
 

                                                      
       

 
 
 
 
 
 
 
Keyword(s):   
 
 
 
Abstract: 
 

 

 

 
                                                                                                      
                                                                                                                      
 

  

   

                                                       

©  

Dynamic Biometrics: The Case for a Real-Time Solution to the Problem of
Access Control, Privacy and Security
Steven J. Simske

HP Laboratories
HPL-2009-317

security, biometrics, access control, identity

From a certain perspective, security is broken. The security authorization triangle (possession, knowledge,
identity) has in some cases been reduced to a single point (knowledge) because of the limitations to
possession attributable to virtualization, and because of the limitations to identity attributable to the use of
static biometrics. This paper makes the case for a stronger security rights triangle - privacy, security and
access control - underpinned by the resurrection of possession and identity through the use of dynamic
biometrics. New technologies in mobile and cloud computing, pattern recognition and user interaction
provide a potential path forward for an identity-matching ecosystem in which both privacy and security
needs can be accommodated.

External Posting Date: September 21, 2009 [Fulltext]          Approved for External Publication
Internal Posting Date: September 21, 2009 [Fulltext]

Presented at IEEE BIdS Conference, Tampa, Florida, Sept 22-23, 2009.

Copyright IEEE BIdS Conference, 2009.



  

Ran1  

Abstract—From a certain perspective, security is broken. The 
security authorization triangle (possession, knowledge, identity) 
has in some cases been reduced to a single point (knowledge) 
because of the limitations to possession attributable to 
virtualization, and because of the limitations to identity 
attributable to the use of static biometrics. This paper makes the 
case for a stronger security rights triangle—privacy, security 
and access control—underpinned by the resurrection of 
possession and identity through the use of dynamic biometrics. 
New technologies in mobile and cloud computing, pattern 
recognition and user interaction provide a potential path 
forward for an identity-matching ecosystem in which both 
privacy and security needs can be accommodated. 

I. INTRODUCTION TO BIOMETRICS FOR SECURITY 
IOMETRICS, meaning the assignment of identity 
through the measurement of physical attributes or 

behavior, is increasingly used for security purposes. From 
authorization to authentication, security professionals are 
adopting more sophisticated measurements in an effort to 
staunch rampant theft of personal information, access 
privileges and even identity itself. 

A non-exhaustive, but representative, set of human 
biometrics includes physical, behavioral and innate—or 
chemical—biometrics [1]. A brief description of these classes 
of biometrics, as defined for the purposes of this paper, is 
provided next. 

Physical biometrics (Table I) include (1) face 
recognition—which is captured with increasing 
sophistication, even with non-frontal views and glasses or 
other obstructions; (2) fingerprint representation—which 
usually represents a few dozens points and/or curves of 
interest on one or more fingers; (3) hand geometry—physical 
outline, shape and/or size of the hand; (4) iris 
recognition—the peri-pupillary portion of the front of the 
eye; (5) retinal recognition—the photoreceptor layers inside 
the back of the eye; and (6) vein recognition—usually the 
earlobes, or more commonly on a hand. These physical 
biometrics are the most static of all biometrics. Relatively 
constant, if they are stolen, the stolen data stays relevant 
thereafter. If you are dependent on these for your identity, 
your identity is only as strong as the weakest link in the whole 
system around the biometrics. This could be access to 
measurement itself (e.g. collecting your fingerprint from a 
surface), to the sensor registers, the transmission, or the 
backend data/caches, etc. 
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Behavioral biometrics (Table II) include two biometrics 
often listed as “physical” biometrics; namely (1) 
heartbeat—the electrocardiogram or ECG/EKG, 
vectorcardiogram or VCG, blood pressure, cardiophonics, 
etc.; and (2) voice recognition—based on the individual’s 
characteristic formants, or vocal resonant frequencies [2], 
accent [3, 4] or other identifying auditory identifiers. Since 
these biometrics are based on multiple signals—or a 
continuous signal—they are labeled here as “behavioral” 
since they cannot be computed from a single “scan”. 

 

 

 
Other behavioral biometrics include (3) arm sweep 

action—analysis of how an arm moves through space; (4) 
fingerwriting—analysis of how a person uses a touchpad; (5) 
gesture analysis—analysis of how a person uses her hands in 
a task; (6) handwriting/signature—analysis of how a person 
writes; (7) keystroke dynamics—analysis of how a person 
types (latencies, pressures, etc.); and (8) walking (gait) 
analysis. These motion-based biometrics are also relatively 
“static” in the manner in which they are presently used, since 
storing information on multiple tasks in these areas is onerous 
or poorly supported. However, unlike physical biometrics, 
they offer a pathway to dynamic biometrics, described below. 

Innate or chemical biometrics (Table III) are those not 
usually associate with physical or behavioral/continuous 
biometrics. These include, but are not limited to, (1) DNA or 
related (RNA, mitochondrial DNA, HLA typing, etc.) genetic 
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TABLE II 
BEHAVIORAL OR “CONTINUOUS” BIOMETRICS 

Biometric Measured Parameter 

Arm sweep Location and velocity 
Fingerwriting Location and velocity 
Gesture Location, velocity, shape and size of hand, etc. 
Handwriting Location and velocity 
Heartbeat ECG, VCG, pressure, sound 
Keystroke Latencies, pressures, etc. 
Voice Cepstrals, formants, accent, etc. 
Walking Gait 

 

TABLE I 
PHYSICAL BIOMETRICS 

Biometric Measured Parameter 

Face Feature location, shape, size, etc. 
Fingerprint Whorls, points of interest, etc. 
Hand Shape, size, perimeter, etc. 
Iris Distribution of high-interest features
Retina Vein, etc. distribution 
Vein Location map (size weighted) 

 



  

material; (2) tissue assay (chromatography, ligand binding, 
immunoassay [ELISA, etc.]); and (3) mass spectroscopy. 
These are typically more difficult to obtain than the physical 
biometrics, more expensive to analyze/assay, and no more 
suitable (being “static” information) than physical biometrics 
for the task of dynamic biometrics. For these reasons, innate 
biometrics will be discussed no further in this paper. 

