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Abstract:
Multichannel blind system identification is a prominent part in audio dereverberation. Despite much
progress in this field, the performance of existing algorithms is still unsatisfactory and existing theories
have failed to properly explain the issue. To assess performance impediments, we introduce, quantify, and
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ABSTRACT to dissect sources of error, to assess their levels, andto pr

] ) ) S ) vide insights on how to tackle them is missing. In this spirit
Multichannel blind system identification is a prominenttpar ipis paper attempts to analyze the performance of multichan
in audio dereverberation. Despite much progress in thidfiel ne| plind estimation in a holistic, analytical approach. iélo
the performance of existing algorithms is still unsatisag  recisely, we introduce three major sources of error in-opti
and existing theories have failed to properly explain 18865 mjzation of blind estimationestimation approximation and
To assess performance impediments, we introduce, quantifigferencingerrors. Estimation error is caused by empirical
and illustrate three major sources of errors: nameyima-  gata. Using arguments from statistical learning theory, we
tion, approximation andreferencingerrors. For each error, assess and provide a simple upper bound. In contrast, ap-
we provide simple expressions that describe the effectief vap,ximation error is characterized as a mismatch between th
ious system parameters and that can serve as a guideline@]gth of room impulse responsds, and estimation filters,

explain reality and improve performance. ! < L. Deriving a simple expression, we quantify and numer-
Index Terms— Acoustic systems, blind identification, ically illustrate approximation error. Moreover, we iltreste
dereverberation, deconvolution, multichannel. the trade-off between these two errors with reSpeCt to

Finally, we address referencing error that is caused by
cross referencing. In theory, if there exists no commorm-zer
1. INTRODUCTION among channel impulses, then blind identification algamith
converge to the true solution [1]. In practice, howevers thi
Multichannel blind identification or estimation is a cetra condition does not suffice convergence. To investigate the
problem in many audio processing algorithms including €erereason, we introduce a measure of sensitivity in optinurati
verberation and source separation [1]. A common approacugmenting existing theories [3], our results provide naw i
to dereverberation is a two-stage method composing a blingights in predicting performance.
identification stage followed by an equalization stage enpl
mented by inverse filtering [1]. Unlike non-blind technigue 2. SETUP
that are used in echo control applications, blind identifica

tion techniques do not have a clean and separate reference toonsider a conference room with two microphones and an au-
adaptation purposes. Instead, they employ adaptivegteate dio source. Let(n) denote the audio signal that is generated
in which each channel benchmarks its performance againg, the source. The acoustic coupling between the source and
those of other channels [1]. Thus, blind techniques are nghicrophonei is calledreverb pathand is denoted by a filter
only susceptible to the same impairments of non-blind meth(vector)hi € R, in which L is thereverb length Fig. 1 de-
ods, but also prone to cross channel referencing errors [2]. picts two such reverb paths for a sampling frequency of 8KHz.
Blind identification and equalization techniques have aJsing a linear model, microphone signals are described by
rich history ingrained in communication systems. Yet, thei _ .
applications in acoustic systems have been hindered by the zi(n) = (hi % 5)(n) + wiln), i =1,2 (1)
large dimensionality of acoustic channels. As a result, exwherew;(n) denotes the background noise recorded by mi-
isting blind techniques have not been successful to serve &ophone. The noise is considered temporally and spatially
a robust base for audio dereverberation [3]. Recentlyethefuncorrelated and independent fraifn). Observingz;(n),
have has been some progress to address the issue. In [4], the goal of dereverberationis to find two filtefissuch that

authors propose a heuristic approach to enhance robustness 2
against additive noise. They, however, did not address the y(n) = Z(fi *x;)(n) < s(n). (2)
intrinsic causes of susceptibility. Consequently, in {Bg au- i=1

thors attribute performance sensitivity to near-commaio ze A common approach to this problem is based on blind esti-
of room impulses and propose an approach to improve pemation ofh; followed by inverse filtering using the obtained
formance [5]. Despite this progress, a comprehensive studgstimates. Hence, any inaccuracy in estimation manifests i



h o deviation is the source of estimation error.

To assess the level of estimation error, assume that
|zi(n)] < B. Using the principle of empirical risk mini-
mization (ERM) [6, Theorem 5.1], we have

e J(g) < Jm(g) +2B*\/e(m,1) (6)
100 200 300 400 500 600 700 800 900 1000 . . . -
h for sufficiently large values ofn and with a probability no
? smaller than theonfidence factot — 3. The second term in
Eq. (6) is
1 m
2(m, 1) = — {21(1117 —|—1)—ln5/4—|—1} @)

that determines an upper-bound on pointwise deviation of
the risks, a deviation that converges to zero in probabil-
Fig. 1. Typical reverb paths recorded in a conference roonfty asm — oo.

for a sampling frequency of 8KHz. The microphones are 3  Supposg™ = (g7", g5*) andg® = (g7, g5) minimize the
feet apart and the source is 5 feet from their center. empirical risk (3) and the true risk (5), respectively. Theet
risk penalty incurred by using/™ instead ofg° is bounded by

100 200 300 400 500 600 700 800 900 1000

self into a large deviation in inversion.

