrastructure must support ripping of 

new documents whilst rasterized images of previous 
documents are read from the file system.  This could reduce 
block read speeds if a write operation on the same node 
occurred at the same time.  To avoid such contention it would 
be reasonable to deploy multiple instances of Hadoop on 
separate groups of servers and to alternate which deployment 
is used for ripping whilst streaming data from another 
instance.  This would avoid disk writes occurring on nodes at 
the same time as disk reads during when the time critical file 
streaming is on-going.   

 

B. Design Options 
Since there are multiple replicas of each file block 

(normally maintained for redundancy), it is possible for the 
readers to read blocks from different data nodes during the 
same time period and so avoid a read collision i.e. reading 
from the same disk at the same time.  This can allow higher 
data transfer rates subject to disk, network and processor 
limitations.  Conversely, it might be possible to use lower 
speed and therefore, lower cost disks in conjunction with a 
greater number of readers to maintain a given throughout.    

 
There are various system trade-offs that can be made.  A 

low replication factor, reduces the total disk storage occupied 
by the raster image files.  Also it will reduce the time taken to 
save each raster image to file during the map stage because 
fewer replicas need to be created.  Given the size of rasterized 
image files, the cost of replication can be considerable.  
However, with fewer replicas, it can be more difficult to 
schedule reads to avoid read collisions.  To counter this, the 
press client buffer size and delay streaming the output 
(stream delay) can be increased to smooth out scheduling 
bottlenecks.  The number of data nodes used in the HDFS 
deployment is a major cost factor.  More data nodes allow file 
blocks to be more widely spread and can help simplify 
scheduling.  It also allows more parallel raster image 
processing to be performed which is more CPU intensive.  In 



 
 

 

fact the raster image processing workload may demand more 
nodes than are required by the scheduling algorithm to 
achieve a given throughput.  In summary, there are several 
key design parameters that will affect system cost and 
performance.  The scheduling analysis and experimentation 
can be used to explore the design trade-offs and to determine 
the most cost effective system configurations to use.   

IV. MODELING THE PRINT STREAMING SCHEDULE 
The problem of reading file blocks off the HDFS is 

modeled as a timetable scheduling problem.  Each reader 
(1...R) is instructed to read specified file blocks from the data 
nodes and cache them in a local buffer.  An output stream 
writer will read the blocks from the cache and write them to 

an output stream connected to the press at a rate R times the 
rate that blocks are read individually.  Two scheduling 
algorithms are compared; a simple naive algorithm and a 
binary integer programming algorithm.  To model the 
scheduling problem several variables are introduced which 
are summarized in Table 1.   

It is assumed that blocks can be read in a bounded time 
period called a time slot.  There may be some variation in the 
time taken to read a block, but this is not an issue if a block 
can be read in the next time slot without colliding with an 
on-going read then it can proceed immediately.  In fact, if 
each reader is assigned to read blocks from just one node 
throughout the whole schedule, then there cannot be a read 
collision irrespective of the overlap between timeslots.  This 
is the preferred implementation approach.  For example, with 
reference to Figure 2, a reader assigned to node 1 would read 

blocks 1, 3, 6 and 10 whilst a second reader assigned node 2 
would read blocks 5, 4, 7 and so on.  This is only possible if 
the complete schedule is computed in advance rather than 
scheduling read tasks to each reader during streaming.   

 
Each set of blocks read by the readers are scheduled to 

occur within a single time slot.  The scheduling problem 
amounts to deciding which block should be read from which 
node during which time slot.  Geometrically, the decision 
variables can be visualized as points in a three dimensional 
space with axes of time, node index and block index.  The 
binary decision variable denotes whether to read (1) the 
ith block at time t from node n or not (0).  This is represented 
in the two dimensional plot in Figure 2 with the block index 
axes projected onto the time-node plane with the block index 
shown rather than the binary decision variable.  E.g. the time 
slot containing number 5 corresponds to decision variable 
b522=1, which indicates that block 5 is read during time slot 2 
from node 2.   

itnb

 

 
Figure 2: Visualisation of the block read schedule in two dimensions 
 
The schedule is subject to certain constraints that are 

modeled in the integer programming model.  The naïve 
algorithm incorporates the read collision constraints 
explicitly within the algorithm and subject to those 
constraints, aims to read blocks in order as much as possible.  
In both algorithms, the aim is to read as many blocks in 
parallel without read collisions, thus maximizing data 
streaming rates with as least buffering and stream delay as 
possible.   

