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Real-time disk scheduling algorithm allowing concurrent I/O requests 

Carl Staelin, Gidi Amir, David Ben-Ovadia, Ram Dagan, Michael Melamed, and Dave Staas 

Abstract 
We present a real-time disk scheduling algorithm, 
Concurrent DS-SCAN (CDS-SCAN), which maximizes 
throughput for modern storage devices by allowing 
concurrent I/O requests at the device whenever 
possible.  Past real-time disk scheduling algorithms 
allowed a single request at a time to go to the storage 
device, which dramatically reduces the utilization and 
throughput for modern storage devices, such as RAID 
arrays and disks with efficient positional-aware 
scheduling algorithms. 

We extended the DS-SCAN algorithm so that it can 
properly account for multiple outstanding I/O requests 
and guarantee real-time constraints for both 
outstanding and pending real-time requests. We 
demonstrate CDS-SCAN’s performance on a storage 
array. 

Introduction 
Real-time disk scheduling is an old and important topic, 
but most work assumes that it is scheduling for a single 
disk, and that it is the only scheduler in the path. Over 
time, systems have become larger and more complex. 
Firstly, most large systems no longer use solitary disks, 
but rather arrays of disks, usually with some data 
redundancy, so storage performance increases as you 
allow more concurrent requests, particularly with small 
requests.  Secondly, nearly all disk devices incorporate 
an intelligent positional-aware disk scheduling 
algorithm so in many instances the disk itself may do 
more intelligent and efficient scheduling than external 
schedulers.  Thirdly, disk scheduling may be present in 
multiple locations in the hardware, such as the disk 
itself and the RAID controller.   

We developed our scheduling algorithm for application-
level control of a mix of real-time and best-effort 
requests on a dedicated storage array.  The application 
controls a manufacturing system with physical objects 
moving through the system at high speed.  Missed 
deadlines impose a significant cost and have 
troublesome ramifications on the manufacturing 
system, so they are unacceptable.  During normal 
operation, the real-time process requires a “batch” of 
data roughly every 130ms, where a batch may be as 
little as a single 15MB read I/O, or as many as 
thousands of generally smaller read I/Os.  Usually, we 
may know as many as several seconds in advance 
which data will be required for which “batch” at each 
time.  In addition, there are a variety of other processes 
running concurrently, such as a multitude of writing 
processes, which write chunks of data of various sizes 

in a generally bursty fashion, and various bookkeeping 
and management functions which sporadically read or 
write data in a bursty fashion.  Unfortunately, 
commodity hardware and operating systems provide no 
interfaces for specifying either real-time deadlines or 
even request priorities, so real-time disk scheduling 
must be implemented in the application. 

Initially, engineering attempted to avoid the 
requirement for a real-time disk scheduler, and to 
mostly eliminate missed deadlines by radically over-
provisioning the storage array and throttling the I/O 
rates of the non-real-time requests.  However, the 
occurrence of missed deadlines was still unacceptable, 
and as the manufacturing systems got faster, and the 
real-time and non-real-time data rate requirements 
increased, it became clear that only a real-time disk 
scheduling solution could solve the problem. 

Our first implementation used DS-SCAN, which 
eliminated missed deadlines, but which imposed an 
unacceptable performance penalty on the overall system 
throughput compared to the achievable system 
throughput as found by a simple IOmeter (iometer.org) 
benchmark test. This led to the development of 
Concurrent DS-SCAN, which largely eliminates that 
performance penalty. 

We found that the storage device may benefit from 
having multiple outstanding or concurrent requests to 
work on.  If the storage is an array, then often requests 
will go to different disks, so the storage system may 
process multiple requests concurrently.  However, even 
for single disks, performance may often be improved by 
leveraging the in-disk scheduling.   

In essence, we are building a multi-level scheduling 
solution.  The top level provides the soft real-time 
performance guarantees, and submits as many requests 
as possible (up to a given limit) to the lower-level 
schedulers in a “scheduler friendly” order.  Then the 
operating system and storage device (or recursively 
devices, in the case of a storage array), may do their 
own queuing, trying to optimize throughput for the 
requests passed to them, oblivious to the real-time 
aspects and requirements.  In addition, by submitting 
requests to the lower levels in generally circular SCAN 
order, CDS-SCAN gives the operating system and 
device-level queuing algorithms a better chance to 
optimize throughput, since the STF-like scheduling 
algorithms will be working with sliding “windows” of 
requests that are clustered spatially as much as possible. 



rlist rt; /* real-time requests */ 
rlist be; /* best-effort requests */ 
 
request* DSSCAN() 
{ 
  request* r; /* real-time */ 
  request* b; /* best-effort */ 
 
  start_deadlines(rt); 
 
