

Keyword(s):

Abstract:

©

Making Policy Decisions Disappear into the User's Workflow

Alan H. Karp, Marc Stiegler

HP Laboratories
HPL-2009-341

Usable security

Complaints of security interfering with getting work done are commonplace. They often arise when users
are distracted from their tasks to make policy decisions. We have identified what is missing from earlier
security interaction designs that leads to these interruptions. Explicitly representing policy decisions in the
user interface and pro-viding controls for changing those policies has allowed us to reliably infers users'
desired policy decisions from actions they take to get their work done. This paper describes the underlying
principles and how they resulted in an interaction design that never interferes with the user's work.

External Posting Date: October 6, 2009 [Fulltext] Approved for External Publication
Internal Posting Date: October 6, 2009 [Fulltext]

Copyright 2009 Hewlett-Packard Development Company, L.P.

Making Policy Decisions Disappear into the User’s
Workflow

Alan H. Karp

 Hewlett-Packard Laboratories

 Palo Alto, CA

 alan.karp@hp.com

Marc Stiegler

 Hewlett-Packard Laboratories

 Palo Alto, CA

 marc.d.stiegler@hp.com

ABSTRACT

Complaints of security interfering with getting work done

are commonplace. They often arise when users are dis-

tracted from their tasks to make policy decisions. We have

identified what is missing from earlier security interaction

designs that leads to these interruptions. Explicitly

representing policy decisions in the user interface and pro-

viding controls for changing those policies has allowed us

to reliably infers users’ desired policy decisions from ac-

tions they take to get their work done. This paper describes

the underlying principles and how they resulted in an inte-

raction design that never interferes with the user’s work.

Author Keywords

Usable security

ACM Classification Keywords

D.4.6 [Security and Protection] Access Controls; H.5.2

[User Interfaces]: User-centered design

INTRODUCTION

In spite of many years spent including security early in the

design process, most people agree with the statement,

“There is an inevitable tension between security and usa-

bility.” Clearly, that alone isn’t enough to avoid the ten-

sion. Either the tension is inevitable, or something is miss-

ing in the way security is included in user interactions.

The user interfaces we encounter daily often interrupt our

work to ask us to make policy decisions. Open this danger-

ous file type? Connect to this server? Grant access to that

file? The interaction designer is asking those questions

because only the user is in a position to know what policy

to apply. Fortunately, while that observation is true, we

don’t need to ask the user. The key contribution of this

paper is to present principles for interaction designs that

make it possible to infer the user’s desired policy without

asking.

MAKING SECURITY DISAPPEAR

There are three dimensions to avoiding the need to trade

usability for security – Information, Expressiveness, Con-

trol. First, we need to provide users with sufficient infor-

mation to make intelligent policy decisions. If we don’t,

they are likely to be unhappy with the result of having made

policy decisions without being able to understand their im-

plications. Second, we need to support the modes of shar-

ing that users need to get their work done. If we don’t, they

will find the workarounds required to do their jobs an im-

pediment. Finally, we must provide an interaction design

that lets users make these decisions without interrupting

their work. Otherwise, they won’t like having to focus their

attention on something extraneous to the task at hand.

The systems in common use today get a low score on each

axis of this three dimensional space. Windows will warn

you that a spreadsheet contains a macro that could be dan-

gerous, but it doesn’t tell you what harm that macro might

do, nor does it tell you what benefit it provides. The access

control mechanisms used by Linux limit the policies we can

express. For example, it is impossible to delegate a read

only permission if you don’t also have the authority to up-

date the access control list, in which case you effectively

have write authority. In the third dimension, the controls to

express a policy decision are almost always independent of

the application. Granting another user permission to read

one of your files requires leaving your application to

change the access control list. We can do better.

Dimension 1: Information

There are 10 guidelines for building systems that enable

users to make wise policy decisions [13], most of which are

related to giving users the information they need. They are

just common sense, such as, “Maintain accurate awareness

of others’ authority relevant to user decisions.” and

“Present objects and actions using distinguishable, truthful

appearances.” Surprisingly, most of the systems in com-

mon use implement none of them. For example, a file di-

alog box on a conventional desktop environment doesn’t

tell the user what application it is attached to, leaving users

to guess their exposure.

Submitted to CHI 2010, April 10–15, 2010, Atlanta,Georgia USA.

The challenge for the interaction designer is finding a way

to represent this information in a manner that is meaningful

in the application context. Consider the file dialog box.