 

 

II. SECURITY IS BROKEN BUT CAN BE FIXED 
Security is broken. The security authorization triangle 
(possession, knowledge, identity) has in some instantiations 
boiled down to a single point (knowledge) because of the 
limitations to possession attributable to virtualization, and 
because of the limitations to identity attributable to the use of 
static biometrics. This paper makes the case for a stronger 
security rights triangle—privacy, security and access 
control—underpinned by the resurrection of possession and 
identity through the use of dynamic biometrics. 

The security authorization triangle consists of possession 
(assurance that you have an object required for authorization 
in your possession), knowledge (you have information that is 
required for authorization) and identity (you are who you 
claim to be). One device that illustrates this triangle is the 
ATM (automated teller machine): to use it, you have the card 
(possession), know the personal identity number, or PIN 
(knowledge), and are being filmed by the surveillance camera 
(identity, at least in theory—though not generally validated at 
this time). A sometimes overlooked fourth element in 
security—location—is also known for an ATM. 

However, not every authorization works this securely 
(ignoring the caveats with ATMs for the moment, such as 
lack of identity proof and the ease of fraudulent alteration of 
the interface [24]). As mentioned above, the security rights 
triangle in some cases degenerates to a single point 
(knowledge) because of the limitations to possession 
attributable to virtualization (which also may eliminate 
location), and because of the limitations to identity 
attributable to the use of static biometrics (or the omission of 
any of these). Consider logging into a computer. You can log 
in remotely, and you can claim to be any user whose 
password you have discovered (through stealth, intelligent 
guessing, keyboard entry trapping, coercion, bribery, etc.). It 
all boils down to knowledge. And once you’re in, you stay in, 
with all the access rights and privileges of the user whose 
identity you have feigned. In addition, the recent explosion of 
social networking sites has rendered “personal” questions 
such as “What is you dog’s name?” less secure [25]. Despite 
this, these types of “personal” questions continue to be used 

in a security role. 
In addition, the most commonly used biometrics—face, 

fingerprint, iris, retina and vein matching—are static in 
nature. That is, they are facts—once known, they do not 
(appreciably) change. This means a randomly-selected person 
is not likely to have a static biometric that matches yours. But 
it also means that once information on one of your static 
biometrics is known, you cannot use the biometric anymore. 
And, simply using a different finger each time a 
previously-used finger is compromised is unsustainable. 

It is easy to point out what is wrong with a solution. 
Providing an alternative—and hopefully a solution—is more 
challenging. I herein claim that to fix this broken security a 
transformation is needed. To describe this transformation, 
which involves a new security layer altogether, I next 
describe the security rights triangle. 

If the triangle of possession, knowledge and identity are to 
collapse into a single point, it is best that it be identity. Not 
identity-as-knowledge, e.g. a fingerprint, but identity as in 
passing-the-Turing-test identity. Dynamic, session-based, 
interactive identity. The way we know if we’re talking to our 
friend or her doppelganger identity. For this purpose, a 
security rights layer is proposed. 

Any multi-user system has the right to impose a security 
policy on its users. Regulatory compliance and auditing 
concerns are only the starting point—all users of systems 
have expectations for security, and are familiar with different 
levels of security for different types of systems. Cash, less 
secure. Credit cards, more secure. Surfing the blogosphere, 
less secure. Loan approval, more secure. No system should 
compromise security to make lazy users happy. There is 
another way. In general, however, a higher level of security 
requires a reduced level of individual privacy. 

Users, however, have the right to impose a privacy policy 
on the system. Some people don’t want their web searches 
logged, others don’t care. Some users want the shops they 
solicit to track their purchases (for coupons, in-store running 
shopping list, etc.), others want full anonymity. Regardless, 
privacy as dictated by the user is fundamental to customizing 
a multi-user system, except in extreme cases—for example, 
top security clearance applications, in which case individual 
privacy is hardly a concern. 

Currently, security policies tend to impose a high upfront 
“cost”, or annoyance, on the user—log in, provide password, 
use approved card or device, submit to surveillance, etc. 
Privacy policies, in addition, extend the burden for security. 
For a user to demand complete privacy, still higher security 
may be required. For example, “to earn the right for the 
system to securely destroy personal information during this 
session, you must give us more confidence that you are who 
you claim to be. Otherwise, we will be logging anything and 
everything in case we need to determine later who really was 
posing as you.” 

Playing off of these two policies—security and 
privacy—are the access control privileges granted. The new 
security layer proposed herein defines the access control as 

TABLE III 
INNATE OR CHEMICAL BIOMETRICS 

Biometric Measured Parameter 

Genetic DNA, RNA, mDNA, HLA, etc. 
Tissue Assay Protein composition, etc. 
Mass Spectroscopy Chemical composition, etc. 

 



  

variable—that is, dynamic throughout the session. This 
means that a dynamic means of granting access rights must 
exist. The means is dynamic biometrics, described next. 

III. DYNAMIC AND CHALLENGE-BASED BIOMETRICS  
Dynamic biometrics lead to dynamic session-based security. 
This means that the level of security can change during the 
session, and the level of authorization (e.g. access privilege) 
granted is adjusted to the current session confidence. 

Dynamic biometrics are based on two or more behavioral 
biometrics. This can either mean: (1) The presence of two or 
more sensors for behavioral biometrics, or (2) the capture of 
two or more independent streamable behavioral biometrics. 
An example of (1) is a keystroke dynamics recorder which 
capture both latencies and pressures during keyboard entry. 
Another example is a touch pad that simultaneously records 
fingerwriting dynamics and pressure (e.g. a six-axis 
accelerometer-affixed touch pad). An example of (2) is an 
inertial device (e.g. 6-axis accelerometer) affixed to a 
person’s hand, which records both macro-motion (arm 
motion/gesture) and finger motion/gesture. 

For the security purposes introduced here, dynamic 
biometrics are more than simple combinations of individual 
biometrics. A dynamic biometrics system (DBS) also 
describes how the available biometrics are combined. If, for 
example, there are three biometric recorders available (speech 
recording, touch pad recording and inertia recording), then 
the DBS will indicate which attributes of these three 
biometrics, in combination, are best for validating the identity 
of the user. 