  /* next real-time, CSCAN requests */ 
  r = EDF(&rt); 
  b = CSCAN(&be); 
 
  if (r && r != b 
      && r->start_deadline  
         < now() + estimate(b)) 
  { 
    /* submit real-time request */ 
    b = r; 
  } 
  CSCAN_update(b->offset); 
 
  rtremove(rt, b); 
  remove(be, b); 
 
  return b; 
} 
 
Algorithm 2: DSSCAN queuing algorithm 

Prior Work 
There is a rich body of work on disk scheduling 
algorithms for non real-time applications and 
environments.  A classic algorithm which requires 
minimal complexity and provides acceptable 
performance is the SCAN, or elevator algorithm.  In 
this case, pending requests are sorted according to disk 
offset and are submitted to disk in order.  When the 
algorithm reaches the end of the disk, it reverses 
direction.  A better variant of this algorithm is circular 
SCAN or CSCAN.  In this case, when it reaches the end 
of the disk, instead of reversing direction it jumps to the 
beginning of the disk and begins again.  This approach 
has better performance than SCAN and may also result 
in better fairness. 

However, these algorithms overlook one aspect of 
modern disk drives, namely that rotation delay may be 
dominant compared to short seek distances.  A variety 
of algorithms, such as shortest time first (STF), grouped 
shortest time first (GSTF), and weighted shortest time 
first (WSTF) [3,6], attempt to improve disk utilization 
and throughput by taking into account rotational 
position as well as seek position, resulting in generally 
improved utilization.  Pure STF tends to suffer from 
starvation and long maximal service times.  GSTF and 
WSTF attempt to reduce these issues by forcing STF to 
occasionally “jump” from one area of the disk to 

another, which likely also has a higher density of 
waiting requests.  Later innovations also took into 
account on-disk caching and pre-fetching, yielding 
further performance improvements in some cases [12]. 

There are a wide variety of real-time disk scheduling 
algorithms.  A simple algorithm is earliest deadline first 
(EDF) [11], where requests are processed according to 
the deadline order, from earliest to latest.  SCAN-EDF 
[10] is a variant developed for multimedia systems, 
where large batches of I/Os are submitted periodically, 
so many I/Os have the same completion deadline.  The 
variation is that all I/Os with the same completion 
deadline are processed in SCAN or CSCAN order, 
yielding far higher performance than EDF in this 
application. 

DS-SCAN [1] manages a mix of real-time and best-
effort requests by ensuring that real-time requests are 
issued in time to meet their deadlines but otherwise 
uses efficient non-real-time scheduling.  It is a 
combination of earliest deadline first (EDF) real-time 
disk scheduling and CSCAN disk scheduling.  When 
real-time requests are not in danger of missing their 
deadlines, both real-time and best-effort requests are 
passed to storage one at a time using the CSCAN 
algorithm.  However, when submitting a request might 
cause a real-time to miss its deadline, DS-SCAN 

typedef struct rlist { 
  struct rlist* next; 
  struct rlist* prev; 
  struct rlist* rtnext; 
  struct rlist* rtprev; 
} rlist; 
 
typedef struct request { 
  rlist l; 
  time_t start_deadline; 
  time_t completion_deadline; 
  long offset; 
  long size; 
  void* data; 
} request; 
 
void start_deadlines(rlist* rt) 
{ 
  time_t start_deadline = INFINITE; 
  for (r = rt->l.rtprev;  

r != rt; r = r->rtprev)  
  { 
    start_deadline =  
      MIN(start_deadline,  
          r->completion_deadline) 
             – estimate(r); 
    r->start_deadline = start_deadline; 
  } 
} 
 
Algorithm 1: Computing start deadlines 



submits the nearest-deadline-first request, regardless of 
its “position” on the disk.   

A key innovation which enables this hybrid solution is 
the notion of computing “submission deadlines” from 
the set of pending real-time requests and their 
completion deadlines.  Since the calculation of the 
submission deadlines depends upon the entire set of 
pending real-time requests, it must be recomputed each 
time a new real-time request is added to the queue, or 
when a real-time request is removed from the queue 
and passed on to the device.   

More formally, DS-SCAN is described in pseudo-code 
in Algorithm 1 and Algorithm 2.  DS-SCAN uses two 
linked lists of pending requests: a list of the real-time 
requests sorted in nearest-deadline order, and a list of 
all requests (both real-time and best-effort) sorted in 
ascending disk address order.  There is a function 
estimate(request) which estimates the worst-case 
service time for that request (in ms), and a function 
now() which returns the current time (in ms).   

Algorithm 1 demonstrates the computation of the 
submission deadlines for each real-time request.  In 
actual fact, only the submission deadline for the first 
request is important as it is used to determine whether 
the system must submit a real-time request or may 
submit a request using the CSCAN algorithm. 

Algorithm 2 shows the deadline-sensitive scheduling 
algorithm itself.  First, it uses the start_deadlines() 
routine from Algorithm 1 to compute the time by which 
each real-time request must have been submitted to the 
storage device in order for them all to complete before 
their deadlines.  There is also some CSCAN logic 
contained in the routines CSCAN() and 
CSCAN_udate().  CSCAN() returns the next request 
according to the CSCAN scheduling algorithm, which 
is a simple list operation on the best-effort (be) list, 
while CSCAN_update() updates the current scan 
position.  Listings for these and other support routines 
may be found in the Appendix. 

