

Keyword(s):

Abstract:

©

An Empirical Approach to Modeling Uncertainty in Intrusion Analysis

Xinming Ou, Siva Raj Rajagopalan, Sakthiyuvaraja Sakthivelmurugan

HP Laboratories
HPL-2009-334

intrusion detection; uncertainty; logic

Uncertainty is an innate feature of intrusion analysis due to the limited views provided by system
monitoring tools, intrusion detection systems (IDS), and various types of logs. Attackers are essentially
invisible in cyber space and monitoring tools can only observe the symptoms or effects of malicious
activities. When mingled with similar effects from normal or non-malicious activities they lead intrusion
analysis to conclusions of varying confidence and high false positive/negative rates. This paper presents an
empirical approach to the problem of uncertainty where the inferred security implications of low-level
observations are captured in a simple logical language augmented with certainty tags. We have designed an
automated reasoning process that enables us to combine multiple sources of system monitoring data and
extract highly-confident attack traces from the numerous possible interpretations of low-level observations.
We have developed our model empirically: the starting point was a true intrusion that happened on a
campus network that we studied to capture the essence of the human reasoning process that led to
conclusions about the attack. We then used a Datalog-like language to encode the model and a Prolog
system to carry out the reasoning process. Our model and reasoning system reached the same conclusions
as the human administrator on the question of which machines were certainly compromised. We then
automatically generated the reasoning model needed for handling Snort alerts from the natural-language
descriptions in the Snort rule repository, and developed a Snort add-on to analyze Snort alerts. Keeping the
reasoning model unchanged, we applied our reasoning system to two third-party data sets and one
production network. Our results showed that the reasoning model is effective on these data sets as well. We
believe such an empirical approach has the potential of codifying the seemingly ad-hoc human reasoning of
uncertain events, and can yield useful tools for automated intrusion analysis.

External Posting Date: October 6, 2009 [Fulltext] Approved for External Publication
Internal Posting Date: October 6, 2009 [Fulltext]

To be published and presented at 2009 Annual Computer Security Applications Conference, Honolulu, December 9-11, 2009.

Copyright 2009 Annual Computer Security Applications Conference.

An Empirical Approach to Modeling Uncertainty in Intrusion Analysis

Xinming Ou
Kansas State University

Manhattan, KS, USA
xou@ksu.edu

Siva Raj Rajagopalan
HP Labs

Princeton, NJ, USA
raj.rajagoplan@hp.com

Sakthiyuvaraja Sakthivelmurugan
Kansas State University

Manhattan, KS, USA
sakthi@ksu.edu

Abstract—Uncertainty is an innate feature of intrusion anal-
ysis due to the limited views provided by system monitoring
tools, intrusion detection systems (IDS), and various types of
logs. Attackers are essentially invisible in cyber space and
monitoring tools can only observe the symptoms or effects
of malicious activities. When mingled with similar effects
from normal or non-malicious activities they lead intrusion
analysis to conclusions of varying confidence and high false
positive/negative rates. This paper presents an empirical ap-
proach to the problem of uncertainty where the inferred
security implications of low-level observations are captured in
a simple logical language augmented with certainty tags. We
have designed an automated reasoning process that enables
us to combine multiple sources of system monitoring data
and extract highly-confident attack traces from the numerous
possible interpretations of low-level observations. We have
developed our model empirically: the starting point was a
true intrusion that happened on a campus network that
we studied to capture the essence of the human reasoning
process that led to conclusions about the attack. We then
used a Datalog-like language to encode the model and a
Prolog system to carry out the reasoning process. Our model
and reasoning system reached the same conclusions as the
human administrator on the question of which machines were
certainly compromised. We then automatically generated the
reasoning model needed for handling Snort alerts from the
natural-language descriptions in the Snort rule repository, and
developed a Snort add-on to analyze Snort alerts. Keeping the
reasoning model unchanged, we applied our reasoning system
to two third-party data sets and one production network. Our
results showed that the reasoning model is effective on these
data sets as well. We believe such an empirical approach has the
potential of codifying the seemingly ad-hoc human reasoning
of uncertain events, and can yield useful tools for automated
intrusion analysis.

Keywords-intrusion detection; uncertainty; logic;

I. INTRODUCTION

Intrusion detection is the last line of defense against cyber
attacks. However building robust tools to detect intrusions
in practical environments has been elusive. At the same
time, forensic analysis has become important in the light
of regulatory requirements as well as the appearance of
sophisticated targeted attacks on enterprise networks. Due
to the close relationship between the problems of intrusion
detection and computer forensics, we use the term “intrusion
analysis” to capture both, namely how to identify attack
traces from large amounts of system monitoring data, ei-

ther on the fly or offline. This problem in general is an
inexact science that has to admit a range of uncertainty in
output. System administrators (SA) today use a combination
of intuition, experience, and low-level tools to create and
support positive or negative judgements on security events.
However, the high volume of gathered data strains the intu-
itive capacity of analysts. Increasingly, sophisticated attacks
combine multiple intermediate attack steps to achieve their
goals, as a result of which we have to combine the outputs
of several disparate sensors to detect multi-step attacks that
are found today. While the low-level observations (network
packets, server logs, etc.) all have potential implications
for attack possibilities, few, if any of them can directly
provide zero/one judgment at the high-level abstraction
(e.g., a machine has been compromised). Nevertheless, in
many remote intrusions a relatively small number of critical
observations taken together are sufficient to show that an
attack has certainly happened as well as how it progressed.
The difficulty is how to start from uncertain and voluminous
views of the potential problem (e.g., IDS alerts) and search
for a few pieces of data among millions so that the attacker’s
hand is clearly and quickly shown. Admins are highly time-
constrained – an automatic tool that can sift through the
ocean of uncertainty to quickly and accurately locate the
problem areas or reduce the search space will be invaluable
in practice.

There are several technical challenges in handling uncer-
tainty in automated situation awareness, the most obvious of
which is quantifying the degree of certainty in various asser-
tions regarding possible attack activities. However, through
our interaction with highly capable system administrators
who face the challenge of uncertainty every day while pro-
tecting enterprise systems, we observed that human analysts
still do well without relying on any numerical measures.
This is illustrated in the true-life story below.

