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Capture, conversion, and analysis of an intense NFS workload

Eric Anderson, HP Labs <eric.anderson4@hp.com>

Abstract

We describe methods to capture. conven. store and ana­
lyze NFS workloads that are 20-IOOx more intense, in
terms of operations/day, than any previously published.
We describe three techniques that improve capture per­
formance by up to lOx over previous techniques. For
conversion, we use a general-purpose formal that is both
highly space efficient and provides efficient access to the
rrace data. For analysis. we describe a number of tech­
niques adopted from the database community and some
new techniques that facilitate analysb of very large traces.
We also describe a number of guidelines for trace coUec­
tion that should prove useful to future practitioners. Fi­
nally, we analyze a commercial feature animation (movie)
rendering workload using these techniques and discuss
the characteristics of the workload. Our implementation
of these techniques is available as open source and the ex­
act anonymized dataselS we analyze are available for free
download.

1 Introduction

Storage tracing and analysis have a long history. Some of
the earliest file ystem traces were captured in 1985 [26],
and there has been inrerntiuent tracing erfon since then.
summarized by Leung [20]. Storage traces are analyzed
to find properties that future systems should sUppol1 or
exploit. and as input 10 simulators and replay lools to ex­
plore system performance with real workloads.

One of lhe problems with trace analysis is thaI old
traces inherently have to be scaled up to be used for eval­
uating newer storage systems because the underlying per­
formance of the newer systems has increased. There­
fore the community benefits from regularly capturing new
traces from multiple sources, and. if possible, traces that
put a heavy load on the storage system, reducing the need
to scale the workload.

Most traces. since they are captured by academics,
are captured in academic seuings. This means that the
workloads captured are somewhat comparable, bUI it also
means that commercial workloads are under-represented
Microsoft is working to correct this by capturing commer-

cial enterprise traces from their internal servers r23]. OUf
work focuses on commercial NFS [25, 6. 28] workloads.
In particular from a feature animation (movie) company.
whose name remains blinded as part of the agreement to
publtsh the traces. The most recent publically available
NFS traces that we are aware of were collected in 2003
by Ellard [13]. Our 2003 and 2007 traces [4J provide re­
cent NFS traces for use by the community.

One difference between our traces and other ones is the
data rates that we measured. Our 2003 client traces saw
about 750 million operations per day. In comparison, the
2003 Ellard traces saw a peak of about 125 million NFS
operations per day. and the 2007 Leung traces [20] saw a
peak of 19 million ClFS operations/day. Our 2007 traces
saw about 2.4 billion operations/day. This difference re­
quired us to develop and adopt new techniques to capture,
convert, and analyze the traces.

Since OUf traces were captured in such a different en­
"ironment than prior traces. we limit our comparisons
to their workloads. and we do not attempt to make any
claims about trends. We believe that unless we, as a com­
munity, coUecttraces from hundreds of different sites, we
will not have sufficient data to make claims stronger than
·'this workload is different from other ones in these ways:'
In fact, we make limited comparison of the trends be­
tween our 2003 and 2007 traces for similar reasons. The
underlying workload changed a, the rendering techniques
improved to generate higher quality output, the operating
system generating lhe requesls changed, the l\Tf'S proto­
col version changed. and the configuration of the clients
changed because of standard technology trends.

The process of understanding a workload involves four
main steps, as shown in Figure L OUf tools for these
steps are shown in italics for each step, as well as some
traditional tools. The first step is capturing the workload,
usually as some type of trace. The second step is con­
version. usually from some raw format into a format de­
signed for analysis. The third slep is analysis 10 reduce the
huge amount of convened data to something manageable.
Alternately. this step is a simulation or replay to explore
some new system architecture. Finally lhe founh step is
ro generate graphs or textual repons from the output of
the analysis or simulation.



Capture
(lindump. drivuwmp. endt:Jadump. Icpdump)

Conversion
(netrroce2ds, Icpdump. Lshark)

Analysi Simulation
(ipdsanalysis. nfsdsanaJysis. scriptS, programs)

GraphinglReporting
(mercury-pIOI. gnuplot. matlab. R)

Figure I: Overall process; our tools are shown in italics.
lr3ditional tools after them.

Our work has five main comribuljorus:

I. The development of techniques for lossless raw
packet capture up to 5Gb/s. and wiLh reeem hardware
improvements, likely to IOGb/s. These techniques
are applicable to anyone wanting to capture a net­
work slOrage service such as NFS, ClFS, or iSCSl.

2. A series of guideHnes for the conversion and storage
of the traces. Many of these guide~nes are things that
we wish we had known when we were converting our
traces. We used DataSeties [2J to store the traces, but
our guidelines are general.

3. lmproved techniques for analyzing very large traces
that anow us to look at the burstiness in workloads,
and an examination of how the long averaging inter­
vals in prior analysis can obscure workload proper­
ties.

4. The analysis of an intense NFS workload demon­
srrating that our techniques are successful.

5. The agreement with the animation company to allow
the roughly 100 billion operation anonymized craces
to be pub~sbed, along with the complete set of tools
to perform all the analysis presented in this paper and
to generate the graphs. Other researchers can build
on our tools for further analysis. and use the traces in
simulation studies.

\Ve examine related work in Section 2. We describe our
capture techniques in Section 3, followed by the conver­
sion in Section 4. We describe our adopted and new anal·
ysis techniques in Section 5 and use them to analyze the
workload in Section 6. Finally we conclude in Seclion 7.

2 Related work

The two closest pieces of related work are Ellard's NFS
study [12,13]. and Leung's 2007 CIFS study [20J. These
papers also summarize the earlier decade of fi lesystem
tracing, so we refer interested readers to those papers.
Ellard et al. captured NFS traces from a number of Digital
UNIX and NetApp servers on the Harvard campus. ana­
lyzed the traces and presented new results looking at the
sequentiality of the workload~ and comparing his results
to earlier traces. Ellard made his tools available, so we
initially considered building on top of them. but quickly
discovered that our workload was so much more intense
that his tools would be insufficient, and so ended up build­
ing our own. We later cranslated those tools and traces into
DataSeries, and found our version was about 100 x faster
on a four core machine and used 25 x less CPU time for
analysis. Our 2003 craces were about 25x more intense
than Ellard's 2001 traces, and about 6>< more imense than
Ellard's 2003 traces.

