

Keyword(s):

Abstract:

©

Real-time disk scheduling algorithm allowing concurrent I/O requests

Carl Staelin, Gidi Amir, David Ben-Ovadia, Ram Dagan, Michael Melamed, Dave Staas

HP Laboratories
HPL-2009-344

real-time disk scheduling, storage systems, operating systems, RAID

We present a real-time disk scheduling algorithm, Concurrent DS-SCAN (CDS-SCAN), which maximizes
throughput for modern storage devices by allowing concurrent I/O requests at the device whenever
possible. Past real-time disk scheduling algorithms allowed a single request at a time to go to the storage
device, which dramatically reduces the utilization and throughput for modern storage devices, such as
RAID arrays and disks with efficient positional-aware scheduling algorithms. We extended the DS-SCAN
algorithm so that it can properly account for multiple outstanding I/O requests and guarantee real-time
constraints for both outstanding and pending real-time requests. We demonstrate CDS-SCAN's
performance on a storage array.

External Posting Date: October 21, 2009 [Fulltext] Approved for External Publication
Internal Posting Date: October 21, 2009 [Fulltext]

Copyright 2009 Hewlett-Packard Development Company, L.P.

Real-time disk scheduling algorithm allowing concurrent I/O requests

Carl Staelin, Gidi Amir, David Ben-Ovadia, Ram Dagan, Michael Melamed, and Dave Staas

Abstract
We present a real-time disk scheduling algorithm,
Concurrent DS-SCAN (CDS-SCAN), which maximizes
throughput for modern storage devices by allowing
concurrent I/O requests at the device whenever
possible. Past real-time disk scheduling algorithms
allowed a single request at a time to go to the storage
device, which dramatically reduces the utilization and
throughput for modern storage devices, such as RAID
arrays and disks with efficient positional-aware
scheduling algorithms.

We extended the DS-SCAN algorithm so that it can
properly account for multiple outstanding I/O requests
and guarantee real-time constraints for both
outstanding and pending real-time requests. We
demonstrate CDS-SCAN’s performance on a storage
array.

Introduction
Real-time disk scheduling is an old and important topic,
but most work assumes that it is scheduling for a single
disk, and that it is the only scheduler in the path. Over
time, systems have become larger and more complex.
Firstly, most large systems no longer use solitary disks,
but rather arrays of disks, usually with some data
redundancy, so storage performance increases as you
allow more concurrent requests, particularly with small
requests. Secondly, nearly all disk devices incorporate
an intelligent positional-aware disk scheduling
algorithm so in many instances the disk itself may do
more intelligent and efficient scheduling than external
schedulers. Thirdly, disk scheduling may be present in
multiple locations in the hardware, such as the disk
itself and the RAID controller.

We developed our scheduling algorithm for application-
level control of a mix of real-time and best-effort
requests on a dedicated storage array. The application
controls a manufacturing system with physical objects
moving through the system at high speed. Missed
deadlines impose a significant cost and have
troublesome ramifications on the manufacturing
system, so they are unacceptable. During normal
operation, the real-time process requires a “batch” of
data roughly every 130ms, where a batch may be as
little as a single 15MB read I/O, or as many as
thousands of generally smaller read I/Os. Usually, we
may know as many as several seconds in advance
which data will be required for which “batch” at each
time. In addition, there are a variety of other processes
running concurrently, such as a multitude of writing
processes, which write chunks of data of various sizes

in a generally bursty fashion, and various bookkeeping
and management functions which sporadically read or
write data in a bursty fashion. Unfortunately,
commodity hardware and operating systems provide no
interfaces for specifying either real-time deadlines or
even request priorities, so real-time disk scheduling
must be implemented in the application.

Initially, engineering attempted to avoid the
requirement for a real-time disk scheduler, and to
mostly eliminate missed deadlines by radically over-
provisioning the storage array and throttling the I/O
rates of the non-real-time requests. However, the
occurrence of missed deadlines was still unacceptable,
and as the manufacturing systems got faster, and the
real-time and non-real-time data rate requirements
increased, it became clear that only a real-time disk
scheduling solution could solve the problem.

Our first implementation used DS-SCAN, which
eliminated missed deadlines, but which imposed an
unacceptable performance penalty on the overall system
throughput compared to the achievable system
throughput as found by a simple IOmeter (iometer.org)
benchmark test. This led to the development of
Concurrent DS-SCAN, which largely eliminates that
performance penalty.

We found that the storage device may benefit from
having multiple outstanding or concurrent requests to
work on. If the storage is an array, then often requests
will go to different disks, so the storage system may
process multiple requests concurrently. However, even
for single disks, performance may often be improved by
leveraging the in-disk scheduling.

