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Abstract

Today, user-generated tags are a common way of navigating and orga-
nizing collections of resources. However, their value is limited by a lack
of explicit semantics and differing use of tags between users. Clustering
techniques that find groups of related tags could help to address these
problems. In this paper, we show that a Self-Organizing Map (SOM) can
be used to cluster tagged bookmarks. We present and test an iterative
method for determining the optimal number of clusters. Finally, we show
how the SOM can be used to intuitively classify new bookmarks into a
set of clusters.

1 Introduction

Recently, websites have introduced a range of innovative techniques known as
Web 2.0 [7] [21]. These techniques have changed the way information is created,
shared and organized, by encouraging the active involvement of end users in
information production. One of these techniques, tagging, is used across many
well-known websites, such as Youtube [9], Flickr [3] and Delicious [2]. Web sites
supporting tagging allow users to associate one or more free-text labels with
a content item, such as a video, image or web page. Tags are keywords used
to describe an item in a way that is meaningful to the user who creates them,
making them valuable for information retrieval. A set of tags is commonly
referred to as folksonomy, a neologism coming from the fusion of the two words
folk (people) and taxonomy [18] [26].

From a knowledge representation perspective, folksonomies lack formal con-
sistency, and are not very precise: they do not constitute a shared vocabulary,
and they do not have explicit semantics. For example, different users may use
synonyms or generalizations of the same concept, and the folksonomy does not
record the relationship between such tags [20] [25] [14]. However, this informal-
ity also makes tags relatively easy to add [24], and their abundance means they
are a rich source of unstructured metadata linked with information published
on the Internet.
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To address the problem we describe, researchers have started to look for un-
derlying structure in folksonomies. An interesting approach is based on cluster-
ing techniques [19] [11], which find groups or clusters of related tags. Clustering
might suggest ways to identify implicit concept definitions inside a folksonomy,
and might be a starting point for automating the extraction of formal vocabu-
laries from unstructured folksonomies. Formal vocabularies could then be used
to greatly improve retrieval or navigation of tagged items and assist users in
choosing which tags to use.

In this work we use a Self Organizing Map (SOM) [17] to cluster tagged
bookmarks taken from the website Delicious [2]. With Delicious, users save
bookmarks to the website and can associate tags with each bookmark.

Self organizing maps are artificial neural networks that map high-dimensional
data points to nodes in a low-dimensional grid, the output layer. Usually the
grid is two-dimensional and can be viewed as a graphical map, where similar
data points are placed close together or at the same point on the map.

We investigate the ability of SOMs to:

• cluster tags associated with bookmarks in meaningful ways;

• classify new tagged bookmarks in previously identified clusters.

The first feature would be useful in presenting user bookmarks in a graphical
way, showing related bookmarks. It could also be used when a user enters a
query or adds a tag to an item, to suggest related tags from within a cluster.
The second feature would be useful in automatically suggesting additional tags
for new bookmarks. Both features provide a way to identify bookmarks related
to a given bookmark.

1.1 Related Work

A broad overview of approaches to extracting structure from folksonomies is
given in [23]. Several pieces of related work explore explore tag clustering using
graph-based methods. [10] creates a graph of tagged items, where edges are
generated between items with shared tags. This graph is then divided to find
clusters of items and associated tags. A similarity with our approach is that
tags can appear in multiple clusters and items in one cluster. [10] suggests the
clusters can be used to labeled disambiguate tags that could relate to several
topics, and therefore appear in several clusters.

Graph-based clustering may also use graphs of tags, where weighted edges
represent co-occurrence [11] [22] [13] or cosine similarity [16] between tags. First,
tags are clustered so that tagged items may appear in multiple clusters. This
reflects the idea that tags may identify several aspects of a single item, including
multiple topics, dates, related people or locations. However, unlike our methods
here, it does not allow ambiguous tags to be present in more than one cluster.

It is sometimes possible to use the text content of tagged items as input
vectors for clustering [12], but this is unsuitable for items such as images with
no text content.

