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PERFORMANCE ANALYSIS FOR BLIND IDENTIFICATION OF ACOUSTIC CHANNELS

Majid Fozunbal
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1501 Page Mill Road
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ABSTRACT

Multichannel blind system identification is a prominent part
in audio dereverberation. Despite much progress in this field,
the performance of existing algorithms is still unsatisfactory
and existing theories have failed to properly explain the issue.
To assess performance impediments, we introduce, quantify,
and illustrate three major sources of errors: namely,estima-
tion, approximation, andreferencingerrors. For each error,
we provide simple expressions that describe the effect of var-
ious system parameters and that can serve as a guideline to
explain reality and improve performance.

Index Terms— Acoustic systems, blind identification,
dereverberation, deconvolution, multichannel.

1. INTRODUCTION

Multichannel blind identification or estimation is a central
problem in many audio processing algorithms including dere-
verberation and source separation [1]. A common approach
to dereverberation is a two-stage method composing a blind
identification stage followed by an equalization stage imple-
mented by inverse filtering [1]. Unlike non-blind techniques
that are used in echo control applications, blind identifica-
tion techniques do not have a clean and separate reference for
adaptation purposes. Instead, they employ adaptive strategies
in which each channel benchmarks its performance against
those of other channels [1]. Thus, blind techniques are not
only susceptible to the same impairments of non-blind meth-
ods, but also prone to cross channel referencing errors [2].

Blind identification and equalization techniques have a
rich history ingrained in communication systems. Yet, their
applications in acoustic systems have been hindered by the
large dimensionality of acoustic channels. As a result, ex-
isting blind techniques have not been successful to serve as
a robust base for audio dereverberation [3]. Recently, there
have has been some progress to address the issue. In [4], the
authors propose a heuristic approach to enhance robustness
against additive noise. They, however, did not address the
intrinsic causes of susceptibility. Consequently, in [3],the au-
thors attribute performance sensitivity to near-common zero
of room impulses and propose an approach to improve per-
formance [5]. Despite this progress, a comprehensive study

to dissect sources of error, to assess their levels, and to pro-
vide insights on how to tackle them is missing. In this spirit,
this paper attempts to analyze the performance of multichan-
nel blind estimation in a holistic, analytical approach. More
precisely, we introduce three major sources of error in opti-
mization of blind estimation:estimation, approximation, and
referencingerrors. Estimation error is caused by empirical
data. Using arguments from statistical learning theory, we
assess and provide a simple upper bound. In contrast, ap-
proximation error is characterized as a mismatch between the
length of room impulse responses,L, and estimation filters,
l ≤ L. Deriving a simple expression, we quantify and numer-
ically illustrate approximation error. Moreover, we illustrate
the trade-off between these two errors with respect tol.

Finally, we address referencing error that is caused by
cross referencing. In theory, if there exists no common-zero
among channel impulses, then blind identification algorithms
converge to the true solution [1]. In practice, however, this
condition does not suffice convergence. To investigate the
reason, we introduce a measure of sensitivity in optimization.
Augmenting existing theories [3], our results provide new in-
sights in predicting performance.

2. SETUP

Consider a conference room with two microphones and an au-
dio source. Lets(n) denote the audio signal that is generated
by the source. The acoustic coupling between the source and
microphonei is calledreverb pathand is denoted by a filter
(vector)hi ∈ R

L, in whichL is thereverb length. Fig. 1 de-
picts two such reverb paths for a sampling frequency of 8KHz.
Using a linear model, microphone signals are described by

xi(n) = (hi ∗ s)(n) + wi(n), i = 1, 2 (1)

wherewi(n) denotes the background noise recorded by mi-
crophonei. The noise is considered temporally and spatially
uncorrelated and independent froms(n). Observingxi(n),
the goal of dereverberation is to find two filtersfi such that

y(n) =

2∑

i=1

(fi ∗ xi)(n) ∝ s(n). (2)