 

A. The Naïve Algorithm   
The general strategy taken by the naïve algorithm is to read 

each block in index order, but without colliding with any 
other reads in the same time slot from the same node.  If the 
next block cannot be read without a read collision, then the 
reader will be allocated the next block to read and so on.  All 
readers are allocated blocks to read at each time slot if at all 
possible.  Let numToAssign be the number of blocks to read 
in the tth timeslot, then the naïve algorithm can be 
summarized as follows.   
 

1=t       # start at the first time slot 
{ }Mb bbS .....1=   # list of all indices of all blocks to be read 

while ∅≠bS   # while there are sill blocks to be scheduled 

 ∅=tS ,    # set of indices of blocks to be read in time slot t 
 # number of blocks to assign in this time slot 

 
TABLE I 

VARIABLES USED TO MODEL THE SCHEDULING PROBLEM 

Variable Description 

R  The number of client side readers.   

M  The number of data nodes in the HDFS deployment. 

N  The number of file blocks to read. 

maxT  The maximum number of time slots in the schedule. 

bS  The ordered set of indices of blocks still to be 
scheduled.  Sb(k) represents the kth element from the 
ordered set.   

TN  A M×Tmax matrix representing the schedule timetable 
generated by the naïve algorithm 

TIP  A M×Tmax matrix representing the schedule timetable 
generated by the binary integer programming 
algorithm (see Figure 2 for illustration) 

ib  The ith block, an integer value.   

itnb  A binary decision variable that represents whether to 
read (1) the ith block at time t from n or not (0).   

inb  Indicates that a replica of the block with index i, is 
stored on node n (1) or not (0).  

bx  The vector form of the timetable schedule for the 
integer programming based algorithm.  This is a vector 
of the binary decision variables bitn.  The mapping of 
the decision variables to a one dimensional vector is 
done first by block index, then data node number and 
finally by time slot.  Thus the decision variable bitn is 
stored at location  i+(n-1)N+(t-1)NM.   

c  The cost vector for the set of decision variables.   

( )itb ,  The buffer cost function.   

 



 
 

 

( )bSRnnumToAssig ,min=  
# skip to next timeslot when there are no possible assignments for one  
# of more remaining readers.  

0=skip  

 while ( ) (( )00 ≡ )∧> skipnnumToAssig  
  ,   1=k 0=assigned
  # iterate through remaining blocks in order 

  while ( ) ( )( bSkassigned <∧≡ 0 )

)

 

   ,  )(kSi b= 1=n
   while ( ) (( )Mnassigned <∧≡ 0  

    if  ( ) ( ) (( )01 ≡∧∉∧≡ nttiin TNSbb )
     ,  { }itt bSS ∪= iTN =  
      1=assigned
    end 
     1+= nn
   end 

1+= kk  
end 

assignedskip −=1   
assignednnumToAssignnumToAssig −=  

 end 
      # advance to next time slot 1+= tt
    # ∆ is the set difference operator tbb SSS Δ=
end 
 

B. The Binary Integer Programming Algorithm 
Integer programming formulations require that a cost 

function is minimized subject to some set of constraints.  The 
cost function, C, in this case is  
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and W is an integer number of time slots (in the reported 
experiments a value of 2 was used).  The equations (1) can be 
converted into vector form bxcC .=  where the decision 

variables  are mapped into the vector itnb bx  firstly by block 
index, then node index and finally time index.  The values of 
c  are pre-computed and are constant coefficients as required 
for integer programming.  The terms from (1) involving the 
ceiling function are used to map the block index i, to the time 
slot t, since R blocks are to be read per time slot; blocks 1…R 
should be read during time slot 1 and so on.  The cost 
function encourages blocks to be read as soon as possible, by 
weighting the decision variables by their associated time slot.  
At the same time, a cost b(t, i) is applied for buffering blocks 

far in advance of when they will be written to the output 
stream.  Specifically, when a block is read more than W time 
slots before it is required, the cost function coefficients in (1) 
are generated from a quadratic rather than linear function.  
The term  is a small bias to ensure that block i will be 
read before block j when i < j, with all other costs equal.   