We can let the user know which application is asking for

the file access by putting its name in the title bar. But what

if there are two instances running, one on the local machine

and one from a remote desktop? Listing the process ID

provides the information, but not in the application context.

A better approach is to use graphic elements to connect the

dialog box with the requesting window.

Dimension 2: Expressiveness

People need to cooperate to get their jobs done. Often this

cooperation is with others, but quite frequently users share

with themselves across both applications and machines.

The security community focuses on building walls. Not

surprisingly, the mechanisms they choose often make coop-

eration hard. When these mechanisms block cooperation,

security makes it harder for people to get their work done.

Users become frustrated when the system doesn’t let them

express what to them are simple patterns of cooperation.

There are six aspects of sharing we rely on in the physical

world that we have learned to live without online.
1

 Dynamic: No third party needed to approve a change.

 Cross-domain: No one party is in charge.

 Attenuated: You can have a dollar, but not my wallet.

 Chained: A delegated right can be further delegated.

 Composable: Combine rights from different sources.

 Accountable: Who gave a right as well as who used it.

Each time the interaction design blocks one of these modes

of sharing, the user must find a workaround. Despite the

abundance of collaboration software products, it is likely

that email is so widely used for collaborating on documents

because it supports all six aspects of sharing.

Examples of systems that don’t support rich sharing ab-

ound. One of us has a spouse who manages the family ac-

counts, but that spouse can’t get to the employee’s electron-

ic pay stub because it’s behind the company firewall (cross-

domain). HP managers share their Windows domain cre-

dentials with their admins, so the admins can take care of

minor budgeting and personnel matters (attenuated). The

implementation of simple service chaining done for the US

Navy can achieve either the desired functionality (chained)

or the required security (composable), but not both at the

same time [5]. Microsoft Live Mesh [8] supports two of

the six aspects (dynamic, cross-domain), explicitly does not

support two (attenuated, accountable), and allows two only

if users are willing to share essentially all their rights

(chained, composable).

1
 We have been surprised by our inability to find references

for such a list in either the computer science or the sociolo-

gy literature.

Dimension 3: Control

Users must be able to express their policy decisions in order

to get their work done. One approach, dubbed by some the

“Vista UAC nightmare,” is to open a dialog box for every

decision, which leads to Just-Say-Yes conditioning [4].

Such security by admonition may absolve the software ven-

dor from blame when something goes wrong, but it inter-

feres with the user’s work, often without enforcing the us-

er’s policy.

CapDesk [11] demonstrates that we can do better. It uses

capabilities (See the Appendix.), because that is the only

mechanism that has been shown to support all six aspects of

sharing, while enforcing access control at extremely fine

granularity. CapDesk adapts the fundamental property of

capabilities, combining designation with authorization, to

the interaction design by using acts of designation to denote

the desired authorizations. For example, in CapDesk drag-

ging the icon for a file onto the icon for an editor designates

that the user wants to use that editor with the file. CapDesk

infers that the user wants to grant the process running the

application the authority to read and write the designated

file. The result is that the user is not distracted from the task

of editing the file to specify the desired policy.

One shortcoming of CapDesk, which is imposed by the

desire to emulate a standard desktop user experience, is that

there is no place within the application context to represent

the policy decisions that have been made or to put controls

to modify those decisions. Some of them are represented

implicitly. For example, the user knows an application has

permission to edit a file by looking at the application win-

dow to see what file it is editing. The user can revoke that

access only by closing that instance of the editor.

POLICY DECISIONS AS CONTROLLABLE OBJECTS

Policy decisions are subject to change, and we don’t want

to interfere with the user’s work when they do. CapDesk

replicates an existing user experience, that of a convention-

al desktop. That constraint limits the policy decisions that

can be expressed directly in the user interface. We had

more freedom with the design of SCoopFS [6],
2
 a tool for

collaborating on a document. We used this freedom to de-

sign an interaction that lets us infer users’ policy decisions

as well as changes to those previously made.

SCoopFS was designed to get a high value on the informa-

tion axis, and achieved 8+ out of 10. In addition, SCoopFS

uses capabilities because we know that lets us support all

six aspects of sharing, giving it a high score on the expres-

siveness axis. Like CapDesk, SCoopFS uses acts of desig-

nation in the user interface to infer acts of authorization.

However, SCoopFS scores higher on the control axis by

representing policy decisions as elements in the applica-

tion’s user interface and providing application specific me-

chanisms for manipulating these policies.