A. A true-life incident

Consider the following sequence of events that actually
occurred at a university campus. The SA noticed an abnor-
mally large spike in campus-network traffic (Observation 1).
The SA took the netflow dump for that time period, searched
it for known malicious IP addresses, and identified that
four Trend Micro (anti-malware) servers had initiated IRC

connections to some known BotNet controllers (Observation
2). The SA suspected that the four Trend Micro servers had
been compromised. At the console of one of the servers he
dumped the memory, from which he found what appeared
to be malicious code modules (Observation 3). He also
looked at the open TCP socket connections and noticed that
the server had been connecting to some other Trend Micro
servers on campus through the IRC channel (Observation 4).
He concluded that all those servers were compromised with
a zero-day vulnerability in the Trend Micro server software.
He did the same for the other identified servers and found
even more compromised servers. Altogether he identified 12
compromised machines and took them offline.

When the administrator first noticed the spike in net-
work traffic, the questions facing him were: is the network
experiencing an attack and if so, which machines were
compromised. However, none of the low-level observations
alone could give him a definitive answer to these high-
level questions. Observation 1 (traffic spike) could indicate
a variety of causes, many of which are benign. To take an
example, the “Microsoft Patch Tuesday” often significantly
increases network traffic in an enterprise network. Obser-
vation 2 (connections to BotNet controllers) has a higher
chance of being an indication of malicious activity and hence
a higher degree of likelihood that the identified hosts are
compromised. However, an IRC connection being made to a
known BotNet controller does not necessarily mean that the
machine has been compromised. The list of “known” BotNet
controllers may contain false positives or it could be be-
cause somebody was probing BotNet controllers for research
purposes. (The interviewed SA suggested this false positive
as he did this himself on a periodic basis.) Observation
3 (suspicious code in memory) is also a strong indication
that the machine may have been controlled by an attacker.
But it is not always easy to determine whether a suspicious
module found in the memory dump is indeed malicious,
especially with zero-day vulnerabilities. So this alert also has
some false positive. Observation 4, like observation 2, cannot
definitively prove that the machines observed are under the
control of attackers because IRC is occasionally (rarely)
used as a communication channel between servers. However,
when we put all the four pieces of evidence together, it seems
clear that an attack has certainly happened and succeeded
and we can say that which machines have been almost
certainly compromised.

In handling this incident, the SA had to admit that the
observations could have multiple interpretations, but he
could conclude that one interpretation is most likely to be
the case by linking the semantics of multiple observations.
For example, although neither observation 3 nor 4 alone
can give us high enough confidence to say that the host
is definitely compromised, by linking their semantics we
can dramatically strengthen our confidence in the assertion,
since both 3 and 4 point to the same interpretation. We

observed the same pattern in many other incidents we
learned from interviewing system administrators. It appears
that even without quantitative measures on uncertainty, the
semantic links among possible evidence can dramatically
increase one’s confidence on whether an attack has actually
happened and its consequences. As a result, humans can
handle the uncertainty pretty well by “connecting the dots”
among various pieces of evidence. However, manual analysis
alone is not scalable and sustainable in the face of large-
scale automated attacks we face today. In this incident, the
human SA had all the common security tools at his disposal
but none of the tools could provide the crucial capability
of analysis and the manual analysis took a long time. As a
first step, can we design tools that help reduce the amount
of time that the SA had to spend in the process? This is the
main question we aim to answer in this paper.

B. An empirical approach

We propose an empirical approach to automate reasoning
with uncertainty in intrusion analysis. We design a reasoning
model where human knowledge used to draw conclusions
about uncertain events can be codified and applied me-
chanically to future incidents. Although reasoning about
intrusions on different incidents can vary significantly, the
basic principles are quite consistent. We design a reasoning
model that captures the essence of the generic reasoning
rationale, not specific features of any particular incident. The
model provides a language whereby human experts can share
knowledge useful for intrusion analysis in a machine read-
able format, and an automated reasoning engine can make
use of the knowledge, significantly expanding a human’s
capability. Both the model and the reasoning engine are de-
signed empirically through studying real security incidents.

This is certainly not the first attempt at automating rea-
soning about intrusions. Past work has applied rule-based
systems to correlate audit logs and find out attacks [1], [2].
There is also a great deal of work on IDS alert correla-
tion [3], [4], [5], [6], [7], [8]. These previous approaches
do not address the uncertainty problem explicitly, i.e., the
reasoning systems do not model when and how confidence
levels on assertions can be strengthened in the correlation
process.1 We believe an explicit model for uncertainty in
reasoning is crucial to making alert correlation tools useful
in practice. Zhai, et al. has pioneer work in this area
by combining alert-correlation, attack-graph, and Bayesian-
Network techniques to reason about complementary intru-
sion evidence from both IDS alerts and system monitoring
logs so that high-confidence traces can be distinguished

1The DIDS (Distributed Intrusion Detection System) project [2] uses a
Rule Value (RV) to represent the confidence that a rule is useful in detecting
intrusions. The RV is trained and adjusted through feedback to the expert
system. While the RV could be thought of as a measure of uncertainty, its
use does not lead to the reduction of uncertainty through connecting the
dots in observations. Thus it is more a heuristic-based optimization than an
explicit model of how uncertainty changes in reasoning.

from ones that are less certain. Recent years have also
seen the application of quantitative mathematical methods
such as Bayesian Network [9], [10] and Dempster Shafer
theory [11], [12] in intrusion detection [13], [14], [15]. We
have chosen not to start from those mathematical theories,
because to utilize them we need a priori the logical struc-
tures among the various observations and hypotheses. For
intrusion analysis, how to identify the structure of attacks
is the biggest challenge itself, which is intermingled with
the challenge caused by uncertainty. Instead of starting
from these mathematical theories, we start from true-life
experiences like the one described above, and design a
model that systematically “simulates” what a human can
do manually, formulating such empirical experiences such
that it can be applied mechanically to future incidents. We
believe this empirical, bottom-up approach is an important
first step in understanding the nature of reasoning about
uncertainty in cyber security, and gaining experience that
may make some quantitative approaches viable in the future.

