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Denoiser-loss estimators and twice-universal
denoising

Erik Ordentlich, Krishnamurthy Viswanathan, Marcelo J. Weinberger

Abstract—We study the concentration of denoiser loss estima-
tors, with application to the selection of denoiser parameters
for a given observed sequence (in particular, the window size k
of the DUDE algorithm [1]) via minimization of the estimated
loss. We show that for a loss estimator proposed earlier [2],
it is not possible to derive strong concentration results for
certain pathological input sequences. By modifying the estimator
slightly we obtain a loss estimator for which the DUDE’s
estimated loss strongly concentrates around the true loss provided
kM2k = o(n), where M is the size of the alphabet and n the
sequence length. We also show that for certain channels, it is
possible to estimate the best k using a combination of the two
loss estimators. Moreover, for non-pathological sequences and
k = o(n

1
4 ), we derive concentration results for the original loss

estimator and all channels.
In a second set of results, we extend the notion of twice-

universality from universal data compression theory to the sliding
window denoising setting. Given a sequence length n and a
denoiser, we define the k-dependent twice-universality penalty
of the denoiser as the worst case excess denoising loss relative
to sliding window denoisers with window length k above and
beyond the worst case excess loss of DUDE with parameter
k. Given an increasing sequence of window parameters kn in
the data sequence length n, we use loss estimators and results
from the analysis mentioned above to construct a sequence of
(twice) universal denoisers that achieves a much smaller twice-
universality penalty for k < kn than the sequence of DUDEs
with parameter kn.

I. INTRODUCTION

The problem of denoising is one of reproducing a signal
based on noisy observations, with the quality of the reproduc-
tion being measured by a fidelity criterion. In one version of
this problem, a clean sequence xn is passed through a known
discrete memoryless channel to obtain a noisy sequence zn

and the goal of the denoiser is to produce a reconstruction
x̂n. The quality of the reconstruction is measured by a single-
letter loss function Λ(·). This problem was studied in [1]
where a universal denoising algorithm, DUDE, was derived.
The DUDE takes as input a non-negative integer parameter k,
computes the number of occurrences of all 2k + 1-tuples of
symbols in zn, and bases its reconstruction on these counts.
In [1], it was shown that the performance of the DUDE with
parameter k was close to that of the best k-th order sliding
window denoiser for the pair xn, zn.

For a given channel, loss function, and noisy sequence zn,
the fundamental problem of identifying the best choice of k
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for the DUDE is still open. Unlike in corresponding problems
in data compression where the outcome of the choice of k can
be observed, and therefore the best k selected, in the denoising
problem, the clean sequence xn is not observable and therefore
the loss is not computable. In [1], two approaches to this
problem were proposed. One is to select the value of k that
minimizes, in the worst case over xn, the expected excess
loss incurred by the DUDE with parameter k, over the loss
that would have been incurred for the DUDE with the optimal
parameter for that (xn, zn) pair. This value is hard to compute
and therefore a second, heuristic approach was proposed: to
select the value of k that results in the most compressible
reconstruction.

In [2], it was proposed to select the value of k that
minimizes an estimate of the loss. If one could prove that,
for all clean sequences, the loss estimate concentrates around
the true loss with high probability, then this technique would
indeed guarantee that the loss incurred for the selected k is
close to that incurred for the best k, with high probability. To
this end, this paper studies the concentration of loss estimators.

A specific loss estimator was proposed in [2] and shown to
be unbiased for all denoisers, not just the DUDE. Further,
it was shown in [3] that when this estimator is applied
to any fixed k-th order sliding window denoiser, the esti-
mated loss strongly concentrates around the true loss provided
k = o(n/ log n). This result, however, does not extend to
the DUDE, for which the denoising function is not fixed
but depends on zn. While we seek concentration results that
do apply to the DUDE, we notice that it suffices to target
k = O(log n). This is because, for every channel, there exists
a constant γ, which can be arbitrarily large depending on the
channel transition probabilities, such that if k > γ log n, then
with high probability all contexts appear at most once in zn,
and the DUDE reduces to a fixed, zero-th order denoiser whose
loss, by [3], can be estimated well. Further, it is easy to see that
it suffices to obtain concentration bounds of the following type:
For all τ > 0, the probability that the estimated loss differs
from the true loss by more than τ decreases exponentially (or
at least super-polynomially) fast in n.

For the estimator proposed in [2], we show in Section III
that such concentration results may not be possible for all clean
sequences. This negative result is based on the identification
of pathological sequences for which the difference between
estimated and true loss is at least a fixed constant with
probability at least O(n−

1
2 ). We then show in Section IV that,

with a slight modification, we obtain a loss estimator for which
the DUDE’s estimated loss concentrates around the true loss
provided kM2k = o(n), where M > 1 is the size of the
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alphabet. This result is just a slight generalization of a result
implicit in [3]. In Section V, we improve over this result by
showing that for certain non-pathological clean sequences it
is possible to derive concentration results for the original loss
estimate and k = o(n

1
4 ). We also show that for many common

channels and loss functions the fraction of non-pathological
sequences approaches 1 for k < κ log n, where κ depends
on the channel and loss function. Finally, we point out that
for certain channels, for all input sequences, it is possible to
estimate the optimal value of k using a combination of the
original and modified estimator.

By the above discussion, our ultimate goal is an estimator
that concentrates for k = O(log n), all xn and all channels.
While we fall short of that goal, for some channels, our
concentration results apply to large enough k to permit us
to estimate the optimal k for the DUDE. For other channels,
we identify a key feature in the structure of the loss estima-
tor proposed in [2] that prevents concentration results from
applying to all clean sequences, and point to tools such as
Kutin’s inequality that provide partial concentration results and
potential pathways to the ultimate goal.