Leung et a1. craced a pair of eLApp servers on their
campus. Since the clients were entirely running the Win­
dows operating system, his traces were of CIFS data. and
so he used the Wtreshark tools [31] to conven the traces.
Leung's traces were of comparable intensity 10 Ellard's
traces, and they noted that they had some small packet
drops duting high load as they JUSt used tcpdump for cap­
ture. Leung identified and extensively analyzed compli­
cated sequentiality pauems. Our 2007 traces were about
95 x more intense than Leung's craces. as they saw a peak
of 19.1 million operations/day and we saw an average of
aboUl 1.8 billion. This comparison is slightly misleading
as NFS tends to have more operations than C1FS because
NFS is a stateless protocol.

Tcpdump [30] is lbe tool that almost all researchers
desctibe using to capture packet traces. We ttied using
tcpdump, but experienced massive packet loss using it in
2003, and so developed new techniques. For compatibil­
ity, we used the pcap file fomlat, otiginally developed for
tcpdump. for our raw captured data. When we captured
our second set of traces in 2007. we needed 10 capture at
even higher rates. and we used a specialized capture carel.
We wrote new capture software using techniques we had
developed in 2003 to allow us to capture above 5Gb/s.

Tcpdump also includes limited support for conversion
of NFS packets. Wireshark [31 J provides a graphical in­
terface to packet analysis, and the tshark variant provides
conversion to text. We were not aware of Wtreshark at the
time of our first capture. and we simply adjusted our ear­
lier tools when we did our 2007 tracing. We may consider
using the Wireshark converter in the future, provided we
can make it run much faster. Running tshark on a small 2



milhon packet capture took about 45 seconds whereas our
convener ran in about 5 seconds. Given conversion takes
2-3 days for a 5 day trace. we can nOl afford conversion
lO slow down by a facror of 9 x.

Some of the analysis techniques we use are derived
from the database community, namely the work on
cubes [16] and approximate quantiles [22]. We consid­
ered using a standard SQL database for our storage and
analysis, bUl abandoned lhat quickly because a database
lhat can hold 100 billion rows is very expensive. We do
use SQL databases for analysis and graphing once we
have reduced the data size down to a few million rows
using our l00ls.

3 Raw packet capture

The first stage in analyzing an NFS workload is capturing
the dala. There are three places that the work.load could
be captured: the client. the server, or the network. Cap­
turing the workload on the clients is very parallel, but is
difficullto configure and can interfere with the real work­
load. Capturing the workload on the server is straightfor­
ward if the server suppons capture, but impacts the per­
fonnance of the server. Capturing the workload on the
network through port mirroring is almosl as convenient as
capture on the server. and given that most switches imple­
ment mirroring in hardware, has no impact on network or
workload performance. Therefore. we have always cho­
sen to capture the data through the use of pon mirroring. if
necessary. using multiple Elhemet ports for the mirrored
packels.

The main challenge for raw packet capture is the under­
lying data rate. .In order lO parse NFS packets, we have to
capture the complete packel. Because the capture host is
not interacting with clients. it has no way to throttle in­
coming packets. so it needs to be able to capture at the
full sustained rale or risk packet loss. To maximize flexi­
bility. we want to write the data OUI to disk so that we can
simplify the parsing and improve the error checking. This
means that all of the incoming data eventually turns in to
disk writes leading to the second challenge of maximizing
effective disk space.

While the I second average rates may be low enough
to fit onto the mirror ports, if the switch has insufficient
buffering, packets can still be dropped. We discovered
this problem on a switch Ihat used per-pan rather than per­
card buffering. To eliminate the problem. we switched
to IOGbit mirror ports 1O reduce the need for switch-side
buffering.

The capture host can also be overrun. At low data rates
(900Mb/s, 70.000 packelsls), standard tcpdump on com-

modity hardware works fine. However, at high data rates
(50b/s. 106 packetsls). traditional approaches are insuf­
ficient. Indeed. Leung [20] nOles difficulties with packet
loss using lcpdump on a I Obit mirror port. We have de­
\ eloped three separate techniques for packet capture. all
of which work bener than lcpdump: Iindump (user-kemel
nng buffer), driverdump (in-kemel capture to files). and
endacedump (bardware capture to memory).

3.1 Lindump

The Linux kemel includes a memory-mapped, shared ring
buffer for packet capture. We modified the example lin­
dump program to write OUl pcap files [81. the slandard
output format from [cpdump. and La be able to capture
from more than one interface at the same time. We wrote
the OUtpUI files to an in-memory filesystem using mmap 1O

reduce copies. and copied and compressed the files in par­
allel to disk. Using an HP DL58002. a current 4 sockel
server circa 2003. Iindump was able to capture about 3x
the packets per second (pps) as tcpdump and about 1.25 x
the bandwidth. Combined with a somewhat higher burst
rate while the kernel and network card buffered data, this
approach was sufficient for mostly loss free captures at
the animation company. and was the technique we used
for all of the 2003 sel of traces.

Packets are captured into files in rmpfs. an in-memory
filesystem, and then compressed to maximize the effective
dISk space. If the caprure host is mostly idle, we com­
pressed with gzip -9. As the backlog of pending files
increased. we reduced the compression algorithm to gzip
-6. then to gzip -i. and finally to nothing. In practice
this approach increased the effeclive disk size by 1.5-2.5 x
in our experience a~ the data was somewhat compressible,
bur al higher input rales we had to fall back to reduced
compression.

3.2 Driverdump

At another site, our IObit lindump approach was insuffi­
cIent becau,e of packet bursts and limited buffering on the
switch. Replacing the dual IObit cards wilh a IDOb/s card
merely moved the bottleneck to the host and the packets
were dropped on the N.lC before they could be consumed
by the kemel.