In essence, we are building a multi-level scheduling
solution. The top level provides the soft real-time
performance guarantees, and submits as many requests
as possible (up to a given limit) to the lower-level
schedulers in a “scheduler friendly” order. Then the
operating system and storage device (or recursively
devices, in the case of a storage array), may do their
own queuing, trying to optimize throughput for the
requests passed to them, oblivious to the real-time
aspects and requirements. In addition, by submitting
requests to the lower levels in generally circular SCAN
order, CDS-SCAN gives the operating system and
device-level queuing algorithms a better chance to
optimize throughput, since the STF-like scheduling
algorithms will be working with sliding “windows” of
requests that are clustered spatially as much as possible.

rlist rt; /* real-time requests */
rlist be; /* best-effort requests */

request* DSSCAN()
{
 request* r; /* real-time */
 request* b; /* best-effort */

 start_deadlines(rt);

 /* next real-time, CSCAN requests */
 r = EDF(&rt);
 b = CSCAN(&be);

 if (r && r != b
 && r->start_deadline
 < now() + estimate(b))
 {
 /* submit real-time request */
 b = r;
 }
 CSCAN_update(b->offset);

 rtremove(rt, b);
 remove(be, b);

 return b;
}

Algorithm 2: DSSCAN queuing algorithm

Prior Work
There is a rich body of work on disk scheduling
algorithms for non real-time applications and
environments. A classic algorithm which requires
minimal complexity and provides acceptable
performance is the SCAN, or elevator algorithm. In
this case, pending requests are sorted according to disk
offset and are submitted to disk in order. When the
algorithm reaches the end of the disk, it reverses
direction. A better variant of this algorithm is circular
SCAN or CSCAN. In this case, when it reaches the end
of the disk, instead of reversing direction it jumps to the
beginning of the disk and begins again. This approach
has better performance than SCAN and may also result
in better fairness.

However, these algorithms overlook one aspect of
modern disk drives, namely that rotation delay may be
dominant compared to short seek distances. A variety
of algorithms, such as shortest time first (STF), grouped
shortest time first (GSTF), and weighted shortest time
first (WSTF) [3,6], attempt to improve disk utilization
and throughput by taking into account rotational
position as well as seek position, resulting in generally
improved utilization. Pure STF tends to suffer from
starvation and long maximal service times. GSTF and
WSTF attempt to reduce these issues by forcing STF to
occasionally “jump” from one area of the disk to

another, which likely also has a higher density of
waiting requests. Later innovations also took into
account on-disk caching and pre-fetching, yielding
further performance improvements in some cases [12].

There are a wide variety of real-time disk scheduling
algorithms. A simple algorithm is earliest deadline first
(EDF) [11], where requests are processed according to
the deadline order, from earliest to latest. SCAN-EDF
[10] is a variant developed for multimedia systems,
where large batches of I/Os are submitted periodically,
so many I/Os have the same completion deadline. The
variation is that all I/Os with the same completion
deadline are processed in SCAN or CSCAN order,
yielding far higher performance than EDF in this
application.

DS-SCAN [1] manages a mix of real-time and best-
effort requests by ensuring that real-time requests are
issued in time to meet their deadlines but otherwise
uses efficient non-real-time scheduling. It is a
combination of earliest deadline first (EDF) real-time
disk scheduling and CSCAN disk scheduling. When
real-time requests are not in danger of missing their
deadlines, both real-time and best-effort requests are
passed to storage one at a time using the CSCAN
algorithm. However, when submitting a request might
cause a real-time to miss its deadline, DS-SCAN

typedef struct rlist {
 struct rlist* next;
 struct rlist* prev;
 struct rlist* rtnext;
 struct rlist* rtprev;
} rlist;

typedef struct request {
 rlist l;
 time_t start_deadline;
 time_t completion_deadline;
 long offset;
 long size;
 void* data;
} request;

void start_deadlines(rlist* rt)
{
 time_t start_deadline = INFINITE;
 for (r = rt->l.rtprev;

r != rt; r = r->rtprev)
 {
 start_deadline =
 MIN(start_deadline,
 r->completion_deadline)
 – estimate(r);
 r->start_deadline = start_deadline;
 }
}

Algorithm 1: Computing start deadlines

submits the nearest-deadline-first request, regardless of
its “position” on the disk.

A key innovation which enables this hybrid solution is
the notion of computing “submission deadlines” from
the set of pending real-time requests and their
completion deadlines. Since the calculation of the
submission deadlines depends upon the entire set of
pending real-time requests, it must be recomputed each
time a new real-time request is added to the queue, or
when a real-time request is removed from the queue
and passed on to the device.

More formally, DS-SCAN is described in pseudo-code
in Algorithm 1 and Algorithm 2. DS-SCAN uses two
linked lists of pending requests: a list of the real-time
requests sorted in nearest-deadline order, and a list of
all requests (both real-time and best-effort) sorted in
ascending disk address order. There is a function
estimate(request) which estimates the worst-case
service time for that request (in ms), and a function
now() which returns the current time (in ms).

Algorithm 1 demonstrates the computation of the
submission deadlines for each real-time request. In
actual fact, only the submission deadline for the first
request is important as it is used to determine whether
the system must submit a real-time request or may
submit a request using the CSCAN algorithm.

Algorithm 2 shows the deadline-sensitive scheduling
algorithm itself. First, it uses the start_deadlines()
routine from Algorithm 1 to compute the time by which
each real-time request must have been submitted to the
storage device in order for them all to complete before
their deadlines. There is also some CSCAN logic
contained in the routines CSCAN() and
CSCAN_udate(). CSCAN() returns the next request
according to the CSCAN scheduling algorithm, which
is a simple list operation on the best-effort (be) list,
while CSCAN_update() updates the current scan
position. Listings for these and other support routines
may be found in the Appendix.