 
User (Client)               Service 

 
Fig. 1. Messaging between User (Client) and Service. Messages occur in 

time sequence from top to bottom. 
 
Using a DBS, the “key” for how the individual biometric 

data streams are combined is the session key for possession, 
and the dynamic biometrics linked to/specified by the key 
validate the identity of the user. The messaging scenario for 
how this occurs is outlined in Figure 1. 

In Figure 1, the user requests access to a service or set of 
privileges. The user’s privacy policy is also provided or else 
the default privacy policy for the session is used. The service 
then requests specific information necessary to authorize the 

access with the desired level of privacy—per the discussion 
above, this is some combination of identity (preferably 
biometrics), possession, knowledge (e.g. password, answer to 
a challenge, etc.), and/or location. The service, meanwhile, 
assesses what combination of these resources {biometrics, 
possession, knowledge, location} are available. From this, a 
session “key” tuned to the available dynamic biometrics is 
conveyed to the user. User access to the service is thereafter 
maintained throughout the session by high confidence match 
between the user biometrics and the identity biometrics 
available to the service. In this way, a “biometric VPN” 
(virtual private network) is maintained, and the DBS can be 
considered a secure link between the individual and the 
privileged information provided by the service. 

IV. BIOMETRIC CEPSTRUM 
The dynamism of the DBS is provided by what is termed the 
biometric cepstrum. The general biometric cepstrum is based 
on the principal of the mel-frequency cepstral coefficients 
(MFCCs, described in [4] and elsewhere), which comprise a 
representation of an audio spectrum in which the coefficients 
are uniformly distributed over a log scale of the frequency. In 
other words, the cepstrum is a sampling of the audio spectrum 
that provides a “fingerprint” or “signature” of the spectrum 
(useful for classifying or distinguishing different speakers, 
etc.). The “biometric cepstrum” is herein viewed as any 
logical sampling of a biometric signal to cover the cepstral 
range sufficient for (differential) identification of individuals. 
In many cases (e.g. voice pitch), the sampling will be over a 
log scale; in others, it will be clustered in areas providing high 
differentiation (e.g. voice formants). 

The general biometric cepstrum, then, is the set of 
coefficients for all of the biometric signals, designated Ĉ. If 
there are N signals, then B1 is the cepstral set for signal 1, …, 
BN is the cepstral set for signal N, and so the general 
biometric cepstrum is: 
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  Equation 1 

 
where there are α, β, …, ω coefficients in signals 1, 2, …, N, 
where an individual signal’s coefficient set is {fn}. There is no 
restriction on the number of “signals” that can be obtained for 
a single type of sensor. For example, an inertial sensor can 
simultaneously sample vibration, speech and acceleration 
modalities, and using filtering and/or multiplexing separate 
them into different signals (with perhaps different numbers of 
coefficients) for Equation 1. 

I define the signature set of signals, Ŝ, from the general 
biometric cepstral set, Ĉ, which comprises the set of all 
possible elements of the signature set, {ŝ}. The current active 
biometric fingerprint, or signature, Ŝ, serves as the session 



  

key, and is the current set ŝ of signature signals. 
The signature can be determined in at least two ways. In the 

first, it can be provided by the service itself (historical 
signature). In the second, it can be determined through the 
interaction of the client with the service (interactive 
signature). The interactive signature Ŝ is determined using, 
for example, a classifier such as a support vector machine 
(SVM) [5] or linear discriminant analysis [6]. 

The interactive signature is determined as shown in 
Equation 2. Here, the elements in Ŝ are selected as those with 
minimal change under the conditions. However, since in 
general the latencies (e.g. relevant sampling intervals) of each 
biometric signal are different, this difference in time scale for 
the signals comprising Ŝ is accounted for by the ki*Δt terms in 
Equation 3, where i indicates the ith biometric and ki is the 
time coefficient for the ith biometric, which may be, for 
example, simply the default sampling rate for the ith biometric 
signal. 
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Equation 3, in simplified form, becomes: 
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where each signal in Ŝ is comprised of the cepstral set of 
signal frequencies {f}. The cepstral frequencies with the 
minimum instantaneous rate of change are, in Equation 4, 
assumed to be the least noisy, thus providing the most 
reliability for the task over the user’s history. An individual is 
then identified by comparing Ŝ to the individual’s historical 
coefficients (at the “Service” end of Figure 1). This is further 
discussed in Section VI below, under “SYSTEM 
CONSIDERATIONS”; however, the advantages of using the 
cepstral elements with the least variance are obvious: they 

provide the minimum tolerance for the would-be imitator. 
The signature Ŝ is dynamic. A set of signals is relevant to a 

given portion of a session, and as such can be time-averaged 
to give the salient set of elements in N-ω space of the general 
biometric cepstral set, Ĉ (the two-dimensional space whose 
dimensions are the number of biometric signals and the 
number of coefficients in each biometric signal) that together 
comprise the session key (or possession key). Within this set 
of fingerprinted coefficients, as mentioned above, a subset 
can be selected (automatically) for the purposes of identity 
key as described next. Other means of “scrambling” the 
biometrics for a multi-biometric input scheme such as this are 
possible, as described below. 

For a given task, the generation of a biometric signature, Ŝ, 
is a classification problem requiring training the DBS, 
determining the optimal Ŝ for the task, and using this Ŝ 
thereafter for determination of identity. The methodology 
above (Equations 1-4) provides a simple but effective (linear 
in time domain for determining the best set, no iterations 
required) means of generating Ŝ, real-time. More accurate 
classification for specific tasks can be garnered using 
traditional classification techniques [5, 6]. As will be shown 
below, these traditional types of classification will be useful 
for challenge-based and/or cognition-based biometrics. 
Biometric fusion—combining two or more biometric signals 
into a single identity classification—may require advanced 
classification approaches. Increasingly, combined or 
hybridized classification based on the combination of 
nonparametric and parametric classifiers [7], the combination 
of multiple configurations of the same classifier [8], and the 
combination of disparate classifiers using meta-algorithmic 
patterns [9], are being investigated to improve the accuracy of 
various image, text and other classification tasks. These 
classification techniques will, in general, provide higher 
accuracy for specific biometric identity tasks, and may 
additionally be more robust to a system which requires a 
plurality of signals, in which the plurality also changes over 
time. The best choice of classifier will depend on the specifics 
of the dynamic biometric system, as described in the next 
section. 