Blind identification techniques estimate the reverb paths J(g™) — J(g°) < 2B2 <1 fe(m, 1) + 4 L@) (8)
through cross referencing by minimizes grapirical risk 2m

Jm(g) = E,, {llg1 * 21(n) — g2 * z2(n)||*} (3)  with probability no smaller tham — 23 [6, pp. 193].
Assume the source and noise signals are uncorrelated,

for estimation filterg = where oo : :
Y =(91,9:) €9 zero mean, and white with variancebando?2,, respectively.

G={geR”:|g|=1,1g >0} (4)  We can show that
is theestimation spaceHere,! < L is theestimation length J(g) = 0%Dn(g) + o2
i.e., the length ofy; andg,. The subscriptn denotes the . .
N : i . . in which
sample size, i.e., the size of empirical data, used in comgut
empirical expectation (3). Moreover, the conditibly > 0 Dr(g) = |lg1 * h1 — g2 * hal|? 9)
in Eq. (4) is to exclude trivial sign symmetric solutions. is themisalignmentn estimatingg = (g1, g2) for the under-

Theoretically, itis known that if the-transform ofz; and  \ying b = (hy, k). We define theestimation erroras the
hs have no common-zeros and if the estimation lengtis  aqditional misalignment incurred by using® instead ofg®.
exactly L, then asn — oo, g1 andg, converge—uniquely up  Rewriting Eq. (8) in terms oDy, (g), we obtain the bound
to a scalar—tdi; andhq, respectively. This is the sufficient Di(a™) — Di (a°) < Ex
condition that is often cited as&o common-zero conditid8]. n(g™) =~ Dn(g°®) < Er(es}

In practice, despite the fact that this condition holds fmm — A 1 Ing

impulse responses, like those shown in Fig. 1, the optimiza- Er(es) = 8(1 + SNR) Ve(m, 1) + “om (10)
tion (3) of blind estimators fails to accurately estimageand ] -

h1. The inherent frailty and vulnerability in minimizing Eq. thatholds true with a probability of at least 23. The bound
(3) is a fundamental challenge that has left blind estinmatio (10) is a function of sample size;, estimation length,, and

for dereverberation still open. signal to noise ratioSNR = j—j In derivation of (10), we
adjusted Egs. (6) and (8) for Gaussian signals by takiras
3. ERROR ANALYSIS two times the standard deviation with a confidence of 97%.

For ||h|| = 1, this means thaB? = 4(c2 + 02).
There are three major sources of error in optimization (&) th Fig. 2(a) depicts the behavior of the bound (10) for five
hinder the performance of blind estimation algorithrasti-  different estimation lengths and fgt = 0.03. The bound
mation error, approximation erroy andreferencing error illustrates that, for fixed, asm increases, the estimation error
diminishes. In contrast, for fixedh, asl increases, the error

3.1. Estimation Error increases.

The estimation error is simply defined as the error caused by
using the empirical risk (3) instead of the true risk 3.2. Approximation Error

_ _ 2

J(g) =E{llgr *21(n) = g2 * z2(n)|I} A ®) " The estimation error is caused by minimizing empirical risk
Intuitively, sincex;(n) is random, at each poimt, J,,(g) is  instead of the true risk. In contrast, approximation ergor i
a random variable that deviates from its meHyg). This  due to limiting the search spagewhen minimizingDp (g).
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Fig. 2. (a) Estimation error for five estimation lengths with= 0.03. (b) Approximation error for a collection of room
impulses, for which, = 1000, measured in the same room as in Fig. 1. (c) Estimation + Appration error suggesting
[ = 650 as an optimal estimation length.