),( its

1
∑
=

N

i
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The set of constraints are now considered in turn.  The 

read-once constraints 
 

∑∑
= =

∀=
max

1 1

,1
T

t

M

n
itn ib ,      (2) 

 
ensure that each block is read only once.  The read collision 
constraints are defined by  

 

0,,1 ≠∀≤ inbwherent    (3) 

 
which ensures that only one block can be read from a node 

during a timeslot.  The completion time constraints are given 
by  

max0 Ttforbitn >=     (4) 
 
To support this constraint, the number of time slots is 

limited to , which should be set to a little larger than maxT
RN  to allow for a feasible solution to be obtained even 

with problematic block distributions that may prevent R 
blocks being read in one or more time slots.   

 
The read-by constraints are required to ensure that each 

block has been read before it will be written to the output 
stream.  This can be expressed in the form  
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where ( )⎣ ⎦ minminT DRi ++= δ  and  is a fixed 

delay allowed before the block must be read and 
minD

δ  is a small 
arbitrary fraction to ensure the floor function evaluates to the 
required integer value. A hard buffer constraint can be 
enforced as  
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to ensure that a block is only read within some fixed window 
prior to it being streamed.  Note the cost function 
incorporates a soft buffer constraint by raising the cost of 
reading a block far in advance of it being streamed.   

 
The number of readers is constrained according to  
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Finally the number and distribution of blocks across the 
Hadoop data nodes is a function of the number of replicas 
specified in the Hadoop configuration and the random 
assignment of blocks to data nodes.  The distribution of the 
file’s blocks represents the final set of constraints limiting 
which blocks can be read from each node.  In these cases the 
decision variable is set to 0 if the block is not readable from 
the associated node.   

 
Some of the constraints described above are implicitly 

handled in the naïve algorithm.  The other constraints could 
be built in to the algorithm, at the cost of increased 
complexity.   

 
The size of the integer program grows with increasing 

numbers of nodes and file blocks making solution more 
difficult.  However, the scheduling problem can be readily 
sub-divided into a sequence of smaller sub-problems with the 
end state of one sub-problem imposing additional constraints 
on the next sub-problem.  If during the last time slot in the 
first sub-problem there are one or more unallocated readers, 
then that time slot will become the first time slot of the next 
sub-problem.  In such a case the constraints (2) and (7) are 
adjusted for the first time slot according to the remaining 
number of available readers and free nodes.  In this way 
several sub-problems can be stitched together to provide a 
tractable means of solution for very large files containing 
many blocks.   

C. Constraints for Fault Tolerance 
A key feature provided by Hadoop is automatic replication 

of file blocks to provide fault tolerance.  In the current 
application, this redundancy is used to allow non-sequential 
blocks belonging to the same file to be read in parallel.  Each 
replica provides an extra degree of freedom providing 
flexibility in the schedule.  However, the redundancy is still 
valuable to recover from a data node failure part way through 
printing a document.  In this case, it is possible to amend the 
approach described above to allow block reads to be 
rescheduled in the event of a failed read.   

 
The general approach to provide data node fault tolerance 

is to insert contingency time slots in the schedule to allow 
time to read a block from another data node.  Contingency 
can also be provided by increasing the number of block 
replicas, but this would slow down the time taken to store the 
rasterized images.  Using contingency time slots requires that 
after every Tc time slots, a spare time slot is reserved, to 
provide an opportunity to re-read blocks, scheduled to be 
read from a failed data node, from the other nodes.  This 
requires additional client side buffering, and requires 
adjustment to the constraints above.  Firstly, the read once 
constraint is relaxed to allow blocks to be read multiple times.  
Secondly, additional constraints must be satisfied such that 
the schedule will allow all of the blocks scheduled to be read 
from any failed data node in the preceding Tc -1 time slots to 
be re-read from other the remaining data nodes.  Thus the 
collision constraint at the contingency time slots should be 
relaxed to allow up to Tc -1 blocks to be read from each 
remaining active node, but noting that the non zero entries 

represent alternative blocks to be read depending on which 
node fails.   

 
The contingency periods, do not have to be used if there 

are no data node failures.  Thus in the absence of failures, the 
contingency period can be skipped, but the aggregate data 
transfer rate will be reduced according to the frequency of 
contingency periods.   

D. Scheduling for Multiple Streams 
As noted in the introduction, sharing the same IT 

infrastructure across multiple print presses is attractive.  To 
support this, the scheduling approaches described above can 
be adapted to allow multiple streams for different presses to 
be generated in parallel.  There are various approaches that 
can be taken such as dividing resources evenly between 
streams and running independent algorithms, or adapting the 
algorithms to share the available resources between multiple 
competing streams.  E.g. blocks read from a node by one 
stream will prohibit the other streams from reading from the 
same node in that same time slot.  It is relatively 
straightforward to adapt of some of the constraints (e.g. 
read-by constraints) to support parallel streams.   