The core logic that submits a best-effort request if and 
only if doing so won’t cause a real-time request to miss 
its deadline is contained in the if() statement.  This has 
an implicit assumption that there are no other requests 
at the device, so that the next scheduling “cycle” will 
occur no later than estimate(b) ms from now. 

Note that it is possible to substitute another non real-
time scheduling algorithm, such as SSTF, for the 
relatively simple (but effective) CSCAN algorithm.  
Also note that it is possible to substitute an alternative 
real-time scheduling algorithm, such as EDF-SCAN, 
for the simple EDF scheduler used in DS-SCAN.  

Starting in the 1990’s, SCSI disk drives started utilizing 
tagged command queuing (TCQ) [8] capabilities to add 
support for concurrent requests and internal schedulers 
with intelligent, positional-aware scheduling algorithms 
such as STF.  Similar capabilities are available in 
modern SATA drives via NCQ [7] capabilities.  This 
means that it may be more efficient to submit multiple 
requests to the disk drive and allow it to schedule the 
requests, rather than to rely solely on the operating 
system’s disk scheduler, since the disk may more easily 
utilize the low-level detailed information regarding 
physical location of blocks on disk, rotational position 
of the platter, location of the seek head, and so forth.  
While it is possible to build a model of a disk at the 
higher levels, such as the operating system, and use that 
model to obtain performance nearly as good as 
schedulers with access to the true information [13], 
more complex storage systems such as RAID arrays 
make such modeling difficult. 

Another trend in storage systems is the migration to 
storage arrays, usually using some form of RAID 
approach for reliability.  The controllers often have 
significant caches in the controller, and may have 
significant non-volatile cache for write performance.  
Storage arrays are often large, shared arrays accessed 
via a “storage area network” (SAN).  Storage is usually 
managed using logical devices within the array, which 
can be re-sized as needed to accommodate growth and 
other requirements.  In addition, they often include 
TCQ functionality, so clients may submit multiple 
concurrent requests to the same logical device.  These 
large arrays may also have their own scheduling and 
queuing system as the controller must map the high-
level user requests on logical disks into one or more  
low-level disk requests. 

This means that even physical clients of the storage 
array have at least a three-level scheduling solution: 
client operating system, controller, and disk.  With the 
advent and popular adoption of virtualization 
technologies, the single operating system scheduler in 
the client may be replaced with the scheduler in the 
virtual client and potentially a second scheduler in the 
virtual monitor. 

As an aside, this trend towards virtualization and shared 
resources makes real-time scheduling difficult or 
impossible, as accurate worst-case service estimation is 
non-trivial when the low-level device may behave 
unpredictably due to competing requests from other 
systems and the lack of any priority system at the 
hardware interconnect layers.  Unless or until such 
functionality is added to the standard I/O interfaces, 
real-time systems must use dedicated hardware that 
behaves in a reasonably predictable fashion. 



rlist rt; /* real-time requests */ 
rlist be; /* best-effort requests */ 
rlist or; /* outstanding requests */ 
 
request* CDSSCAN() 
{ 
  request* r; /* real-time */ 
  request* b; /* best-effort */ 
  time_t nod, eo; 
 
  start_deadlines(rt); 
  nod = nearest_outstanding_deadline(); 
  eo = estimate_outstanding(); 
 
  /* next real-time, CSCAN requests */ 
  r = EDF_CSCAN(&rt); 
  b = CSCAN(&be); 
 
  if (!b) return NULL; 
 
  if (r && r != b 
      && r->start_deadline  
         < now() + eo + estimate(b)) 
  { 
    /* submit real-time request */ 
    b = r; 
  } 
 
  if (nod  
      && (nod < b->start_deadline 
          || !b->start_deadline) 
      && nod < now() + eo + estimate(b))
  { 
    /* will miss outstanding deadline */
    return NULL; 
  } 
 
  CSCAN_update(b->offset); 
 
  rtremove(&rt, b); 
  remove(&be, b); 
 
  return b; 
} 
 
Algorithm 3: CDS-SCAN queuing algorithm

int max_out; /* max outstanding */ 
int num_out; /* num outstanding */ 
time_t last_started; 
 
void schedule() 
{ 
  request* r = CDSSCAN(); /* request */ 
 
  while (r && num_out < max_out) 
  { 
    append(or, r); 
    if (num_out == 0) 
      last_started = now(); 
    num_out++; 
    disk_submit(r); /* send to disk! */ 
    r = CDSSCAN(); 
  } 
} 
 
/* when an I/O completes, call this */ 
void completion(request* r) 
{ 
  last_started = now(); 
  num_out--; 
  remove(or, r); 
  schedule(); 
} 
 
/* to submit a new I/O to the system */ 
void submit(request* r) 
{ 
  if (0 < r->deadline) 
    EDF_CSCAN_insert(&rt, r); 
  CSCAN_insert(&be, r); 
  schedule(); 
} 
 

Algorithm 
We built Concurrent DS-SCAN (CDS-SCAN) on DS-
SCAN, described above, in order to try and allow the 
system to have multiple requests active at the storage 
device.  This has two major consequences.  First, the 
estimate of when the request will complete must 
include not only the worst-case service time of the 
request itself (as embodied in estimate(req)), but also 
the worst-case service time for all outstanding requests 
already sent to the device.  Second, in addition to 
checking whether sending a new best-effort request to 
the device might cause the next real-time request to 
miss its deadline, we must also check all outstanding 

real-time requests already sent to the device to ensure 
that none of them will miss their deadlines. 