The core logic that submits a best-effort request if and
only if doing so won’t cause a real-time request to miss
its deadline is contained in the if() statement. This has
an implicit assumption that there are no other requests
at the device, so that the next scheduling “cycle” will
occur no later than estimate(b) ms from now.

Note that it is possible to substitute another non real-
time scheduling algorithm, such as SSTF, for the
relatively simple (but effective) CSCAN algorithm.
Also note that it is possible to substitute an alternative
real-time scheduling algorithm, such as EDF-SCAN,
for the simple EDF scheduler used in DS-SCAN.

Starting in the 1990’s, SCSI disk drives started utilizing
tagged command queuing (TCQ) [8] capabilities to add
support for concurrent requests and internal schedulers
with intelligent, positional-aware scheduling algorithms
such as STF. Similar capabilities are available in
modern SATA drives via NCQ [7] capabilities. This
means that it may be more efficient to submit multiple
requests to the disk drive and allow it to schedule the
requests, rather than to rely solely on the operating
system’s disk scheduler, since the disk may more easily
utilize the low-level detailed information regarding
physical location of blocks on disk, rotational position
of the platter, location of the seek head, and so forth.
While it is possible to build a model of a disk at the
higher levels, such as the operating system, and use that
model to obtain performance nearly as good as
schedulers with access to the true information [13],
more complex storage systems such as RAID arrays
make such modeling difficult.

Another trend in storage systems is the migration to
storage arrays, usually using some form of RAID
approach for reliability. The controllers often have
significant caches in the controller, and may have
significant non-volatile cache for write performance.
Storage arrays are often large, shared arrays accessed
via a “storage area network” (SAN). Storage is usually
managed using logical devices within the array, which
can be re-sized as needed to accommodate growth and
other requirements. In addition, they often include
TCQ functionality, so clients may submit multiple
concurrent requests to the same logical device. These
large arrays may also have their own scheduling and
queuing system as the controller must map the high-
level user requests on logical disks into one or more
low-level disk requests.

This means that even physical clients of the storage
array have at least a three-level scheduling solution:
client operating system, controller, and disk. With the
advent and popular adoption of virtualization
technologies, the single operating system scheduler in
the client may be replaced with the scheduler in the
virtual client and potentially a second scheduler in the
virtual monitor.

As an aside, this trend towards virtualization and shared
resources makes real-time scheduling difficult or
impossible, as accurate worst-case service estimation is
non-trivial when the low-level device may behave
unpredictably due to competing requests from other
systems and the lack of any priority system at the
hardware interconnect layers. Unless or until such
functionality is added to the standard I/O interfaces,
real-time systems must use dedicated hardware that
behaves in a reasonably predictable fashion.

rlist rt; /* real-time requests */
rlist be; /* best-effort requests */
rlist or; /* outstanding requests */

request* CDSSCAN()
{
 request* r; /* real-time */
 request* b; /* best-effort */
 time_t nod, eo;

 start_deadlines(rt);
 nod = nearest_outstanding_deadline();
 eo = estimate_outstanding();

 /* next real-time, CSCAN requests */
 r = EDF_CSCAN(&rt);
 b = CSCAN(&be);

 if (!b) return NULL;

 if (r && r != b
 && r->start_deadline
 < now() + eo + estimate(b))
 {
 /* submit real-time request */
 b = r;
 }

 if (nod
 && (nod < b->start_deadline
 || !b->start_deadline)
 && nod < now() + eo + estimate(b))
 {
 /* will miss outstanding deadline */
 return NULL;
 }

 CSCAN_update(b->offset);

 rtremove(&rt, b);
 remove(&be, b);

 return b;
}

Algorithm 3: CDS-SCAN queuing algorithm

int max_out; /* max outstanding */
int num_out; /* num outstanding */
time_t last_started;

void schedule()
{
 request* r = CDSSCAN(); /* request */

 while (r && num_out < max_out)
 {
 append(or, r);
 if (num_out == 0)
 last_started = now();
 num_out++;
 disk_submit(r); /* send to disk! */
 r = CDSSCAN();
 }
}

/* when an I/O completes, call this */
void completion(request* r)
{
 last_started = now();
 num_out--;
 remove(or, r);
 schedule();
}

/* to submit a new I/O to the system */
void submit(request* r)
{
 if (0 < r->deadline)
 EDF_CSCAN_insert(&rt, r);
 CSCAN_insert(&be, r);
 schedule();
}

Algorithm
We built Concurrent DS-SCAN (CDS-SCAN) on DS-
SCAN, described above, in order to try and allow the
system to have multiple requests active at the storage
device. This has two major consequences. First, the
estimate of when the request will complete must
include not only the worst-case service time of the
request itself (as embodied in estimate(req)), but also
the worst-case service time for all outstanding requests
already sent to the device. Second, in addition to
checking whether sending a new best-effort request to
the device might cause the next real-time request to
miss its deadline, we must also check all outstanding

real-time requests already sent to the device to ensure
that none of them will miss their deadlines.

In addition, since our application tends to have periodic
deadlines, which may have many requests with the
same deadline, we added logic to the real-time queue to
add a secondary sort key to the real-time disk request
queue on the request disk address (the primary key is
the completion deadline). This essentially merges
SCAN-EDF functionality for real-time requests, and
means that when there are lots of real-time requests
with the same deadline, and the system must start
processing requests from the real-time queue, then
those real-time requests are processed in CSCAN order,
thereby preserving some semblance of performance.

