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ABSTRACT 
Large-scale datacenters are rapidly increasing in number 
and size to satisfy computing and storage needs for 
globally connected businesses and the World Wide Web.  
10Gb/s Ethernet is now being adopted to meet increasing 
bandwidth needs for in-datacenter communications.  
However, most datacenter network architectures are still 
based on specialized hierarchical edge-core topologies 
which are costly to build, difficult to maintain and 
consume large amounts of power.  This paper describes 
enhancements to Layer two Ethernet switches that 
support multipath L2 routing for scalable datacenters.  
This enables a cost-effective scalable network 
architecture based on enhanced layer two Ethernet 
switches.  The architecture provides multipath routing for 
Ethernet while preserving important Ethernet features and 
interoperability with traditional Ethernet gear.  While this 
work is currently limited to scalable fat tree networks, 
these topologies provide an attractive approach for 
scaling large datacenter networks. 

Keywords 
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1. INTRODUCTION 
This paper addresses two key problems that limit the use 
of Ethernet in datacenters. First, we need network 
architectures that scale with increasing datacenter needs. 
We need flat layer two networks that seamlessly scale 
without complex administration.  Second, we need 
network architectures that are constructed using the same 
devices that are used in more general commodity network 
settings. We need to exploit inexpensive components 
used in non datacenter settings to drive down the cost for 
scaling in-datacenter communications. 
Datacenters support today’s information infrastructure 
providing scalable application, database, and file services 
needed to power the internet and complex enterprise 
applications.  In addition, scalable cluster computers have 
evolved to solve the technical problems needed for large-
scale scientific and engineering applications.  Scalable 
performance relies on pools of communicating processor, 
storage, and network devices. Fault tolerance is required 
for always on infrastructure and server virtualization for 
management flexibility.  These requirements lead to a 

common need for scalable datacenter networks that 
provide flexible communications that support complex 
interactions between datacenter components. 
Due to Ethernet’s broad market penetration, large 
investments are made in Ethernet hardware that exploit 
the capabilities of highly-integrated VLSI components.  
This provides steady price decreases and performance 
increases so that current Ethernet speeds approach that of 
specialized high-end datacenter fabrics.  Ethernet is now 
positioned to satisfy the raw low-level communication 
needs of most commercial datacenter applications. 
These changes provide increasing motivation to exploit 
Ethernet in very large datacenters and mirror the prior 
replacement of specialized and expensive high-
performance computers with inexpensive microprocessors 
called “killer micros”.  At that time, specialized 
processors dominated high-end computing, and 
microprocessors emerged as the commodity compute 
solution.  The combined power of silicon chips and large 
engineering efforts funded by general purpose computer 
revenues drove microprocessor performance.  Eventually, 
economies of scale won, and supercomputers are now 
constructed using many commodity microprocessors. The 
moral of the story is:  good enough wins, volume matters, 
and the low-end eats the high-end.  
This work rests on the assumption that history will repeat 
itself for networking.  High-end datacenter networks will 
be implemented using ensembles of evolved Ethernet 
components that share implementation architectures with 
broadly deployed Ethernet.  We call these “killer fabrics”.  
We are designing killer fabrics that use enhanced 
commodity network components to support the needs of 
tomorrow’s scalable datacenters. 
Ethernet faces significant obstacles for large-scale 
datacenters.  A key limitation is Ethernet’s inability to 
efficiently scale [1].  Therefore, datacenter architects 
cannot currently exploit the aggregate communication 
capability of many network components.  Key limitations 
arise from the use of the spanning tree protocol which is 
at the heart of transparent bridging [2].  Transparent 
bridging allows efficient communication to newly added 
end-nodes without administrative action. Spanning tree 
eliminates cycles and facilitates broadcasts needed to 
locate missing end-nodes.  However, the advantages of 
spanning tree are offset by disadvantages that limit 
Ethernet’s ability to exploit redundant paths.  This leads 
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to edge-core topologies that connect inexpensive edge 
switches with expensive monolithic core switches that are 
needed to provide adequate bisection bandwidth. 
The use of monolithic core switches is impractical for 
large scale datacenters. An attractive alternative replaces 
the monolithic core switch with multiple lower cost core 
switches. However, to preserve high bisection bandwidth, 
multiple core switches must exploit multiple network 
paths.  Existing approaches can exploit multiple paths on 
Ethernet.  Network management can statically partition 
networks using layer-three IP subnets and/or layer-two 
VLANs. Both approaches limit the scope of flat layer two 
networks and assist in exploiting multiple paths.  
However, these approaches require complex and costly 
manual administration.  Static network partitioning does 
not work when performing datacenter-wide any-to-any 
communications for data intensive operations.  Static 
network partitioning also restricts virtualization which 
dynamically moves virtual machines and requires 
dynamic changes in network connectivity.  Datacenters 
need flat scalable layer-two networks with dynamic 
multipath L2 routing to eliminate costly core switches and 
complex management. 
Storage attachment also offers challenges not easily 
solved by today’s Ethernet. This is primarily due to 
Ethernet’s dropped packets and unpredictable 
performance under congested load.  Hence, storage is 
often attached using Fibre Channel or InfiniBand 
networks.  This leads to datacenters that require separate 
networks for compute-to-compute and compute-to-
storage communications and inhibits the use of shared 
infrastructure for multiple communication needs. 