V. DYNAMIC BIOMETRIC SYSTEM (DBS) 

A. Speech as an Exemplar 
To illustrate the movement from a biometric identity 

system to a dynamic biometric system (DBS), voice 
recognition and automatic speech recognition (ASR) are 
considered. Combined I refer to these as “auditory 
biometrics”, and they provide several advantages as a starting 
point for a DBS. First off, auditory skills—language and 
music production and cognition—are arguably the skills most 
distributed throughout the human cortex [10]. As a second 
point, humans without disabilities are very capable at 
recognizing voices and even short samples of familiar music, 
making ground truthing, or training, of the system, relatively 
easy. Third, auditory data is one-dimensional, offering data 



  

throughput and processing advantages. A fourth advantage is 
the vast amount of voice recognition and ASR research that 
has been performed to date, as overviewed in references [11, 
12] and elsewhere. 

Speech processing in the general sense is concerned with 
the relative magnitude of frequency coefficients. This 
includes the MFCCs, as described above [4]. Additional 
frequency representations include perceptually-motivated 
MFCCs [13, 14], which open the pathway to task-specific 
cepstral coefficients (TSCCs). TSCCs can be crafted to more 
adequately cover the expected range of response when 
completing a specific auditory task. As an example, if an 
emotive response is measured (or triggered), a TSCC which 
better represents maximum and mean of the first derivative of 
the pitch contour [15] will provide better emotion 
recognition. TSCCs can also be crafted using transformations 
of the MFCC, such as through cepstral mean subtraction, to 
provide more accurate speaker identification [16]. 

Additional work on emotion recognition in auditory data 
streams has shown that auditory data can be used for 
simultaneous establishment of identity and emotion 
determination [17]. Emotion detection is important so that 
emotional state can be compensated for during identity 
determination, and so that emotion can be used as another 
factor in identification of the speaker. This supports the use of 
hybridized classifiers as discussed above [7, 8, 9]. There is 
increasing recognition that the combination of 
cognition-based, machine intelligence and natural language 
processing (NLP) approaches will be necessary to move 
voice and speech recognition forward [18]. It is likely that, as 
the biometric and identity research communities consider the 
challenges identified herein for the successful creation and 
deployment of a DBS, they will also further the research on 
each of the distinct signals/biometrics of interest. 

B. DBS Session Needs 
The DBS is concerned with two different session needs. 

These are (1) proving that you are the person you purport to 
be, which is required for access privileges; and (2) proving 
that you are not you, which once established signals an end to 
the session. Errors against (1), termed “false positives” for 
identity, are more serious when the data or resources accessed 
are higher security. Errors against (2), termed “false 
negatives” for identity, on the other hand, are more serious 
when disconnection is disruptive. From a security 
perspective, then, the DBS is usually designed to prevent 
false positives. However, this is in general a more difficult 
classification task. 

These needs align with the distinction between identity 
(what name best matches this biometric data?) and 
determination (does my biometric data match the database 
data?) [1]. As an example, for identity, suppose for a given 
dynamic biometric signal in a DBS, the odds of any two users 
“matching” is 1 in 103. If the requirement is that false positive 
errors only have a 1 in 109 chance of occurring, then three 
independent signals with odds of false identity of 1 in 103 
must be used to establish identity. 

After establishing identity, the purpose of the DBS is to 
restrict access privileges if/when the system’s confidence in 
the user’s identity drops. This type of analysis is based on the 
detection of rare, key events, a key current area of research in 
ASR [18]. Creativity is the rule for such “true negative” 
determination. For example, an ASR engine can look for 
evidence of outside-accent formants [4]. A heartbeat monitor 
can look for a non-characteristic electrocardiogram (ECG) or 
vectorcardiogram (VCG). A challenge-based system, as 
described below, can request the user to provide feedback for 
which the user has the lowest historical variance (the optimal 
biometric cepstral as defined in Equations 2-4) for any of the 
signals measured. 

C. Proving and Disproving Identity 
The signature set, Ŝ, determined from Equation 4 or other 

approach, can be used in combination with a unique “Session 
Key”, or workflow key, Ŵ, stored with the Service and not 
transmitted or shared with the User (client) as shown in 
Figure 1. This key, Ŵ, can be determined in multiple ways, 
depending on the needs of the Service, including but not 
limited to: 

(1) Historical basis: past user interactions in any/all of the 
biometric modalities are used to determine the set of salient 
coefficients. This “historically-based” Ŵ is likely to be 
similar to that determined by Equations 2-4. 

(2) Confidence basis: coefficients with highest 
classification confidence are chosen. These provide a Ŵ that 
is likely to be similar to that determined by Equations 2-4. 

(3) “Randomized” selection of the coefficients to prevent 
reverse engineering. 

(4) Coefficients that are linked to the set Ŝ—e.g. they are a 
hashed set. Suppose the overall set of elements in N-ω space 
of the general biometric cepstral set, Ĉ, are placed in a single 
sequence. Each coefficient selected for Ŝ is represented as 
“1”, and each coefficient not selected as “0”. Thus, the set Ŝ is 
represented as a binary sequence, suitable for hashing, 
scrambling, or other operation to transform Ŝ into Ŵ. 

Proof of identity is required in at least three situations: (1) 
establishing the session; (2) increasing access rights; and (3) 
re-asserting identity when the confidence of the DBS is 
insufficient to allow current access privileges. From a 
security standpoint, it is important to prove with accepted 
tolerance that the identity of the person using the DBS is 
correct. Ideally, the confidence in identity matches or exceeds 
the confidence level required to access the rights (data, 
services, etc.) currently authorized by the DBS. If not, more 
frequent determination of identity—e.g. through addition of 
more biometric signaling—is required. 