The above summarizes our results through Section V.
In Section VI, we introduce a definition of twice-universal
denoising which seeks to capture the desirable property that
the excess loss (over the best sliding window denoiser) of
a universal denoiser be as small as possible simultaneously
for all k in a growing range of sliding window parameters
k ≤ kn, rather than targeting only a single sequence of
parameter values kn (one for each n). Some of the analysis of
the preceding sections is leveraged to construct and analyze
a new universal denoiser based on a deinterleaved version of
the DUDE and the loss estimator of [2] that exhibits improved
twice-universality behavior as compared to a DUDE with
(growing) parameter kn.

II. NOTATION AND PRELIMINARIES

The notation used here is similar to the one in [1]. We
first define the notation employed to refer to vectors, matrices
and sequences. For any vector u its i-th component will be
denoted by ui or u[i]. Often, the indices may belong to any
discrete set of appropriate size. For two vectors u and v, of
the same dimension, u � v will denote the vector obtained
from componentwise multiplication. For any vector or matrix
A, AT will denote transposition and ||A||∞ will denote the
largest absolute value of any entry in the matrix or vector.

For any set A, A∞ denotes the set of one-sided infinite
sequences with A-valued components, i.e., a ∈ A∞ is of the
form a = (a1, a2, . . .), ai ∈ A, i ≥ 1. For a ∈ A∞, let an =
(a1, a2, . . . ,an) and aji = (ai, ai+1, . . . ,aj). More generally,
we will permit the indices to be negative as well, for example,
uk−k = (u−k, . . . ,u0, . . . ,uk). For positive integers k1, k2, and
strings si ∈ Aki , let s1s2 denote the string formed by the
concatenation of s1 and s2. Sometimes we will also refer to
the ith component of a sequence a by a[i].

We now define the parameters associated with the universal
denoising problem, namely, the channel transition probabili-
ties, the loss function, and relevant classes of denoisers. Let the
sequences xn, zn ∈ An respectively denote the noiseless input

to and the noisy output from a discrete memoryless channel
whose input and output alphabet are both A. Let the matrix
Π = {Π(i, j)}i,j∈A, denote the transition probability matrix
of the channel, where Π(i, j) is the probability that the output
symbol is j when the input symbol is i. Also, for j ∈ A, πj
denotes the jth column of Π. We are interested in channels
whose transition matrix Π is invertible. Let M = |A| denote
the size of the alphabet.

Upon observing a noisy sequence zn ∈ An, the denoiser
outputs a reconstruction sequence {x̂t}nt=1 ∈ An. The loss
matrix Λ = {Λ(i, j)}i,j∈A represents the loss function associ-
ated with the denoising problem, namely, Λ(i, j) ≥ 0 denotes
the loss incurred by a denoiser that outputs x̂ = j when the
channel input x = i. Also, for i ∈ A, λi denotes the ith
column of Λ.

An n-block denoiser is a mapping X̂n : An → An. For
any zn ∈ An, let X̂n(zn)[i] denote the ith term of the
sequence X̂n(zn). For a noiseless input sequence xn and the
observed output sequence zn, the normalized cumulative loss
LX̂n(xn, zn) of the denoiser X̂n is

LX̂n(xn, zn) =
1
n

n∑
i=1

Λ
(
xi, X̂

n(zn)[i]
)
.

The estimate of the loss incurred by a denoiser X̂ proposed
in [2] is given by

L̂X̂(zn) =
1
n

n∑
i=1

∑
x∈A

Π−T (x, zi)
∑
z∈A

Λ(x, x̂i(z))Π(x, z)

(1)
where we use x̂i(z) to abbreviate X̂(zi−1

1 · z · zni+1)[i]. It was
shown in [2] that this estimate is unbiased. For a denoiser X̂
such as the DUDE, we are interested in upper-bounding the
probability

Pr
(∣∣∣LX̂(xn, Zn)− L̂X̂(Zn)

∣∣∣ ≥ τ)
for all τ > 0, uniformly in xn, where the use of an upper
case, e.g. Z, denotes that it is a random variable.

Concentration results have been derived for the class of
sliding window denoisers in [3]. A k-th order sliding window
denoiser X̂n is a denoiser with the property that for all
an, bn ∈ An, if ai+ki−k = bj+kj−k then X̂n(an)[i] = X̂n(bn)[j].
Thus, the denoiser is defined by a mapping, f : A2k+1 → A
so that for all zn ∈ An,

X̂n(zn)[i] = f
(
zi+ki−k

)
, i = k + 1, . . . ,n− k.

A k-th order sliding-window-based denoiser X̂n is a de-
noiser with the property that for all zn ∈ An, if zi+ki−k = zj+kj−k
then X̂n(zn)[i] = X̂n(zn)[j]. This is less restrictive than
a sliding window denoiser where, for a given context, the
reconstruction cannot depend on the sequence zn. For a given
k-th order sliding-window-based denoiser X̂n, with each zn,
we can associate a mapping fX̂n,zn : Ak ×A×Ak → A so
that for all zn ∈ An

X̂n(zn)[i] = fX̂n,zn
(
zi−1
i−k, zi, z

i+k
i+1

)
, i = k + 1, . . . ,n− k.

This mapping is made unique by insisting that for all contexts
c2k+1 that do not appear in zn, fX̂n,zn(c−1

−k, c0, c
k
1) = c0.
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The k-th order DUDE is a k-th order sliding-window-based
denoiser but not a k-th order sliding window denoiser.