C. Our contributions

An empirical model for uncertainty: We present a
model for capturing the meanings of low-level system ob-
servation data in terms of high-level conditions of interest
to intrusion analysis. The model and inference process are
based on how human administrators reason about attacks
in real security incidents. We use qualitative rather than
quantitative assessment to capture the uncertainty inherent
in such assertions. The qualitative assessment reflects the
imprecise nature of the certainty levels’ semantics and it
also makes it easier to understand by humans, enabling
discussion/refinement of the reasoning model in an open
forum. Such a model can be linked to existing knowledge
bases such as the Snort rule repository. Our model is capable
of expressing logical connections among the high-level
conditions (also with qualitative uncertainty assessment) so
that it can reason about multi-host, multi-stage intrusions
with traces spread across various types of monitoring data.

Reasoning methodology: We present a reasoning pro-
cess that can utilize such a model and existing IDS tools
to automatically identify high confidence attack traces from
large diverse sets of system monitoring data not restricted
to just IDS alerts. We also present within this model a
method for strengthening the confidence in an assertion by
combining different independent pieces of evidence of low
or moderate confidence. Our model of high-level condi-
tions consists of generic predicates such as “compromised,”
“exploit sent,” etc. that are independent of the scenario at
hand. What can change from one scenario to another are
the instantiation of the predicates and the certainty tags
associated with them as the scenario events are processed
and the paths that the reasoning process takes through these
conditions. We believe that human administrators similarly
have a small set of “target” conditions in mind when they

process intrusion data and there is value in capturing those
target conditions directly in an automated reasoning process.
We implemented a prototype reasoning engine using the
true-life case study as a guide and showed that the tool’s
reasoning tracked the SA’s reasoning process and achieved
the same set of high-level conclusions with high confidence.

A Snort add-on based on our model and method: We
automatically generated the significant part of our reasoning
model from the classtype, impact, and ease of
exploit fields associated with Snort rule descriptions and
show that the knowledge base needed by our reasoning
engine can be readily created if security monitoring tools use
our model language, instead of natural language, to describe
the potential meanings of various types of security alerts.
Based on this automatically-derived knowledge base and
the prototype implementation of our reasoning engine, we
provide a Snort add-on, called SnIPS, that analyzes millions
of Snort alerts reported from an enterprise network and only
report those with high-confidence evidence associated with
them.

Evaluation of the methodology: We applied the SnIPS
tool to two third-party datasets created from real network
activities, and a production network in the computer science
department of a university. The core reasoning engine and
model was kept unchanged in the evaluation. We found
remarkably that our tool discovered interesting scenarios
from the three data sets, even though our core reasoning
model was developed from a very simple and completely
different incident. The application of SnIPS also results
in dramatic reduction (99%) in the amount of data a
system administrator needs to look at. The false positives
from the analysis helped us identify imprecisions from the
automatically generated Snort knowledge base and some
subtle but minor gaps in the core model as well. This
indicates that such an empirical approach could produce a
shared knowledge base that can be constantly refined among
security practitioners to yield agile and accurate tools.

II. THE REASONING MODEL

We motivate our design using the true-life incident de-
scribed in the previous section. We study the analytic states
that the SA went through in the course of the investigation,
identify the rationale behind the decisions at various points,
and design a logic that captures this reasoning process.

A. Modeling uncertainty

While the goal of intrusion analysis is detection of events
at a high-level of abstraction (e.g., a machine has been
compromised and has been used to compromise others),
tools today operate with any reasonable accuracy only at
low levels of abstraction (e.g., network packets, server logs,
etc.). The uncertainty arises from this semantic gap. For
example, a packet pattern could be associated with attacks,
but could be associated with legitimate use as well. Even if

A1 : obs(anomalyHighTraffic)
p�−→ int(attackerNetActivity)

A2 : obs(netflowBlackListFilter(H, BlackListedIP))
l�−→

int(attackerNetActivity)

A3 : obs(netflowBlackListFilter(H, BlackListedIP))
l�−→

int(compromised(H))

A4 : obs(memoryDumpMaliciousCode(H))
l�−→

int(compromised(H))

A5 : obs(memoryDumpIRCSocket(H1, H2))
l�−→

int(exchangeCtlMessage(H1, H2))

Figure 1. Observation correspondence

it is always an exploit, it does not tell whether the attack
succeeded or not. A key step in tackling the uncertainty
challenge is to develop a model that can link the low-level
observations to the conditions under concern at the high level
and at the same time allow us to specify the confidence in
the assertions.

We use three modes p, l, c, standing for “possible, likely,
certain” to express low, moderate, and high confidence
levels. Even though one could think of certainty level as
lying in a continuous spectrum from completely unknown to
completely certain, we found that human SA’s only deal with
a few confidence levels in practice that roughly correspond
to the ones defined here.These words are also used routinely
in natural-language description of security knowledge bases
such as the Snort rule repository. We emphasize that these
uncertainty levels are assigned by humans and apart from the
obvious ordering we are not ascribing a probability range to
each level.

With this qualitative notion of uncertainty, we intro-
duce the two types of logical assertions in our reasoning
model: observation correspondence which maps low-level
observations to high-level conditions, and internal model
which captures relationships among high-level conditions
(also called internal conditions hereafter) . Correspond-
ingly, we use obs(O) to denote a fact about observation
O, and int(F) to denote an internal condition F . For
example, obs(netflowBlackListFilter(ip1, ip2)) is an obser-
vation from the netflow blacklist filter that “machine ip1 is
communicating with a known malicious host ip2”, whereas
int(compromised(ip1)) is an internal condition that “ip1 is
compromised.”

B. Observation correspondence

Figure 1 shows the observation correspondence rela-
tion for the true-life incident. In A1 an abnormal high
network traffic obs(anomalyHighTraffic) is mapped to
int(attackerNetActivity), meaning an attacker is performing
some network activity. This is a low-confidence judgment
thus the mode is p. Intuitively the p mode means there are
other equally possible interpretations for the same obser-
vation. A2 and A3 give the meaning to an alert identified
in a netflow analysis. There are a number of filtering tools
that can search for potential malicious patterns in a netflow

dump such as “capture daemon” and “flow-nfilter.” These
rules deal with one filter that identifies communication with
known malicious IP addresses. Since any such activity is
a strong indication of attacker activity and compromise of
the machine involved, the modality of the two rules is l.
There are still other possibilities, e.g. the communication
could be issued by a legitimate user who wants to find out
something about the malicious IP address. But the likelihood
of that is significantly lower than what is represented by the
right-hand side of the two rules. It is legitimate to have
more than one observation correspondence assertion for the
same observation: they may represent different aspects or
possibilities of an observation. A4 says if memory dump on
machine H identifies malicious code then H is likely to be
compromised. A5 says if the memory dump identifies open
IRC sockets between machine H1 and H2 then it is likely
that the IRC channel was used to exchange control messages
between BotNet members.