General Bayesian probability is used to determine the 
confidence in identity, as shown here: 
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Here p(A) is the probability it is you, p(A|B) is the 
probability of it being you if event B occurs, p(B) is the 
probability of event B occurring, p(B|A) is the probability of 
event B occurring given it is actually you, p(B|!A) is the 
probability of B occurring given it is not you and p(!A) is the 
probability of it being not you, or 1-p(A). The overall 
probability p(A|β) may comprise a vector β of many events 
B1, B2, …, BN, as shown in Equation 6. 
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Equation 6 provides the means for combining multiple 

biometric signals to determine statistical confidence for 
identity. A different set of probabilities is stored for each 
biometric signal under a variety of conditions—e.g. under 
different emotional states for voice, different bodily postures 
for heartbeat, etc. 

Equation 6 also can be used to compute the probability that 
it is not you, or p(!A|β) (simply switch “!A” and “A” in the 
equation). While setting p(A) ≥ (1-10-9) is a reasonable rule 
(one in a billion chance of it not being you), it is not as 
obvious what setting should be used for p(!A) to discontinue 
access privileges. This setting depends on several factors, 
including (1) the signal-to-noise ratio (SNR) in the signal; (2) 
the relative stability of the signal for identifying the 
individual (Equation 4); and (3) the odds of the metric 
identifying someone else with higher odds (herein termed the 
person-to-population ratio, or PPR). 

This list of factors identifies interesting research 
opportunities in biometrics and, more generally, in analytics. 
One research thread for dynamic biometrics will be how to 
dynamically (and reliably) assign a probability value for p(A) 
and, with most likely more difficulty, p(!A). In addition, 
meta-algorithmic patterns [9], capable of intelligently 
combining the output of multiple biometric systems, will be 
crucial for these determinations. How are multiple biometrics 
combined to give the best overall confidence that a person is 
who she claims to be; or that someone else is now posing as 
her? The use of a current biometric signature, Ŝ, allows for 
different biometrics to contribute differentially to the 
assessment of identity over time, making the identity of the 
user much more difficult to steal/spoof. 

D. System Architecture 
In order to provide a dynamic biometric signature, a 

dynamic biometric system (DBS) such as that shown in 
Figure 2 is required. 

 

 
Fig. 2. Dynamic biometric system (DBS) on-ramp. 
 
Input devices to the DBS include any of the commonly 

used image sensing devices such phone cameras, digital 
cameras, scanners, inspection systems, video-recorders, etc., 
which are the analogues to the human “visual” sense. Three 
other prominent human senses—auditory, somatosensory, 
and inertial (the “vestibular” system in humans)—are also 
covered well by readily-available devices such as 
microphones, touch pads and accelerometers. Current trends 
in nanofabrication and sensor-based environmental 
monitoring combine to ensure the ubiquity of low-cost 
sensors hereafter. Sensors can also be provided for chemical 
(analogous to the human “gustatory” and “olfactory” senses). 
Sensitivity beyond human range (e.g. ultraviolet, infrared, 
radar, and ELF sensors) and sensors for other factors 
(temperature, pressure, humidity, etc.) can also readily serve 



  

as inputs. 
These input devices, combined, provide the general 

biometric cepstral set, Ĉ, which is the set of current 
biometrics collected. The current active biometric 
“fingerprint” or signature, Ŝ, is then determined using 
Equation 4 or other means. The current and previous 
biometric signatures are then compared to deduce if the 
identity of the person is statistically likely to be unchanged. 
This approach provides a significant advantage over raw 
computation of p(!A), since the active session will generally 
compensate for differences in signal quality, sensor 
calibration, speaker health/condition, etc. Additionally, 
having the “previous biometric fingerprint” provides a 
constraint, which greatly narrows the class of users that can 
successfully maintain “connection” through their biometric 
responses. 

 

 
Fig. 3. Dynamic biometric system as used for access control and application 
of security and privacy policies. 

 
In Figure 2, the user-specific biometric information is 

managed by existing identity management systems (IMS). 
Reference [19] describes three primary types of IMS: (1) for 
account management; (2) for organizational profiling of user 
data; and (3) for user-controlled context-dependent role and 
pseudonym management. Solutions to IMS for the federation 
[20] and enterprise [21] exist, and can be used to provide the 
IMS for the DBS of Figure 2. As most of the currently 
available identity management systems manage user 

identities at the service/application level, they are in general 
supportive of the DBS outlined in Figures 2-4. 

In Figure 3, the decisions made by an appropriately 
deployed DBS are shown. Once the previous and current 
“fingerprints” Ŝ are compared, the value p(!A) is computed. If 
it is statistically certain (with the system’s desired level of 
confidence) that the person is not the person claimed, then 
services (augmented access control, etc.) are denied. If p(!A) 
is not sufficient to disprove purported identity, then p(A) is 
computed and logged. This is important for several reasons: 

(1) Auditing. IPv6 and other standards may provide the 
means to tie environmental information (e.g. through sensors) 
to session security [26]. When these or their alternatives are 
deployed, the registry (database) associated with the DBS can 
be used for auditing, compliance, analytics, and other 
purposes. 

(2) Denial of service. When there is a large change in 
p(!A)—independent of change in Ŝ for example—then the 
access privileges currently authorized can be denied. 
Regaining of these access rights requires re-authorization, 
e.g. through behavioral biometrics, multiple biometrics or 
challenge-based biometrics as described in the next section. 

(3) Biometric (identity) descriptor. The data collected, if 
associated with the correct identity throughout the 
interaction, can then augment the individual’s biometric 
descriptor—the historical biometric data associated with the 
user. This information can be rolled back if needed. However, 
augmenting this provides for adaptation of the user’s 
behavior through time. 

(4) Evidence. The information collected by the system can 
be encrypted, stamped and retained for later evidentiary 
purposes, if allowed in the jurisdiction. 