Let Sk denote the class of kth-order sliding window de-
noisers. It is shown in [3] that for all X̂n ∈ Sk, Π, Λ, and
xn,

Pr
(∣∣∣LX̂n(xn, Zn)− L̂X̂n(Zn)

∣∣∣ ≥ τ)
≤ (k + 1)e

−2(n−2k)τ2

(k+1)||Λ||2∞(1+M||Π−1||∞)2 . (2)

This implies that as long as k = o(n/ log n), the estimated loss
of a given k-th order sliding window denoiser concentrates
around the true loss. While the loss estimator in (1) is well-
behaved for sliding window denoisers, we will show that this
is not always the case for the DUDE.

III. PATHOLOGICAL SEQUENCES FOR THE DUDE

We show that in the case of the DUDE, for some
clean sequences xn, and some constant τ , the probability
Pr
(∣∣∣LX̂(xn, Zn)− L̂X̂(Zn)

∣∣∣ ≥ τ) is lower-bounded by a

function that is Ω(n−
1
2 ). Let X̂n,k

DUDE denote the DUDE with
parameter k. Let A = {0, 1}. Let Π correspond to the binary
symmetric channel with crossover probability δ < 1

2 , and
Λ correspond to the Hamming loss. Note that X̂n,0

DUDE denotes
DUDE of zero order.

Theorem 1: There exists a clean sequence xn and constants
K and τ0 such that

Pr
(∣∣∣LX̂n,0DUDE

(xn, Zn)− L̂X̂n,0DUDE
(Zn)

∣∣∣ ≥ τ0) ≥ K√
n
.

Proof: For any zn ∈ {0,1}n, let T (zn) denote the type
of zn, i.e., the number of 1s in zn. Then (with a little abuse
of notation) the DUDE of zero order is given by

X̂n,0
DUDE(z

n) = X̂n,0
DUDE(z1) · · · X̂n,0

DUDE(zi) · · · X̂n,0
DUDE(zn)

where for z ∈ A

X̂n,0
DUDE(z) =

 0, T (zn) ≤ n2δ(1− δ)
z, n2δ(1− δ) < T (zn) ≤ n(1− 2δ(1− δ))
1, T (zn) > n(1− 2δ(1− δ)).

Let T (zn) = bn2δ(1− δ)c. Then we have

LX̂n,0DUDE
(xn, zn) =

1
n

n∑
i=1

Λ(xi, 0) =
T (xn)
n

.

Observe that for the same zn, if zi = 0, then X̂n,0
DUDE(zi−1

1 · z ·
zni+1)[i] = z, z = 0, 1. Therefore, for all x ∈ {0,1},∑

z∈{0,1}

Λ(x, X̂n,0
DUDE(z

i−1
1 · z · zni+1)[i])Π(x, z) = δ.

Hence,∑
x∈{0,1}

Π−T (x, zi)
∑

z∈{0,1}

Λ(x, X̂n,0
DUDE(z

i−1
1 · z · zni+1)[i])Π(x, z)

= δ
∑

x∈{0,1}

Π−T (x, 0) = δ. (3)

If zi = 1 instead, then X̂n,0
DUDE(zi−1

1 · z · zni+1)[i] = 0, z =
0, 1. Therefore, for all x ∈ {0,1},∑

z∈{0,1}

Λ(x, X̂n,0
DUDE(z

i−1
1 · z · zni+1)[i])Π(x, z) = Λ(x, 0).

Hence,∑
x∈{0,1}

Π−T (x, zi)
∑

z∈{0,1}

Λ(x, X̂n,0
DUDE(z

i−1
1 · z · zni+1)[i]))Π(x, z)

=
∑

x∈{0,1}

Π−T (x, 1)Λ(x, 0) = Π−T (1, 1) =
1− δ
1− 2δ

. (4)

Combining (1), (3), and (4), we obtain that if T (zn) =
bn2δ(1− δ)c, and δ < 1

2 , then

L̂X̂n,0DUDE
(zn) =

(
1− T (zn)

n

)
δ +

T (zn)
n

1− δ
1− 2δ

≥ (1− 2δ(1− δ))δ +
2δ(1− δ)2

1− 2δ
− 1− δ
n(1− 2δ)

> 1 + 2δ(1− δ)

for all sufficiently large n. Since for all X̂ and zn,
LX̂(xn, zn) ≤ 1, we obtain that if T (zn) = bn2δ(1− δ)c

L̂X̂n,0DUDE
(zn)− LX̂n,0DUDE

(xn, zn) > 2δ(1− δ).

The probability of this pathological type depends on the
type T (xn) of the clean sequence. If T (xn) ≈ nδ, then it can
be shown that for some constant K

Pr(T (Zn) = bn2δ(1− δ)c) > K√
n

which proves the theorem.

IV. MODIFIED LOSS-ESTIMATOR FOR THE DUDE

We derive a concentration result for a class of denoisers that
includes the DUDE. This result is a slight generalization of a
result implicit in [3]. In [3], the DUDE’s loss was estimated
as the minimum of the loss estimates as computed using (1),
where the minimization is over all sliding window denoisers
with the same window size. This estimate is identical to the
loss estimate for the DUDE as given by the modified estimator
in this section. For a sliding-window-based denoiser X̂n, let

L̃X̂n(zn) =
1

n− 2k

n−k∑
i=k+1

∑
x∈A

Π−T (x, zi)

×
∑
z∈A

Λ(x, x̃i(z))Π(x, z) (5)

where x̃i(z) = fX̂n,zn
(
zi−1
i−k · z · z

i+k
i+1

)
. Note that this estima-

tor is no longer unbiased. Let S̃k denote the set of all kth
order sliding-window-based denoisers.