In addition, since our application tends to have periodic 
deadlines, which may have many requests with the 
same deadline, we added logic to the real-time queue to 
add a secondary sort key to the real-time disk request 
queue on the request disk address (the primary key is 
the completion deadline).  This essentially merges 
SCAN-EDF functionality for real-time requests, and 
means that when there are lots of real-time requests 
with the same deadline, and the system must start 
processing requests from the real-time queue, then 
those real-time requests are processed in CSCAN order, 
thereby preserving some semblance of performance. 

From a data structure point of view, we now need to 
keep track of not only the pending real-time and best-
effort requests, but also of all the outstanding requests 
already sent to the device.  We add two new routines, 
nearest_outstanding_deadline(), which returns the 
nearest completion deadline for outstanding requests, 
and estimate_outstanding(), which returns the expected 



worst case completion time for all outstanding requests 
respectively. 

estimate_outstanding() computes the sum of the 
estimated service times of all outstanding requests.  If 
there are no outstanding requests, then it returns zero.  
Otherwise, it adjusts this sum for the amount of time 
the storage device may have already been working on a 
request, which is the difference between now() and the 
time the most recent request might have been started.  
This is tracked using last_started, which is updated 
each time a request completes, and each time a request 
is submitted to the storage device if there are no other 
outstanding requests.   

Pseudo-code for CDS-SCAN is shown in Algorithm 3, 
and is very similar to DS-SCAN from Algorithm 2 
above. The key difference between DS-SCAN and 
CDS-SCAN is the second if() statement, where the 
algorithm checks to see if submitting a new request to 
the device could cause an existing real-time request to 
miss its deadline, in which case it does not submit a 
request, unless the new request has the same (or earlier) 
deadline than the outstanding request that is in danger 
of missing its deadline. 

Algorithm 4 shows the external logic keeping track of 
the outstanding requests, and also submitting as many 
requests as possible to the storage device, subject to the 
constraints that real-time requests won’t miss their 
deadlines, and that no more than max_outstanding 
requests are sent to the device at once.  Note that this 
logic is unnecessary for DS-SCAN, because it never 
has more than a single outstanding request at a time.  
completion() is called each time a disk request 
completes, and submit() is called to submit new 
requests.  schedule() sends requests to disk based on the 
CDSSCAN algorithm, and it is called by both submit() 
and completion(), as either event may cause requests to 
be sent to disk. Note that schedule() may submit 
multiple requests at once.  For example, if a real-time 
request which is near its deadline is at the device, so no 
other requests can get submitted to the device, and the 
device happens to service that request last, then the 
device may have only one outstanding request.  As soon 
as that request completes, assuming there are no other 
real-time requests in danger of missing their deadlines, 
then the scheduler should submit as many as 
max_outstanding requests to the device, to maximize 
throughput. 

We may extend CSD-SCAN to allow multiple priorities 
of best-effort I/O request.  This is useful because it 
allows the solution to ensure that low-priority 
background processes, such as storage bookkeeping or 
reorganization processes, do not interfere with normal 
operation.  Instead of having a single SCAN queue, 
which contains all real-time and best-effort requests, we 

maintain an array of SCAN queues, one per priority 
level.  Real-time requests are added to the highest 
priority CSCAN queue.  Best-effort requests are added 
to the CSCAN queue for their priority, with the highest 
priority requests sharing their queue with the real-time 
requests.  CDSSCAN() in Algorithm 3 is modified  so 
that the single SCAN queue (be) becomes an array of 
queues (be[i]), and the best-effort scheduling: 

  b = CSCAN(&be); 

becomes: 

  for (i = 0, b = NULL; !b && i < N; ++i) 
      b = CSCAN(&be[i]); 

In other words, it looks for the highest priority queue 
with any requests, and chooses a request from that 
queue in CSCAN order.  

Analysis 
First, we show that DS-SCAN satisfies the conditions 
of a real-time scheduling algorithm, with the 
assumptions that the worst-case estimates are correct 
and that the real-time requirements are feasible.  Then 
we build upon that result to show that CDS-SCAN also 
provides real-time guarantees when the device 
processes multiple requests concurrently, with the 
additional assumption that a device will not take more 
time to process requests concurrently that it would do to 
process them sequentially.  