We recognize that these observation correspondence as-
sertions are subjective. Quantifying the results of intrusion
sensing in a robust manner has remained a hard problem for
a variety of reasons [16]. Our goal is to create a flexible
and lightweight framework wherein an SA can feed in these
beliefs of certainty and see what consequences arise. For
example, an SA may think the mode of A4 ought to be
c, which would be acceptable. One advantage of such a
logic is that it facilitates discussion and sharing of security
knowledge. Given the large base of similar deployed infras-
tructure, shared experiences from a large community can
likely help tune the modes in those assertions. We envision a
rule repository model like that for Snort, where a community
of participants contribute and agree upon a set of rules in
an open language. Currently there are only coarse-grained
classification and some natural-language explanations for
the meanings behind each Snort alert. In Section IV, we
show how a small number of internal-model predicates can
give meanings to the vast majority of Snort alerts and
that the observation correspondence relation can actually be
automatically generated from a Snort rule’s classtype and
the “impact” and “ease of attack” fields in the rule’s natural-
language description. If the Snort rule writers had a standard
language for such information they would be able to readily
provide the observation correspondence assertions for Snort
alerts.

C. Internal model

The reasoning model should also express the logical
relations among the various high-level conditions so that
such knowledge can be mapped to correlate low-level events.
For example, the model should include knowledge such
as “after an attacker compromised a machine, he may
possibly perform some network activity from the machine.”
This knowledge can reveal potential hidden correlations
between low-level observations, (e.g., high network traffic

I1f : int(compromised(H1))
f,p−→ int(probeOtherMachine(H1, H2))

I1b : int(probeOtherMachine(H1, H2))
b,c−→ int(compromised(H1))

I2f : int(compromised(H1))
f,p−→ int(sendExploit(H1, H2))

I2b : int(sendExploit(H1, H2))
b,c−→ int(compromised(H1))

I3f : int(sendExploit(H1, H2))
f,l−→ int(compromised(H2))

I3b : int(compromised(H2))
b,p−→ int(sendExploit(H1, H2))

I4f : int(compromised(H1)), int(compromised(H2))
f,p−→

int(exchangeCtlMessage(H1, H2))

I4b1 : int(exchangeCtlMessage(H1, H2))
b,c−→ int(compromised(H1))

I4b2 : int(exchangeCtlMessage(H1, H2))
b,c−→ int(compromised(H2))

Figure 2. Internal model

and netflow filtering result). Without other context to guide
us, a traffic spike could be due to any of a number of things
but in the context of a likely compromise the parameters of
the traffic burst become important — if the traffic emanated
from the likely compromised machine it can be assigned a
different meaning than if it did not.

Figure 2 shows the internal model we developed from

studying the real-life incident. We use Cl
d,m−→ Cr to

represent the inference rules for the internal conditions,
namely condition Cl can infer condition Cr. There are two
modality operators, d and m, associated with a rule. Like
in observation correspondence, the m mode specifies the
confidence in the inference and takes values from {p, l, c}.
The d mode indicates the direction of the inference and
could be either f (forward) or b (backward). In forward
inference, Cr is caused by Cl, thus the arrow must be
aligned with time, i.e. Cr shall happen after Cl. This can
specify knowledge for reasoning what could happen after a
known condition becomes true, e.g. after an attacker

sends an exploit to a machine, he will likely

compromise the machine (I3f). In the backward
inference, we reason what could have happened before to
cause a known condition, and thus the direction of inference
is opposite to time. Example: if a malicious probe

is sent from a machine, then an attacker must

have already compromised the machine (I1b). As
another example, the forward inference rule I1f specifies
that “if an attacker has compromised machine H1, he can
perform a malicious probe from H1 to another machine
H2.” This inference has a low certainty: the attacker
may or may not choose to probe another machine after
compromising one. Thus the rule is qualified by the p
mode. I4f is the only rule in this model that has two facts
on the left-hand side. Like in typical logic-programming
languages, the comma represents the AND logical relation.

III. REASONING METHODOLOGY

The reasoning model described in the previous section is
analogous to human thinking – observations are reflected as
beliefs with varying strengths and the beliefs are related to

Reasoning
Engine

Snort netflow filter log analyzer … …

(convert to Datalog tuples)

…

Observation
Correspondence

User query, e.g.
which machines
are “certainly”
compromised?

Answers with
evidence

pre-processing

Internal Model

Figure 3. System architecture

one another with varying strengths. This section will intro-
duce the reasoning process to use such a model to “simulate”
human thinking such that an automated inference process
can allow us to construct sophisticated attack conclusions
along with a semi-quantitative measure of our confidence.
This inference process is capable of deriving from a large
number of possibilities high-confidence beliefs corroborated
by a number of complementary evidence pieces logically
linked together.

Reasoning framework: Figure 3 presents the archi-
tecture of our reasoning system. The two modules of the
reasoning model — observation correspondence (described
in Section II-B) and internal model (described in Sec-
tion II-C) are input to the reasoning engine. Both modules
are specified in Datalog [17], a simple logic-programming
language. The raw observations are pre-processed and the
distilled results are converted to Datalog tuples as input
to the reasoning system. The reasoning engine is itself
implemented in Prolog. An important feature of our design is
that every component of the system is specified declaratively,
which has the useful property that once all specifications are
loaded into the Prolog system, a simple Prolog query will
automatically and efficiently search for true answers based
on the logic specification. For example, a user can ask a
question “which machines are certainly compromised?” in
the form of a simple Prolog query. Our reasoning engine
will then give the answer along with the evidence in the
form of logical proofs.

A. Pre-processing

The pre-processing step is performed to reduce the amount
of information entering the reasoning engine. We apply
a data abstraction technique by grouping a set of similar
“internal conditions” into a single “summarized internal
condition”. The summarization is done on both the time
stamps and IP addresses. For timestamps, if a set of internal
conditions differ only by timestamp we merge them into
a single summarized internal condition with a time range
between the earliest and latest timestamp in the set. For Snort
alerts, we also abstract over external IP addresses so that

alerts that differ only on the external source or destination
addresses are merged and the corresponding IP address is
abstracted as “external”.