2
 Simple Cooperative File Sharing, the “F” is silent.

We have distilled what needs to be done to make user’s

policy decisions disappear into their workflow into the fol-

lowing four principles.

1. Every object separately controllable by the user should

be represented in the application user interface by a ca-

pability that is uniquely distinguishable to the user.

2. Every possible policy decision on an object should

appear as a unique affordance in the application user

interface.

3. Every policy decision the user has made should be

represented in the application user interface by a capa-

bility that is uniquely distinguishable to the user.

4. Every possible change to a previously made policy

decision should appear in the application user interface

as a unique affordance.

It is the support for the last two of these principles that dis-

tinguishes SCoopFS from earlier work, such as CapDesk.

These principles separate the concepts of resources, opera-

tions on resources, policy decision, and operations on poli-

cy decisions. So, a file is a “separately controllable object,”

granting read permission on that file is a “policy decision”

accomplished with some affordance in the user interface,

and revoking that grant is a “change to a previously made

policy decision” also accomplished with some affordance in

the interface. If the interaction design follows these prin-

ciples, every action taken in the user interface that affects

policy will be unique. Since there is no ambiguity in de-

termining the user’s intent, there is no need to interrupt the

user’s work with a question.

Figure 1 shows an application of the last two of these prin-

ciples. The second line in the grid shows that “Me,” the

SCoopFS pseudonym for the user, granted read and write

permission (the double headed arrow under “Mode”) for the

file “decideRightsSetup.zip” to his Pal “AlanXP” around

Noon on November 25. The grayed out buttons show the

actions that the user can take on this sharing relationship.

In this case they are only “Unshare” and “Snapshot Share,”

which makes a private copy of the file in its current state.

Figure 1 also shows how we use filtering to simplify deal-

ing with large numbers of policy decisions. Clicking the

“Show Shares” button when an item is selected results in a

view showing all sharing relationships involving that file.

Another view shows all the sharing relationships with a

given Pal.

We have shown how these principles apply to access con-

trol decisions, but there are different kinds of policy. For

example, deciding whether or not to encrypt communica-

tions is often left to the user. Our approach is to make the

communication channel a “separately controllable object”

and include separate buttons for sending encrypted or not.

It is up to the interaction designer to decide if that decision

is best made once per channel or once per message. Mak-

ing the message itself a separately controllable object lets

the interaction designer supply controls for other policies,

such as digital signing.

The danger with all these affordances is an overly complex

user interface. How to avoid this problem depends on the

application space. CapDesk makes the most common poli-

cy the default and requires a separate action, such as a right

click instead of a left click, to denote an exception.

SCoopFS attaches some properties to the communication

channel and others to the sharing relationship as well as

eliminating some choices by always encrypting messages

and authenticating the servers. These design decisions limit

the user’s options, but in ways that make sense for the ap-

plication domain.

An interface that lets the user specify dozens of actions on

each of millions of objects will be complex. That complex-

ity is unavoidable. However, following the guidelines pre-

sented here avoids increasing the perceived complexity by

interrupting the user’s work to make policy decisions.

RELATED WORK

There are numerous guidelines for designing for usability,

e.g., [3], recommending early focus on the user, measure-

ment, and iterative design. What’s missing is guidance

specific to security and details of what elements must be

presented to the user. Other work, e.g., [1], makes interrup-

tions of the user’s work less onerous, while our goal is to

avoid those interruptions entirely. In addition, that work

uses a separate GUI to represent the policy decisions, while

we present those decisions in the application context.

A key goal of Chameleon [7] is not to “interfere too much

Figure 1: Shares view.

with the primary task” nor “intrude on the ordinary activi-

ties that people want to perform.” Our principles go

beyond those goals by not interfering at all with the primary

task and never intruding on the user’s tasks.

Sometimes we can avoid the perception of interfering with

the user’s task by changing when certain actions are taken.

Groove [9] asks users to determine the trustworthiness of a

message sender’s authentication when the message is re-

ceived, which interferes with the user’s task of reading the

message. SCoopFS makes this authentication step part of a

different user task, that of establishing a new relationship.

It’s the same work, but it’s done at a different time so that it

becomes part of the user’s workflow.

CONCLUSION

We didn’t start out by dreaming up a set of principles and

building tools using them. Instead, we built tools and dis-

covered that we weren’t bothering users with questions

unrelated to what they want to do. The articulation of the

principles came from asking ourselves how we did it, a

form of post-hoc synthesis [2].