From a data structure point of view, we now need to
keep track of not only the pending real-time and best-
effort requests, but also of all the outstanding requests
already sent to the device. We add two new routines,
nearest_outstanding_deadline(), which returns the
nearest completion deadline for outstanding requests,
and estimate_outstanding(), which returns the expected

worst case completion time for all outstanding requests
respectively.

estimate_outstanding() computes the sum of the
estimated service times of all outstanding requests. If
there are no outstanding requests, then it returns zero.
Otherwise, it adjusts this sum for the amount of time
the storage device may have already been working on a
request, which is the difference between now() and the
time the most recent request might have been started.
This is tracked using last_started, which is updated
each time a request completes, and each time a request
is submitted to the storage device if there are no other
outstanding requests.

Pseudo-code for CDS-SCAN is shown in Algorithm 3,
and is very similar to DS-SCAN from Algorithm 2
above. The key difference between DS-SCAN and
CDS-SCAN is the second if() statement, where the
algorithm checks to see if submitting a new request to
the device could cause an existing real-time request to
miss its deadline, in which case it does not submit a
request, unless the new request has the same (or earlier)
deadline than the outstanding request that is in danger
of missing its deadline.

Algorithm 4 shows the external logic keeping track of
the outstanding requests, and also submitting as many
requests as possible to the storage device, subject to the
constraints that real-time requests won’t miss their
deadlines, and that no more than max_outstanding
requests are sent to the device at once. Note that this
logic is unnecessary for DS-SCAN, because it never
has more than a single outstanding request at a time.
completion() is called each time a disk request
completes, and submit() is called to submit new
requests. schedule() sends requests to disk based on the
CDSSCAN algorithm, and it is called by both submit()
and completion(), as either event may cause requests to
be sent to disk. Note that schedule() may submit
multiple requests at once. For example, if a real-time
request which is near its deadline is at the device, so no
other requests can get submitted to the device, and the
device happens to service that request last, then the
device may have only one outstanding request. As soon
as that request completes, assuming there are no other
real-time requests in danger of missing their deadlines,
then the scheduler should submit as many as
max_outstanding requests to the device, to maximize
throughput.

We may extend CSD-SCAN to allow multiple priorities
of best-effort I/O request. This is useful because it
allows the solution to ensure that low-priority
background processes, such as storage bookkeeping or
reorganization processes, do not interfere with normal
operation. Instead of having a single SCAN queue,
which contains all real-time and best-effort requests, we

maintain an array of SCAN queues, one per priority
level. Real-time requests are added to the highest
priority CSCAN queue. Best-effort requests are added
to the CSCAN queue for their priority, with the highest
priority requests sharing their queue with the real-time
requests. CDSSCAN() in Algorithm 3 is modified so
that the single SCAN queue (be) becomes an array of
queues (be[i]), and the best-effort scheduling:

 b = CSCAN(&be);

becomes:

 for (i = 0, b = NULL; !b && i < N; ++i)
 b = CSCAN(&be[i]);

In other words, it looks for the highest priority queue
with any requests, and chooses a request from that
queue in CSCAN order.

Analysis
First, we show that DS-SCAN satisfies the conditions
of a real-time scheduling algorithm, with the
assumptions that the worst-case estimates are correct
and that the real-time requirements are feasible. Then
we build upon that result to show that CDS-SCAN also
provides real-time guarantees when the device
processes multiple requests concurrently, with the
additional assumption that a device will not take more
time to process requests concurrently that it would do to
process them sequentially.

For real-time disk scheduling algorithms generally, and
DS-SCAN and CDS-SCAN in particular, it is necessary
that the worst-case estimates be correct, meaning that
the request never takes longer than its worst-case
estimate. That this condition is necessary is obvious, as
if the estimate is too short, then the system may, in
good faith and in expectation of meeting its obligations,
submit the request to the storage device worst-case
estimate time before the deadline, but since processing
took longer, the system missed its deadline.

Before formalizing the concept of real-time scheduling
feasibility, we first analyze the DS-SCAN algorithm
and its notion of submission deadlines. The analyses
below assume that there is an initial real-time queue,
and that the scheduler must process it according to the
deadlines. It also assumes that the scheduler only
submits a single request at a time to the disk. Later we
will analyze the case of adding new requests to the
queue.

Lemma 1: A disk request submitted to the disk on or
before its submission deadline will meet its completion
deadline.

Since the submission deadline is never later than the
completion deadline less its worst-case service time, it
may never complete after its completion deadline. ■

Lemma 2: If the submission deadline for the first real-
time request is not in the past, then that request will
always be submitted to the disk on or before its
submission deadline.

For the first real-time request to be submitted after its
submission deadline, another request must have been
submitted to disk before that request, and its service
time must have been long enough to cause the
scheduler to miss its submission deadline. Since the
scheduler will only submit a request to disk other than
the earliest real-time request if the current time plus the
worst-case service time is less than the submission
deadline of the earliest real-time request, then this
cannot occur. ■

A feasible queue is one for which all real-time requests
can meet their deadlines. The easy test for a feasible
queue is that the submission deadline for the request
with the earliest completion deadline is no earlier than
the current time. Conversely, it is easy to see that a
real-time queue for which the earliest submission
deadline is in the past cannot provide any real-time
guarantees and may miss one or more real-time
deadlines.