An advantage of SOMs over other methods is that the clustering step itself
produces a graphical map of the tagged items and folksonomy. Graph-based
clustering methods such as [22] have also been used to produce a visual graph
of tags: these graphs are often more complex, with many edges, and require
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expensive layout algorithms. A simpler representation is a clustered tag cloud
[15], where tags are shown textually with font sizes proportional to their fre-
quency, with one line of text per cluster. However, SOMs place related clusters
near to one another, so can convey more information than a clustered tag cloud.

2 Clustering Delicious Bookmarks using an SOM

To cluster bookmarks, bookmarks are assigned to nodes in the SOM so that
several similar bookmarks are assigned to the same node, thus creating a clus-
ter. Each bookmark has a feature vector used as input to the SOM, containing
the number of times each tag was used with that bookmark. The SOM clus-
ters bookmarks with the most similar feature vectors. The following sections
describes the method used here in depth.

2.1 Software Architecture

Figure 1 shows the software architecture used, indicating the steps used to
gather and process the data. The blocks in orange are software components,
written in Java, whereas green blocks are exchanged data.

Figure 1: Software Architecture

More detail about each part of the architecture is given below.

2.2 Obtaining the Dataset

Before clustering with an SOM, data must be selected from Delicious and con-
verted into suitable input for the SOM.
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2.2.1 Crawler

The Crawler gathers data from http://del.icio.us and builds internal data
structures. Gathered data is organized in two sets:

• B: set of bookmarks

• T : set of tags associated with the elements of B.

We also define the following sets:

• Bt ⊂ B = {b ∈ B | b is tagged with t}

• Tb ⊂ T = {t ∈ T | t is associated with b}

Input to the crawler is a starting tag tstart. The crawler fetches bookmarks
with this tag, B′

tstart
⊂ Btstart . For each bookmark b ∈ B′

tstart
the Crawler gath-

ers the set of all tags for this bookmark, Tb = {t1, . . . , tn}. It then recursively
repeats the process for each tag {t1, . . . , tn}.

During this process, the Crawler builds a data structure ∆, which is essen-
tially an associative map where each bookmark b is associated with its corre-
sponding set of tags Tb.

b1 Tb1

b2 Tb2

. . . . . .
bn Tbn

Recursively, the crawler explores T until ∆ contains a set of bookmarks B∆

whose cardinality is greater or equal to a predefined threshold Ccrawler.
The Crawler uses Jena [4] to read and parse the RSS [6] data from http://del.icio.us.

The elements of both B and T are represented as URLs (for example the tag
web is identified by http://feeds.del.icious.com/rss/tag/web.

2.2.2 Filter

The Filter performs some cleaning of the data gathered by the Crawler. Exper-
iments showed that ∆ often contains many tags that are associated with very
few bookmarks: such tags may not provide useful information for clustering of
bookmarks, as too few bookmarks within a desired cluster would have this tag.
They may also represent mistakes by users when entering the tag.

Let nj be the number of times that tag tj appears in ∆, and let N =
∑

j nj ;

we define the frequency of tag tj as fj =
nj

N
. The Filter works in two steps:

1. It removes from ∆ all tags whose frequency is less than a predefined thresh-
old ffilter;

2. It removes from ∆ all bookmarks bi whose corresponding Tbi
is empty

because of step 1.

We call ∆f the filtered version of ∆.
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2.2.3 Writer

The Writer simply transforms ∆f into a matrix Ω, which is given as input to
the Classifier. Ω has the following structure:

t1 t2 . . . tj . . . tn
b1 ω11 ω12 . . . ω1j . . . ω1n

b2 ω21 ω22 . . . ω2j . . . ω2n

...
...

...
...

...
bi ωi1 ωi2 . . . ωij . . . ωin

...
...

...
...

...
bm ωm1 ωm2 . . . ωmj . . . ωmn

where

ωij =

{
1 if tj ∈ Tbi

0 if tj /∈ Tbi

The set {ωi1, ωi2, . . . , ωin} is the pattern associated with bi.