It may be that we did too good a job. One of our users said,

“This tool would be a lot better if it had some security. Is

there any way I can turn some on?” While that question

shows we achieved our goal, it also indicates that achieving

our goal is not enough. While “security reality” is neces-

sary, the “feeling of security” is important, too [10]. Ap-

parently, people are so used to security interfering with

their work that they don’t feel secure when it doesn’t.

Overcoming this bias is a challenge.

We have demonstrated that giving the user sufficient infor-

mation to make wise decisions, adequate support for shar-

ing, inferring policy decisions from acts of designation,

representing those decisions, and providing meaningful

controls, all in the application context, allowed us to build

an application that did not trade off usability for security.

The primary contribution of this paper is to point out that

making policy decisions explicitly controllable objects

makes it possible to give the user the desired control with-

out needing to leave the task at hand.

ACKNOWLEDGMENTS

We thank Jhilmil Jain for guiding the writing of this paper.

REFERENCES

1.Cao, X. and Iverson, L. Intentional access management:

making access control usable for end-users. Proc. 2nd

Symposium on Usable Privacy and Security, Pittsburgh,

Pennsylvania July 12 - 14, (2006)

2.Cockton, G. Getting There: Six Meta-Principles and Inte-

raction Design. CHI 2009, Boston, MA. (2009)

3.Gould, J. and Lewis, C. Designing for Usability: Key

Principles and What Designers Think. CACM, 28(3),

300-311, (1985)

4.Gutman, P. The Psychology of Usability Security,

http://www.cs.auckland.ac.nz/~pgut001/pubs/usability.pdf

5.Karp, A. H. and Li, J. Solving the Transitive Access

Problem for the Services Oriented Architecture, HP Labs

Technical Report, HPL-2008-204R1 (2008)

6.Karp, A. H., Stiegler, M., Close, T., Not One Click for

Security, HP Labs Tech Report, HPL-2009-53 (2009)

7.Long, C. A. and Moskowitz, C. Simple Desktop Security

with Chameleon. In Security and Usability: Designing

Secure Systems That People Can Use, by Lorrie Faith

Cranor and Simson Garfinkel, 247-273. Sebastopol, CA:

O'Reilly Media, Inc., (2005)

8.Microsoft Corp. What’s inside Live Mesh?

https://www.mesh.com/Welcome/features/features.aspx.

9.Moromisato, G., Boyd, P., and Asthagiri, N. Achieving

Usable Security in Groove. In Security and Usability: De-

signing Secure Systems That People Can Use, by Lorrie

Faith Cranor and Simson Garfinkel, 247-273. Sebastopol,

CA: O'Reilly Media, Inc., (2005)

10.Schneier, Bruce. Reconceptualizing Security. LISA '08:

22nd Large Installation System Administration Conf. San

Diego: Usenix, 2008.

11.Stiegler, M. A Capability Based Client: The Darpa-

Browser. http://www.combex.com/papers/darpa-

report/darpaBrowserFinalReport.pdf (2002)

12.Stiegler, M. Rich Sharing for the Web. HP Labs Tech-

nical Report, HPL-2009-169 (2009)

13.Yee, Ka-Ping. "Guidelines and Strategies for Secure

Interaction Design." In Security and Usability: Designing

Secure Systems That People Can Use, by Lorrie Faith

Cranor and Simson Garfinkel, 247-273. Sebastopol, CA:

O'Reilly Media, Inc., (2005)

APPENDIX: A BRIEF HISTORY OF ACCESS CONTROL

When timesharing was first introduced, there was a debate

about how to isolate users from each other while allowing

them to specify a sharing policy. One approach assigns an

identity to each user and labels resources to indicate which

actions each user can take. That’s the approach that won

and is what we use today on all systems in common use,

Windows, Mac, Linux, etc. A fundamental flaw in that

model is the way it interferes with sharing, making it the

primary reason security gets in the way of doing work.

The other approach is to provide each user with a list of

references, a capability list, each entry of which represents

a specific action on a particular resource. Possession of a

capability represents the right to take that action on that

resource. Users specify the actions they wish to take by

denoting the relevant capability from the list. The key fea-

ture of a capability is that it combines designation with au-

thorization. The way that capabilities can be passed around

supports all six aspects of sharing.

http://www.cs.auckland.ac.nz/~pgut001/pubs/usability.pdf
http://www.combex.com/papers/darpa-report/darpaBrowserFinalReport.pdf
http://www.combex.com/papers/darpa-report/darpaBrowserFinalReport.pdf