1.1 Contributions 
In order to satisfy future datacenter needs, fabric 
architectures must be developed to overcome a number of 
key technical obstacles while retaining key Ethernet 
compatibilities. 
In this paper, we introduce a new hash-based routing 
architecture that enhances Ethernet to support multipath 
routing within scalable datacenter networks.  This 
architecture enables the use of scalable networks of 
commodity Ethernet switches for large and 
communication-intensive datacenters.  Our proposed 
improvements provide an evolutionary path for Ethernet 
switch implementations to incorporate both static and 
dynamic multipath routing.  The architecture preserves 
important Ethernet properties including plug-and-play 
operation, support for end station mobility, and seamless 
interoperability with conventional Ethernet networks that 
are attached at the edge of the datacenter. 
We identify dynamic path selection algorithms to handle 
time varying traffic within a datacenter.  These algorithms 
have been implemented and provide substantial 

improvement in network performance compared to 
previous random static scheduling techniques. We 
explore the scalability of these algorithms and show that 
they are adequate for very large datacenters. 
To reduce the high cost of multiple datacenter networks, 
our architecture supports converged-fabric datacenters 
that transport LAN and storage traffic on a common 
network. Our architecture provides a foundation for the 
active management of diverse traffic types to balance the 
needs of high throughput, predictable quality of service, 
fault tolerance, and power management.  This includes 
support for the layer-two functionality needed for both IP 
and non-IP (e.g. Fibre Channel over Ethernet) traffic. 
Our contributions can be divided into low-level hardware 
mechanisms and high-level software architectures. The 
low-level hardware mechanisms preserve and enhance 
switch micro-architectures that will often be used for non-
datacenter needs.  This allows the broadest deployment of 
networks based on commodity chips and amortizes costly 
chip design efforts over a broad base that includes both 
commodity and more specialized datacenter networks.  
Switch enhancements provide powerful low-level 
multipath routing support and a strong hardware 
foundation, for future high-level software architectures. 
We have developed initial software architectures for real 
datacenter networks. These architectures provide both a 
practical demonstrator for the power of low-level 
hardware mechanisms as well as a prototype for first 
generation datacenter network management architectures. 

1.2 Outline of paper 
In section 2 we introduce a hash based multipath L2 
routing architecture that upgrades Ethernet to support 
routing in fat tree networks for scalable datacenters.  
Section 3 describes algorithms that provide multipath 
load balancing.  Section 4 presents results that 
demonstrate the performance of multipath load balancing.  
Section 5 explores the scalability of centrally managed 
networks using our algorithms.  Section 6 describes how 
our network architecture preserves important capabilities 
of traditional Ethernet.  Section 7 describes features of the 
proposed architecture for converged-fabric networks that 
combine LAN, storage, and other traffic types.  Section 8 
describes related work, and section 9 provides 
conclusions. 