For example, take two requests, one with a deadline
4ms in the future and one with a deadline 5ms in the
future, and each with a worst-case service time of 3ms.
In this case, the submission deadline of the later request
is 2ms in the future, and the submission deadline of the
earlier request is 1ms in the past. If we submit the first
request to disk immediately, and it takes the worst-case
service time, then that request will meet its deadline,
completing 3ms in the future. If the later request is then
immediately submitted to disk and it too takes the
worst-case time to service, then that second request will
miss its deadline and complete 6ms from the start, 1ms
after its deadline.

However, the worst-case estimate is just that, a worst-
case estimate, so it is likely that one or more of the
requests will complete more quickly than estimated,
and so all requests may complete before their deadlines
even though the system cannot provide any real-time
guarantees. In the example above, if either request
completes in 2ms instead of the worst-case 3ms, then
both requests will meet their deadlines.

Theorem 1: All requests in a real-time request queue
for which the submission deadline of the request with
the earliest deadline is no earlier than the current time
will complete on or before their deadlines.

If there is still time to submit the earliest request to disk
on or before its submission deadline, then according to
Lemma 2 above that request will be submitted to disk
on or before its submission deadline, then from Lemma
1 it will therefore complete on or before its completion

deadline. Since the submission deadline of each
subsequent request may be no earlier than the
completion time of the previous request, at the
completion of each request, the current time will be no
later than the submission deadline of the next real-time
request, and so by Lemma 2 each real-time request will
be submitted to disk on or before its submission
deadline and it too shall complete on or before its
completion deadline according to Lemma 1. ■

If we look at a dynamic system, where new requests get
added to the queue over time, then each time a new
real-time request is added to the queue, the submission
deadlines are re-calculated. So long as the nearest
submission deadline is not in the past, the queue
remains feasible, and the scheduler may give real-time
guarantees for that queue.

Now we come to the CDS-SCAN analysis, where
multiple requests may be sent to the device
concurrently. Since there are no priority or deadline
mechanisms in the SCSI or ATA protocols, and since
the devices have scheduling algorithms internally, we
assume that the device may process concurrent requests
in any order, either sequentially, or concurrently.

We also add a second condition, namely that the storage
device never takes longer to process concurrent
requests than it would take to process the requests in
sequence. In practice this is true, and for a device to
behave otherwise would be considered a bug. This
allows us to compute the worst-case service time for a
set of concurrent requests as the sum of the individual
worst-case estimate. This condition may be shown to
be necessary for real-time scheduling by counter-
example. Assume that there is a real-time request at the
device, whose deadline is just beyond the sum of the
worst-case estimates for the real-time request already
being serviced and a candidate best-effort request under
consideration for submission. CDS-SCAN will submit
the second best-effort request to the device since the
sum of the worst case estimates is less than the nearest
deadline. If the device takes longer to service the two
requests than it would have done were the requests
submitted in sequence, then the real-time request will
miss its deadline.

For the purposes of determining the worst-case
completion time for real-time requests when there are
multiple concurrent requests, we must assume that the
device will service the requests sequentially and that it
will service any real-time requests last. This means that
the worst-case expected completion time for real-time
requests at the device is the sum of the worst-case
service times for all requests at the disk.

Unlike the DS-SCAN, we must keep track of how much
time a device may have spent servicing outstanding

requests. In the DS-SCAN case the device is always
idle when a request is passed to it from the scheduler.
In the CDS-SCAN case, the device may have already
been working on another request, so the current worst-
case service time estimate must be updated to account
for time already spent servicing the request. Again, for
the purposes of worst-case analysis, since we assume
that the device services requests sequentially, the time
spent processing outstanding concurrent requests is the
shorter of the elapsed time since the device last
completed a request, and the elapsed time since the
device was idle.

We define the outstanding service time as the sum of
the worst-case service times for all requests at the disk
less the elapsed service time for the outstanding
requests. This is the worst-case estimate for the
remaining time until the device finishes servicing the
currently outstanding requests, assuming that no other
requests are sent to the device.

We will analyze the system assuming that no new
requests are added to the system, and later we will
extend the analysis to the dynamic case where new
requests are added to the queues and devices.

Lemma 3: A real-time request which has been
submitted to disk will complete on or before its
completion deadline so long as its completion deadline
is no earlier than the outstanding service time.

Assume otherwise. Then there is a real-time request
which completed after its deadline. Since the deadline
is later than the sum of the worst-case estimates for all
requests in the device, less the elapsed service time,
then either one or more requests took longer than their
worst-case estimate, or the device took longer to service
concurrent requests than it would have done to service
them sequentially. ■

Lemma 4: If the submission deadline for the first real-
time request is no earlier than the outstanding service
time, then that real-time request will always be
completed on or before its completion deadline.

Assume otherwise. Either the request which missed its
completion deadline was submitted to the device after
its submission deadline, or it was submitted on or
before its submission deadline and only completed after
its completion deadline.