Next, the privacy and security policies are applied, with 
direct implications on the required p(A) and p(!A) values. 
With the given set of {security policy, privacy policy, p(A), 
p(!A)}, the individual can be allowed different levels of 
authorization. For example, if p(!A) < 0.001 after having 
collecting the original biometric signature, then generic 
(read-only) access may continue to be granted while p(!A) < 
0.1, advanced (read-append) access while p(!A) < 0.01, and 
full access (read-write-append) while p(!A) < 0.001. More 
generally, the following policies may be applied: 

(1) While p(!A) < Tro, read-only access is granted 
(2) While p(!A) < Tra, read-append access is granted 
(3) While p(!A) < Trwa, read-write-append access is granted 

where Tar=threshold probability for the specific access rights 
(ar) and Trwa < Tra < Tro. Various access right privileging 
strategies can be adopted, although the graceful change in 
access rights incumbent with this approach make it relatively 
easy to maintain baseline access rights (that is, continue a task 
at hand) without continual need for ongoing biometric input. 
Then, additional access rights can be attained through 
successful input of identifying biometric input. 

E. Biometrics Used in a DBS 
Useful biometrics in a DBS include physical and 

behavioral biometrics. Physical biometrics are garnered from 



  

a discrete (single) interrogation—usually termed a 
“scan”—while behavioral biometrics are acquired from a 
continuous (multiple) interrogation—usually termed signal 
acquisition. Physical biometrics include face, finger, hand, 
iris, retinal and vein scanning, as discussed above. Behavioral 
biometrics include dynamic bodily movements, speech and 
touchscreen interaction [1]. Behavioral biometrics offer the 
relative advantage of being resistant to false matching. To 
support behavioral biometrics, it is important to provide a 
broad enough set of comparative behavioral data such that a 
true match can be made. This is a principal benefit provided 
by the biometric descriptor, or historical biometric data. 

VI. SYSTEM CONSIDERATIONS 

A. Choice of Biometric Signals 
An important system consideration is the choice of 

biometric signals. Due to the high bandwidth requirements 
and difficulties with illumination, among other factors, visual 
biometrics are not always suitable. Also, mobile devices help 
to make auditory and touch biometrics increasingly important 
in this area. Inertial (acceleratory) and chemical biometrics 
are also increasingly important, and benefit from the 
increasing maturity of nanotechnology-based sensors. 

Speech has been useful as a biometric at least since the 
invention of the telephone. Humans are very adept at voice 
recognition, and language interpretation includes the ability 
to differentiate between, for example, declaration and 
interrogation solely from the inflection (rising or falling 
pitch). Cepstrals are a primary tool for automatic speech 
recognition (ASR), and the concept of the biometric cepstral 
is straightforward. The min gradient approach outlined here is 
effective since the elements of Ŝ effectively form an “identity 
key”, comprising the hardest set of cepstral elements to 
fake—having the lowest tolerance to imitation. 

Behavioral speech biometrics include changes in 
inflection, pitch, loudness, timbre, rhythm, etc., with emotion, 
state of health and other factors. Obviously, identity 
“passwords” can be created that more accurately identify the 
purported speaker’s voice characteristics—choosing from the 
historical biometric data the word or words which provide the 
minimum p(!A)—if a higher level of access privilege is 
needed or if identity confidence for the current level of access 
privilege is not being attained. 

B. Acquisition of Biometric Signals 
Biometric signals can be collected continually, as is the 

case for face recognition from video, speech recognition from 
voice data, and fingerprint or gesture recognition through a 
touch-screen. 

Additionally, when current identity confidence is 
statistically insufficient, more interruptive methods of 
obtaining biometric data are required. Two such methods are 
(1) challenge-based biometrics and (2) cognition-based 
biometrics. A challenge-based biometric is a prompt for user 
input that is used to re-establish identity. Existing 
challenge-based prompts include requesting the re-entry of a 

password, or the re-swiping of a fingerprint (which is actually 
a biometric challenge). Cognition-based biometrics are 
concerned with the person’s ability to perform a given task. 
The cognitive aspect can be based on user history; i.e., the 
user may have rehearsed the response or provided it in the 
past—such as a signature or a vocal response to a query. 
Although disruptive to the user’s task, the user already 
understands that occasional re-assertion of identity is needed 
to ensure security. Importantly, challenge- and cognition- 
based biometric tasks may be requested sequentially until 
either identity is established with sufficient statistical 
confidence or until the access control rights are revoked. 

For behavioral, challenge-based and cognition-based 
biometrics, latency (timing considerations) in the user’s 
response is important. Identity counterfeiting is made more 
difficult when differences in the adeptness of an individual to 
respond are measurable and unaffected by connection. This is 
consistent with where a DBS is best deployed—when there is 
a fast and reliable internet connection. 

C. Applications 
The DBS can be used for virtually any system requiring 

security, privacy and access control. Centering 
next-generation security systems around biometrics provides 
additional advantages. The sensors used to provide access 
control can also be used to provide environmental or personal 
monitoring. In medical applications, biometrics can provide 
both security through identification and clinical information 
suitable for analysis and interpretation by medical 
professionals. One example is the electrocardiogram (ECG). 
Information from the ECG and its related vectorcardiogram 
(VCG), blood pressure profile and heart sounds, can provide a 
“signature” for the individual under resting, sitting, standing 
and other conditions, with values for p(A) and p(!A) that, 
while modest, are suitable for patient identification in a 
clinical setting. The clinical value of these sensor-input 
biometrics are obvious. 

The DBS will prove useful in financial, political and 
corporate—collectively designated “enterprise”—security 
systems. Here, the auditing and evidence aspects of the DBS 
can be deployed consistent to the governance of the system. 
As such, compliance with the DBS can be, largely, 
determined by the service, with obvious incumbent 
advantages to user policy adherence. 

From a research standpoint, the development and 
deployment of a DBS offers several further threads of 
interest. Massive amounts of ground-truthed (training) data 
are accumulated, since the biometric data can be directly 
associated with a given user. The DBS, therefore, can provide 
a central repository of biometric data, useful for analytics and 
data-mining purposes. This data may be helpful in 
determining better usability for applications, more facile 
means of gathering user biometric data to ensure security, 
privacy and access right policies, and more generally for the 
community concerned with the connection between 
biometrics and health, safety and environmental monitoring. 