For real-time disk scheduling algorithms generally, and 
DS-SCAN and CDS-SCAN in particular, it is necessary 
that the worst-case estimates be correct, meaning that 
the request never takes longer than its worst-case 
estimate.  That this condition is necessary is obvious, as 
if the estimate is too short, then the system may, in 
good faith and in expectation of meeting its obligations, 
submit the request to the storage device worst-case 
estimate time before the deadline, but since processing 
took longer, the system missed its deadline. 

Before formalizing the concept of real-time scheduling 
feasibility, we first analyze the DS-SCAN algorithm 
and its notion of submission deadlines.  The analyses 
below assume that there is an initial real-time queue, 
and that the scheduler must process it according to the 
deadlines.  It also assumes that the scheduler only 
submits a single request at a time to the disk. Later we 
will analyze the case of adding new requests to the 
queue. 

Lemma 1: A disk request submitted to the disk on or 
before its submission deadline will meet its completion 
deadline. 

Since the submission deadline is never later than the 
completion deadline less its worst-case service time, it 
may never complete after its completion deadline. ■ 



Lemma 2: If the submission deadline for the first real-
time request is not in the past, then that request will 
always be submitted to the disk on or before its 
submission deadline. 

For the first real-time request to be submitted after its 
submission deadline, another request must have been 
submitted to disk before that request, and its service 
time must have been long enough to cause the 
scheduler to miss its submission deadline.  Since the 
scheduler will only submit a request to disk other than 
the earliest real-time request if the current time plus the 
worst-case service time is less than the submission 
deadline of the earliest real-time request, then this 
cannot occur. ■ 

A feasible queue is one for which all real-time requests 
can meet their deadlines.  The easy test for a feasible 
queue is that the submission deadline for the request 
with the earliest completion deadline is no earlier than 
the current time.  Conversely, it is easy to see that a 
real-time queue for which the earliest submission 
deadline is in the past cannot provide any real-time 
guarantees and may miss one or more real-time 
deadlines.   

For example, take two requests, one with a deadline 
4ms in the future and one with a deadline 5ms in the 
future, and each with a worst-case service time of 3ms.  
In this case, the submission deadline of the later request 
is 2ms in the future, and the submission deadline of the 
earlier request is 1ms in the past.  If we submit the first 
request to disk immediately, and it takes the worst-case 
service time, then that request will meet its deadline, 
completing 3ms in the future.  If the later request is then 
immediately submitted to disk and it too takes the 
worst-case time to service, then that second request will 
miss its deadline and complete 6ms from the start, 1ms 
after its deadline.   

However, the worst-case estimate is just that, a worst-
case estimate, so it is likely that one or more of the 
requests will complete more quickly than estimated, 
and so all requests may complete before their deadlines 
even though the system cannot provide any real-time 
guarantees.  In the example above, if either request 
completes in 2ms instead of the worst-case 3ms, then 
both requests will meet their deadlines. 

Theorem 1: All requests in a real-time request queue 
for which the submission deadline of the request with 
the earliest deadline is no earlier than the current time 
will complete on or before their deadlines. 

If there is still time to submit the earliest request to disk 
on or before its submission deadline, then according to 
Lemma 2 above that request will be submitted to disk 
on or before its submission deadline, then from Lemma 
1 it will therefore complete on or before its completion 

deadline.  Since the submission deadline of each 
subsequent request may be no earlier than the 
completion time of the previous request, at the 
completion of each request, the current time will be no 
later than the submission deadline of the next real-time 
request, and so by Lemma 2 each real-time request will 
be submitted to disk on or before its submission 
deadline and it too shall complete on or before its 
completion deadline according to Lemma 1. ■ 

If we look at a dynamic system, where new requests get 
added to the queue over time, then each time a new 
real-time request is added to the queue, the submission 
deadlines are re-calculated.  So long as the nearest 
submission deadline is not in the past, the queue 
remains feasible, and the scheduler may give real-time 
guarantees for that queue. 

Now we come to the CDS-SCAN analysis, where 
multiple requests may be sent to the device 
concurrently.  Since there are no priority or deadline 
mechanisms in the SCSI or ATA protocols, and since 
the devices have scheduling algorithms internally, we 
assume that the device may process concurrent requests 
in any order, either sequentially, or concurrently.   

We also add a second condition, namely that the storage 
device never takes longer to process concurrent 
requests than it would take to process the requests in 
sequence.  In practice this is true, and for a device to 
behave otherwise would be considered a bug.  This 
allows us to compute the worst-case service time for a 
set of concurrent requests as the sum of the individual 
worst-case estimate.  This condition may be shown to 
be necessary for real-time scheduling by counter-
example.  Assume that there is a real-time request at the 
device, whose deadline is just beyond the sum of the 
worst-case estimates for the real-time request already 
being serviced and a candidate best-effort request under 
consideration for submission.  CDS-SCAN will submit 
the second best-effort request to the device since the 
sum of the worst case estimates is less than the nearest 
deadline.  If the device takes longer to service the two 
requests than it would have done were the requests 
submitted in sequence, then the real-time request will 
miss its deadline.   