For the request to have been submitted after its
submission deadline, then either the device took longer
than the outstanding service time to complete the
servicing of the outstanding requests, or the scheduler
submitted another request before the first real-time
request. However, the scheduler cannot have submitted
another request before the real-time request because
CDS-SCAN will only allow another request if the

outstanding service time plus the worst-case estimate of
the additional request is less than the submission
deadline of the nearest real-time request.

If the real-time request was submitted on or before its
submission deadline, then by Lemma 3 it must complete
before its completion deadline so long as no other
requests are added to the device. But, no requests may
be added to the device unless the outstanding service
time plus the worst-case estimate of the new request are
less than the completion deadline of the real-time
request. ■

Theorem 2: Starting from a state where all outstanding
real-time requests already submitted to the storage
device have completion times no later than the
outstanding service time, all requests in a real-time
request queue for which the submission deadline of the
request with the earliest deadline is no earlier than the
outstanding service time will complete on or before
their deadlines.

From Lemma 3 we can show that all outstanding real-
time requests will be completed on or before their
completion deadlines, since the scheduler will not send
any requests to the device if it would cause the
outstanding service time to be later than the earliest
completion deadline of the outstanding requests.

Similarly, we can show that since the outstanding
service time is no greater than the submission deadline
of the nearest real-time request, then the request will be
submitted to the device on or before its submission
deadline because of the CDS-SCAN constraint that
other requests may only be submitted if and only if the
outstanding service time plus the worst-case estimate is
no later than the submission time of the earliest real-
time request. Therefore the nearest real-time request
will be sent to the disk on or before its submission
deadline, and from Lemma 4 it can be seen that the
request will meet its deadline. ■

Similar to the DS-SCAN case, so long as the nearest
submission deadline remains no earlier than the
outstanding service time, the schedule will be feasible
and the scheduler will be able to provide its real-time
guarantees. Once that condition is violated, the system
may no longer guarantee real-time performance.
However, once the system reaches a state where the
nearest completion deadline for outstanding requests is
no later than the outstanding service time, and the
nearest submission deadline is no earlier than the
outstanding service time, then it will again be able to
provide real-time guarantees.

Results
The following experiments were conducted on a HP
DL360 server with two dual-core Intel processors and
4GB of RAM running Windows Server 2003. The

storage array used for the performance testing was built
from twelve 146GB 10k RPM SAS disks, attached on
two SCSI cables (ten disks on one cable and two on the
other) to an HP P600 storage controller. The storage
was configured into a RAID0 array with 128kB stripes
and a total usable size of 1.6TB. The software accessed
the raw device directly, rather than using a file system,
and it utilized Windows’ asynchronous I/O capabilities
to send multiple I/Os to the device at once.
First, we demonstrate that utilizing available
concurrency and in-device scheduling at the storage
array and disk levels can yield improved performance.
Figure 1 shows I/O bandwidth as a function of the
available I/O concurrency for 4kB random disk reads.
In this experiment, there is no software-level queuing or
scheduling. There is a closed queuing model with the
same number of requests as the desired concurrency
level, so as soon as one request completes, the next
request is submitted directly to the storage device. The
first curve has no software-level queue and keeps the
number of outstanding I/Os at the device constant by
submitting a new I/O request as soon as one completes.

Clearly there is a significant performance benefit to
concurrent I/O at the device level, with a greater than
twenty-fold improvement in I/O bandwidth between no
concurrency (a single outstanding request at a time),
and full concurrency (in this case, sixty outstanding
requests). In addition, it seems clear that maximally
utilizing the available concurrency is the best strategy
for overall throughput, at least for this device.

Figure 2 shows throughput as a function of I/O size for
no concurrency and maximal concurrency. Clearly,
throughput is better across a broad range of I/O sizes,
with the gap only beginning to narrow once the system
reaches a bottleneck at about 250MB/s.

Next, we need to verify that the real-time scheduler
may utilize this available concurrency with minimal
cost and no unnecessary missed deadlines. (If the
application requests data faster than the device can

deliver, then you will have missed deadlines, but they
are not the fault of the scheduler and would be called
necessary missed deadlines.)

To demonstrate this, we use a closed queuing system (a
new request is submitted as soon as a previous one is
completed) of best-effort request requests of given size
and uniform random placement. We also include a
stream of real-time requests of a certain bandwidth.
Figure 3 shows the overall (best effort plus real-time)
throughput and the real-time throughput as a function of
the requested real-time throughput for 4kB requests,
with a set of five hundred best effort requests, and a
maximal concurrency of sixty (60). The best-effort
throughput is the difference between the real-time and
overall curves. During all of our tests, the scheduler
never missed a real-time deadline.

Clearly, the system is able to provide the desired real-
time data rate, almost up to the entire available
bandwidth of the system. There is some degradation of
overall system throughput as the real-time data rate
starts becoming a significant fraction of the overall
system throughput. Remember from Figure 1 that if we
did not use the available hardware concurrency, the
maximal system throughput for this configuration with
4kB read requests would be about 1MB/s, which is the
starting point for the requested real-time data rate in
Figure 3.

A different way of explaining the performance dip
centered around a real-time data rate of about 12MB/s
is by looking at the level of concurrency that the
scheduler was able to achieve at various real-time data
rates. Figure 4 shows the cumulative density function
of the concurrency for the experimental results from
Figure 3, at 1MB/s, 12MB/s, and 22MB/s respectively.