2. Hash-based routing for scalable networks 
This section introduces architectural principles for hash-
based L2 routing in scalable fat tree networks.  Hash-
based routing is designed to be compatible with existing 
Ethernet mechanisms for learning and plug-and-play 
operation, and enables the utilization of redundant paths 
in the fabric.  The approach is applicable to multi-level 
fat-tree topologies with the flexibility to independently 
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scale the bisection bandwidth and edge port count.  The 
required enhancements to the switch micro-architecture 
greatly leverage existing hardware structures and require 
only modest extensions. 

2.1 Existing Ethernet 
Ethernet uses the spanning tree protocol to identify an 
active acyclic network that transports all packets [2]. 
Spanning tree establishes a cycle-free backbone for 
broadcast information and identifies a unique path 
between every pair of end stations, thus making all 
forwarding decisions unambiguous.  After a spanning tree 
is identified, switches use a simple initial forwarding 
procedure to send a message to a destination at an 
unknown location.  When a packet is sent from any end 
stations A to B, each switch forwards an incoming 
message on all active (spanning tree) ports except the port 
on which the packet arrived.  This process, called 
flooding, is performed with no forwarding information 
except spanning tree information that defines active ports.  
However, this broadcast-based procedure is inefficient. 
Adaptive forwarding enhances performance by learning a 
path to each destination. A forwarding cache supports 
layer two learning.  Each packet contains source and 
destination MAC addresses.  While the destination 
address is used for forwarding, the source address is used 
for learning.  When a message is received on a link L, 
with source address X, then a forwarding cache entry is 
created or updated so that subsequent messages destined 
for X are forwarded on L.  For each packet, the cache is 
searched using its destination MAC address to identify a 
forwarding port that may have been recorded when a 
prior message was received from the destination.  If 
present, the forwarding port is used to send data to a next 
hop switch. If the cache entry is lost due to replacement 
or timeout, then the switch reverts to flooding. 
Traditional Ethernet restricts the use of redundant paths 
leading to great difficulty in large-scale datacenters.  As a 
network scales to support additional hosts, bisection 
bandwidth is added to support increasing communication 
across the entire network.  When conventional Ethernet is 
used to implement the datacenter fabric, larger and larger 
core switches are required at the root of a spanning tree to 
provide adequate bandwidth.  Each core switch is 
traditionally implemented as a complex and costly system 
with a proprietary internal architecture and cannot be 
implemented by assembling many inexpensive and off-
the-shelf commodity Ethernet switches. 

2.2 Fat tree network topologies 
Network topologies such as Clos networks or fat trees can 
scale to arbitrarily large size using fixed port-count 
switches avoiding costly core switches. These networks 
independently scale in both the number of ports and 
bisection bandwidth.  Similar networks have been used 

for many years first in telephone switching [3], then for 
computer interconnection networks [4], and more recently 
for scalable Ethernet networks [5][6].  We present a 
family of scalable network architectures, based on these 
topologies, for datacenter networking. 

Figure 1 - Two-Tiered Fat Tree 
Figure 1 illustrates that two-tiered fat trees can offer 
independent control over both the number of edge ports 
and the bisection bandwidth.  This allows datacenter 
architects to tailor networks for varying communication 
needs.  Exposed edge ports appear at the bottom where D 
downlinks are provided by each of L leaf switches.  As 
leaf switches are added, the number of exposed edge 
ports expands as D×L. Adding core switches (C) 
enhances the bisection bandwidth which grows as C×L. 
A key feature and a key difficulty presented by these 
networks is that multiple paths exist between every pair 
of edge ports.  When a packet is injected into a leaf 
switch, an uplink choice is confronted that is not typically 
seen with traditional L2 Ethernet.  However, to avoid 
network cycles conventional switches run Ethernet’s 
spanning tree algorithm which disables redundant links 
and thus eliminates the bandwidth benefits of all but one 
of the core switches. Multipath L2 routing is needed to 
exploit the bandwidth that is provided by scalable and 
redundant fat tree networks. 
A two tiered network has a limited maximal size as 
dictated by the fan-out (radix) of switches that are 
available at any time.  In particular, core switches must 
provide at least L ports while edge switches must provide 
C+D ports.  With next generation 48 port 10Gb Ethernet 
switches, very large two tiered networks can be 
constructed, as we describe in Section 5. 