E. Smart Placement 
It is possible to invert the scheduling problem described 

above by ensuring that blocks are written to nodes in such a 
way as to permit efficient streaming of the data off the HDFS.  
This will require modifying the block distribution algorithm 
used by the file system to allocate blocks to data nodes in the 
first instance.  This may conflict with fault tolerance concerns 
such as replicating blocks on nodes hosted on different 
equipment racks with independent power supplies.  
Optimally writing blocks on nodes to allow efficiently 
reading those blocks at a later time will require solution of a 
similar optimization problem to that described.   

V. RESULTS 
Sets of test cases were generated by randomly generating 

different block distributions across data nodes for varying 
numbers of nodes, replication factor, file sizes and readers.  
Then the two scheduling algorithms are applied to each test 
case to generate a schedule.  From each schedule, the stream 
delay and last time slot that the final block was read are 
determined under the condition that blocks are written to the 
stream at a continuous rate of R blocks per time slot.  This 
ensures that the cache utilization will remain relatively stable.  
The stream delay is defined as the number of time slots 
elapsed before the output stream can be written.  The prior 
condition requires that the stream delay is sometimes 
increased to ensure continuity of the data stream once started.  
The frequency with which the stream delay is increased is 
reflected in the average values shown later.  The average size 
of the buffer, measured in blocks, is calculated and 
normalized by the number of readers.  Normalization is 
applied to allow comparison for varying R, because as R 
increases the number of blocks that need to be buffered is 
necessarily greater, but relative to the read rate the buffer size 
may be smaller.  All the results are averaged over 500 test 
cases.   



 
 

 

The experiments were performed using MATLABTM and 
the binary integer programming solver provided in the 
Optimization Toolkit [12].   

A. Scheduling Algorithm Results 
In Figure 3, the performance obtained using the BIP 

algorithm is shown for varying numbers of replicas and 
readers.  In the key, the first digit is the number of readers, the 
second digit is the number of replicas and the last digit is the 
number of nodes.  16 data blocks had to be scheduled in each 
case.  The same performance data is shown in Figure 4 for the 
naïve algorithm.  The best results are closest to the origin i.e. 
no buffering and no stream delay required.  The dash lines 
represent contours of circles of radius 3 through 6 centered 
on the origin to help identify points at equi-distance from the 
origin.  Points which represent tests using the same number 
of readers are grouped inside the numbered ellipsoids for 
clarity.   

 

 
 

Figure 3: Performance of the binary integer programming scheduling 
algorithm with varying numbers of replicas and readers 
 

 
Figure 4: Performance of the naive scheduling algorithm with varying 
numbers of replicas and readers 

 
The BIP algorithm generally provides better results unless 

the file was nearly or, fully replicated on every data node.  In 
general for a given number of readers, the naïve algorithm 
requires more replicas to support the same data rate (hence 
the greater number of data points shown for the naïve 
algorithm).  This is a benefit of using BIP since reducing the 
number of replicas reduces both storage capacity and the time 

taken to save each raster image file.   
 
Note the performance using 5 readers is not markedly 

better than using 4 readers for this particular experiment 
simply because with 16 blocks to be scheduled the last block 
will always need to be read in the 4th time slot.  Figures, 3 and 
4 also show the average normalized buffer sizes at less than 
1.  Strictly speaking the steady-state average normalized 
buffer size should approach 1.  This is because with a 
minimum required stream delay of 1 and R readers there will 
always be at least R blocks buffered at the end of each time 
slot.  After normalization by R, this is equivalent to a 
normalized buffer size of 1.  However, at the end of the 
schedule, the number of blocks remaining in the buffer will 
decrease as the last few are read by the output stream writer.  
If, for example, in the penultimate time slot, only the last 
block remains in the cache, this will reduce the average 
buffer size.  This is most apparent in the case of 5 readers.  In 
the ideal schedule 5 blocks are read and written each time 
period.  However, when reading 16 blocks, there is always 
one remaining block to be read in the 4th time slot.  This gives 
an average buffer size of 4 blocks and therefore a normalized 
buffer size of 0.8.  Over a longer schedule the impact of the 
artifact would be less pronounced.  The impact of this is to 
shift the plotted points downwards.     