Theorem 2: For all X̂n ∈ S̃k, τ > 0, and all xn

Pr
(∣∣∣LX̂n(xn, Zn)− L̃X̂n(Zn)

∣∣∣ ≥ τ)
≤MM2k+1

(k + 1)e
−2(n−2k)τ2

(k+1)||Λ||2∞(1+M||Π−1||∞)2

Proof: Let X̂n be defined by the collection of functions
{fX̂n,zn}, fX̂n,zn : A2k+1 → A. Then, letting LfX̂n,zn
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denote the loss incurred by the k-th order sliding window
denoiser defined by fX̂n,zn , for all zn ∈ An we have
LX̂n(xn, zn) = LfX̂n,zn (xn, zn). Similarly, letting L̂fX̂n,zn
denote the loss estimate, given by (1), for the k-th order sliding
window denoiser defined by fX̂n,zn , it follows from (5) that,
for all zn ∈ An, L̃X̂n(zn) = L̂fX̂n,zn (zn). Therefore, for all
clean sequences xn ∈ An, we have

Pr
(∣∣∣LX̂n(xn, Zn)− L̃X̂n(Zn)

∣∣∣ ≥ τ)
= Pr

(∣∣∣LfX̂n,Zn (xn, Zn)− L̂fX̂n,Zn (Zn)
∣∣∣ ≥ τ). (6)

With a slight abuse of notation, let Sk also denote the set of
all functions {g : A2k+1 → A}, and let Eg denote the event
that fX̂n,Zn is g. Then

Pr
(∣∣∣LfX̂n,Zn (xn, Zn)− L̂fX̂n,Zn (Zn)

∣∣∣ ≥ τ)
=
∑
g∈Sk

Pr
(
Eg ∩

∣∣∣Lg(xn, Zn)− L̂g(Zn)
∣∣∣ ≥ τ)

≤
∑
g∈Sk

Pr
(∣∣∣Lg(xn, Zn)− L̂g(Zn)

∣∣∣ ≥ τ)
≤MM2k+1

(k + 1)e
−2(n−2k)τ2

(k+1)||Λ||2∞(1+M||Π−1||∞)2

where the last inequality follows from (2) and the fact that
|Sk| ≤MM2k+1

. Substituting this in (6) completes the proof.

Theorem 2 implies that for all τ > 0, and all sliding-
window-based denoisers the probability that the estimation
error exceeds τ vanishes with n as long as kM2k+1 = o(n),
which includes k = γ1 log n where γ1 < (2 logM)−1. We
note that Theorem 2 also holds for an estimator that is based
on the posterior probability as computed by the DUDE.

V. NON-PATHOLOGICAL SEQUENCES

In this section, we derive a concentration bound for all
“non-pathological” clean sequences. The bound vanishes with
n even when k is only required to be o(n

1
4 ). We employ a

martingale inequality derived by Kutin [4], a simplified version
of which is stated below. Let f be a function of random
variables Zn ∈ An. We say that f is strongly difference
bounded by (τ1, τ2, δ) if for any zn, z̃n ∈ An differing only in
one co-ordinate, we have |f(zn)−f(z̃n)| ≤ τ1, and moreover,
|f(zn)− f(z̃n)| ≤ τ2 provided zn is not in a “bad” subset B
of An such that Pr(Zn ∈ B) = δ. For any f that is strongly
difference bounded by (τ1, τ2, δ), Kutin’s inequality states that
for any τ > 0,

Pr(|f(Zn)− E(f(Zn))| ≥ τ) ≤ 2e
− τ2

8nτ22 +
2nτ1δ
τ2

.

Observe that τ2 must tend to zero with n for this bound
to be non-trivial. We will show that for all non-pathological
sequences xn, f(zn) given by LX̂n,kDUDE

(xn, zn) − L̃X̂n,kDUDE
(zn)

is strongly difference bounded and therefore a concentration
result such as the one above holds.

First, we define the “bad” set B, for which we require the
following notation. For 2k < n, an ∈ An, c−1

−k, c
k
1 ∈ Ak,

let m(an, c−1
−k, c

k
1) denote the M -dimensional column vector

whose c0-th component, c0 ∈ A, is m(an, c−1
−k, c

k
1)[c0] =

|{i : k + 1 ≤ i ≤ n − k, ai+ki−k = ck−k}|, the number of
occurrences of the string ck−k in an. These counts are the
basis for DUDE’s denoising decision. Let M denote the set
of all M -dimensional vectors with non-negative components
that sum to at most n. For a, b, c ∈ A, let

M∗(a, b, c)def= {m ∈M : (λa − λb)T
(
(Π−Tm)� πc

)
= 0}

denote the M -dimensional semi-hyperplane that contains all
the m’s that might fall on a decision boundary of the DUDE
involving reconstruction symbols a, b and noisy symbol c. The
“bad” set B is defined to be the set of all zn ∈ An such that at
least one of the counts m(zn, c−1

−k, c
k
1) could fall within M∗

if at most one co-ordinate of zn is modified. Formally, given
α > 0,

B
def= {zn : ∃ck−k, a, b, s.t. m(zn, c−1

−k, c
k
1)[c0] ≥ nα and

∃m∗ ∈M∗(a, b, c0), ||m(zn, c−1
−k, c

k
1)−m∗||1 ≤ 2k + 1}.

We term a clean sequence “non-pathological” if the ex-
pected values of the counts m, if significant, are bounded
away from M∗(a, b, c) for all a, b, c. Formally, xn is said
to be “non-pathological” with parameter γ, if for all ck−k,
if E

[
m(Zn, c−1

−k, c
k
1)[c0]

]
≥ nα

2(1+γ) , then for all a, b, and
m∗ ∈M∗(a, b, c0),

||E
[
m(Zn, c−1

−k, c
k
1)
]
−m∗||1 >γ||E

[
m(Zn, c−1

−k, c
k
1)
]
||1

+ (2k + 1) +
Mnα

2
. (7)

We will show that for non-pathological sequences, the proba-
bility that the noisy sequence Zn is in B vanishes.