For the purposes of determining the worst-case 
completion time for real-time requests when there are 
multiple concurrent requests, we must assume that the 
device will service the requests sequentially and that it 
will service any real-time requests last.  This means that 
the worst-case expected completion time for real-time 
requests at the device is the sum of the worst-case 
service times for all requests at the disk.   

Unlike the DS-SCAN, we must keep track of how much 
time a device may have spent servicing outstanding 



requests.  In the DS-SCAN case the device is always 
idle when a request is passed to it from the scheduler.  
In the CDS-SCAN case, the device may have already 
been working on another request, so the current worst-
case service time estimate must be updated to account 
for time already spent servicing the request.  Again, for 
the purposes of worst-case analysis, since we assume 
that the device services requests sequentially, the time 
spent processing outstanding concurrent requests is the 
shorter of the elapsed time since the device last 
completed a request, and the elapsed time since the 
device was idle.  

We define the outstanding service time as the sum of 
the worst-case service times for all requests at the disk 
less the elapsed service time for the outstanding 
requests.  This is the worst-case estimate for the 
remaining time until the device finishes servicing the 
currently outstanding requests, assuming that no other 
requests are sent to the device. 

We will analyze the system assuming that no new 
requests are added to the system, and later we will 
extend the analysis to the dynamic case where new 
requests are added to the queues and devices. 

Lemma 3: A real-time request which has been 
submitted to disk will complete on or before its 
completion deadline so long as its completion deadline 
is no earlier than the outstanding service time. 

Assume otherwise.  Then there is a real-time request 
which completed after its deadline.  Since the deadline 
is later than the sum of the worst-case estimates for all 
requests in the device, less the elapsed service time, 
then either one or more requests took longer than their 
worst-case estimate, or the device took longer to service 
concurrent requests than it would have done to service 
them sequentially. ■ 

Lemma 4: If the submission deadline for the first real-
time request is no earlier than the outstanding service 
time, then that real-time request will always be 
completed on or before its completion deadline. 

Assume otherwise.  Either the request which missed its 
completion deadline was submitted to the device after 
its submission deadline, or it was submitted on or 
before its submission deadline and only completed after 
its completion deadline.   

For the request to have been submitted after its 
submission deadline, then either the device took longer 
than the outstanding service time to complete the 
servicing of the outstanding requests, or the scheduler 
submitted another request before the first real-time 
request.  However, the scheduler cannot have submitted 
another request before the real-time request because 
CDS-SCAN will only allow another request if the 

outstanding service time plus the worst-case estimate of 
the additional request is less than the submission 
deadline of the nearest real-time request. 

If the real-time request was submitted on or before its 
submission deadline, then by Lemma 3 it must complete 
before its completion deadline so long as no other 
requests are added to the device.  But, no requests may 
be added to the device unless the outstanding service 
time plus the worst-case estimate of the new request are 
less than the completion deadline of the real-time 
request. ■ 

Theorem 2: Starting from a state where all outstanding 
real-time requests already submitted to the storage 
device have completion times no later than the 
outstanding service time, all requests in a real-time 
request queue  for which the submission deadline of the 
request with the earliest deadline is no earlier than the 
outstanding service  time will complete on or before 
their deadlines. 

From Lemma 3 we can show that all outstanding real-
time requests will be completed on or before their 
completion deadlines, since the scheduler will not send 
any requests to the device if it would cause the 
outstanding service time to be later than the earliest 
completion deadline of the outstanding requests. 

Similarly, we can show that since the outstanding 
service time is no greater than the submission deadline 
of the nearest real-time request, then the request will be 
submitted to the device on or before its submission 
deadline because of the CDS-SCAN constraint that 
other requests may only be submitted if and only if the 
outstanding service time plus the worst-case estimate is 
no later than the submission time of the earliest real-
time request.  Therefore the nearest real-time request 
will be sent to the disk on or before its submission 
deadline, and from Lemma 4 it can be seen that the 
request will meet its deadline.  ■ 

Similar to the DS-SCAN case, so long as the nearest 
submission deadline remains no earlier than the 
outstanding service time, the schedule will be feasible 
and the scheduler will be able to provide its real-time 
guarantees.  Once that condition is violated, the system 
may no longer guarantee real-time performance.  
However, once the system reaches a state where the 
nearest completion deadline for outstanding requests is 
no later than the outstanding service time, and the 
nearest submission deadline is no earlier than the 
outstanding service time, then it will again be able to 
provide real-time guarantees. 