 
It is observed that just increasing the number of readers 

ultimately provides diminishing returns, assuming a fixed 
number of replicas i.e. the scheduling algorithms are unable 
to realize the maximum theoretical increase in stream rates.  
This is because of the increasing likelihood of read conflicts 
when using many readers.  This issue can be particularly 
acute in certain cases e.g. where the distribution of a block’s 
replicas are similar for many sequential blocks such that the 
read collision constraints limit scheduling options.  There are 
many other less obvious block distributions that are difficult 
to schedule efficiently.  By determining a schedule in 
advance of streaming can allow for these problematic 
distributions to be identified and for remedial steps to be 
taken (see later).   

 
Average statistics do not fully characterize the relative 

performance of the two algorithms.  When specifying the 
system configuration, the possible peak stream delays and 
maximum buffer sizes need to be determined.  However, the 
average values do indicate the relative frequency of longer 
stream delays and consequently the need for larger buffer 
sizes.   

 
In Figure 5 the performance of a 4-node cluster using 4 

readers and either 2 or 3 replicas for a varying number of file 
blocks are compared.  A smaller number of blocks were 
chosen for this experiment to allow schedules to be generated 
for a larger numbers of file blocks.   

 
As the number of blocks is increased, the out-performance 

of the BIP algorithm is reduced.  This is thought to be due to 
an averaging effect whereby large groups of blocks tend to 
contain sub groups which cannot be scheduled efficiently 
irrespective of the scheduling algorithm.  Also when the ratio 



 
 

 

of number of replicas to number of nodes is lower (in this 
case 2 replicas and 4 nodes), the schedules generated using 
the BIP algorithm are only slightly more efficient.  This is 
because the read collision constraint more frequently limits 
scheduling options when there are few block replicas as 
noted previously.  This is examined in more detail next.   

 

 
Figure 5: Performance comparison of the BIP and naïve scheduling 
algorithms for a 4 node Hadoop cluster using 4 readers and varying numbers 
of replicas and blocks. Normalized Last Time Slot (top) and Average 
Normalized Buffer Size (bottom) 
 

In the next experiment, minimum stream delays were 
obtained from schedules derived using 5 readers and 2 
replicas for a varying number of nodes.  The minimum stream 
delay is the delay (in time slots) required before the files 
blocks can be written to the output stream without 
interruption assuming a sustained output stream rate of 5 
(=R) times the average transfer rate from the Hadoop data 
nodes.  Note that a stream delay of 1 is the minimum; a delay 
of 1 time slot is required to allow the blocks read during the 
first timeslot to be cached before writing them to the output 
stream.   

 
It is very clear that the BIP algorithm results in schedules 

with many fewer stream delays of 2 compared to the naïve 
algorithm.  The naïve algorithm also resulted in stream delays 
of 3 time slots when using just 5 nodes.  A longer stream 
delay will require additional cache capacity to be provided.  
For both algorithms, increasing the number of nodes reduces 
the number of stream delays greater than 1.  This general 
pattern is observed across a range of system configurations.   

 
It is possible to reduce the occurrence of long stream 

delays by pre-reading a few selected blocks which are 
problematic to schedule owing to poorly distributed blocks 
(e.g. as noted above a sequence of blocks that are distributed 
across broadly similar nodes is problematic to schedule).  
Examining a schedule to identify problematic blocks and 
pre-caching them can avoid long stream delays at the expense 
of slightly more buffering.  With fewer cases of long stream 
delays, this additional step is required less often.  It’s worth 
noting that it is only by determining a schedule up-front that 
any problematic block distributions can be identified.   

 

 
Figure 6: Distribution of stream delays for schedules generated by the BIP 
(top) and naïve (bottom) algorithms for a 5 node Hadoop cluster with 5 
readers, 2 replicas and varying numbers of nodes  
 

The number of Hadoop nodes required in a deployment 
may be dictated by the RIP speed requirements where 
performance is CPU bound rather than IO bound.  If this is 
the case, a benefit of using the extra nodes for raster image 
processing is the potential for reducing the buffer 
requirements at the press client.  Conversely, if the number of 
nodes utilized during the RIP stage is relatively low then it 
may be necessary to consider higher degrees of file 
replication.   