To fix. this problem. we modified the network driver so
that instead of passing packets up the network stack. il
would jusl copy the packets in pcap formal lo a file, and
immediately return the packet buffer 1O the I'\TJ.c. A user
space program prepared fi 105 for capture, and closed the
files on completion. We called our solUlion driverdump
since it performed all of the packet dumping in the driver.



Conversion from raw format

Once the data. is captured, the second problem is parsing
and converting that data to a easily usable fonnat. The
raw packet format contains a large amount of unnecessary
data, and would require repeated, expensive parsing to be
used for NFS analysis. There are four main challenges
in conversion: representation, storage, performance and
anonymization. Data representation is the challenge of
deciding the logical Slfucture of the converted data. Stor­
agefannat is the challenge of picking a suitable physical
structure for the converted data. Conversion peifomumce
is the challenge of making the conversion run quickly, ide­
ally faster than the capture stage. Trace anolJ)'mi:.arion is
the challenge of hiding sensitive infonnation present in
the data and is necessary for being able 'a release traces.

One lesson we learned after conversion is that the con­
verter's version number should be included in the trace,
As with mOSt programs, there can be bugs. Having the
version number in the trace makes it easy to determine
which flaws need to be handled. For systems such as sub­
version or git, we recommend the atomic check-in ID as
a suitable version number.

A second lesson was preservation of data. An NFS
parser will discard data both for space reasons and for
anonymization. Keeping underlying infonnation, such as
per packet conversion in addition to per NFS-request con­
version can enable cross checking between analysis. We
caught an early bug in OUf converter that failed to record
packet fragmeolS by comparing the packet rates and the
I\t'S rates.

Both the Iindump and driverdump code are available in
our source distribution [9]. These tools and techniques
should eliminate problems of packet drops for capturing
storage traces. Funher details and experiments with the
first twO te hniques can be found in [I].

Discussion

Endacedump

In 2007. we returned to the animation company to collect
new traces on their faster NFS servers and IOGbls net­
work. While an update of driverdump might have been
sufficient, we decided to also try ,he Endace DAG 8.2X
caprore card [14]. This card copies and timestamps pack­
ets from a lOGb/s network directly into memory. As a
result, it caD capture minimaJ size packets at full band­
width. and is intended for doing in-memory analysis of
networks. OUf challenge was ro get the capture OUt to
disk. which was not believed to be feasible by our techni­
cal contacts at Endace.

To solve this problem, we integrated our adaptive
compression technique into a specialized capture pro­
gram. and added the Izf [21] compression algorithm. that
compresses at abou' 100MiB/s. We also upgraded our
hardware to an HP DL585g2 with 4 dual-core 2.8Ghz
Opterons, and 6 14 disk SCSI trays. Our compression
techniques turned our 20TlB of disk space into 30TIB of
effective disk space. We experienced a very small number
of packe, drops because our capture card limited a single
stream to PCI-X bandwidth (8Gbps), and required parti­
tioning into two streams to caprure IOGb/s. Newer cards
capture IOGb/s in a single stream.

Because driverdump avoids the kernel lP tack, it can
capture packets faster than the TP stack could drop them.
We increased me sustained packets per second over Iin­
dump by 2.25x to 676.000pps, and sustained bandwidth
by 1.5x to 170MiB/s (note I MiB/s ~ 2'° bytesls). We
could handle shan bursts up to 900,000 Pps. and 215
MiB/s. This gave us nearly lossless capture to memory
at the second site. Since the files were written into trnpfs. 4
we fe-used our technology for compressing and copying
the files out to disk.

3.4

3.3

Our capture techniques are direcLly applicable to anyone
attempting to capture data from a networked storage ser­
vice such as NFS, CIFS. or iSCSI. The techniques present
a tradeoff. The simplest technique (lindump). is a drop
in replacement for using tcpdump for full packet cap­
ture, and combined with our adaptive compression al­
gorithm allows capture at over twice the rate of native
tcpdump and expands the effective size of the disks by
J.5x. The intennediate technique increases the capture
rales by an additional factor of2-3x, but requires modifi­
cation of the in-kernel network driver. Our most advanced
techniques are capable of lossless full-packet caplUre at
IOGb/s, but requires purchasing special capture hardware.

4.1 Data representation

One option for the representation is the format used in the
Ellard [IIJ traces: one line per request or reply in a text
file with field names to identify the different parameters in
the RPC. This formal is slow to parse, and works poorly
for representing readdir, which has an arbitrary number
of response fields. Therefore. we chose to use a more
relational data structuring [7].

We have a primary data table with the common fields
present in every request or reply, and an identifier for each
RPC. We then have secondary tables that contain request­
type specific infonnation, such as a single table for RPC's



lhal include attributes. and a single lable for read and write
information. We then join the common table to the other
lables wben we waOl lO perform an analysis lhat uses in­
formation in both. Because of this structure, a single RPC
request or reply will have a single entry in the common ta­
ble. However. a request/reply pair will have zero (no entry
in the read/write table unless !.he operation is a read/write)
or more entries (multiple attribute entries for readdir+) in
other lables.

The relational structuring improves flexibility, and
avoids reading unnecessary data for analyses !.hat only
need a subset of the data. For example, an analysis only
looking at operation latency can simply scan the common
table.

4.2 Storage format

Having decided to use a relational structuring for our data.
we next needed to decide how 10 physically store the
data. Three options were available to us: text, SQL, and
Daw.Series. our custom binary formal [2] for sloring trace
data. Text is a traditional way of sloring trace data, how­
ever, we were concerned iliat a text representation would
be too large and toO slow. Having later converted lhe
Ellard traces to our formal. we found that the analysis dis­
tributed wilh the traces used 25 x less CPU time when the
traces and analysis used DataSeries. and ran 100 x faster
on a 4 core machine. This disparity confirmed OUf intu­
ition that text is a poor format for trace data.