B. Application of inference rules

All the rules in the observation correspondence and inter-
nal model can be viewed as inference rules. The reasoning
engine applies those rules on the input Datalog tuples
to derive assertions with various levels of certainty. The
certainty of the derived fact is the lowest certainty of the
facts and rules used to derive it.

Handling time: Timestamps associated with security
monitoring events are important in tracking and diagnosing
root causes of problems. Time stamps are used in the reason-
ing process but for presentation simplicity we do not show
time stamps associated with the observations and internal
conditions. When an observation correspondence rule is
used, the internal condition on the righthand side simply
inherits the time field of the observation on the left.When
an internal model is used, the time stamps associated with
the derived assertion will be derived from the timestamp on
the lefthand side and the direction of the rule in a straight-
forward manner (e.g., for a forward rule the righthand-side
shall happen after the lefthand side). Latency in detection
and clock skews can also make timestamps imprecise and
less useful, which needs to be addressed through techniques
like time windows which we leave as future work.

We use int(F,m) ⇐ Pf to represent that “the in-
ternal fact F is true with modality m”, and Pf is the
proof that shows the logical derivation steps arriving
at the conclusion. From an observation one can derive
an internal belief with some degree of certainty, based
on the observation correspondence relation. As an ex-
ample, the open IRCSocket identified through memory
dump in the case study will be an input to our sys-
tem: obs(memoryDumpIRCSocket(172.16.9.20,172.16.9.1)).
Together with observation correspondence A5, the rule will
derive:

int(exchangeCtlMessage(’172.16.9.20’,’172.16.9.1’), l) ⇐
obs(memoryDumpIRCSocket(’172.16.9.20’,’172.16.9.1’))

The fact int(exchangeCtlMessage(172.16.9.20,172.16.9.1), l)
derived above, together with the internal-model rule I4b1 ,
would yield the following derivation trace.

int(compromised(172.16.9.20), l) ⇐
int(exchangeCtlMessage(172.16.9.20,172.16.9.1), l) ⇐

obs(memoryDumpIRCSocket(172.16.9.20, 172.16.9.1))

Since the certainty mode for I4b1 is c, joined with the l
mode in int(exchangeCtlMessage(172.16.9.20, 172.16.9.1),
l), we get l as the mode for the resulting fact
int(compromised(172.16.9.20), l).

One could argue that the certainty of the derived fact
should be lower than that of the weakest fact in the derivation
chain, especially when the derivation chain is long. However,

given that most enterprise network intrusions are carried out
in just a few steps, we do not expect the derivation chains to
be long in practice. Since the certainty modes only represent
a rough guess, accounting for certainty level decay along
short derivation paths is unlikely to be significantly valuable.
By taking the upper-bound of the certainty level (weakest
link in the chain), we err on the side of false positives, which
can be ruled out at a later stage after analyzing the attached
proof trace.

C. Proof strengthening

The key purpose of reasoning about uncertainty is to
derive high-confidence facts from low-confidence ones. In
the case study, the system administrator strengthened his
belief that the Trend Micro server was compromised by
combining three different pieces of evidence: netflow filter
result showing communication with a blacklisted IP address,
memory dump result showing likely malicious code mod-
ules, and memory dump result showing open IRC sockets
with other Trend Micro servers. These three pieces of
evidence are independent — they are rooted on observations
at different aspects of the system, and yet they are logically
connected — all of them indicate that the Trend Micro server
is likely compromised. Thus they altogether can strengthen
our belief in the fact that the server is compromised. We
generalize this reasoning process in the following proof
strengthening rule.

int(F,m1) ⇐ Pf1 int(F,m2) ⇐ Pf2 Pf1 ‖ Pf2
int(F, strengthen(m1,m2)) ⇐ strengthenedPf(Pf1, Pf2)

The ‖ relation indicates that two proofs are independent,
meaning they are based on disjoint sets of observations and
internal conditions. This deduction rule states that if we have
two reasoning paths to a fact with some confidence levels
and if the two paths are based on independent observations
and deductions, then the confidence level of the fact can be
strengthened. The strengthen function is defined below.

strengthen(l, l) = strengthen(l, p) = strengthen(p, l) = c

Simply put, two independent proofs can strengthen to
“certain” if at least one of them can yield a “likely” mode.
There is no definition for strengthen when both parameters
are p or at least one of them is c. Since the p mode represents
very low confidence we do not allow strengthening from just
possible facts. There is no need to strengthen a fact if it is
already proved to be certain.

We emphasize that the strengthening rules are defined
through our empirical study on real-life security incidents
and these strengthening conditions do reflect the mental
process a human SA goes through when catching real
attacks. The rules presented above are by no means final
products and will need to be further refined through more
empirical study.

| ?- show_trace(int(compromised(H),c)).
int(compromised(’172.16.9.20’),c) strengthen

int(compromised(’172.16.9.20’),l) I_4b1
int(exchangeCtlMessage(’172.16.9.20’,

’172.16.9.1’),l) A_5
obs(memoryDumpIRCSocket(’172.16.9.20’,

’172.16.9.1’))
int(compromised(’172.16.9.20’),l) A_4
obs(memoryDumpMaliciousCode(’172.16.9.20’))

int(compromised(’172.16.9.20’),l) A_3
obs(netflowBlackListFilter(’172.16.9.20’,

’129.7.10.5’))

Figure 4. Result of applying the reasoning system on the case study

D. Implementation

We use the XSB [18] system to evaluate the Prolog
reasoning engine. We also implemented a simple proof-
generator so that when a fact is derived, the proof trace
can also be obtained. We applied the reasoning system
and the model described in II-B and II-C on the in-
put for our case study. The result is shown in Figure 4
(IP addresses are sanitized.). The user enters the query
show_trace(int(compromised(H),c)), to find out all
the provable facts in the form of compromised(H) with
“certain” mode. This is essentially asking the question
“which machines are certainly compromised”. The reasoning
engine prints out a derivation trace for 172.16.9.20, the
IP address (fake) for the compromised Trend Micro server
first identified by the SA. It is clear that the derivation trace
exactly matches the reasoning process the human SA used
to identify the compromised server — the confidence level
is strengthened from concordant evidence emanated from
netflow dump and memory dump.