At 1MB/s, the scheduler is clearly able to process the
real-time requests in a timely fashion, and is able to
fully utilize the allowed concurrency and therefore to
obtain optimal throughput. By 12MB/s, slightly less
than half the maximal throughput, the scheduler has to

0 20 40 60

Outstanding (I/Os)

0

5

10

15

20

25
B

an
dw

id
th

 (
M

B
/s

)

Figure 1: I/O bandwidth versus Outstanding

1 2 4 8 16 32 64 128 256 512 1024

I/O size (kB)

1

1

2

4

8

16

32

64

128

256

ba
nd

w
id

th
 (

M
B

/s
)

60 Outstanding
1 Outstanding

Figure 2: I/O bandwidth versus I/O size

block best-effort requests while real-time requests that
are in danger of missing their deadlines finish on the
device. Looking at the dotted line, one may clearly see
that the device spends about forty percent of its time
with a concurrency level of less than 20. Again,
referring back to Figure 1, it is clear that this loss of
concurrency due to the real-time scheduling constraints
penalizes overall system throughput.

Interestingly, as the real-time rate increases further, the
system is able to again increase the level of
concurrency in the system. This is in part because most
of the requests are real-time requests, and more of them
are in danger of missing deadlines, so the scheduler
may submit them to the device even though other real-
time requests are already at the device.

Acknowledgements
We should like to thank Ron Banner and Mani Fischer
for the time and effort they spent reviewing various
drafts of this paper, and for their many suggestions
which improved the paper.

Conclusions and Future Work
We have presented the CDS-SCAN algorithm, a soft
real-time disk scheduling algorithm for mixed real-time
and best-effort workloads, and we have shown that
CDS-SCAN generally increases concurrency and may
dramatically improve performance over DS-SCAN.

Future research might focus on developing an optimal
multi-level scheduling policy. This is especially
difficult when a mix of storage arrays, solid state disks,
and variations in intra-disk scheduling algorithms is
taken into account.

Other future work might include developing an
experiment-based model of worst-case performance for
complex storage systems. Essentially, this would
extend models such as Disk Mimic [13] to more
complex storage devices. However, for the purposes of

submission deadline computation, only worst-case
estimation is necessary.

References
[1] Kartik Gopalan and Tzi-cker Chiueh. Real-time

disk scheduling using deadline sensitive SCAN.
Technical Report TR-92, Experimental Computer
Systems Labs, Dept. of Computer Science, State
University of New York, Stony Brook, NY,
January 2001. (available online as
http://www.ecsl.cs.sunysb.edu/tr/TR92.ps.gz).

[2] Lars Reuther and Martin Pohlack. Using SATF in
real-time systems. Work-in-Progress Report, 2nd
USENIX Conference on File and Storage
Technologies (FAST 03), (San Francisco, CA,
March 31–April 2 2003). March 2003. (available
online as http://os.inf.tu-
dresden.de/~mp26/publications/fast2003.pdf)

[3] D. M. Jacobson and J. Wilkes. Disk scheduling
algorithms based on rotational position, Technical
Report HPL-CSP-91-7, HP Labs, 1991. (available
online as
http://www.hpl.hp.com/research/ssp/papers/HPL-
CSP-91-7rev1.pdf)

[4] Alexander Thomasian and Chang Liu. Disk
scheduling policies with lookahead. ACM
SIGMETRICS Performance Evaluation Review,
(30)2, pages 31-40. September 2002.

[5] Saman Zarandioon and Alexander Thomasian.
Optimization of online disk scheduling algorithms.
ACM SIGMETRICS Performance Evaluation
Review, (33)4, pages 42-46. March 2006.

[6] Margo Seltzer, Peter Chen, and John Ousterhout.
Disk scheduling revisited. Proceedings of the
Winter 1990 USENIX Technical Conference
(Washington, DC, 22–26 January 1990), pages
313–323.

[7] Amber Huffman and Joni Clark. Serial ATA native
command queuing. Seagate and Intel joint white
paper. July 2003. (available online as
http://www.seagate.com/content/docs/pdf/whitepap

1 2 4 8 16

realtime datarate (MB/s)

1

2

4

8

16

ba
nd

w
id

th
 (

M
B

/s
)

overall
realtime

Figure 3: I/O bandwidth versus real-time

0 20 40 60

concurrency

0.0

0.2

0.4

0.6

0.8

1.0

cu
m

ul
at

iv
e

di
st

ri
bu

ti
on

22MB/s realtime
12MB/s realtime
1MB/s realtime

Figure 4: I/O bandwidth versus real-time

er/D2c_tech_paper_intc-stx_sata_ncq.pdf)
[8] SCSI Architecture Model – 3 (SAM3). T10 Project

1561-D, revision 14. International Committee for
Information Technology Standards (INCITS), T10
Technical Committee. Reference ISO/IEC 14776-
413-200X. September 2004.

[9] Kitae Hwang and Chang Yeol Choi. Overlapped
Disk Access for Real-time Disk I/O. Proceedings
of the Sixth International Conference on Real-Time
Computing Systems and Applications
(RTCSA’99), 1999. pp. 263-269.

[10] A.L. Narasimha Reddy and Jim Wyllie. Disk
scheduling in a multimedia I/O system.
Proceedings of the first ACM International
Conference on Multimedia (Anaheim, CA), 1993.
pages 225-233.