SQL databases support a relational S[fUClUre. How­
ever, tbe lack of extensive compression means that our
damsets would consume a huge amount of space. We also
expected that many complex queries would not benefit
from SQL and would require extracting the emire tables
lhrough the slow SQL connection.

Therefore, we selected DataSeries as an efficient and
compact format for storing traces. It uses a relational data
model. so there are rows of data, with each row comprised
of the same typed columns. A column can be nullable,
in which case there is a hidden boolean field for sloring
whether the value is null. Groups of rows are compressed
as a unit. Prior to compression, various transforms are ap­
plied to reduce lhe size of the data. First, duplicate strings
are collapsed down to a single string. Second, values are
delta compressed relative to either the same value in the
previous row or anolher value in the same row. For exam­
ple. the packel time values are delta compressed. making
them more compressible by a general purpose compres­
sion algorithm.

DataSeries is designed for efficient access. Values are
packed SO that once a group of rows is read in, an anal-

ysis can iterate over them simply by increasing a single
counter. as with a C++ vector. Individual values are ac­
cessed by an offsel from that counter and a C++ cast. Byte
swapping is aUlomatically performed if necessary. The
offset is nOt fixed, so the same analysis can read different
versions of the data, provided the meaning of the fields
has DOl changed. Efficient access to subsets of the data is
supported by an aUlomalically generaled index.

DaraSeries is designed for generality. It suppons ver­
sioning on the table types so that an analysis can properly
interpret data mal may have changed in meaning. It has
special suppan for time fields so that analysis can conven
to and from different caw formats.

DataSeries is designed for integrity. It has inlernal
checksums on both the compressed and the uncompressed
data to validate that the data has been processed appropri­
ately. Additional details on the formal, additional trans­
forms, and comparisons to a wide variety of alternatives
can be found in the (echnical report [10].

4.3 Conversion performance

1b perfonn the conversion in parallel, we divide the col­
lected files inlo groups and process each group separately.
We make (wO passes through the data. First. we parse lhe
data and countlhe number of requests or replies. Second.
we use those counts to determine the first record-id for
each group. and convert the files. Since NFS parsing re­
quires the request to parse the reply. we currently do not
parse any request-reply pairs that cross a group bound­
ary. Similarly, we do not do full TCP reconslructioo, so
for NFS over TCP. we parse mulliple requesls or replies
if the firsl one starts at the beginning of the packet. These
limitations are similar to earlier work, so we found them
acceptable. We run the conversion locally on the 8-way
tracing machine rather than a cluster because conversion
runs faster than the IObit LAN connection we had at the
customer site (the tracing card does not act as a normal
NIe). Conversion of a full data set (30TiB) takes about 3
days.

We do offline conversion from trace files, rather than
online conversion, primarily for simplicity. However, a
Side benefit was that our convener could be paranoid and
conservative. rather than have it try to recover from con·
version problems, since we could fix the converter when
it was mis·parsing or was too conservative. The next time
we trace, we plan to do more on-the-fly conversion by
convening early groups and deleting those trace files dur­
ing capture so that we can capture longer trace..IIi.



4.4 Trace anonymization

in order 10 release the traces. we have to obscure private
data such as filenames. There are three primary ways to
map values in order to anonymize lhem:

1. unique integers. This option results in the mOSt

compaci identifiers <:'> 8 bytes), but is difficult to cal­
culate in parallel and requires a large translation table
to maintain persistent mappings and to convert back
to the original data.

2. hashIHMAC. This option results in larger identifiers
(16-20 bytes), but enables parallel conversion. A
keyed HMAC [5J instead of a hash proteclS against
dictionary attacks. Reversing this mapping requires
preserving a large translation cable.

3. encrypted values. This option results in the longest
identifiers since the encrypted value will be al least
as large as the nriginal value. It is parallizable and
easily reversible provided the small keys are main­
tained.

We chose the lasl approach because it preserved the
maximum flexibility. and allowed us to easily have dis­
cussions with the customer abouL unexpected issues such
as writes to what should have been a read-only filesys­
tern. OUf encryption includes aself-check, so we can COll­
vert back 10 real filenames by decrypting all hexadecimal
slrings and keeping the nnes that validate. We have also
used the reverstbility lO verify for a colleague thal they
properly identified the '.' and ' ..' filenames.

We chose to encrypt entire filenames since the suffixes
are specific to the animation process and are unlikely to be
useful 10 people. This choice also simplified the discu ­
sians about publishing Lbe traces. Since we can decrypt,
we could in the furure change this decision.

The remaining values were semi-random (IF addresses
in the 10' network, filehandles selected by the NFS
servers), so we pass those values through unchanged.
We decided that the filehandle conlent, which includes
for our NFS servers the filesystem containing the file,
could be useful for analysis. Filehandles could also be
anonymized.

AU jobs in the cuswmers' cluster were being run as a
common user, so we did not capture user identifiers. Since
they are transitioning away from that model, future traces
would include unchanged user identifiers and group iden­
tifiers. If there were public values in the traces, then we
would have had to apply more sophisticated anonymiza­
tion [27J.

5 Analysis techniques

Analyzing the very large amount of data that we col­
lected required us to adopt and develop new analysis
techniques. The most imponant propeny that we aimed
for was bounded memory, which meant that we needed
to have streaming analysis. The second property thai
we wanted was efficiency, because without compute-time
efficiency, we would not be able to analyze complete
dataSeIs. One of our lessons is thaI these techniques al­
lowed us to handle the much larger datasets that we have
collected.

5.1 Approximate quantiles

Quantiles are better than simple statistics or hi lograms
because they do not accidentally combine separate mea­
surements regardless of distribution. Unfortunately. for
our data, calculating exact quantiles is impractical. For a
smgle dataset, we coUeet multiple statistics with a lotal of
about 200 billion values. Storing all these values would
require'" 1.5TiB of memory, which makes il impractical
for us to calculate exact quantiles.