More precisely, thapproximation erroris defined by 3.3. Referencing Error
Er(app = ;SLEE glelg Dn(g). (11)  we note that neither of the aforementioned bounds depend on

the specific underlying. Instead, they depend on its generic
Tharacteristics such as unit norm and tail behavior. In con-

R2L. For blind estimati f . | h f dtrast, there is another source of error that is specific teund
- Forblind estimation 6T room impulses, however, we fin lying h. We call this referencing error because in minimizing

a simple upperbound on approximation error (11) as follows,[he misalignment (9), choices fgi andgs, are prone to one

From Fig. 1, we note that the energy of reverberation pathg, yer's errors. To assess the inherent vulnerabilitgtioh

drops as a function of time. Thus, we modeas a collection o6 \we yse the notion of radius of uncertainty [7]. That is
of h = (h1,h2) such thaty_, ||h;[|* = 1 and bothh; and ¢, everye > 0, let

ho have diminishing amount of energy in their tails. For each

Finding the exact expression of the approximation error i
difficult or even impossible depending on definition7gf C

. : 2
estimation lengtth < L and for eacth = (a1, --- ,ar), let Gnl(e) ={g € G :Dn(g) < min Dr(g) +€°} (15)
D2 (ay, a0, ,0) as thes-solution set foth. The radius of uncertainty is defined
| |
L=t g1 — g2
. = S _ 16
denotes the truncated version/ofMoreover, let mn(€) . gjggh () 2 (16)
v(1) = sup [|[h — RO (12) We may assume thdt = I. Hence, for every, there
h

) . exists an optimal solutiog® = (g9, ¢9) € Gn(€) that exactly
denote the maximum energy of the tail- [ elements among  astimatesh up to a scalar. By Taylor expansion g, we
all h. With some routine application of triangular inequality, paye

we derive o - o 2
= A On(e)={g€G:g=g"+v, v'V'Du(g°)v <€} (17)
Er(app = 2v(]) (13) : "
o ) . Assuming the no common-zero condition/onandhg, G, ()
as an upperbound on approximation error. Fig. 2(b) depictges on an ellipsoid that has no direction of degeneratian, e

this bound for a collection of impulse responses that were Otbluding g°. Hence, the radius of uncertainty is bounded by
tained from the conference room whose sample impulses afge largest axis of this ellipsoid. Thus, we have

shown in Fig. 1. Fig. 2(b) also depicts an exponential curve rn(€) 1
h
<

that is fit toy (1) suggesting a parametric upper bound < )
€ V02AV2Dr(g°))

as a measure of vulnerability in estimatihg aligned with

that simplifies further analytical derivations. heuristic results of [3]. In Eq. (18)(-) denotes the smallest
To better understand the dynamics of estimation error (10} gn-zero eigenvalue of the Hessian matrix

versus approximation error (13), Fig. 2(c) depicts them to- ,

gether to contrast their opposite behavior with respecstie e V2Dn(g°) = { IE/} [Hl —Hz] (19)
mation length]. As shown, the sum of these errors indicates T2

that! = 650 is the optimal estimation length; its analytical ex- whereH; andH» denote(2] — 1) I Toeplitz matrices derived
pression can be obtained by minimizing the sum of (10) androm h, andhs, respectively.

(13) with respect té. The Hessian matrix is of siz&/. By no common-zero

(18)

Er(app = pe~*, p>0,a >0, (14)



condition, it has the maximum rank @f — 1 and has a one Normalized Eigenvalues
dimensional null space corresponding to the directiopf 10 ‘ T
The goal of blind estimation is to find this eigenvector. Bist,
performance is hindered by other small eigenvectors of Hes-
sian matrix. Hence, such blind techniques are extremely sen . /
sitive to any computation error. This sensitivity, whosesse o
ity can be measured by (18), manifests itself as either-insta ~ min ((Fm (R + [Fha())
bility in estimation or an extremely slow convergence mgkin
the algorithms practically useless.

Fig. 3 depicts the eigenvalues of this matrix for two types
of impulse responses: 1) room impulses responses shown in

Fig. 1, and 2) randomly generated impulse responses. In each et
case, the length of the impulse responses is 1000 and the rank line | ——Random Impulses
of the matrix is 1999, the maximum possible rank. However, 0 200 400 600 800 1000 1200 1400 1600 1800 2000

it is seen that a majority of eigenvalues are extremely small ) ) ) .

Although, impulse responses have no common-zeros, blingid- 3. Normalized Eigenvalues of Hessian matrix (19) for

estimation algorithms fail to estimate This is more severe WO types of impulse responses: room impulses in Fig. 1 and

for room impulse responses, as it can be inferred from Fig. §2ndom impulses. In each case,= 1000 and the rank of

and it can be predicated by Eq. (18). Hessian matrix is 1999 implying no common-zero condition.
We do not have a simple description for Eq. (18). How-

ever, to have a practical rule of thumb, we may find an apblind estimation. Yet, they can serve as a guideline fohtert

proximation for Eq. (18) by approximating Toeplitz matsge detailed analysis and improved design techniques.

H;, with circulant matrices. As a result, we obtain the ap-
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