Results 
The following experiments were conducted on a HP 
DL360 server with two dual-core Intel processors and 
4GB of RAM running Windows Server 2003.  The 



storage array used for the performance testing was built 
from twelve 146GB 10k RPM SAS disks, attached on 
two SCSI cables (ten disks on one cable and two on the 
other) to an HP P600 storage controller.  The storage 
was configured into a RAID0 array with 128kB stripes 
and a total usable size of 1.6TB.  The software accessed 
the raw device directly, rather than using a file system, 
and it utilized Windows’ asynchronous I/O capabilities 
to send multiple I/Os to the device at once. 
First, we demonstrate that utilizing available 
concurrency and in-device scheduling at the storage 
array and disk levels can yield improved performance.  
Figure 1 shows I/O bandwidth as a function of the 
available I/O concurrency for 4kB random disk reads.  
In this experiment, there is no software-level queuing or 
scheduling.  There is a closed queuing model with the 
same number of requests as the desired concurrency 
level, so as soon as one request completes, the next 
request is submitted directly to the storage device. The 
first curve has no software-level queue and keeps the 
number of outstanding I/Os at the device constant by 
submitting a new I/O request as soon as one completes.    

Clearly there is a significant performance benefit to 
concurrent I/O at the device level, with a greater than 
twenty-fold improvement in I/O bandwidth between no 
concurrency (a single outstanding request at a time), 
and full concurrency (in this case, sixty outstanding 
requests).  In addition, it seems clear that maximally 
utilizing the available concurrency is the best strategy 
for overall throughput, at least for this device. 

Figure 2 shows throughput as a function of I/O size for 
no concurrency and maximal concurrency.  Clearly, 
throughput is better across a broad range of I/O sizes, 
with the gap only beginning to narrow once the system 
reaches a bottleneck at about 250MB/s. 

Next, we need to verify that the real-time scheduler 
may utilize this available concurrency with minimal 
cost and no unnecessary missed deadlines.  (If the 
application requests data faster than the device can 

deliver, then you will have missed deadlines, but they 
are not the fault of the scheduler and would be called 
necessary missed deadlines.) 

To demonstrate this, we use a closed queuing system (a 
new request is submitted as soon as a previous one is 
completed) of best-effort request requests of given size 
and uniform random placement.  We also include a 
stream of real-time requests of a certain bandwidth.  
Figure 3 shows the overall (best effort plus real-time) 
throughput and the real-time throughput as a function of 
the requested real-time throughput for 4kB requests, 
with a set of five hundred best effort requests, and a 
maximal concurrency of sixty (60).  The best-effort 
throughput is the difference between the real-time and 
overall curves.  During all of our tests, the scheduler 
never missed a real-time deadline. 

Clearly, the system is able to provide the desired real-
time data rate, almost up to the entire available 
bandwidth of the system.  There is some degradation of 
overall system throughput as the real-time data rate 
starts becoming a significant fraction of the overall 
system throughput.  Remember from Figure 1 that if we 
did not use the available hardware concurrency, the 
maximal system throughput for this configuration with 
4kB read requests would be about 1MB/s, which is the 
starting point for the requested real-time data rate in 
Figure 3.   

A different way of explaining the performance dip 
centered around a real-time data rate of about 12MB/s 
is by looking at the level of concurrency that the 
scheduler was able to achieve at various real-time data 
rates.  Figure 4 shows the cumulative density function 
of the concurrency for the experimental results from  
Figure 3, at 1MB/s, 12MB/s, and 22MB/s respectively.   

At 1MB/s, the scheduler is clearly able to process the 
real-time requests in a timely fashion, and is able to 
fully utilize the allowed concurrency and therefore to 
obtain optimal throughput.  By 12MB/s, slightly less 
than half the maximal throughput, the scheduler has to 
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block best-effort requests while real-time requests that 
are in danger of missing their deadlines finish on the 
device.  Looking at the dotted line, one may clearly see 
that the device spends about forty percent of its time 
with a concurrency level of less than 20.  Again, 
referring back to Figure 1, it is clear that this loss of 
concurrency due to the real-time scheduling constraints 
penalizes overall system throughput.  

Interestingly, as the real-time rate increases further, the 
system is able to again increase the level of 
concurrency in the system.  This is in part because most 
of the requests are real-time requests, and more of them 
are in danger of missing deadlines, so the scheduler 
may submit them to the device even though other real-
time requests are already at the device.  
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Conclusions and Future Work 
We have presented the CDS-SCAN algorithm, a soft 
real-time disk scheduling algorithm for mixed real-time 
and best-effort workloads, and we have shown that 
CDS-SCAN generally increases concurrency and may 
dramatically improve performance over DS-SCAN. 

Future research might focus on developing an optimal 
multi-level scheduling policy.  This is especially 
difficult when a mix of storage arrays, solid state disks, 
and variations in intra-disk scheduling algorithms is 
taken into account. 