2.3 Classifier

The Classifier is a Self Organizing Map (SOM) which is trained in unsupervised
mode using as input vectors the rows of Ω. the classifier maps bookmarks to
nodes in the output layer of the SOM, each node forming a cluster of book-
marks. Unfortunately it is impossible to know in advance the expected number
of clusters - and therefore the size of the output layer - so it is necessary to
develop strategies for estimating it. We adopted the following initial strategy:

• let c0 be the expected number of clusters; initially we have c0 = 0

• we compute the frequency fj of each tag tj ∈ ∆f ;

• let fcluster be a predefined threshold;

• for each tag tj whose frequency fj > fcluster we increment c0, assuming
that each of these tags potentially generates a cluster

Our initial strategy makes the assumption that the number of expected
clusters is given by the number of tags in ∆f whose frequency is greater than a
predefined threshold. We set the size of the output layer of the SOM equal to
the expected number of clusters c0.

The SOM is created and trained using the Joone library [5]. The training
phase is characterized by a learning rate, and lasts for a number of epochs; both
parameters can be configured. When the training phase is complete, we again
feed each row of Ω to the classifier, so that it is classified into a cluster.

2.4 Graph Builder

The Graph Builder produces a graphical representation of the clusters computed
by the Classifier. To produce this representation the graph builder incorporates
yEd - Java Graph Editor [8], and Aduna ClusterMap[1]. Both take in an XML
file produced by specialized versions of the Graph Builder component.
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3 Experiments

We conducted two kind of experiments:

Clustering Using Tags : creation and training of Self Organizing Maps to
cluster bookmarks, and to produce a graphical representation of clusters;

New Bookmark Classification : classification of new tagged bookmarks into
existing clusters using trained Self Organized Maps.

For the first kind of experiment, Clustering Using Tags, we tried different
configurations of the system parameters:

• the starting tag tstart ∈ T used by the Crawler

• the minimum cardinality Ccrawler of the set B∆

• the threshold ffilter

• the threshold fclass

• the learning rate and the number of epochs used for the SOM training.

We drew some empirical conclusions from experimenting with these system
parameters:

• The value of ffilter must not be too high, otherwise the Filter cut off too
many patterns. From our experiments we can conclude that if Ccrawler ≤
1000, then we can set ffilter =

2
1000

.

• If Ccrawler ≤ 1000, then the SOM can be trained within 1000 epochs, and
with a learning rate of 0.7.

The following section describes the details of one run of the first experiment.
As explained below, we found that our initial strategy to compute the number
of expected clusters c0 usually underestimates the number of clusters. Hence
we developed and tested an iterative process, which trains the SOM setting at
every iteration an increasing value of c0.

3.1 Clustering Using Tags: Results

In this experiment we used the following settings:

• tstart = http://feeds.del.icious.com/rss/tag/web

• Ccrawler = 500

• ffilter = 0.002

• fclass = 0.015

• The SOM was trained in 1000 epochs with a learning rate of 0.7.
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Figure 2: Classification of tag web in 12 cluster; picture generated with yEd

The matrix Ωweb has 498 rows (distinct bookmarks) and 67 columns (distinct
tags). Our initial strategy computed c0 = 12. Figure 2 shows a representation
of the 12 clusters generated with the yEd editor. Yellow nodes represent the 498
bookmarks; they are connected to a central node, which represents the cluster.
Each cluster is connected to a central node, which may be thought of as the
common super-class.

Figure 2 contains two anomalous clusters: one containing a single element,
and one containing many more elements than the other clusters.

Figure 3 shows the same results as Figure 2 using the tool Aduna Cluster
Map. Clusters are shown as sets; they are connected to the common super-class,
which has been labelled Thing. Figure 3 shows also the clusters cardinality, and
gives a name to each cluster. The cluster name has been automatically generated
by the Graph Builder component, and it is given by the concatenation of the
most frequent tags associated with the bookmark in the cluster.

The presence of an over-populated cluster suggests that the clustering is
not optimal, as we would prefer small clusters tat make it easier to select an
individual item from a cluster and group more closely related items. The result
is not affected by the number of epochs or the learning rate.