Lemma 3: For all “non-pathological” xn with 0 < γ < 1

Pr(Zn ∈ B) ≤ β1n
1−αe−β2

nα

2k+1

where β1, β2 are positive functions of γ.
Proof outline: We abbreviate m(Zn, c−1

−k, c
k
1) by m. Let

Z ∈ B and let ck−k be such that m[c0] ≥ nα, and let a, b ∈ A
and m∗ ∈M(a, b, c0) be such that ||m(zn, c−1

−k, c
k
1)−m∗||1 ≤

2k + 1. Applying the triangle inequality this implies that

||m∗ − E[m]||1 − ||E[m]−m||1 ≤ 2k + 1.

If E[m[c0]] ≥ nα

2(1+γ) then since xn is “non-pathological”,
by (7)

||E[m]−m||1 > γ||E[m]||1 +
Mnα

2
.

Therefore there exists c ∈ A such that

|m[c]− E[m[c]]| > γE[m[c]] +
nα

2
. (8)

If for all c ∈ A, E[m[c0]] < nα

2(1+γ) , using the fact that
m[c0] ≥ nα it is easy to see that (8) holds for c = c0.

Let mj(zn, c−1
−k, c

k
1), 0 ≤ j ≤ 2k, abbreviated by mj ,

denote the M -dimensional column vector whose c0-th com-
ponent, c0 ∈ A, is mj(zn, c−1

−k, c
k
1)[c0] = |{i : k + 1 ≤ i ≤

n−k, i mod (2k+ 1) = j, zi+ki−k = ck−k}|. From (8) it is easy
to see that there exists 0 ≤ j ≤ 2k and c0 ∈ A such that

|mj [c0]− E[mj [c0]]| > max{γE[mj [c0]], (4k + 2)−1nα}.
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Therefore,

Pr(Zn ∈ B) ≤ Pr
(
∃c−k−k, j s.t. |mj [c0]− E[mj [c0]]|
≥ max{γE[mj [c0]], (4k + 2)−1nα}

)
.

Observing that each mj [c0] is the sum of independent 0 − 1
random variables, and applying the union bound and Theorem
2.3(b) in [5], this can be reduced to

Pr(Zn ∈ B) ≤ β1n
1−αe−β2

nα

2k+1

where β1 and β2 are positive functions of γ.
We will now show that both the loss of the DUDE,

LX̂n,kDUDE
, and the loss estimator, L̂X̂n,kDUDE

, are strongly difference
bounded. Let zn and z̃n be two sequences that differ only in
one co-ordinate. The following lemma bounds the change in
loss when a single co-ordinate of zn is modified.

Lemma 4: For all xn, and all zn

|LX̂n,kDUDE
(xn, zn)− LX̂n,kDUDE

(xn, z̃n)| ≤ ||Λ||∞,

and for all zn /∈ B

|LX̂n,kDUDE
(xn, zn)− LX̂n,kDUDE

(xn, z̃n)|

≤ (4k + 2)||Λ||∞(nαM + 1)
n− 2k

.

Proof: For all, xn, zn, and any denoiser X̂ , 0 ≤
LX̂(xn, zn) ≤ ||Λ||∞, hence the first result. Observe that
changing one co-ordinate affects the reconstruction of a sym-
bol in three ways: it might change the context of that symbol,
the symbol itself or it might change the number of occurrences
of the context of the symbol sufficiently to affect the DUDE’s
decision for that context. Since changing one co-ordinate
changes the context of at most 2k+ 1 symbols, the change in
loss due to change in context or the symbol itself is at most
(2k + 1)||Λ||∞.

We now bound the change in loss due to the third event.
Modifying one symbol modifies the counts m(zn, c−1

−k, c
k
1)[c0]

of at most 4k+ 2 contexts ck−k. Let ck−k be one such affected
context. Case 1: If for all c ∈ A, m(zn, c−1

−k, c
k
1)[c] < nα,

then the number of indices i such that zi−1
i−k = z̃i−1

i−k = c−1
−k,

zi+ki+1 = z̃i+ki+1 = ck1 , and X̂n,k
DUDE(zn)[i] 6= X̂n,k

DUDE(z̃n)[i] is at
most Mnα. Case 2: Suppose there exists c ∈ A such that
m(zn, c−1

−k, c
k
1)[c] ≥ nα. Note that for all c−1

−k, ck1 ,

||m(zn, c−1
−k, c

k
1)−m(z̃n, c−1

−k, c
k
1)||1 ≤ 2k + 1.

Since zn /∈ B, for all a, b, c both (λa − λb)T(
(Π−Tm(zn, c−1

−k, c
k
1))� πc

)
and (λa − λb)T(

(Π−Tm(z̃n, c−1
−k, c

k
1))� πc

)
have the same sign. Since

X̂n,k
DUDE is given by

X̂n,k
DUDE(z

n)[i] = arg min
x̂∈A

λTx̂
(
(Π−Tm(zn, zi−1

i−k, z
i+k
i+1 ))� πzi

)
,

if i is an index such that zi−1
i−k = z̃i−1

i−k = c−1
−k and zi+ki+1 =

z̃i+ki+1 = ck1 , then X̂n,k
DUDE(zn)[i] = X̂n,k

DUDE(z̃n)[i]. In words, the
reconstruction and therefore the loss is unaffected.

Combining both cases and the fact that the number of
affected contexts is at most 4k + 2, we obtain the result.

Following arguments similar to the proof of Lemma 4 we
obtain the following lemma.

Lemma 5: For all xn, and all zn

|L̂X̂n,kDUDE
(zn)− L̂X̂n,kDUDE

(z̃n)| ≤ 2M ||Π−1||∞||Λ||∞,

and for all zn /∈ B
|L̂X̂n,kDUDE

(xn, zn)− L̂X̂n,kDUDE
(xn, z̃n)|

≤ (4k + 2)M ||Π−1||∞||Λ||∞(nαM + 1)
n− 2k

.