IV. AUTOMATING MODEL BUILDING FOR SNORT

Snort (http://www.snort.org/) is a popular open-source
network intrusion detection system utilizing a rule-driven
language. We developed a Snort add-on, called SnIPS, with
the purpose of helping the Snort user community to create
an empirical model for reasoning about Snort alerts using
the techniques discussed in this paper. The add-on is based
on the system architecture in Figure 3, with only Snort alerts
as input from the bottom. Each Snort alert is converted into
a tuple like the one below.

obs(snort(’1:1140’, ’172.16.9.18,
’192.168.0.20’, ’2008-06-09 21:05:14’)).

The first parameter 1:1140 is the unique SID associated
with the Snort rule that generated this alert. The second and
third parameters are the source and destination IP address
of the captured network packet. The last parameter is the
timestamp (our system actually represents the time stamp
as an integer internally). We use the same internal model
and reasoning engine developed from the real-life incident
to analyze Snort alerts. But we still need to create the
observation correspondence relations for Snort alerts. In the
Snort rule repository each rule is given a “classtype” along

with some natural-language description. We find that these
pieces of information can be used to automatically infer the
internal predicate and mode to be assigned to an alert. For
example, the Snort rule 1:1140 is

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS
$HTTP_PORTS (msg:"WEB-MISC guestbook.pl access";
flow:to_server,established; uricontent:
"/guestbook.pl"; nocase; metadata:service http;
classtype:attempted-recon; sid:1140; rev:12;)

This rule alerts for all the web request containing “/guest-
book.pl” in the URI, which is an application with known
vulnerabilities. The classtype of the rule is “attempted-
recon”, indicating that these packets are generally considered
reconnaissance activities. Based on this we can generate an
observation correspondence assertion as follows.

obsMap(obsRuleId_3614,
obs(snort(’1:1140’, FromHost, ToHost)),
int(probeOtherMachine(FromHost, ToHost)),l).

There are 30 classtypes a Snort rule writer can use to
classify the nature of the potential security implications. We
try to map the classtypes to the internal predicates in our
model. But classtypes alone do not always convey enough
information. Thus we also make use of two fields in the
natural-language description of a rule: “impact” and “ease
of attack”. These two fields for the above Snort rule are:

Impact: Information gathering and system integrity
compromise. Possible unauthorized
administrative access to the server.
Possible execution of arbitrary code of
the attackers choosing in some cases.

Ease of Attack: Simple. Exploits exist.

Since there is a keyword “exploits exist” in the “Ease of
Attack” field, our automated program infers that the mode
of the observation correspondence assertion is “likely”, as
shown above. In general, we found that these two fields
are often composed of a set of fixed keywords. Examples
are “possible unauthorized administrative access”, “possible
execution of arbitrary code”, “exploits exist”, and so on.
These phrases often indicate what internal predicate and
certainty mode can be assigned to the alert. Our automated
program searches for those keywords in the Snort rule
repository. Based on the combination of keywords contained
in a Snort rule description, a simple heuristic algorithm
infers the internal predicate and the certainty mode for alerts
generated by the Snort rule. In this example, we can output
another observation correspondence assertion for the alert:

obsMap(obsRuleId_3615,
obs(snort(’1:1140’, FromHost, ToHost)),
int(compromised(ToHost)), p).

Using this simple method, we were able to automatically
generate the observation correspondence relations for 60%
of all the 9000 or so Snort rules. This is certainly just
a rough baseline, since our automated program has to
make an “educated guess” from imprecise and incomplete

information. But we believe such an initial model, derived
from knowledge already existent in the Snort rule repository,
is helpful for Snort users to get started benefiting from our
empirically developed technique. If our reasoning system is
proved to be useful by a significant number of users, there
will be incentives for more people to help “fine-tune” the
observation correspondence, and even for future Snort rules
to include such information. After all the security expert
who writes a Snort rule (or any such specification) has the
best knowledge on what the observation means and is best
qualified to provide this information. This will not incur
too much additional burden since much of this information
is already being maintained in an unformatted and ad-hoc
manner.

V. EXPERIMENTS AND RESULTS

In this section we describe our effort on conducting
experimental evaluation of our reasoning system. Due to the
empirical nature of our approach, the evaluation is focused
on whether a reasoning model developed empirically from
studying one incident can be generalized to find interesting
attack traces in others. We use the SnIPS tool described
above for the evaluation. The reasoning engine and internal
model of SnIPS were developed based on the true-life inci-
dent we studied. The observation correspondence relations
were generated from the Snort rule repository as discussed
in the previous section. We then apply SnIPS to two third-
party data sets as well as a production network. Note that
the data we use to test SnIPS has nothing to do with the
true-life incident based on which we developed SnIPS.

A. Experiment on the Treasure Hunt data set

The first test is performed on the Treasure Hunt (TH) data
set [19] , which was collected during a cyber-attack compe-
tition organized in a graduate security course at University
of California, Santa Barbara. Our motivation to use this
particular data set was that the data set provides the valuable
“meta data” such as the back story (competition task details)
and network topology which can help us understand the
result. We only used the TCPdump portion of the dataset
to generate Snort alerts as input to SnIPS.

The first task in the TH competition was to gain access to
the web server. This scenario was identified by our model
and the high-confident output is shown in Figure 5 (the
parenthesized numbers are added for explanation purpose).
The web server, 192.168.10.90, was certainly compromised
(1) based on two independent proofs: (2) and (4), which cap-
ture the first step: an exploit being sent from an external host
to the web server (3), and the second step: reconnaissance by
the attacker from the web server to learn about the internal
network (5). The two pieces of evidence both point to the
compromise of the web server, strengthening our confidence
level to “certain”. In total, there were 18 such proofs verify-
ing the two web servers were compromised. Table 6 shows

(1)int(compromised(’192.168.10.90’),c) strengthen
(2) int(compromised(’192.168.10.90’),p) I_3f
(3) int(sendExploit(external,’192.168.10.90’),

p)
summarizedFact obslist(273)

(4) int(compromised(’192.168.10.90’),l) I_1b
(5) int(probeOtherMachine(’192.168.10.90’,

’128.111.48.35’),l)
summarizedFact obslist(257)

Figure 5. Partial output trace from the reasoning system

the reduction in amount of data that was presented by our
tool to the system administrator for further analysis. The raw
alerts belonging to the summarized internal condition can be
identified using the mapping variable obslist(Var).