We repeated the experiment using an iterative process which progressively
increases the number of clusters: at the ith iteration, the value of expected
clusters is ci = c0 + 3i (where c0 = 12). Comparing the results obtained in the
various iteration we see that:

• increasing ci the distribution of elements in the clusters is more uniform,
and therefore over-populated clusters tend to disappear;

• some clusters are “persistent”: increasing ci such clusters remain almost
identical, that is they contain the same bookmarks;

• some clusters disappear, and others emerge when ci increases;

• the distribution of bookmarks in cluster remains almost stable when ci

reaches a value cbest, which is the optimal value of clusters for the dataset.
In our case cbest = 36.

Figure 4 compares the distribution of bookmarks in clusters during the vari-
ous iterations with ci = 12, 15, . . . 36. The ClassID is a unique identifier for each
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Figure 3: Classification of tag web in 12 cluster; picture generated with Aduna
Cluster Map

cluster. A test is carried out at each iteration. Some ClassIDs appear only in
some tests. Tests are identified by T12, T15, . . ., where T12 is the test with 12
clusters, T15 is the test with 15 clusters, etc. The vertical bars shows the num-
ber of bookmarks in each cluster. Figure 4 clearly shows that over-populated
clusters progressively disappear, and that some clusters are persistent (for ex-
ample, C52). It is also evident that some new clusters appear when ci increases
(for example C57 emerges when ci ≥ 30), and that some others disappear (for
example C61 emerges when ci ≥ 30).

Table 1 summarizes the number of bookmarks in some persistent, emerging
or disappearing clusters for the various tests with increasing values of ci. Green
columns (C11, C21, C35, C52) show data of persistent clusters; violet clusters
(C19, C49, C61) show data of disappearing clusters; azure columns (C10, C20,
C57) show data of emerging clusters.

Table 1: Persistent, emerging and disappearing clusters for the
various ci = 12, 18, . . . , 48

C10 C11 C19 C20 C21 C35 C49 C52 C57 C61
T12 0 28 0 0 29 38 0 10 0 26
T15 0 27 261 0 29 38 14 10 0 0
T18 0 28 0 0 30 37 9 10 0 24
T21 0 27 199 0 30 37 0 10 0 0
T24 0 27 0 0 29 37 9 10 0 24
T27 25 27 0 0 29 37 9 10 0 22
T30 0 26 0 28 29 37 0 10 3 0

Continued on next page
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Table 1 – Continued from previous page
C10 C11 C19 C20 C21 C35 C49 C52 C57 C61

T33 25 26 0 0 29 37 0 10 3 0
T36 25 26 0 28 29 37 0 10 3 0
T39 25 26 0 28 29 37 0 10 3 0
T42 25 0 0 28 29 37 0 10 3 0
T45 25 26 0 28 29 37 0 10 3 0
T48 25 0 0 28 24 37 0 10 3 0
C10 → custom design
C11 → customize windows
C19 → ingresos toread
C20 → ingresos web
C21 → ipython python
C35 → system:media:document system:filetype:pdf
C49 → web design webdesign
C52 → web free computer awsome freebie tech content pc blog
C57 → web tutorial webdesign design css
C61 → web webos

We call SOMweb
36 the Self Organizing Map with cbest = 36 nodes in its

output layer, trained using Ωweb. Table shows how data in Ωweb are classified
using SOMweb

36 : each row lists the most frequent tags in the cluster, the unique
cluster ID, and its cardinality.

Table 2: Clusters generated by SOMweb
36

Most frequent tags ID C
by of blog C8 25
content writing C1 16
custom design C26 25
customize windows C11 26
flash development documentation content video C0 1
google search C30 27
html development tips tutorial web2.0 webdesign article ajax pro-
gramming css design howto reference

C32 1

ingresos web C19 28
ipython python C23 29
java query database search free security C34 2
learning programming pdf reference tutorial C29 3
part online C7 20
pdf web2.0 tools C33 17
query database C4 21
search tools reference web online cool design C17 2
security video C5 22
software windows C28 23

Continued on next page
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Table 2 – Continued from previous page
Most frequent tags ID C

system:media:document system:filetype:pdf C6 37
The - Part C21 28
the of C27 22
the Query Custom Part Customize Web using by Content C13 1
tools software C9 20
tools video software C2 3
toread blogs article programming tips security cool design blog
howto reference