Combining Lemmas 3, 4 and 5, and Kutin’s inequality we
obtain the following result.

Theorem 6: For all “non-pathological” xn with 0 < γ < 1,
and f(zn) = LX̂n,kDUDE

(xn, zn)− L̂X̂n,kDUDE
(zn), we have

Pr(|f(Zn)| ≥ τ) ≤2e
− (n−2k)1−2ατ2

8((4k+2)||Λ||∞M(1+M||Π−1||∞))2

+
2β1n

3−2αe−β2
nα

2k+1

(4k + 2)M(1 +M ||Π−1||∞)
where β1, β2 are positive functions of γ.
Observe that for all τ > 0, the probability of estimation error
≥ τ , goes to zero as long as k = o(nα) for 0 < α < 1

4 .
Further, we show that for many channels and loss functions,

the fraction of sequences that are “non-pathological” tends
to one as long as k < κ log n where κ depends on the
channel. Let P∗ denote the M -dimensional column vector
whose entries are all 1/M and let N (γ) denote the set of
non-pathological clean sequences with parameter γ > 0.

Theorem 7: If Π,Λ are such that for all a, b, c ∈ A,
ΠTP∗ /∈ M∗(a, b, c), then there exists κ > 0 such that for
k < κ log n, |N (γ)| = Mn(1− o(1)).
Many channels and loss functions, e.g. BSC with crossover
probability 0 < δ < 1

2 and the Hamming loss function, satisfy
the requirement of Theorem 7.

Theorem 2 implies that for the loss estimator L̃X̂n,kDUDE
, if

k = γ1 log n where γ1 < (2 logM)−1, the estimated loss
concentrates around the true loss. Extending k beyond this
value is hard due to the difficulty in bounding the bias of
L̃X̂n,kDUDE

. However, one can redefine the notion of the “bad” set
introduced in this section, to be the set of sequences where the
number of occurrences of some context exceeds nα, α < 1

2 . In
that case, if k = γ2 log n where γ2 >

1−α
−2 log ||Π||∞ , then for the

loss estimator L̂X̂n,kDUDE
the estimated loss concentrates around

the true loss. Thus, for channels where ||Π||∞ < M−
1
2 (e.g.,

BSC with crossover probability between 1 − 2−
1
2 and 2−

1
2 ),

one can use a combination of L̃X̂n,kDUDE
and L̂X̂n,kDUDE

to select the
optimal k. For other channels, there remains a gap between
the two critical values of k pointed out here and in this regime
we can prove concentration only if the noiseless sequence is
“non-pathological”.

VI. TWICE-UNIVERSAL DENOISING

It was shown in [1] that for all clean sequences xn,
the DUDE with parameter k satisfies, for some constant C
independent of k and n,

E
[
LX̂n,kDUDE

(xn, Zn)−Dk(xn, Zn)
]
≤

C

√
M2kk

n
(9)
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where Dk(xn, Zn) denotes the loss of the best sliding denoiser
for the clean and noisy sequences xn and Zn and the expec-
tation is with respect to the noise distribution. Consider any
increasing sequence kn for which the bound (9) with k = kn
converges to zero. The sequence of DUDEs with parameter
kn thus satisfies

E
[
LX̂n,knDUDE

(xn, Zn)−Dk(xn, Zn)
]
≤ C

√
M2knkn

n
= o(1),

(10)
which holds simultaneously for all k ≤ kn, since Dk(xn, Zn)
is decreasing in k for any fixed xn and Zn. Given such a
sequence kn, we shall say that a sequence of denoisers X̂n is
“twice-universal” with penalty ε(k, n) if its loss can be proved
to satisfy

E
[
LX̂n(xn, Zn)−Dk(xn, Zn)

]
≤ C ′

√
M2kk

n
+ ε(k, n)

(11)
for all sufficiently large n and all xn and all k ≤ kn
simultaneously and some constant C ′ independent of these
parameters and xn. Thus, the DUDE with parameter kn is
provably twice universal with penalty

εD(n, k) = C

√
M2knkn

n
− C

√
M2kk

n

≈ C
√
M2knkn

n

where the latter approximation holds for k << kn.
Given kn as above, the main result of this section is a de-

noiser dubbed the TU-DUDE and denoted as X̂n
TU that is prov-

ably twice universal with a penalty εTU(k, n) = C̃kn(kn/n)1/4,
a big improvement over εD(n, k) when the bound (10) de-
creases substantially slower than O(log n(log n/n)1/4).

The TU-DUDE is based on the D-DUDE, a deinterleaved
version of the DUDE algorithm. For j = 0, . . . , k, define
m̃j(zn, c−1

−k, c
k
1) as

m̃j(zn, c−1
−k, c

k
1)[c0] = |{i : k + 1 ≤ i ≤ n− k,

i = j (mod k+1), zi+ki−k = ck−k}|

for c0 ∈ A. The D-DUDE with parameter k denoises accord-
ing to

X̂n,k
D-DUDE(z

n)[i] =

arg min
x̂∈X

λTx̂
(
(Π−T m̃j(i)(zn, zi−1

i−k, z
i+k
i+1 ))� πzi

)
, (12)

where j(i) ∈ {0, . . . , k} and satisfies i = j(i) (mod k+1).
Thus, the D-DUDE denoises the i-th symbol using only con-
text occurrences for which the center-symbol index coincides
with i modulo k+1. It can be shown that the D-DUDE satisfies
all of the performance guarantees proved in [1] for the DUDE,
including (9) above. In fact, the proofs in [1] actually involve
a deinterleaving step.