2.3 Routing approach 
Multipath routing can be divided into static and dynamic 
approaches.  Static routing describes how packets are 
routed without measuring load to rebalance traffic.  
Dynamic routing provides a control loop: data is collected 
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to measure points of congestion within the network; new 
routing information is calculated; and then new routing 
tables are set to improve throughput by rerouting traffic 
around congestion.  Dynamic routing should be made on 
global measurements, as a local decision can impact a 
remote bottleneck. 
A central issue with dynamic routing is the overhead of 
management traffic and routing computation.  A good 
way to reduce both the management traffic and routing 
computation is to not individuate every flow but to assign 
flows to a limited number of hash classes.  Hash-based 
routing provides a powerful tool for managing multipath 
traffic within fat-tree-style Ethernet networks.  It provides 
an effective approach for both static and dynamic routing.  
Packet source and destination addresses are processed 
using a hash to pseudo randomly assign flows to hash 
classes.  Each packet’s forwarding route is specified 
based on the resulting hash class.  Hash functions may 
use higher layer (e.g. IP) information in addition to MAC 
addresses to facilitate randomization across multiple 
paths.  Hash functions are selected so that all packets of a 
network flow map to one hash class.  This ensures that 
packets of the same flow traverse a single network path, 
and preserves packet order within the flow.  
Hash-based routing can be divided into asymmetric and 
symmetric counterparts.  For each source address S, and 
each destination address D, H(S, D) represents the hash 
class for every message sent from S to D.  Symmetric 
routing uses symmetric hashes that have H(S, D) = H(D, 
S), and a symmetric placement of routes.  The symmetry 
property is used to ensure that after a message flows 
through a path from a source to any destination, that the 
same path is retraced by a reply. Symmetric hash routing 
facilitates the learning process that preserves the plug and 
play Ethernet.  Experiments below rely on a hash that 
adds source and destination MAC addresses, multiplies 
by a large prime, and masks bits to yield a result. 
Hash-based routing actively manages the flow of packets 
through a fat tree as shown in Figure 1. Routing is not 
limited to full bisection bandwidth networks – low cost 
networks with reduced bisection bandwidth are also 
supported.  Core switches are assumed to be unmodified 
Ethernet switches.  Leaf switches are enhanced to support 
multipath routing but preserve the feature set and micro 
architecture of a conventional Ethernet switch. 
The fat tree topology greatly simplifies the routing 
problem.  When a message flows through a fat tree from 
any source to any destination, a series of one or more 
uplink choices are confronted until reaching a switch S 
that can route downward to the destination.  At each 
uplink choice, any selected uplink identifies a next hop on 
one of the shortest paths to the desired destination.  A 
hash function assigns all uplink messages to randomly 
selected hash classes.  Active load balancing routes hash 

classes on carefully selected uplinks.  Due to the nature of 
fat trees, uplink selection does not dictate whether any 
specific destination is reached and can be freely used for 
load balancing or traffic segregation independent of any 
concern for correct routing. 
After reaching switch S, a sequence of downlink choices 
are confronted.  At each tier, a single correct downlink 
must be selected to reach the target. The correct 
identification of downlinks uses traditional layer-two 
forwarding. Therefore unmodified core switches can be 
used and the architecture preserves the simple 
administration of plug & play networks which results 
from learning. 