We manually validated raw alerts of the 18 proofs gener-
ated by the reasoning engine for false positives. From our
analysis we perceive all of them are plausible. The published
TH data set did not include a truth file (a file containing
information on how the actual attacks were carried out and
to what extent they were successful). Thus it was impossible
to identify if the reasoning engine missed any true attack
traces (false negatives).

B. Experiment on data collected on a Honeypot

We conducted our second set of experiments on a data set
collected from a honeypot deployed at Purdue University.
This data set was created for a unrelated project whose
main intention was to collect spam relayed using open
proxies. The network traffic in a single machine running
misconfigured squid proxy was captured as TCPdump over
a period of two months. (The total size of the zipped
TCPdump files was about 68GB.) The reasoning engine
had enough information to conclude the honeypot host was
compromised. With knowledge about operating system and
services running in the honeypot host, we validated the traces
manually.

C. Experiments on a production system

The last two experiments also helped us find a few
inaccuracies in the observation correspondence relations
created by the automated model building process, which
were subsequently fixed. In the last experiment, SnIPS with
the updated knowledge base was applied on an university
network. We installed Snort in our departmental network
having 300 workstations along with dedicated web servers,
file servers, databases server etc. We were only able to
analyze the alerts captured over a period of three days. Snort
reported about 1.1 Million alerts with 150 different alert
types and 15 class types. Figure 6 shows the number of
alerts generated by Snort and the number of high-confidence
proofs presented to SA. The 17 proofs pointed that 4 hosts
has a higher chance of being compromised. To verify this
result would require further analysis of other log data which
we did not have access to. We analyzed the output traces
with the corresponding low-level alerts. It appeared that a
couple traces were worthy of further investigation and we

Data set Snort
alerts

Summarized
alerts

High-
confidence
proofs

TH 4,849,937 278 18
Honeypot 637,564 30 8
Department 1,138,572 6634 17

Figure 6. Reduction of alerts to high-confidence proofs

forwarded those to the system administrator. The others were
likely to be false positives. Our tool helped reducing the
search space and time spent on intrusion analysis.

VI. RELATED WORK

Uncertainty in data, even specifically in the context of
security analysis, is a vast and fertile topic and space
constraints require us to only give the highlights of related
work here. Probabilistic reasoning appears to be a natural
candidate for such problems and there have been several
attempts along this direction [13], [15], [20]. As explained
earlier, a fundamental challenge in applying these techniques
is how to obtain the logical structure needed for combining
the probability measures. Moreover, these techniques require
as inputs statistical parameters in terms of probability distri-
butions of related events, conditional probability tables, etc.
that have proven very hard to estimate or learn from real-
life data because of overwhelming background noise (see,
e.g., [21] and [22] for two different viewpoints, estimation
theory and learning theory). For security analysis, it is nearly
impossible to obtain the ground truth in real traces and
public data sets and it is hard if not impossible to realistically
simulate attack scenarios. Consequently calibrating analysis
techniques with metrics such as false positive/negative ratios
is a huge challenge (see [8] for definitions) and intrusion
analysis remains a manual and intuitive art, which has
inspired us to formulate a logic that approximates human
reasoning that works with a qualitative assessment on a few
confidence levels that are relatively easy to understand. We
acknowledge that this formulation not only hides the lack of
knowledge of base probabilities but also reflects the great
deal of ambiguity that exists in intrusion analysis of real
data. We hope that by creating an option to specify the
confidence level explicitly and by providing general practical
tools to manipulate these uncertain pieces of knowledge,
we can bypass some of these fundamental problems and
gain experience and insight that may make some statistical
approaches viable in the future.

A closely related work to ours, BotHunter [23], is an
application for identifying Bot machines by correlating Snort
alerts with a number of other system-monitoring events.
The notions of “confidence score” and “evidence threshold”
are introduced to capture the uncertainty in the correlation
process and specific processes are designed for the purpose
of Bot detection. The goal of our work is to provide a simple
but more general model for intrusion analysis.

Hollebeek and Waltzman proposed a notion of “suspicion”
in modeling uncertainty in intrusion analysis [24]. It appears
that the approach does not further differentiate the various
meanings that could be associated with a “suspicious” event.
The system relies on a “deductive graph” and a “suspicion
graph” to propagate certainty levels within the context of
the system under concern. But with just a single notion of
“suspicion” for each event, it is not clear how to build or
interprete the meanings of such graphs in a systematic and
consistent manner.

The literature on intrusion alert correlation is vast and
the insights into logical causality relations among intrusion
alerts have informed our work; [1], [3], [4], [5], [6], [8]
are only a few examples. Most of these works model IDS-
specific states using pre- and post-conditions that drive a
correlation model and rely on the existence of a sparse
(nearly deterministic) mapping from alerts to their pre-/post-
conditions. It appears to be difficult to model in this manner
ubiquitous alerts such as “abnormally high network traffic”
that could be indicative of any of a wide variety of possible
conditions. Our observation correspondence model assigns
a direct meaning to an observation and our internal model
allows such meanings to be flexibly linked together based
on their semantics. Such flexibility is important when the
evidence is tenuous and subject to multiple interpretations.

Our pre-processing step includes data reduction based
on clustering and simple correlation of local observations.
Much previous work in IDS has addressed this important
problem [5], [8] (including the “layered approach” of Mar-
tignoni et al. [25]). We intend to use all applicable tools and
approaches from these works.

VII. CONCLUSION

We presented an empirical approach to modeling uncer-
tainty in intrusion analysis to help the system administrator
in reaching conclusions quickly about possible intrusions,
when multiple pieces of uncertain data have to be inte-
grated. The model language we designed has two com-
ponents: observation correspondence and internal model.
The observation correspondence gives a direct meaning to
low-level system monitoring data with explicit uncertainty
tags, and can be derived from natural-language description
that already exists in some IDS knowledge bases, e.g.
the Snort rule repository. The internal model is concise
and captures general multi-stage attack conditions in an
enterprise network. We developed a reasoning system that is
easy to understand, handles the uncertainty existent in both
observation correspondence and the internal model, and finds
high-confidence attack traces from many possible interpre-
tations of the low-level monitoring data. Our prototype and
experiments show that the model developed from studying
one set of data is effective for analyzing completely different
data sets with very little effort. This is a strong indication

that the modeling approach can codify the seemingly ad-
hoc reasoning process found in intrusion analysis and yield
practical tools for enterprise-network environments.