Ultimately, the goal of the DBS is to disappear into the 



  

background—or at least become as non-disruptive as 
possible. There are compelling current trends that support this 
goal. The “traditional” WIMP (window, icon, menu, pointing 
device) paradigm faces competition from new 
human-machine interaction models such as touch and voice 
control. Gesture and facial expression control—if not direct 
brain control—models may also augment the experience. 
Clearly, the human-computer interface is no longer a generic 
mouse-and-keypad. The new modes for interaction are 
largely based on, not coincidentally, biometrics. This should 
make collecting dynamic biometric information suitable for 
maintenance of a “biometric VPN” easier and less invasive. 

D. The DBS as a Distributed Architecture 
The use of the DBS in enterprise systems is consistent with 

the trend to move applications, services, data and information 
(analyzed data) to a so-called “cloud” service, with mobile, 
desktop and data center access to the service possible “any 
time, any place”. The structure of the cloud supports the 
needs for privacy, as well. Session keys based on Ŝ are 
maintained by the service, as well as the full history of the 
user’s interactions. In some ways, the mobile/ubiquitous 
on-ramp to the service can actually support both security and 
privacy. An eavesdropper would not be able to “sit” on a 
single machine or access port to capture the biometric history, 
even if the eavesdropper could deduce which coefficients of 
which signals were being trafficked during each session. 

VII. FUTURE CONSIDERATIONS: THE BIOMETRIC WORLD 
The timing of the first IEEE International Conference on 

Biometrics, Identity and Security (BIdS) is not accidental. 
We stand on the precipice of a jump into the unknown—one 
could just as easily argue the jump has already occurred [22]. 
A jump into an unprecedented world based on biometrics, 
ubiquitous sensing, and the accumulation—not to mention 
analysis and storage—of vast amounts of data relating to 
identification and tracking. And, somewhere, behind all this 
data, scalable and effective policies for security, privacy and 
access control must be designed and deployed. 

The “biometric world” is, in many ways, a logical 
extension of the linked world of today. A sensory and 
surveillance backbone overlaid on the next-generation (IPv6 
and beyond) Internet is not only possible—it’s already being 
built. Location information (due to the increasing ubiquity 
and decreasing cost of GPS-enabled devices and sensors) will 
rise to complement possession, knowledge and identity, 
furthering the need for an architecture in which a variety of 
policies can be deployed simultaneously and with ease of 
scaling. 

How are security and privacy to be simultaneously 
provided in this biometric, sensor and data rich world? The 
time to design such a system is now. Instead of the perennial 
trade-off between security and privacy, perhaps the DBS 
offers the possibility of building both into the system from the 
beginning. A first pass of the architecture to achieve this is a 
system based on session security through sensing (Se3). 

Figure 4 depicts a simplified view of the connections 
between the key elements of the Se3 system. Privacy policy, 
rather than being retrofitted, is explicitly designed into every 
node and link in the system. 

Security policy is applied through the session keys, created 
from the signature set, Ŝ, and through the use of biometric 
identity verification. Privacy policy can be implemented in a 
number of ways. As one example, if the user wants the 
highest level of privacy, she may wish for no information to 
be stored locally. This means any biometric data stored from 
past sessions must be stored in the cloud, and in general the 
user will need to provide more substantial biometric 
information to prove identity when initiating the session. 

 

 
Fig. 4. Se3 (Security, Session, Sensors) system with cloud connection. 

 
As the IPv6 protocol is adopted, sensors will be connected 

like other devices on the internet. Varying levels of privacy 
can be provided through the choice of IPv6 deployment. 
Generic 128-bit IPv6 uses a globally unique MAC address, 
which can track the user and his equipment. However, 
privacy extensions for IPv6 have been standardized to 
provide anonymity, if necessary [23]. 

The service supporting the Se3 system implements and 
validates both the security and privacy policies, performs the 
statistical analysis necessary for establishment or revoking of 
identity, provides the correct access rights, and stores user 
biometrics in the correct format. Session analytics are 
captured and used, as appropriate, to update the user’s 
biometric history. 

VIII. CONCLUSIONS 
The dynamic biometric system (DBS) outlined in this 

paper takes into account current trends in sensing, identity 
research, mobile devices, cloud services and advanced 
biometrics. The DBS is meant to provide a fix for the collapse 



  

of identity and possession into knowledge. The DBS provides 
a call for action on new research in security, privacy, 
biometrics and biometric fusion. 

Many aspects of this system posit interesting research 
challenges. Specifically, correcting for differences in 
location, connection quality, device quality and model, 
health/condition of the user, and the effective selection of the 
dynamic biometric signals to collect. Location and 
connection quality will impact the integrity and SNR of the 
signals collected. Research is necessary to correct/calibrate 
for these differences. Device quality and model will affect the 
gain, phase, SNR and frequency response—among other 
factors—of the signals sampled. Again, device qualification 
and periodic calibration will be necessary to provide the 
highest accuracy DBS. User health and condition (emotional 
state, point in diurnal cycle, etc.) must also be considered to 
optimize the accuracy of the DBS. Finally, powerful 
analytical approaches, such as task-specific spectra [7, 8] and 
meta-algorithmics [9], are required to limit the intrusiveness 
of the DBS on the users. 

In many systems, the inability to ensure that knowledge, 
identity and possession are independent poses a significant 
threat to security and privacy. Converging trends in mobility, 
sensing, biometrics and analytical approaches, however, offer 
a possible path forward. Dynamic biometrics, with the 
advantages over “static” biometrics as described in this paper, 
will be a pivotal technology for architecting systems that can 
provide compliance for a wide array of security policies, 
privacy policies and levels of access to applications, services 
and data. The IEEE International Conference on Biometrics, 
Identity and Security (BIdS), is being inaugurated because of 
the recognition that rapid identification of individuals is of 
increasing importance in many areas. The DBS—while not 
without significant research, architectural and regulatory 
hurdles to overcome—builds on the rapid identification of 
individuals to provide a broader and potentially more robust 
system for security, privacy and access control. 