A common approach to this problem is based on blind esti-
mation ofhi followed by inverse filtering using the obtained
estimates. Hence, any inaccuracy in estimation manifests it-
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Fig. 1. Typical reverb paths recorded in a conference room
for a sampling frequency of 8KHz. The microphones are 3
feet apart and the source is 5 feet from their center.

self into a large deviation in inversion.
Blind identification techniques estimate the reverb paths

through cross referencing by minimizes theempirical risk

Ĵm(g) = Êm

{
‖g1 ∗ x1(n) − g2 ∗ x2(n)‖2

}
(3)

for estimation filtersg = (g1, g2) ∈ G where

G = {g ∈ R
2l : ‖g‖ = 1,1′g ≥ 0} (4)

is theestimation space. Here,l ≤ L is theestimation length,
i.e., the length ofg1 andg2. The subscriptm denotes the
sample size, i.e., the size of empirical data, used in computing
empirical expectation (3). Moreover, the condition1

′g ≥ 0
in Eq. (4) is to exclude trivial sign symmetric solutions.

Theoretically, it is known that if thez-transform ofh1 and
h2 have no common-zeros and if the estimation length,l, is
exactlyL, then asm → ∞, g1 andg2 converge–uniquely up
to a scalar–toh2 andh1, respectively. This is the sufficient
condition that is often cited asno common-zero condition[3].
In practice, despite the fact that this condition holds for room
impulse responses, like those shown in Fig. 1, the optimiza-
tion (3) of blind estimators fails to accurately estimateh2 and
h1. The inherent frailty and vulnerability in minimizing Eq.
(3) is a fundamental challenge that has left blind estimation
for dereverberation still open.

3. ERROR ANALYSIS

There are three major sources of error in optimization (3) that
hinder the performance of blind estimation algorithms:esti-
mation error, approximation error, andreferencing error.

3.1. Estimation Error

The estimation error is simply defined as the error caused by
using the empirical risk (3) instead of the true risk

J(g) = E
{
‖g1 ∗ x1(n) − g2 ∗ x2(n)‖2

}
. (5)

Intuitively, sincexi(n) is random, at each pointg, Ĵm(g) is
a random variable that deviates from its meanJ(g). This

deviation is the source of estimation error.
To assess the level of estimation error, assume that

|xi(n)| < B. Using the principle of empirical risk mini-
mization (ERM) [6, Theorem 5.1], we have

J(g) ≤ Ĵm(g) + 2B2
√

ε(m, l) (6)

for sufficiently large values ofm and with a probability no
smaller than theconfidence factor1 − β. The second term in
Eq. (6) is

ε(m, l) =
1

m

[

2l(ln
m

l
+ 1) − lnβ/4 + 1

]

(7)

that determines an upper-bound on pointwise deviation of
the risks, a deviation that converges to zero in probabil-
ity asm → ∞.

Supposegm = (gm
1 , gm

2 ) andgo = (go
1 , g

o
2) minimize the

empirical risk (3) and the true risk (5), respectively. The true
risk penalty incurred by usinggm instead ofgo is bounded by

J(gm) − J(go) ≤ 2B2

(
√

ε(m, l) +

√

−
lnβ

2m

)

(8)

with probability no smaller than1 − 2β [6, pp. 193].
Assume the source and noise signals are uncorrelated,

zero mean, and white with variancesσ2
s andσ2

w, respectively.
We can show that

J(g) = σ2
sDh(g) + σ2

w

in which

Dh(g) = ‖g1 ∗ h1 − g2 ∗ h2‖
2 (9)

is themisalignmentin estimatingg = (g1, g2) for the under-
lying h = (h1, h2). We define theestimation erroras the
additional misalignment incurred by usinggm instead ofgo.
Rewriting Eq. (8) in terms ofDh(g), we obtain the bound

Dh(gm) − Dh(go) ≤ Er(est)

Er(est) , 8(1 +
1

SNR
)

(
√

ε(m, l) +

√

−
lnβ

2m

)

(10)

that holds true with a probability of at least1−2β. The bound
(10) is a function of sample size,m, estimation length,l, and

signal to noise ratio,SNR =
σ2
s

σ2
w

. In derivation of (10), we
adjusted Eqs. (6) and (8) for Gaussian signals by takingB as
two times the standard deviation with a confidence of 97%.
For‖h‖ = 1, this means thatB2 = 4(σ2

s + σ2
w).