However, there is an algorithm from the database field
for calculating approximate quantiles in bounded mem­
ory [22J. A q-quantile of a set of n data elements is
the element at position rq II< n1 in the sorted list of ele·
ments indexed from 1 [0 n. For approximate quantiles.
the user specifies (Wo numbers E. the maximum error, and
N, the maximum number of elements. Then when the
program calculates quantile q. it actuaUy gelS a quantile
in the range [q-E,q-'-Ej.

Provided that the total number of elements is less than
N. the bound is guaranteed. We have found that usu­
aUy the error is about lOx bener than specified. For OUT

epsilon of 0.005 (sufficient to guarantee all percentiles
aIe distinct), instead of needing::::: 1.5TiB, we only need
~1.2MiB, an improvement of > 1()6. This dramatic im­
provement means we can run the analysis on one machine,
and hence process multiple sets in parallel. The perfor­
mance COSt of the algorithm is about the same as sort­
ing since the algorithm does similar sorting of subsets and
merging of subsets. Details on how lhe algorithm works
can be found in [22J or our software dislribution.

5.2 Data cube

alculating aggregate or roll-up statistics is an important
pan of analyzing a workload. For example. consider the
infonnation in the common NFS table: (time, operation,
cliem-id. and server-id). We may want to calculate the to­

tal number of operations performed by client 5. in which



case we want to count the number of rows that match
(0,0,5, 0).

The cube [16j is a generalization of the group-by op­
erations described above. Given a collection of rows,
it calculates the set of unique values for each column
Ute), adds the special value 'Al\'Y' to the sel, and then
generates one row for each member of the cross-product
U(I) x U(2) x ...U(n).

We implememed an efficient templated version of the
cube operator for use in data analysis. We added three fea­
tures to deal with memory usage. First.. our cube can only
include rows with actual values in it. This eliminates the
large number of rows from the cross-product that match
no rows in the base data. Second, we can further resuict
which rows are generated. For example, we have a large
number of c1iem id's, and so we can avoid cubing over co­
mes with both the client and operation specified to reduce
lhe number of statistics calculated. Third, we added the
ability to prune values out of the cube. For example, we
can output cube values for earlier time values and remove
them from lhe data structure once we reach later time val­
ues since we know the data is sorted by time.

The cube allows us to easily calculate a wide variely of
summary slatistics. We had previously manually imple­
mented some of the summary statistics by doing explicit
roll-ups for some of the aggregates described in Ihe ex­
ample. We discovered that the general implementation
was actually more efficient than our manual one because
it used a single hash table for all of the data rather than
nested data structures. and because we tuned the hash
function over the tuple of values to be calculated effi·
ciently.

5,3 HashTable

Our hash-table implementation [91 is a straightforward
chained-hashing implemenmtion. In our experimenlS It

IS strictly bener in both perfonnance and memory than
the GNU C++ hash table. It uses somewhat more mem­
ory than the Google sparse hash [15J. bUI performs al­
mOSt as well as the dense hash: it is strictly faster than the
g++ STL hash. We added three unusual features. First,
it can calculate its memory usage, allowing us to deter­
mine what needs to be optimized. Second, it can partially
reset iterators. which allows for safe mutating operations
on the hash table during iterauon, such as deleting a !l.ub­
sel of the values. Third, il can return the underlying hash
chains, allowing for sorting the hash table without copy­
ing the values out. This operation destroys the hash table,
but the son is usually done immediately before deleting
the table, and reduces memory usage by 2x.

5.4 Rotating hash-map

Limiting memory usage for hash tables where the enuies
have unknown lifespan presents some challenges. Con­
sider the sequentiality metric: so long as accesses are ac­
tive to the file. we want to continue to update the run infor­
mation. Once the file becomes inactive for long enough,
\\ e want to calculate summary statistics and remove the
general statistics from memory. We could keep the values
in an LRU data-structure. However if our analysis only
needs a file id and lasl offset, then the forward and back­
ward' pointers for LRU would double the memory usage.
A clock-style algorithm would require regular full scans
of the entire data structure.

We instead solve this problem by keeping two hash­
maps, the recent and old hash-maps. Any time a value
i~ accessed. it is moved to the recent hash-map if it is
not already there. At intervals, the program will call
the rOlate(fn) operation which will apply fn to all of the
(key,value) pairs in the old hash map, delete that ntap, as­
sign the recent map to the old map and create a new recem
map.

Therefore, if the analysis wants to guarantee any gap of
up to 60 seconds will be considered part of the same run,
it just needs 10 call rotateO every 60 seconds. Any value
accessed in the last 60 seconds will remain present in the
hash-map. We could reduce the memory overhead some­
what by keeping more than two hash-maps at the cost of
addilionallookups, but we have so far round that the ro­
tating hash-map provides a good tradeoff between mini­
mizing memory usage and maximizing performance. We
believe that the LRU approach would be more effective
if the size of the data stored in the hash map were larger,
and the hash-map could compact itself so that scallered
data entries do not consume excess space.

5.5 Graphing witb mercury-plot

On e we have summarized the data from DataSeries
using the techniques described above, we need to graph
and subset the data. We combined SQL. Perl, and gnuplOl
into a tool we call mercury-plol. SQL enables sub-setting
and combining data. For example if we have data on 60
second imervals, it is easy to calculate min/mean/max
for 3600 second intervals, or with the cube to select out
the subset of the data that we want to use. We use Perl
to handle operations that the database can not handle.
For example, in the cube. we represent the 'ANY' value
as null, but SQL requires a different syntax to select
for nuU vs. a specific value. We hide this difference in
the Perl functions. In practi e, this allows us to write
very simple commands such as plot quantile as



x, value as y from nfs_hostinfo_cube where
operation ~ 'read' and direction ~ 'send' to
generate a ponion of the graph. This tool allows us to
deal with the millions of rows of output that can come
from some of the analysis. To ease injection of data from
the C++ DalaSeries analysis, one lesson we learned is
analysis should have a mode that generates SQL insert
Slatements in addition to human readable output.