ACKNOWLEDGMENT

This work was partially supported by the U.S. National
Science Foundation under Grant No. 0716665. Any opin-
ions, findings and conclusions or recomendations expressed
in this material are those of the authors and do not neces-
sarily reflect the views of the National Science Foundation.

We would like to thank Abhinav Pathak from Purdue who
provided us the Honeypot data for evaluation.

REFERENCES

[1] A. Mounji, “Languages and tools for rule-based distributed
intrusion detections,” Ph.D. dissertation, Purdue University,
September 1997.

[2] S. R. Snapp, J. Brentano, G. V. Dias, T. L. Goan, L. T.
Heberlein, C. lin Ho, K. N. Levitt, B. Mukherjee, S. E. Smaha,
T. Grance, D. M. Teal, and D. Mansur, “Dids (distributed
intrusion detection system) - motivation, architecture, and
an early prototype,” in In Proceedings of the 14th National
Computer Security Conference, 1991, pp. 167–176.

[3] S. Cheung, U. Lindqvist, and M. W. Fong, “Modeling
multistep cyber attacks for scenario recognition,” in
DARPA Information Survivability Conference and Exposition
(DISCEX III), Washington, D.C., 2003, pp. 284–
292. [Online]. Available: http://www.sdl.sri.com/papers/
cheung-lindqvist-fong-discex3-cr/

[4] F. Cuppens and A. Miège, “Alert correlation in a coopera-
tive intrusion detection framework,” in IEEE Symposium on
Security and Privacy, 2002.

[5] P. Ning, Y. Cui, D. Reeves, and D. Xu, “Tools and techniques
for analyzing intrusion alerts,” ACM Transactions on Infor-
mation and System Security, vol. 7, no. 2, pp. 273–318, May
2004.

[6] S. Noel, E. Robertson, and S. Jajodia, “Correlating Intrusion
Events and Building Attack Scenarios Through Attack Graph
Distances,” in 20th Annual Computer Security Applications
Conference (ACSAC 2004), 2004, pp. 350– 359.

[7] F. Valeur, “Real-Time Intrusion Detection Alert Correlation,”
Ph.D. dissertation, University of California, Santa Barbara,
May 2006.

[8] F. Valeur, G. Vigna, C. Kruegel, and R. A. Kemmerer,
“A Comprehensive Approach to Intrusion Detection Alert
Correlation,” IEEE Transactions on Dependable and Secure
Computing, vol. 1, no. 3, pp. 146–169, 2004.

[9] F. V. Jensen and T. D. Nielsen, Bayesian Networks and
Decision Graphs. Springer Verlag, 2007.

[10] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Net-
works of Plausible Inference. Morgan Kaufman, 1999.

[11] G. Shafer, A Mathematical Theory of Evidence. Princeton
University Press, 1976.

[12] G. Shafer, “Probability judgment in artificial intelligence and
expert systems,” Statistical Science, vol. 2, pp. 3–44, 1987.

[13] M. Almgren, U. Lindqvist, and E. Jonsson, “A multi-sensor
model to improve automated attack detection,” in 11th Inter-
national Symposium on Recent Advances in Intrusion Detec-
tion (RAID 2008). RAID, September 2008.

[14] T. M. Chen and V. Venkataramanan, “Dempster-shafer theory
for intrusion detection in ad hoc networks,” IEEE Internet
Computing, 2005.

[15] G. Modelo-Howard, S. Bagchi, and G. Lebanon, “Deter-
mining placement of intrusion detectors for a distributed
application through bayesian network modeling,” in 11th
International Symposium on Recent Advances in Intrusion
Detection (RAID 2008). RAID, September 2008.

[16] J. McHugh, “Intrusion and intrusion detection,” International
Journal of Information Security, vol. 1, pp. 14 – 35, 2001.

[17] S. Ceri, G. Gottlob, and L. Tanca, “What you always wanted
to know about Datalog (and never dared to ask),” IEEE
Transactions Knowledge and Data Engineering, vol. 1, no. 1,
pp. 146–166, 1989.

[18] P. Rao, K. F. Sagonas, T. Swift, D. S. Warren, and J. Freire,
“XSB: A system for efficiently computing well-founded se-
mantics,” in Proceedings of the 4th International Conference
on Logic Programming and Non-Monotonic Reasoning (LP-
NMR’97). Dagstuhl, Germany: Springer Verlag, July 1997,
pp. 2–17.

[19] G. Vigna, “Teaching Network Security Through Live Exer-
cises,” in Proceedings of the Third Annual World Conference
on Information Security Education (WISE 3), C. Irvine and
H. Armstrong, Eds. Monterey, CA: Kluwer Academic
Publishers, June 2003, pp. 3–18.

[20] Y. Zhai, P. Ning, P. Iyer, and D. S. Reeves, “Reasoning about
complementary intrusion evidence,” in Proceedings of 20th
Annual Computer Security Applications Conference (ACSAC),
December 2004, pp. 39–48.

[21] S. Axelsson, “The base-rate fallacy and the difficulty of
intrusion detection,” ACM Trans. Inf. Syst. Secur., vol. 3, no. 3,
pp. 186–205, 2000.

[22] C. Drummond and R. Holte, “Severe class imbalance: Why
better algorithms aren’t the answer,” in Machine Learn-
ing: ECML 2005, ser. Lecture Notes in Computer Science.
Springer US, 2005, vol. 3720, pp. 539 – 546.

[23] G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W. Lee,
“BotHunter: Detecting malware infection through ids-driven
dialog correlation,” in Proceedings of the 16th USENIX
Security Symposium (Security’07), August 2007.

[24] T. Hollebeek and R. Waltzman, “The role of suspicion in
model-based intrusion detection,” in Proceedings of the 2004
workshop on New security paradigms, 2004.

[25] L. Martignoni, E. Stinson, M. Fredrikson, S. Jha, and
J. Mitchell, “A layered architecture for detecting malicious
behaviors,” in 11th International Symposium on Recent Ad-
vances in Intrusion Detection (RAID 2008). RAID, Septem-
ber 2008.