Fig. 2(a) depicts the behavior of the bound (10) for five
different estimation lengths and forβ = 0.03. The bound
illustrates that, for fixedl, asm increases, the estimation error
diminishes. In contrast, for fixedm, asl increases, the error
increases.

3.2. Approximation Error

The estimation error is caused by minimizing empirical risk
instead of the true risk. In contrast, approximation error is
due to limiting the search spaceG when minimizingDh(g).
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Fig. 2. (a) Estimation error for five estimation lengths withβ = 0.03. (b) Approximation error for a collection of room
impulses, for whichL = 1000, measured in the same room as in Fig. 1. (c) Estimation + Approximation error suggesting
l = 650 as an optimal estimation length.

More precisely, theapproximation erroris defined by

Er(app) = sup
h∈H

min
g∈G

Dh(g). (11)

Finding the exact expression of the approximation error is
difficult or even impossible depending on definition ofH ⊂
R

2L. For blind estimation of room impulses, however, we find
a simple upperbound on approximation error (11) as follows.

From Fig. 1, we note that the energy of reverberation paths
drops as a function of time. Thus, we modelH as a collection
of h = (h1, h2) such that

∑

i ‖hi‖
2 = 1 and bothh1 and

h2 have diminishing amount of energy in their tails. For each
estimation lengthl ≤ L and for eachh = (a1, · · · , aL), let

h(l) , (a1, · · · , al, 0, · · · , 0
︸ ︷︷ ︸

L−l

)

denotes the truncated version ofh. Moreover, let

γ(l) = sup
h

‖h − h(l)‖2 (12)

denote the maximum energy of the tailL− l elements among
all h. With some routine application of triangular inequality,
we derive

Er(app) , 2γ(l) (13)

as an upperbound on approximation error. Fig. 2(b) depicts
this bound for a collection of impulse responses that were ob-
tained from the conference room whose sample impulses are
shown in Fig. 1. Fig. 2(b) also depicts an exponential curve
that is fit toγ(l) suggesting a parametric upper bound

Er(app) = ρe−αl, ρ > 0, α > 0, (14)

that simplifies further analytical derivations.
To better understand the dynamics of estimation error (10)

versus approximation error (13), Fig. 2(c) depicts them to-
gether to contrast their opposite behavior with respect to esti-
mation length,l. As shown, the sum of these errors indicates
thatl = 650 is the optimal estimation length; its analytical ex-
pression can be obtained by minimizing the sum of (10) and
(13) with respect tol.

3.3. Referencing Error

We note that neither of the aforementioned bounds depend on
the specific underlyingh. Instead, they depend on its generic
characteristics such as unit norm and tail behavior. In con-
trast, there is another source of error that is specific to under-
lying h. We call this referencing error because in minimizing
the misalignment (9), choices forg1 andg2 are prone to one
another’s errors. To assess the inherent vulnerability forsuch
error, we use the notion of radius of uncertainty [7]. That is
for everyǫ > 0, let

Gh(ǫ) = {g ∈ G : Dh(g) ≤ min
g∈G

Dh(g) + ǫ2} (15)

as theǫ-solution set forh. The radius of uncertainty is defined

rh(ǫ) = sup
g1,g2∈Gh(ǫ)

‖g1 − g2‖

2
. (16)

We may assume thatL = l. Hence, for everyh, there
exists an optimal solutiongo = (go

1 , g
o
2) ∈ Gh(ǫ) that exactly

estimatesh up to a scalar. By Taylor expansion atgo, we
have

Gh(ǫ) = {g ∈ G : g = go + v, v′∇2Dh(go)v ≤ ǫ2}. (17)