2.4 Plug-and-play Ethernet 
Ethernet’s spanning tree and learning functions provide 
plug-and-play operation, allowing dynamic addition and 
removal of switches and end stations at the edge of a 
fabric.  Enhancements to leaf switches are needed to 
combine Ethernet’s existing plug-and-play with enhanced 
multi-path routing.  
To prevent the spanning tree protocol from disabling any 
uplinks at each leaf switch, we carefully control which 
uplinks participate in the spanning tree protocol.  The 
uplinks are chosen such that all participating uplinks join 
the spanning tree.  Non-participating uplinks remain 
enabled.  In particular, we designate one core switch as 
the Ucore.  In each leaf, the uplink Uport is connected to 
the Ucore (see fig 1).  The leaf is modified to identify the 
Uport as well as all downlinks as participating links in the 
spanning tree protocol, and to disable spanning tree on 
the remaining uplinks.  The rest of the cores are 
effectively excluded from the spanning tree protocol, 
rendering spanning tree formation identical to a 
conventional network with a single core.  The Ucore is 
configured to be the root for spanning tree formation. The 
spanning tree protocol systematically enables links that 
are on least cost paths to the root.  The use of the Ucore 
as the root guarantees that the Uport links are spanning 
tree members even when additional switches are added 
that interconnect multiple leaf switches. 
To make Ethernet learning compatible with multi-path 
routing, all the uplinks of a leaf switch are treated as a 
single virtual uplink.  The Uport provides a single virtual 
port name for all uplink ports.  All downward traversing 
packets that are received by a leaf switch on an uplink 
look as if they were received on the Uport.  Packets that 
are destined to the Uport are processed by the hash 
routing mechanism, which implements a multipath 
routing choice to determine the chosen physical uplink on 
which to forward. 
Leaf switch downlinks, and all core links, provide a 
single path to any given destination.  Therefore, for 
downward routing, the forwarding path can be learned by 
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the adaptive forwarding. By building downward routing 
on traditional adaptive forwarding, Ethernet plug and play 
and device mobility are preserved. 

2.5 The Enhanced Ethernet switch  
Ethernet switches commonly use a processing pipeline 
that includes the packet header processing, forwarding 
cache, and TCAM lookup stages.  Figure 2 shows these 
functions in white boxes illustrating the conventional 
portion of an Ethernet switch. The enhanced Ethernet 
switch preserves these features but is enhanced by adding 
blocks (shown in gray) that support multipath routing and 
active load balancing.  Those simple additions include the 
uplink identifier, hash, and gather hash statistics blocks. 

Switch

TCAM
Lookup

Layer 2
Forwarding

Cache

...

Hash

Packet
Header

Uport

Network
Manager Gather

Hash 
Statistics

...

Uplinks

Downlinks

Identify 
Uplinks

 
Figure 2: Enhanced Switch Microarchitecture 

The role of the identify uplink block is to substitute the 
Uport as the arrival port for any packet that arrives on an 
uplink. As a result, the forwarding cache treats all uplink 
arrivals as arrivals on Uport. In traditional switches, link 
aggregation groups (LAGs) are groups of links that are 
treated as a single link to aggregate link bandwidth 
between pairs of switches. Our switch treats uplinks in a 
manner similar to conventional LAGs, and existing LAG 
support may be reused for this block. 
Arriving packets are then processed by the learning 
function in the forwarding cache.  If the packet was 
received from a downlink, it enters the source MAC 
address and the receiving port into the forwarding table. 
If the packet was received on an uplink port, the “identify 
uplink” block has substituted the Uport name as the name 
of the port, and an entry is created in the forwarding table 
that associates the packet’s source address with the Uport. 
The forwarding cache then processes the packet’s 
destination to determine a forwarding port.  Destination 
address processing specifies one of three results:  the 
forwarding port is either: unknown, a downlink, or the 
Uport. When the port is unknown, the packet is flooded 
on the Uport and all downlinks (except the arrival port).  
When the forwarding port specifies a downlink, the 
packet is forwarded on that link.  When the forwarding 

port specifies the Uport, the actual port will be one of the 
uplinks and is selected in the subsequent TCAM lookup. 
The hash block computes the hash field from the packet 
header. This hash provides routing diversity for small 
lookup tables and may include a variety of header fields.  
The actual multipath routing and load balancing can be 
done using a TCAM or using a RAM-based lookup table.  
The TCAM within existing Ethernet switches enhances 
flexibility and supports higher layer functions.  A 
frequent traditional use for TCAMs is to implement 
access control lists and QoS. We prefer TCAM-based 
implementations for a variety of reasons. This allows the 
reuse of an existing function rather than adding a single 
purpose block. TCAMs allow joint processing of the hash 
value with other header fields, such as VLAN, Ethertype, 
and type or class of service, for differentiating flows. The 
use of TCAMs also enables rules that override hash based 
routing for specific hosts or flows, for example to route 
control traffic to a specific core switch itself. 