The TU-DUDE, in turn, evaluates the estimated loss (1) of
the D-DUDE for all parameter values k ≤ kn and denoises
using the minimizing value. Formally, given kn, the TU-
DUDE is defined as

X̂n
TU(zn)[i] = X̂

n,k̂∗n
D-DUDE(zn)[i] (13)

where
k̂∗n = arg min

k≤kn
L̂X̂n,kD-DUDE

(zn). (14)

Theorem 8: For the binary case M = 2 and Hamming
loss1 the TU-DUDE, as defined in (13), is twice-universal with
penalty εTU(k, n) = C̃kn(kn/n)1/4 for a constant C̃.

Proof: In the first part of the proof, a bound is obtained on
the expected error in estimating LX̂n,kD-DUDE

(xn, zn), the actual

loss of X̂n,k
D-DUDE, using the estimate L̂X̂n,kD-DUDE

(zn). This bound
is then used, along with the above noted performance bounds
on X̂n,k

D-DUDE, to establish the stated twice-universality properties
of X̂n

TU.
For j = 0, . . . , k, let

∆j(xn, zn) =
∑

i:i=j (mod k+1)

Λ(xi, X̂n,k
D-DUDE(z

n)[i])− Λ̂i(zn)

where

Λ̂i(zn) =∑
x∈A

Π−T (x, zi)
∑
z∈A

Λ(x, X̂n,k
D-DUDE(z

i−1
1 , z, zni+1))Π(x, z).

Note the identity

LX̂n,kD-DUDE
(xn, zn)− L̂X̂n,kD-DUDE

(zn) =
1
n

k∑
j=0

∆j(xn, zn). (15)

From the above, it follows that

E(|LX̂n,kD-DUDE
(xn, Zn)− L̂X̂n,kD-DUDE

(Zn)|) ≤

1
n

k∑
j=0

E(|∆j(xn, Zn)|). (16)

Let Sj
4
= {i : i 6= j (mod k+1)}. By conditioning on ZSj

4
=

{Zi : i ∈ Sj}, it follows that

E(|∆j(xn, Zn)|) = E(E(|∆j(xn, Zn)|
∣∣ZSj ))

≤ max
zSj

E(|∆j(xn, Zn)|
∣∣ZSj = zSj ) (17)

where zSj is a sequence over A indexed by elements of Sj .
Notice that for any index i ∈ Scj , {i−k, i−k+1, . . . , i−1} ⊂
Sj and {i+1, i+2, . . . , i+k} ⊂ Sj . Define S̃j,c−1

−k,c
k
1
(zSj )

4
=

{i ∈ Scj : zi−1
i−k = c−1

−k, z
i+k
i+1 = ck1} and let

∆̃j,c−1
−k,c

k
1
(xn, zn) =∑

i∈S̃
j,c
−1
−k,c

k
1
(zSj )

Λ(xi, X̂n,k
D-DUDE(z

n)[i])− Λ̂i(zn) (18)

so that

∆j(xn, zn) =
∑

(c−1
−k,c

k
1 )∈A2k

∆̃j,c−1
−k,c

k
1
(xn, zn). (19)

It follows from the definitions of X̂n,k
D-DUDE and the corresponding

L̂X̂n,kD-DUDE
that the random variables ∆̃j,c−1

−k,c
k
1
(xn, Zn) for fixed

1Some form, perhaps the same form, should hold for M > 2 and general
distortion.
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j and (c−1
−k, c

k
1) ∈ A2k are zero mean and conditionally

independent given ZSj = zSj . Moreover, each such random
variable is conditionally distributed like the difference between
the actual and estimated loss for a zero-th order DUDE
operating on the subsequence of noisy symbols with indices
in S̃j,c−1

−k,c
k
1
(zSj ). An extension of the analysis in Section III

shows that the conditional variance

σ2
j,c−1
−k,c

k
1

4
= E(∆̃2

j,c−1
−k,c

k
1
(xn, Zn)

∣∣ZSj = zSj )

satisfies

σ2
j,c−1
−k,c

k
1
≤ b1|S̃j,c−1

−k,c
k
1
(zSj )|3/2

for some constant b1. The conditional independence of the
∆̃j,c−1

−k,c
k
1
(xn, Zn) then implies (from (19)) that the condi-

tional variance of ∆j(xn, Zn) denoted by

σ2
j
4
= E(∆2

j (x
n, Zn)

∣∣ZSj = zSj ) (20)

satisfies

σ2
j =

∑
(c−1
−k,c

k
1 )∈A2k

σ2
j,c−1
−k,c

k
1

≤ b1
∑

(c−1
−k,c

k
1 )∈A2k

|S̃j,c−1
−k,c

k
1
(zSj )|3/2 (21)

Noting that ∑
(c−1
−k,c

k
1 )∈A2k

|S̃j,c−1
−k,c

k
1
(zSj )| ≤ n

k + 1
+ 1,

it follows from the Schur convexity of the function
∑
i x

3/2
i

that, subject to this constraint, (21) can be no bigger than
((n/(k + 1)) + 1)3/2, so that

σ2
j ≤ b2

(n
k

)3/2

(22)

for some constant b2 independent of k, n and j.
This, together with Jensen’s inequality, implies

E(|∆j(xn, Zn)|
∣∣ZSj = zSj ) ≤ (σ2

j )1/2 (23)

≤ (b2)1/2
(n
k

)3/4

(24)

(25)

and this last step, together with (16) and (17), implies

E(|LX̂n,kD-DUDE
(xn, Zn)− L̂X̂n,kD-DUDE

(Zn)|)

≤ (b2)1/2
k + 1
n

(n
k

)3/4

= b3

(
k

n

)1/4

(26)

for some constant b3.
The final step is to relate this bound on the expected error

of the estimated loss to the performance of X̂n
TU. To this end,

note that

E(LX̂nTU
(xn, Zn)−Dk(xn, Zn))

= E(LX̂n,kD-DUDE
(xn, Zn)−Dk(xn, Zn))

+ E(LX̂nTU
(xn, Zn)− LX̂n,kD-DUDE

(xn, Zn))

≤ C
√
M2kk

n
+ E(LX̂nTU

(xn, Zn)− LX̂n,kD-DUDE
(xn, Zn))

(27)

where (27) follows from the fact noted above that the DUDE’s
performance bound (9) also holds for the D-DUDE.