Security is more a net than a hook. Broad, interdisciplinary 
approaches taking advantage of multiple technology threads 
are generally more robust, more scalable, and more adaptable 
to the changing needs of the security community. It is hoped 
that the DBS, in matching these qualifications, will help us 
provide both security and privacy in the new, sensor-rich, 
mobile, distributed and biometric world. 

IX. ACKNOWLEDGMENT 
Thanks to Jason Aronoff, Margaret Sturgill and the 

anonymous reviewers for helpful suggestions! 

REFERENCES 
[1] S. Nanavati, M. Thieme, and R. Nanavati, Biometrics: Identity 

Verification in a Networked World. New York: John Wiley &Sons, 
2002. 

[2] J.C. Wells, Accents of English. Cambridge, U.K.: Cambridge 
University Press, 1982. 

[3] X. Lin and S. Simske, “Phoneme-less hierarchical accent 
classification,” HPL Technical Report HPL-2004-166, available at 
http://www.hpl.hp.com/techreports/2004/HPL-2004-166.html 

[4] S. Vaseghi, Q. Yan, and A. Ghorshi, “Speech accent profiles: modeling 
and synthesis,” IEEE Signal Proc Magazine, 26(3), 2009, pp. 69-74. 

[5] B. Schölkopf and A.J. Smola, Learning with Kernels. Cambridge, MA: 
The MIT Press, 2002. 

[6] G.J. McLachlan, Discriminant Analysis and Statistical Pattern 
Recognition.Wiley Series in Probability and Mathematical Statistics: 
Applied Probability and Statistics. New York: Wiley & Sons, 1992. 

[7] P. Chaudhuri, A.K. Ghosh, and H. Oja, “Classification based on 
hybridization of parametric and nonparametric classifiers,” IEEE Trans 
Pattern Analysis Machine Intell, 31(7), 2009, pp. 1153-1164. 

[8] R.A.-H. Mohamad, L. Likforman-Sulem, and C. Mokbel, “Combining 
slanted-frame classifiers for improved HMM-based Arabic 
handwriting recognition,” IEEE Trans Pattern Analysis Machine Intell, 
31(7), 2009, pp. 1165-1177. 

[9] S.J. Simske, D.W. Wright, and M. Sturgill, “Meta-algorithmic systems 
for document classification,” Proc DocEng 2006, New York, NY: 
ACM, 2006, pp. 98-106. 

[10] D.J. Levitin, “This is your brain on music,” New York: Penguin Group, 
2006. 

[11] F. Jelinek, Statistical Methods for Speech Recognition. Cambridge, 
MA: MIT Press, 1997. 

[12] D. Jurafsky and J. Martin, Speech and Language Processing: An 
Introduction to Natural Language Processing, Computational 
Linguistics, and Speech Recognition. Englewood Cliffs, NJ: 
Prentice-Hall, 2000. 

[13] S. Davis and P. Mermelstein, “Comparison of parametric 
representations for monosyllabic word recognition in continuously 
spoken sentences,” IEEE Trans. Acoustics Speech Signal Processing, 
28(4), 1980, pp. 357-366. 

[14] A. Krishnamurthy and D. Childers, “Two channel speech analysis,” 
IEEE Trans. Acoustics Speech Signal Processing, 34(4), 1986, 
pp.730-743. 

[15] S. Yacoub, S. Simske, X. Lin, and J. Burns, “Recognition of emotions 
in interactive voice response systems,” HPL Technical Report 
HPL-2003-136, 5 pp., 2003, available at 
http://www.hpl.hp.com/techreports/2003/HPL-2003-136.pdf 

[16] A.E. Rosenberg, C.H. Lee, and F.K.Soong, “Cepstral channel 
normalization techniques for HMM-based speaker verification,” Proc. 
IEEE ICASSP, 1994, pp. 1835-1838. 

[17] R. Cowie, E. Douglas-Cowie, N. Tsapatsoulis, G. Votsis, S. Kollias, W. 
Fellenz, and J.G. Taylor, “Emotion recognition in human-computer 
interaction”, IEEE Signal Proc Magazine, 18(1), pp. 32-80, 2001. 

[18] J.M. Baker, L. Deng, J. Glass, S. Khudanpur, C.-H. Lee, N. Morgan, 
and D. O’Shaughnessy, “Research developments and directions in 
speech recognition and understanding, part 1,” IEEE Signal Proc 
Magazine, 26(3), 2009, pp.75-80. 

[19] M. Bauer, M. Meints, M. Hansen, “Del 3.1: structured overview on 
prototypes and concepts of identity management systems,” FIDIS 
Deliverables 3(1), 2005. 

[20] A.Baldwin, M. Casassa Mont, and S. Shiu, “On identity assurance in 
the presence of federated identity management systems,” 
HPL-2007-47, 
http://www.hpl.hp.com/techreports/2007/HPL-2007-47.html 

[21] M. Casassa Mont, P. Bramhall, and J. Pato, “On adaptive identity 
management: the next generation of identity management 
technologies,” HPL-2003-149, 
http://www.hpl.hp.com/techreports/2003/HPL-2003-149.html 

[22] S. Simske, “Eye in the sky? Try crowd in the cloud,” HP Communities 
Security Printing and Imaging Blog, April 16, 2009, 
http://www.communities.hp.com/online/blogs/securityprinting/archive
/2009/04/16/eye-in-the-sky-try-crowd-in-the-cloud.aspx 

[23] T. Narten, R. Draves and S. Krishnan, “Privacy extensions for stateless 
address autoconfiguration in IPv6,” September 2007, 
http://tools.ietf.org/html/rfc4941 

[24] “ATM Scam”, http://www.utexas.edu/police/alerts/atm_scam/ 
[25] R. Lemos, “Are your ‘secret questions’ too easily answered?” 

Technology Review (web), May 18, 2009, 
http://www.technologyreview.com/web/22662/ 

[26] N. Lovering, “The impact of IPv6 on semantic interoperability,” 27 
April 2006, 
http://www.opengroup.org/projects/si/uploads/40/10346/lovering.pdf 