6 Analysis

Analyzing very large traces can take a long time. While
our custom binary format enables efficient analysis, and
our analysis techniques are efficient, it can still take 4-8
hours to analyze a single set of the 2007 traces. In prac­
tice. we analyze the Lraces in parallel on a small cluster
of four core 204GHz Opterons. Our analysis typically be­
comes bottle-necked on the file servers that serve up to
200MiB/s each once an analysis is running on more than
20 machines.

We collected data at two times: August 2003 - Febru­
ary 2004 (anim-2oo3), and January 2007 - October 2007
(anim-2007). We collected data using a variety of m.ir­
ror ports within the company's network. The network de­
sign is straightforward: there is a redundant set of core
routers. an optional mid-tier of switches to increase the
effective port count of the core. and then a collection of
edge switches that each cover one or two racks of render­
ing machines. Most of our traces were taken by mirror­
ing links between rendering machines and the rest of the
network. For each collected dataset, we would start the
collection process, and let it run either until we ran out of
disk space, or we had collected all the data we wanted.
Each of these runs comprises a set. We have 21 sets from
2003. and 8 sets from 2007.

We selected a subset of the dala to present, twO datasets
from 2003 and two from 2007. The sets were selected
both because [hey are representative of the more inten­
sive traces from both years, and ro show some variery in
the data. We identified clients as hosts thar sent requests,
servers a<; hOSL~ that sent replies, and caches a"i hosts rhat
acted as both clients and servers. Funher information on
each dataset can be found on the tntce download page [4J.

• anim-2003/set-5: A trace of 79 clients accessing 50
NFS servers. NFS caches are seen as servers in this
(face.

• anim-2oo3/set-12: A trace of 1634 clients accessing
I NFS server. NFS caches are seen as clients in this
trace.

• anim-2007/sel-2; A trace of273 clients accessing 40
NFS servers at the sarne site as anilO-2003/set-5. The
other traces of clients at this site are similar to set-2.

• anim-2oo7/set-5: A trace of 135 cliems accessing
SO NFS servers, and 8 caches acting as both clients
and servers. although because of the pon mirroring
setup. we did not see some of the responses from the
caches. This trace is at a differelll site from set-2 and
shows higher bUIstiness.

6.1 Capture performance

We stan our analysis by looking at the perfomlance of our
capture tool. This validates our claims that we can capture
packets at very high data rates. We ex.amine the capture
rate of the tool by calculating the megabits/s (Mbps) and
kilo-packets/s (kpps) for 20 overlapping sub-intervals of a
specified length. For example if our interval length is 60
seconds, then we will calculate the bandwidth for the in­
terval Os-60s, 3s-63s. 6s-66s, ... end-of-trace. We chose to

calculate the bandwidth for overlapping intervals so that
we would nol incorrectly measure the peaks and valleys of
cyclic patterns aJigned to the interval length. We use the
approx.imate quantile so we can summarize results with
billions of underlying data points. For example, we have
11.6 billion measurements for anim-2007/set-0 at a I lOS
interval length. This corresponds to the 6.7 days of that
Lrace,

Figure 2(a) shows anim-2007/set-S at different intervaJ
lengths. This graph shows the effectiveness of our tracing
technology, as we have sustained intervals above 3Gb/s
(358MiB/s), and Ims intervals above 4Gb/s (476MiB/s).
Indeed these traces show the requirement for high speed
tracing. as 5-20% of the trace intervals have sustained in­
tervals above IGbit. which is above the rate at which Le­
ung [20] noted their tracing lOol staned to drop packets.
The other sets from anim·2007 are somewhat less bursty.
and the anim-2003 data shows much lower peaks because
of our more limited tracing tools, and a wider variety of
shapes, because we traced at more points in the network.

Figure 2(a) also empbasizes how bursty tbe traffic was
during this trace. While 50% of the intervals were above
500Mbitis for 60s intervals, only 30% of the intervals
were above 500Mbitls for Ims imervals. This bursti­
ness is expected given thar general Ethemel and filesys·
tern traffic have heen shown to be self-similar [17, 19],
which implies the network traffic is also bursty. It does
make it clear thaI we need to look at shan time intervals
in order to get an accurate view of the data.

Figure 2(b) shows the tail of the distributions for the
capture rates for twO of the trace selS. The relative sim-
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Figure 2: Bandwidth measured in the collection proce..~s. in Figure (b). anim-2007/set~5 at different intervals is the top
group of 4 lines, and anim-2003/set-12 is the bottom group of 4 lines. With 60s intervals, anim-2003/set-12 does not
show the 0.9999 quantile because there were insufficient data points.

anim-2003/set-12 anim-2003/set-5 anim-2007/set-2 anim-2007/set-5
operation Mops byteslop Mops byreslop Mops byteslop Mops byteslop

readdir 4.579 281 1.132 3940 28.318 4089 18.350 4071
readdirplus 0.632 2307 0.000 n/a 32.806 1890 20.271 2001

readlink 0.081 74 0.049 79 25.421 204 42.335 203
fsstat 19.875 56 50.416 56 0.017 180 0.003 180
write 14.546 9637 30.236 7880 32.390 13562 45.177 15015

lookup 134.108 83 82.823 92 643.854 239 807.127 235
read 345.743 1231 165.969 7855 1460.669 14658 1761.199 12301

access 1.858 136 0.000 136 4000.204 136 3570.404 136
getattr 244.650 104 967.961 104 6598.515 124 2756.785 123

total 768.053 790 I 1301.364 1274 12851.102 1833 9034.968 2599

Table I: symlink, nndir, mkdir, and rename were pruned as there were fewer than I million operations: fsiDfo, link,
null, create, remove, and setattr were pruned as there were fewer than 10 million operations. The Mops column could
be calculated from nfsstat, but the byreslop column could Dot.
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Figure 3: Operation rales, as quantiles. for anim-2003. anim-2007.