In analogy to k̂∗n defined in (14), let

k∗n = arg min
k≤kn

LX̂n,kD-DUDE
(xn, zn), (28)

be the actual loss minimizing context parameter for the D-
DUDE. It is thus a function of both the clean and noisy
sequences, unlike its counterpart k̂∗n, which is a function only
of the noisy sequence. We then have the following

E(LX̂nTU
(xn, Zn)− LX̂n,kD-DUDE

(xn, Zn))

= E(L
X̂
n,k̂∗n
D-DUDE

(xn, Zn)− L
X̂
n,k∗n
D-DUDE

(xn, Zn))+

E(L
X̂
n,k∗n
D-DUDE

(xn, Zn)− LX̂n,kD-DUDE
(xn, Zn)) (29)

≤ E(L
X̂
n,k̂∗n
D-DUDE

(xn, Zn)− L
X̂
n,k∗n
D-DUDE

(xn, Zn)) (30)

= E(L
X̂
n,k̂∗n
D-DUDE

(xn, Zn)− L̂
X̂
n,k̂∗n
D-DUDE

(xn, Zn))+

E(L̂
X̂
n,k̂∗n
D-DUDE

(xn, Zn)− L
X̂
n,k∗n
D-DUDE

(xn, Zn)) (31)

≤ E(L
X̂
n,k̂∗n
D-DUDE

(xn, Zn)− L̂
X̂
n,k̂∗n
D-DUDE

(xn, Zn))+

E(L̂
X̂
n,k∗n
D-DUDE

(xn, Zn)− L
X̂
n,k∗n
D-DUDE

(xn, Zn)) (32)

≤ 2
kn∑
k=0

E(|LX̂n,kD-DUDE(x
n,Zn) − L̂X̂n,kD-DUDE

(xn, Zn)|) (33)

≤ 2b3kn

(
kn
n

)1/4

(34)

where (29) follows from (13), (30) follows from (28), (32)
follows from (14), (33) follows by taking absolute values and
summing absolute estimated loss errors over all k, not just
the two in the previous step, and (34) follows from (26). This
proves the theorem with C̃ = 2b3.
Improving the twice-universality penalty. The above proof
suggests that it may be possible to improve the twice-
universality penality through a more refined analysis. In par-
ticular, the worst case conditional variance bound identified
in (22) corresponds to the case when the conditioning subse-
quence zSj forces all contexts to be the same. However, in
this case, Jensen’s inequality, as applied in (23) to bound the
absolute deviation in terms of the variance, is weak. More
specifically, an extension of the analysis of Section III reveals
that the true behavior of the expected absolute deviation of
the (unnormalized) estimated loss in this case is only O(n1/2)
and not O(n3/4), as implied by (24).

The following intuitive considerations give some idea of the
improvement in the twice-universality penalty that might be
possible by tightening the above step in the proof. Consider
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a conditioning subsequence zSj that results in mn equally
occuring contexts of length n/mn. If mn increases at a suf-
ficient rate the mn i.i.d. random variables ∆̃j,c−1

−k,c
k
1
(xn, Zn)

corresponding to the occuring contexts will satisfy a central
limit theorem. Let Wi, i = 1, . . . ,mn denote these random
variables. We can use Lyapunov’s condition [6] to determine
such a central limit theorem inducing mn. Letting σWi denote
the standard deviation of each Wi, Lyapunov’s condition
specialized to this application is that for some δ > 0

mn

(
√
mnσWi

)2+δ
E(|Wi|2+δ) = o(1) (35)

in which case (1/
√
mn)

∑mn
i=1Wi converges in distribution to

N(0, σ2
Wi

). As noted in the proof above,

σ2
Wi

= O

([
n

mn

]3/2)
and through similar considerations, it can be shown that

E(|Wi|2+δ) = O

([
n

mn

]2+δ√
mn

n

)
.

Inserting these into (35) and simplifying reduces to the
condition that mn grows faster than n1/5 in the sense that
n1/5/mn = o(1). The corresponding standard deviation of
the sum of the Wi could thus grow almost as fast

√
mnσWi

= O(n1/10(n4/5)3/4) = O(n7/10). After normalizing by n,
this yields a standard deviation of O(n−3/10). Since for a
normally distributed random variable, the standard deviation
and absolute deviation are of the same order, the above
analysis would suggest, up to a polynomial factor in kn,
O(n−3/10) (as opposed to O(n−1/4) in the theorem state-
ment) as a lower limit to the twice universality penalty that
might be obtainable through a refinement of the Jensen’s
inequality/Schur convexity step in the proof of Theorem 8.
We leave such refinements to future work and note that
any additional improvements beyond O(n−3/10) would likely
require a significantly different approach.
Why D-DUDE and not DUDE? The technique underlying
the proof of Theorem 8 does not directly apply to a denoiser
based on the original DUDE with a context parameter selected
using the loss estimator. The difficulty is that in a DUDE based
denoiser, the random variables ∆̃j,c−1

−k,c
k
1
(xn, Zn) for different

contexts may no longer be conditionally independent given
ZSj , thereby greatly complicating the analysis of the variance
of their sum. The D-DUDE, on the other hand, induces such a
conditional independence. Whether or not replacing D-DUDE
with the original DUDE in X̂n

TU continues to yield the twice-
universality properties of Theorem 8 is thus an open question.
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