Other future work might include developing an 
experiment-based model of worst-case performance for 
complex storage systems.  Essentially, this would 
extend models such as Disk Mimic [13] to more 
complex storage devices.  However, for the purposes of 

submission deadline computation, only worst-case 
estimation is necessary.  
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Appendix 

Below are listings for various support functions used in 
Algorithms 1-4 above.  Note that a real-time request 
will belong to two lists, hence the pair of <next,prev> 
and <rtnext,rtprev> list pointers in the request structure. 

 
long CSCAN_offset; 
 
/* initialize a circular linked list */ 
void rlist_initialize(rlist* l) 
{ 
    l->next = l->prev = l; 
    l->rtnext = l->rtprev = l; 
} 
 
/* inserts r after l */ 
void insert(request* l, request* r) 
{ 
    r->next = l->next; 
    r->prev = l; 
    r->next->prev = r; 
    l->next = r; 
} 
 
void rtinsert(request* l, request* r) 
{ 
    r->rtnext = l->rtnext; 

    r->rtprev = l; 
    r->rtnext->rtprev = r; 
    l->rtnext = r; 
} 
 
void remove(request* r) 
{ 
    r->prev->next = r->next; 
    r->next->prev = r->prev; 
} 
 
void rtremove(request* r) 
{ 
    r->rtprev->rtnext = r->rtnext; 
    r->rtnext->rtprev = r->rtprev; 
} 
 
/* earliest deadline first */ 
request* EDF(rlist* rt) 
{ 
    if (rt->rtnext != rt) 

return rt->rtnext; 
    return NULL; 
} 
 
/* insert a new request into EDF queue */ 
void EDF_insert(rlist* rt, request* r) 
{ 
    request* p = rt->rtnext; 
    for (; p != rt; p = p->rtnext) { 
        if (r->completion_deadline < 
      p->completion_deadline) 
  { 
            rtinsert(p->rtprev, r); 
            break; 
        } 
    } 
    if (p == rt) rtinsert(rt->rtprev, r); 
} 
 
/* choose next CSCAN request */ 
request* CSCAN(rlist* l) 
{ 
    request* r = (request*)l->next; 
 
    if (l->next == l) return NULL; 
 
    for (; (rlist*)r != l; r = r->l.next)  
        if (CSCAN_offset < r->offset) 
            return r; 
 
    /* CSCAN: jump back to beginning */ 
    return (request*)l->next; 
} 
 
/* add a new request into CSCAN queue */ 
void CSCAN_insert(rlist* l, request* r) 
{ 
    request* p = (request*)l->next; 
 
    for (; p != l; p = p->l.next) 
        if (r->offset < p->offset) { 
            insert(p->l.prev, r); 



            break; 
        } 
 
    if (p == l) insert(p->l.prev, r); 
} 
 
void CSCAN_update(long offset) 
{ 
    CSCAN_offset = offset; 
} 
 
/* choose next CSCAN request */ 
request* EDF_CSCAN(rlist* l) 
{ 
    request* r = (request*)l->rtnext; 
    request* d = r; 
 
    if (l->rtnext == l) return NULL; 
 
    for (; r != l; r = r->l.rtnext) { 
        if (d->deadline < r->deadline) 
            return d; 
        if (CSCAN_offset < r->offset) 
            return r; 
    } 
 
    /* CSCAN: jump back to beginning */ 
    return d; 
} 
 
/* 
 * insert a new request into EDF CSCAN  
 * queue 
 */ 
void  
EDF_CSCAN_insert(rlist* l, request* r) 
{ 
    request* p = (request*)l->rtnext; 
 
    for (; p != l; p = p->l.rtnext)  
        if (r->deadline < p->deadline 
            || (r->deadline ==  
                    p->deadline  
               && r->offset < p->offset)) 
        { 
            rtinsert(p->l.rtprev, r); 
            break; 
        } 
 
    if (p == l) rtinsert(p->l.rtprev, r); 
} 
 
/* 
 * estimate worst-case processing of 
 * requests already sent to device, 
 * taking into account time already 
 * spent servicing those requests 
 */ 
time_t estimate_outstanding() 
{ 
    request* r = or.next; 
    time_t est = 0; 
 

    if (num_out == 0) return 0; 
 
    for (; r != &or; r = r->next) 
        est += estimate(r); 
    est -= now() – last_started; 
    if (est < 0) return 0; 
    return est; 
} 

One possible optimization of the system is to realize 
that it is not necessary to re-compute all of the start 
deadlines in each scheduling cycle.  Instead, it is 
sufficient to update the start deadline computations for 
affected real time requests when a new request is added 
to the real time queue, and when a real-time request is 
processed before its submit deadline from the best 
effort queue.  As soon as an earlier request’s 
completion deadline is before the start deadline of the 
current request, one may stop updating the start 
deadlines.  In this case, one would remove the calls to 
start_deadlines() from CDSSCAN() and add a call to 
update_start_deadlines() to submit(). 

 
void  
update_start_deadlines( 
    rlist* rt, request* r) 
{ 
  time_t start_deadline; 
 
  if (r->rtnext != rt) r = r->rtnext; 
 
  start_deadline =  
    r->completion_deadline; 
 
  for (; r != rt; r = r->rtprev)  
  { 
    time_t e = estimate(r); 
    if (r->completion_deadline  
        <= start_deadline – e) 
      break; 
    start_deadline =  
      r->completion_deadline – e; 
    r->start_deadline = start_deadline; 
  } 
} 

 