C35 27

using by C18 24
web css design C15 4
web firefox tools search programming cool custom customize C20 2
web free computer awsome freebie tech content pc blog C22 10
web security C10 14
web system:filetype:pdf google toread pdf security sys-
tem:media:document

C25 1

web tutorial webdesign design css C16 3
web webdesign tips design reference C14 3
web webdesign tools html development programming software C3 1
web webos ajax C12 6
web2.0 free content cool video design database C31 1
webdesign design tools html C24 3

Very common words such as “the” and “of” appear as the most frequent tags
in some clusters. These tags are not subject-specific so do not indicate clearly
whether these are useful clusters. It may be possible to improve the clusters
by filtering out tags that appear in a list of common words (stopwords) before
running the clustering algorithm. Table 2 also shows more clearly meaningful
clusters, such as “ipython python” and “google search” where the most common
tags are known to refer to closely-related topics. Using the iterative process to
determine cbest = 36 has produced a largest cluster of cardinality 38, while 15
other clusters are at least half as big as this cluster; this suggests the itera-
tive process for finding cbest has successfully avoided creating over-populated
clusters.
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Figure 4: Clustering of tag web in 12, 15, . . . , 36 cluster

4 Classification of New Tagged Bookmarks

This experiment uses SOMweb
36 described in section 3.1 to classify new tagged

bookmarks. We performed some tests giving some fictitious bookmarks as input
to SOMweb

36 ; the fictitious bookmark were tagged using some of the tags known
by SOMweb

36 . Table 3 shows some experimental results.

Table 3: Classification of new tagged bookmarks using SOMweb
36

Test ID Tag Resulting Class ID Expected Class ID

01

ipython

C23 C23python
programming

reference

02

ipython

C23 C23
python

programming
reference

Continued on next page
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Table 3 – Continued from previous page
Test ID Tag Resulting Class ID Expected Class ID

system:filetype:pdf

03

ipython

C23 C23

python
programming

reference
system:filetype:pdf

part

04

ipython

C23 C23

python
programming

reference
system:filetype:pdf

part
Customize

05

ipython

C23 C23 o C11

python
programming

reference
system:filetype:pdf

part
Customize
windows

07

ipython

C16 C16 o C23

python
web

tutorial
webdesign

design
css

09

ipython

C16 C16 o C23

python
programming

reference
web

tutorial
webdesign

design
css

13

ipython

C23 C16 o C23

python
programming
development

web
tutorial

webdesign
design

Continued on next page

12



Table 3 – Continued from previous page
Test ID Tag Resulting Class ID Expected Class ID

css

Data in table 3 shows that SOMweb
36 is able to classify new bookmarks in a

reasonable way, when the bookmarks have tags known by SOMweb
36 :

• Test 01 shows the result obtained using a bookmark whose tags are the
same as the most frequent tags of cluster C23. Tests 02, 03, and 04 add
other tags, but the the result does not change. Test 05 add the most
frequent tags of cluster C11, however the result remains the same.

• Test 07 and 09 (similarly to test 05) use the most frequent tags of clusters
C16 and C23, and show that C16 has stronger influence on the result.

• Test 13 must be compared with test 09: they differ only for one tag
(development instead of reference), and this yields a different result from
the SOM.

5 Conclusion and Future Work

Our experiments show that an SOM can produce many reasonable clusters of
bookmarks. Using an iterative process to find the optimal number of clusters was
effective in producing clusters of a reasonable size with a reasonable distribution
of bookmarks. Future work may further investigate how effective the clustering
is for different types of dataset: the nature of investigation would depend on the
intended application of the clusters, whether they are being used, for example, to
recommend similar bookmarks or tags, or for users to browse tagged bookmark
collections. While SOM clustering appears effective, a comparison of with graph-
based hierarchical clustering would indicate more clearly when to select one
algorithm over the other.

When classifying new tagged bookmarks in a real application, new book-
marks may have tags not known to the SOM; currently these would be dis-
carded as infrequent tags. However, if a large number of new bookmarks have
an unseen tag, these unseen tags have a higher frequency and may indicate
that the new bookmarks are related in some way not represented by the SOM.
Therefore, future work may investigate the best strategy for updating the SOM
as new bookmarks and new tags appear.
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