 
Figure 3: Load Balancing with TCAM Lookup Table 

A TCAM lookup key, shown in Figure 3, is formed by 
combining the hash field and the destination port field 
resulting from the forwarding cache lookup.  Additional 
TCAM fields distinguish packet types that receive 
specialized treatment.  Our example uses traffic types IP 
(IP) and Fibre Channel over Ethernet (FC).  The key is 
used as an input for TCAM lookup that queries the entire 
contents of an associative table for a match.  A match 
identifies a result out-port that directs traffic to a carefully 
selected uplink. 
The TCAM lookup table entries are set by the network 
manager to distribute load across multiple uplinks.  Each 
entry is matched against the lookup key for a zero, one, or 
don’t care in each field position.  Each entry contains a 
match field (including hash, type, and forwarding port) as 
well as the resulting out-port field that identifies the 
actual port for a matching entry.  If the hash value and 
forwarding port TCAM fields match corresponding key 
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fields, then the out-port field is substituted as the actual 
uplink.  Our example TCAM lookup matches the second 
TCAM entry and selects uplink U1 for the actual port. 
Consider an example where IP traffic is balanced over 
uplinks. Traffic is divided into 16 groups where each 
group is identified by a hash class.  The example ignores 
two of the six hash bits and matches the remaining four 
bits to select a corresponding hash class.  Load balancing 
is accomplished as each hash class receives a carefully 
selected assignment of traffic to an uplink.  For each 
possible hash (e.g. 16 combinations for a 4-bit hash field), 
one TCAM entry is created that contains the hash 
constant that identifies the chosen traffic group.  
Additionally, the entry specifies the forwarding port as 
“Uport” and the type as “IP”.  Finally, the entry specifies 
an out port field that selects the actual uplink choice. 
Non-matching packets are unprocessed and the 
forwarding port is used as the actual output port.  Packets 
destined for downlinks do not match the Uport in the 
forwarding port field and no action results.  After 
successful processing in the forwarding table, a packet 
that is destined for any uplink matches the Uport field. 
However, each uplink packet matches the hash field for a 
single TCAM entry. This entry determines the actual port 
substituted by the TCAM and specifies the chosen uplink. 
Types IP and FC are matched and treated separately. This 
allows for the type-specific treatment of traffic and will 
be discussed in further detail in section 7. 

2.6  Recursive network construction 
Hash-based routing is scalable to networks of arbitrary 
size. In particular, the two-tiered fat tree shown in 
Figure 1 can be implemented hierarchically, expanded to 
arbitrary size, and controlled using hash-based routing. 
If a two-tiered network were expanded to a very large 
network, core switches with a very large number of ports 
would be needed. Due to chip pin-out and area 
limitations, core switches with arbitrary port count cannot 
be constructed using a single-chip.  However, large port 
count core switches can be constructed by noting that the 
fat tree of Figure 1 itself has all of the properties needed 
to serve as a core switch for a larger fat tree.  This allows 
the recursive construction of large networks.  The 
substitution of a compound fat tree network to provide a 
core switch within a larger fat-tree can be repeated to 
form networks of arbitrary scale.  Our load balancing 
approach, presented below, can be hierarchically applied 
within each compound core switch and among core 
switches to control networks of arbitrary scale. 

3. Active load balancing 
This section demonstrates hash-based routing using a 
centralized control architecture for active management. 
While decentralized approaches are of great interest, this 

paper describes a centralized management approach 
which is appealing due to the inherent simplicity. 
Centralized managers quickly propagate information 
throughout a fabric but suffer inherent risks in limiting 
scalability. We demonstrate surprisingly good scalability 
for centrally managed fabrics below. 
Active load balancing can be separated into symmetric 
and asymmetric approaches. For symmetric load 
balancing, all round-trip communications traverse a single 
bidirectional path.  While the asymmetric approach 
provides higher performance, the symmetric approach 
simplifies data collection, route computation and Ethernet 
learning. 