B. Measured Results 
To test the rate at which file blocks can be transferred from 

the HDFS, several measurements of data transfer rates were 
carried out using the arrangement shown as ‘Test Path 3a/b’ 
in Figure 7.  The version of Hadoop used in these tests is 
0.18.  The application running on the press client is expanded 
in the blue rectangle.  In this test, multiple parallel 
connections to R different data nodes are established and data 



 
 

 

blocks are read from each data node in parallel by the readers 
executing on the press client.  To provide an upper bound on 
transfer rates, the same data block is read repeatedly from 
each data node (practically rates would be limited by the 
underlying disk performance).  The readers write the files 
blocks to files on tmpfs [15], a RAM-based filesystem with 
16GB of memory allocated, which serves as the block buffer.  
When a file block has been successfully written to a data file 
in tmpfs, a second zero-length ‘notification’ file is also 
created which indicates that the associated data file, is 
available to be read by the output stream writer.  This 
provides a simple, but effective means of notification.  The 
output stream writer polls for each notification file in order 
and if available then proceeds to read the associated data file.  
The output stream writer thus reads the blocks in order from 
tmpfs and writes them to an output stream.  In this case the 
data is written to either a socket connected to a server running 
on Test Node 2, or to /dev/null, the latter acting as a control 
case measuring the transfer rate in the absence of additional 
outbound network traffic being generated as in path 3b.   

 
Prior to carrying out Test 3, the networking configuration 

was tested and optimized using Netperf 2.4.5 [14].  Netperf 
was used to measure the transfer rates between the press 
client and a second identical server in place of the press 
(Test-Node-2) and the date rates between an HDFS data node 
(Test-Node-1) and the press client.  The latest version of the 
NetXen Driver and firmware (v4.0.406-4, released Jun 2009) 
for the HP NC512m NIC was used.  In the experiments 
described here, earlier driver versions resulted in slower 
transfer speeds. 

 
Figure 7: Data Transfer Rate Measurements for three different network paths 

 
To achieve the highest rates possible several modifications 

were made to the TCP/IP configuration on each node.  Useful 
suggestions are available from [16].  The most impactful 
change was to increase the MTU (minimum transmission 
unit) from 1500 to 8000 blocks (i.e. Jumbo Frames).  The 
TCP max buffer size for send and receive was increased to 
16777216.  TCP Segmentation Offload was enabled.  The 
interface queue length was set to 65535.  The TCP 
auto-tuning buffer limits (net.ipv4.tcp_rmem and 
net.ipv4.tcp_wmem) were set to (4096 87380 16777216).   
 

The measurements taken when transferring data along 

paths “Test Path 1” and “Test Path 2” as illustrated in Figure 
7 are shown in Table II.  Bandwidth and CPU utilization 
measurements were taken using both Netperf and a Java 
application.  Java was used for measuring transfer rates as 

this would be the likely development language for a future 
implementation. The Netperf script tcp_stream_script was 
used to measure the data transfer rate across a single stream 
between the press client and test nodes 1 and 2.  The highest 
rates were obtained using send and receive buffer sizes of 
512K and a message size of 32-64KB.  The CPU utilization 
(CPU), measured at the sender and receiver are denoted as 
CPU TX and CPU RX respectively.   The peak rate for Test 
Path 1 is close to 1Gb/s which is as expected.  For the Test 
Path 2, the transfer rate averaged at ~6.2Gb/s which is 
comparable with the measurements presented in [13].  Table 
II, also shows results using the Java based application using 
Non-Blocking IO.  The test writes data across a single stream 
between a client and server instance.  Using this test, data 
rates less than, but comparable to Netperf were obtained.   

 
TABLE II 

 
The tests were also repeated using multiple instances of the 

java application executing in parallel.  An instance of the java 
client was run on each data node, with the server instances 
running on the same press client.  In this case (not shown in 
the Table), the data rate per client connection was maintained 
at 940Mb/s for up to 8 clients giving an aggregate transfer 
rate of approximately 7.5Gb/s.  Using Test Node 2, two 
clients were run on the test node and two server instances 
were run on the press client.  The measured aggregate data 
transfer rate was ~8.3Gb/s. 
 

For the tests relating to Test Path 3a/b, each reader was run 
as a separate java processes.  The modified Hadoop client 
code was used by the readers to establish connections to the 
HDFS and to read the blocks.  Note the connections to the 
Hadoop data nodes do not use non-blocking IO as this was 
not supported by Hadoop at the time of writing.  The output 
stream writer begins to stream blocks from tmpfs as soon as 
each reader has completed reading a first block.  A larger 
delay may cause the measured to be artificially inflated 
because it allows the output stream writer to read blocks from 
tmpfs faster than the readers are actually writing them, at 
least for a period of time. 
 