[11] C.L. Liu and J.W. Layland. Scheduling algorithms
for multiprogramming in a hard real-time
environment. Journal of the ACM, pages 46-61,
1973.

[12] Bruce L. Worthington, Gregory R. Ganger, and
Yale N. Patt. Scheduling algorithms for modern
disk drives. Proceedings of the ACM
SIGMETRICS Conference. May 1994. pp. 241-
251.

[13] Florentina I. Popovici, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. Robust, portable
I/O scheduling with the disk mimic. Proceedings of
the USENIX 2003 Annual Technical Conference
(San Antonio, TX, 9-14 June 2003).

Appendix

Below are listings for various support functions used in
Algorithms 1-4 above. Note that a real-time request
will belong to two lists, hence the pair of <next,prev>
and <rtnext,rtprev> list pointers in the request structure.

long CSCAN_offset;

/* initialize a circular linked list */
void rlist_initialize(rlist* l)
{
 l->next = l->prev = l;
 l->rtnext = l->rtprev = l;
}

/* inserts r after l */
void insert(request* l, request* r)
{
 r->next = l->next;
 r->prev = l;
 r->next->prev = r;
 l->next = r;
}

void rtinsert(request* l, request* r)
{
 r->rtnext = l->rtnext;

 r->rtprev = l;
 r->rtnext->rtprev = r;
 l->rtnext = r;
}

void remove(request* r)
{
 r->prev->next = r->next;
 r->next->prev = r->prev;
}

void rtremove(request* r)
{
 r->rtprev->rtnext = r->rtnext;
 r->rtnext->rtprev = r->rtprev;
}

/* earliest deadline first */
request* EDF(rlist* rt)
{
 if (rt->rtnext != rt)

return rt->rtnext;
 return NULL;
}

/* insert a new request into EDF queue */
void EDF_insert(rlist* rt, request* r)
{
 request* p = rt->rtnext;
 for (; p != rt; p = p->rtnext) {
 if (r->completion_deadline <
 p->completion_deadline)
 {
 rtinsert(p->rtprev, r);
 break;
 }
 }
 if (p == rt) rtinsert(rt->rtprev, r);
}

/* choose next CSCAN request */
request* CSCAN(rlist* l)
{
 request* r = (request*)l->next;

 if (l->next == l) return NULL;

 for (; (rlist*)r != l; r = r->l.next)
 if (CSCAN_offset < r->offset)
 return r;

 /* CSCAN: jump back to beginning */
 return (request*)l->next;
}

/* add a new request into CSCAN queue */
void CSCAN_insert(rlist* l, request* r)
{
 request* p = (request*)l->next;

 for (; p != l; p = p->l.next)
 if (r->offset < p->offset) {
 insert(p->l.prev, r);

 break;
 }

 if (p == l) insert(p->l.prev, r);
}

void CSCAN_update(long offset)
{
 CSCAN_offset = offset;
}

/* choose next CSCAN request */
request* EDF_CSCAN(rlist* l)
{
 request* r = (request*)l->rtnext;
 request* d = r;

 if (l->rtnext == l) return NULL;

 for (; r != l; r = r->l.rtnext) {
 if (d->deadline < r->deadline)
 return d;
 if (CSCAN_offset < r->offset)
 return r;
 }

 /* CSCAN: jump back to beginning */
 return d;
}

/*
 * insert a new request into EDF CSCAN
 * queue
 */
void
EDF_CSCAN_insert(rlist* l, request* r)
{
 request* p = (request*)l->rtnext;

 for (; p != l; p = p->l.rtnext)
 if (r->deadline < p->deadline
 || (r->deadline ==
 p->deadline
 && r->offset < p->offset))
 {
 rtinsert(p->l.rtprev, r);
 break;
 }

 if (p == l) rtinsert(p->l.rtprev, r);
}

/*
 * estimate worst-case processing of
 * requests already sent to device,
 * taking into account time already
 * spent servicing those requests
 */
time_t estimate_outstanding()
{
 request* r = or.next;
 time_t est = 0;

 if (num_out == 0) return 0;

 for (; r != ∨ r = r->next)
 est += estimate(r);
 est -= now() – last_started;
 if (est < 0) return 0;
 return est;
}

One possible optimization of the system is to realize
that it is not necessary to re-compute all of the start
deadlines in each scheduling cycle. Instead, it is
sufficient to update the start deadline computations for
affected real time requests when a new request is added
to the real time queue, and when a real-time request is
processed before its submit deadline from the best
effort queue. As soon as an earlier request’s
completion deadline is before the start deadline of the
current request, one may stop updating the start
deadlines. In this case, one would remove the calls to
start_deadlines() from CDSSCAN() and add a call to
update_start_deadlines() to submit().

void
update_start_deadlines(
 rlist* rt, request* r)
{
 time_t start_deadline;

 if (r->rtnext != rt) r = r->rtnext;

 start_deadline =
 r->completion_deadline;

 for (; r != rt; r = r->rtprev)
 {
 time_t e = estimate(r);
 if (r->completion_deadline
 <= start_deadline – e)
 break;
 start_deadline =
 r->completion_deadline – e;
 r->start_deadline = start_deadline;
 }
}