Assuming the no common-zero condition onh1 andh2,Gh(ǫ)
lies on an ellipsoid that has no direction of degeneration, ex-
cludinggo. Hence, the radius of uncertainty is bounded by
the largest axis of this ellipsoid. Thus, we have

rh(ǫ)

ǫ
≤

1
√

σ2(∇2Dh(go))
. (18)

as a measure of vulnerability in estimatingh, aligned with
heuristic results of [3]. In Eq. (18),σ2(·) denotes the smallest
non-zero eigenvalue of the Hessian matrix

∇2Dh(go) =

[
H ′

1

−H ′
2

]
[
H1 −H2

]
(19)

whereH1 andH2 denote(2l−1)∗ l Toeplitz matrices derived
from h1 andh2, respectively.

The Hessian matrix is of size2l. By no common-zero



condition, it has the maximum rank of2l − 1 and has a one
dimensional null space corresponding to the direction ofgo.
The goal of blind estimation is to find this eigenvector. But,its
performance is hindered by other small eigenvectors of Hes-
sian matrix. Hence, such blind techniques are extremely sen-
sitive to any computation error. This sensitivity, whose sever-
ity can be measured by (18), manifests itself as either insta-
bility in estimation or an extremely slow convergence making
the algorithms practically useless.

Fig. 3 depicts the eigenvalues of this matrix for two types
of impulse responses: 1) room impulses responses shown in
Fig. 1, and 2) randomly generated impulse responses. In each
case, the length of the impulse responses is 1000 and the rank
of the matrix is 1999, the maximum possible rank. However,
it is seen that a majority of eigenvalues are extremely small.
Although, impulse responses have no common-zeros, blind
estimation algorithms fail to estimateh. This is more severe
for room impulse responses, as it can be inferred from Fig. 3
and it can be predicated by Eq. (18).

We do not have a simple description for Eq. (18). How-
ever, to have a practical rule of thumb, we may find an ap-
proximation for Eq. (18) by approximating Toeplitz matrices,
Hi, with circulant matrices. As a result, we obtain the ap-
proximate similarity

∇2Dh(go) ∼

[
D|Fh1|

2 −DFh∗
1 ◦ Fh2

−DFh∗
2 ◦ Fh1 D|Fh2|

2

]

(20)

whereFh denotes the discrete fourier transform ofh, ‘◦’ de-
notes the pairwise multiplication, andD maps a vector to a
diagonal matrix. Half of the eigenvalues of this matrix are 0
and the other half are

|Fh1(k)|2 + |Fh2(k)|2, k ∈ {1, · · · , l} (21)

wherek denotes the frequency bins. Hence, the smallest non-
zero eigenvalue of the approximate Hessian Matrix is

min
k

(
|Fh1(k)|2 + |Fh2(k)|2

)
, (22)

which is the median of all of its eigenvalues. Thus, we may
use

rh(ǫ)

ǫ
≈ Ω

(

1

mink

√

|Fh1(k)|2 + |Fh2(k)|2

)

(23)

as a rule of thumb measure of sensitivity in optimization (3).
Eq. (23) is an augmentation to the no common-zero sufficient
condition. It sheds light on sensitivity and frailty of the per-
formance of blind estimation.

4. CONCLUSION

This paper attempts to provide a holistic, analytical interpreta-
tion and assessment of practical impairments of multichannel
blind estimation techniques. We introduced and quantified
three major sources of error and illustrated their effects on
performance. The results of this work just scratch the tip of
the iceberg in fully understanding the sensitive dynamics of
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Fig. 3. Normalized Eigenvalues of Hessian matrix (19) for
two types of impulse responses: room impulses in Fig. 1 and
random impulses. In each case,L = 1000 and the rank of
Hessian matrix is 1999 implying no common-zero condition.

blind estimation. Yet, they can serve as a guideline for further
detailed analysis and improved design techniques.
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