The measured transfer rate along paths 3a and 3b for 
varying numbers of readers are shown in Figure 8.  The 
typical data rate for a single reader, reading a file block off 
HDFS was approximately 700Mb/s.  This is the rate along 
Test Path 1 and is significantly less than the rates obtained 
using Netperf and the test java application (see Table II).  

NETWORK PERFORMANCE RESULTS 

Test BW CPU 
TX (Gb/s) 

CPU 
RX 

Test-Path 1, Netperf 0.98 2% 3.3% 
Test-Path 2, Netperf 6.2 12.5% 8.2% 
Test-Path 1, Java 0.94 N/A N/A 
Test-Path 2, Java 5.6 N/A N/A 
Test-Path 2, Java (2 Streams) 8.3 N/A N/A 



 
 

 

This is partly due to the more complex code path of the reader 
application, but indicates a possible point of future 
optimization.  Along path 3a, there is a slightly less than 
linear increase in the aggregate output rate as the number of 
readers is increased, reaching approximately 4Gb/s (500Mb/s 
per reader).  Using more than 8 readers (the number of CPUs 
on the press client), the data rate only increases marginally.   
 

 
Figure 8: Data transfer rate measurements over Test-Paths 3a and 3b when 

reading file blocks from Hadoop with varying numbers of readers.  The 
blocks are cached before writing over Test-Paths 3a and 3b. 

 
When transferring data over path 3b, the rate of increase 

with respect to R follows a similar slope to 3a, but after R=4, 
the data rate no longer increases.  This limit is because the 
same network interface was used for both reading blocks 
from DHFS and writing the file blocks (the second 10Gb/s 
networking interface was not available for testing).  In effect 
the network interface is supporting roughly 5Gb/s transfer 
rates in total.  The results for 3a indicate strongly the scope 
for higher data rates if the second network interface was used 
for writing data to the press.  The data rates presented in 
Figure 8 represent an upper bound on achievable data rates in 
a working system since the same block on each data node is 
repeatedly read in the tests.   

 
A few additional measurements were taken to estimate the 

transfer rates if using a second network interface.  In a first 
test, a large number of blocks were first pre-cached in the 
tmpfs buffer.  The average transfer rate obtained when 
reading files from tmpfs and writing them directly to a server 
along path 3b was measured.  This test ensured that the 
stream being written along 3b was no longer competing for 
network bandwidth with the readers reading blocks from the 
Hadoop file system.  The measured rate was ~3.7Gb/s which 
is more representative of the data rate that could be achieved 
in the previous experiment if a second network interface was 
available.  A second test, similar to the first, repeatedly wrote 
the contents of an in-memory buffer over path 3b.  An 
average rate of 4.4Gb/s was measured indicating that reading 
the cached file blocks from tmpfs significantly reduced 
transfer rates.  In both cases, the rate was less than the 
5.6Gb/s reported in Table II, because the test used the more 
complex output stream writer code and so is not directly 
comparable.    

VI. CONCLUSION 
This paper describes an application of the Hadoop file 

system [4] to high speed digital printing.  Hadoop provides a 
large scale distributed fault tolerant file system made up of a 
set of data nodes, running on low cost servers with direct 
attached storage. Fault tolerance is provided by storing 
multiple replicas of each file block across different data 
nodes.  The redundancy provided by Hadoop is used in the 
present application to enable high speed raster file streaming 
over a 10Gb/s LAN to a press.  The paper shows how to apply 
a binary integer programming algorithm to make use of 
Hadoop’s file block replication to derive efficient schedules 
for reading file blocks in parallel from the Hadoop file 
system.  Based on the schedule, a set of readers running in 
parallel on a press client, are directed to each read file blocks 
from a specific data node and write them to a local 
in-memory cache.  The blocks can then be written from the 
cache to the print press over a single higher rate stream.  
Transfer rates up to 4Gb/s were measured when using 8 
parallel file block readers with only a few minor extensions to 
the Hadoop client code.  The scheduling results suggest that 
when using 8 readers, at least 3 and preferably 4 replicas can 
be beneficially used to limit the buffer size required at the 
press client.   
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