6.2 Basic NFS analysis

Figure 4: Bandwidth for reads and operation rate for
getattrs in Lhe four traces.

dalaset Is ops/s 3600s ops/s ratio
anim-2003/set-5 26.445 15.110 1.75 x
anim-2003/set-12

1

44.926 19.923 2.25 x
anim-2007/set-2 75A57 54.657 1.38 x

anim-2007/set-5 59.727 41.550 1.44x

Table 2: Operation rate ratios

occurred in the four traces we are examinjng in more de­
tail. It shows a number of substantial changes in the work­
load presented 10 the NFS subsystem. First, the read and
write sizes have almost doubled from the anim-2003 to
anim-2007 datasets. This trend is expected, because the
company moved from NFSv2 to NFSv3 between the two
tracing periods. and set the v3 read/write size to 16KiB.
The company told us they set it to that size based on per­
formance measurements of sequential 110. The NFS ver­
sion switch also accounts for the increase in access calls
(new in v3). and readdirplus (also new in v3).

\Ve also see that thjs workload is incredibly read-heavy.
This is expected; the animation workload reads a very
large number of textures. models, elc_ 10 produce a rel­
atively small output frame. However, we believe that our
traces under-estimate the number of write operations. We
discuss the write operation underestimation below. The
abnormally low read size for set-I 2 occurred because that
server was handling a large number of stale filehandle re­
quesls. The replies were therefore small aod pulled down
the bytes/operation. We see a 101 more getattr operations
in set-5 than set-I 2 because set-12 is a server behind sev­
eraJ NFS-caches, whereas sct-5 is the workJoad before the
NFS-caches.

Table 2 and Figures 3(a.b) show how long averaging in­
tervals can distort the load placed on the storage system. If
we were to develop a storage system for the hourly loads
reported in most papers. we would fail to suppon the sub­
stanrially higher near peak (99%) loads seen in the data.
It also hides periods of idleness lhat could be used for in­
cremental scrubbing and data reorganization. We do not
include the traditional graph of opsls vs. time because our
workload does not show a strong daily cycle. Animators
submit large batches of jobs in the evening that keep the
cluster busy until morning, and keep the cluster busy dur­
ing the day submitting additional jobs. Since the jobs are
very similar, we see no traditional djurnal pattern in the
NFS load. although we do see the load go to zero by the
end of the weekend.

Figure 4 shows the read operatioo Millis and the getalU'
operations/so It shows that relative 10 the amount of data
being transferred. the number of getatITS has been re­
duced, likely a result of the transition from NFSv2 to

/
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Examining the overall set of operations used by a work­
load provides insight into what operations need (0 be op­
timized to support the workload. Examining the distribu­
tioo of rates for the workload tells us if the workload is
bursty. and hence we need to handle a higher rate than
wouJd be implied by mean arrival rates, and if there are
periods of idleness that could be exploited.

Table I provides an overview of aU the operations that

ilarity between the Mbps and kpps graphs is simply be­
cause packet size disuibutions are relatively constant. The
traces show tbe remarkably high burstiness of the 2007
traces. While 90% of the lms intervals are below 2Gb/s.
O.l % are above 6Gbl . We expect we would have seen
slightly higher rates. but because of our configuration er­
ror for the 2007 capture tool, we could not capture above
about 8Gb/s.
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erations, but many more byte, and reads and writes have
a high byte to operation ratio.

While this suppons our lesson that retaining lower level
information is valuable, this analysis also leads us to an·
other one of our lessons: extensive validation of the con­
\'ersion tool is imponam. Both validation through valida·
tIon statistics, and through the use of a known workload
that exercises the capture tools. An NFS replay tool [32]
could be used to generate a workload, the replayed work­
load could be captured, and the capture could be com­
pared to the original replayed workload. This comparison
has been done to validate a block based replay tool [3),
but has not been done to validate an NFS tracing tool, as
the work has simply assumed tracing was correct. We be­
lteve a similar flaw is present in earlier traces [II] because
the same parsing technique was used, although we do nm
know how much those traces were affected.

6.3 File sizes

File sizes affeclthe potential internal fragmentation for a
filesyslem. They affect the maximum size ofUGs that can
be executed, and they affect the potential sequentiality in
a workload.

Figure 5 shows the size of files accessed in our traces.
It shows thaI most files are small enough to be read in
a single 110: 40-80% of the files are smaller than 8KiB
(NFSv2 read size) for the 2003 traces. and 70% of the files
are smaller than 16KiB for the 2007 traces. While there
are larger files in the traces, 99% of the files are smaller
than IOMiB. The small file sizes present in this workload,
and the preponderance of reads suggest that a flash file
system [18) or MEMS file system [29J could suppon a
substantial ponion ofthe workload.

All accessed file sIZe

Figure 5: File size distribution for all accessed files.

NFSv3. The graph shows the payload data transferred.
so it includes the offset and filehandle of the read request.
and the size and data in the reply. but does not include
IP headers or NFS RPC headers. "shows that the NFS
system is driven heavily. bur not excessively. The write
operationsls graph (not shown for space reasons) implies
that the write bandwidth has gonen more bursty, but has
Slayed roughly constanL

This resuh led us 10 funher analyze the data. We
were surprised that write bandwidth did not increase, even
though it is not implausible. as the frame output size has
nOl increased. We analyzed the traces to look for missing
operations in the sequence of transaction ids, automati­
cally inferring if the client is using a big-end inn or Iitlle­
eudian counter. The initial results looked quile good:
anim-2007/set-2 showed 99.7% of the operations were in
sequence. anim-2007/set-5 showed 98.4%. and counting
the skips of 128 transactions or less. we found only 0.21 %
and 0.50% respectively (the remaining entrie were dupli­
cates or ones thai we could not positively tell if they were
in sequence or a skip). However, when we looked one
level deeper at the operation that preceded a skip in the
sequence, we found that 95% of the skips followed a write
operation for set-2, and 45% for set-5. The skips in set-2
could increase the write workload by a facmr of 1.5)( if
all missing skips after writes are associated with writes.
We expected a fair number of skips for set-5 since we ex­
perienced packet loss under load, but we did not expect it
for set-2.

Funher examination indicated that the problem came
about because we followed the same parsing technique for
TCP packetS as was used in nfsdump2 [II]. We staned at
the beginning of the packet and parsed all of the RPCs
that we found that matched all required bits to be RPCs.
Unfortunately, over Tep, (WO back to back writes will
nOl align the second write RPC with the packet header,
and we will miss subsequent operations until they re-align
with the packet stan. While the fraction of missing op­
erations is small they are biased toward writes requests
and read replies. Since we had saved IP-Ievel trace in­
formation as well as NFS-Ievel, we could write an analy­
sis that conservatively calculated the bytes of IP packetS
that were not associated with an NFS request or reply.
Counting a direction of a connection if it transfers over
106 bytes, we found for anim-2007/set-2 that we can ac­
count for >90% of the bytes for 87% of the connections,
and for anim-2007/set-5 that we can account for >90%
of the bytes for> 70% of the connections. The greater
preponderance of missing bytes relative to missing opera­
tions reinforces our analysis above that the losses are due
to non-aligned RPC's since we are missing very few op-
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7 Conclusions

We have described three improved techniques for packet
capture on networks. The easily adopted technique should
allow anyone capturing NFS, CIFS, or iSCSl traffic from
moderate performance storage systems (51 Gbit) to cap­
lUre traffic with no losses. The mOSt advanced tech­
nique allows lossless capture for 5-IOGbit storage sys­
lems, which is at the high end of most file storage sys­
tems. The primary lesson from this part of the work is
that loss less 1Gbit packet capture is straightforward and
up to IGGbir is possible with an investment in develop­
ment time or specialized hardware.

We have provided gUidelines for conversion for fu­
ture practitioners: paraJlel.izing the conversion, retaining

is contiguous ,"vith the directory entry as with immediate
files [24). For NFS, the server may nnt see a lookup before
a read, depending on whether the client has used readdir+
to get the filehandle instead of a lookup.

We determine sequentiality hy reordering within tem­
porally overlapping requests. Given two VOs, A and B,
if the request-reply intervals overlap, then we are willing
to reorder the requests to improve estimated sequentiality.
We believe this is a bener model because the NFS server
could reorder those 110s. In practice. Figure 7 shows that
for our traces this reordering makes little difference. Al­
lowing reordering an additional 10ms beyond the reply of
VO A slightly increases the sequentiality, but generally
not much more than just for overlapping requests.

We also decide on whether the first VO is sequential or
random based on additional VOs. If lbe second VO (after
any reordering) is sequential to the first one, than the first
VO is sequential. otherwise it is random. If there is only
one VO to a particular file, then we consider the VO to be
random since the NFS server would have to reposition to

that file to start the read.
Given our small file sizes. it turns out thal most ac­

cesses count as random because they read the entire file in
a single VO. We can see this in Figure 6(a). which shows
the number of reads in a group. Most groups are single
VO groups (70-90% in the 2007 traces). We see about
twice as many VOs in the 2003 traces, because the VOs in
the 2003 traces are only 8KiB, rather than 16KiB.

Sequential runs within a random group are more inter­
esting. Figure 6(b) show the number of bytes accessed in
~equentiaJ runs within a random group. We can see that if
we stan accessing a file at random. most (50-80%) of the
time we will do single or double VO accesses (8-32KiB).
However we also get some extended runs within a random
group, although 99% of the runs are less than IMiB.

8llim:2003Iset-12 1
anlm-2OO3Isel-5 -- J
anim-2007/set-2 -.-- 11
anim-2007/sel·S - .J4
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Figure 6: Number of reads or sequential bytes in a single
group (more than 30s gap between VOs);
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Sequemiality is one of the most imponant properties for
Storage systems because disks are much more efficient
when handling sequential data accesses. Prior work has
presented various methods for calculating sequentialiry.
Bnth Ellard [12] and Leung [20) split accesses into groups
and calculate the sequentiality within the group. Ellard
emulates opens and closes by looking for 30s groups in
Lhe access pattern. Ellard tolerates small gaps in the re­
quest Slream as sequential, e.g. an VO of 7KiB at offset
o followed by an VO of 8KiB at offset 81GB would be
considered sequential.

Ellard also reorders YOs to deal with client-side
reordering. In particular. Ellard looks forward a constant
amount from the request time to find YOs that could make
the access pattern more sequential. This constant was de­
termined empirically. Leung treats the first VO after an
open as sequential. essentiaJly assuming that the server
will prefetch the first few bytes in the file or that the file
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We have described our binary storage format, whjch
uses chunked compression with multiple possible com­
pression techniques, typed relational-style data structur­
ing, della encoding, and type-safe, high-speed accessors.
It improves over prior storage formats by up to IOOx.

The lools described in this paper are available
as open source from http://tesla . hpL hp. caml
opensQurce/, and the traces are available from
http://apatheca.hpl,hp.cam/pub/datasets/
animation-bear/ .

We have described our techniques for improved mem­
ory and performance efficiency to enable analysis of very
large data sets. We explained the cube and approximate
quantile techniques that we adopted from the database lit­
erature, and our hashtable, rotating hash-map, and plot­
ting techniques that we use for analyzing the data.

o
o 0.1 0.2 0.3 0,4 0.5 0.6 0.7 0,8 0.9

Ouantile

We have analyzed OUI NFS workload examining some
of the different properties found in a fearure animation
workload and demonstTating thai our techniques are effec­
tive. We found thal our workload had much more activity
than previously described workloads, and that the file size
and sequentiality is different than those workloads.

lower-level information, using reversible anonymization,
approaches for testing the conversion tools, and tagging
the trace data with version information.

Figure 7: Each line group shows host estimated sequen­
tiality was affected by allowing. in order: reordering
of VOs within lOms of lhe reply, reordering within the
request-reply window, or no reordering. The small hori­
zontal change shows that reordering this workload has a
negligible effeCl on sequentiality.
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