3.1 Data collection 
Active load balancing requires measurements that identify 
network bottlenecks.  Each leaf switch samples packets at 
a rate that balances processing costs with sampling 
accuracy.  Measurements are gathered in separate hash 
classes for hash-based multipath routing.  Packets from 
one downlink to another are ignored.  For packets that 
traverse an uplink, a histogram entry is augmented for 
that packet’s hash class.  Separate data is collected for the 
to-core (upward) and to-leaf (downward) directions on 
each uplink.  For the to-core direction, each switch 
accumulates a single histogram value for each hash class.  
For the to-leaf direction, each switch accumulates a single 
histogram value for symmetric routing and a vector for 
asymmetric routing. Many TCAM implementations 
include a hit count for each TCAM entry.  In most cases, 
these hit counts are sufficient to gather measurements for 
symmetric routing. 

3.2 Load balancing for symmetric routing 
Symmetric routing ensures that a common path is used for 
round trip communications.  Symmetric routing relies on 
a symmetric hash with H(S, D) = H(D, S).  To improve 
randomization, layer-two and higher-layer Ethernet 
information may be incorporated into source and 
destination specifications as long as the same hash value 
results for outbound and returning messages for round-
trip communications.  To preserve route symmetry, while 
each hash class can be placed independently on any 
uplink, each hash class must be placed on corresponding 
uplinks leading to the same core switch for all leaf 
switches.  This ensures that round trip communications 
traverse a common path between any source and 
destination pair.  For the symmetric case, each leaf switch 
collects link use statistics for the to-core (upward) and to-
leaf (downward) directions.  For each switch, two values 
are needed for each hash class that indicate the up-bound 
and down-bound traffic resulting from the network-wide 
placement of a given hash class to a selected uplink. 
A key benefit for the symmetric approach is that, due to 
the round-trip nature of most communications, core 
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switches can use traditional learning to determine 
destination paths.  When a core switch needs to forward a 
packet it is almost certain that the same switch has, or will 
see, a reply packet that learns the destination port and 
avoids flooding.  When symmetry is relaxed, replies to a 
message that traverses one core switch may traverse an 
alternate core switch, and learning may fail to eliminate 
core switch flooding. 
We have developed heuristics to optimize multipath 
traffic based on measured traffic flow.  Our greedy 
algorithm iterates across hash classes and optimizes 
uplink selection for each class after prior classes have 
been placed.  In each step, an uplink is selected that 
minimizes the sum of squared traffic across all links.  
Minimizing square traffic places high penalties on heavily 
loaded links. 
After all hash classes are assigned to uplinks, the central 
controller downloads TCAM entries for all switches.  For 
slow time varying traffic, we show that network 
performance is greatly improved using this process. 

3.3 Load balancing for asymmetric routing 
Asymmetric load balancing follows the approach of 
symmetric load balancing with a few key differences.  
Asymmetric routing relaxes the need for a symmetric 
hash function and a distinct uplink is independently 
selected for each hash class on each leaf switches. 
Additional sample data is needed for asymmetric routing. 
For the to-core direction, the uplink choice made for each 
hash class on each leaf switch has a local effect that is 
measured with a scalar value at each source leaf switch.  
For the to-leaf direction, the uplink choice made for each 
hash class on each switch has a remote and distributed 
effect that is measured as a vector of values at each 
destination leaf switch.  Each value measures the effect of 
a routing choice in the ith source switch on the to-leaf link 
resource usage at the given destination switch. 
For packets that arrive across leaf switch uplinks in the 
to-leaf direction, asymmetric routing requires sampling 
logic that identifies the originating source leaf switch and 
accumulates measured load in a vector.  While this can be 
accomplished, this represents one of the difficulties for 
asymmetric routing.  One approach maintains a table 
associating each source MAC address with a hosting leaf 
switch.  This table is replicated in each switch and 
referenced for each sampled to-leaf packet.  However, 
maintaining this table interferes with plug-and-play 
support as, for example, when an end station is moved 
from one leaf switch to another, tables must be updated. 
Another issue for asymmetric routing is that adaptive 
forwarding in the core switch may not properly learn 
MAC addresses. The core switch may see only packets 
destined to a MAC address and never see packet coming 

from that address, those packets being routed through 
another core switch. For asymmetric routing to work, 
either core switches need modification or the edge 
switches needs to send gratuitous packets to cause the 
core switch to learn needed MAC addresses. 

3.4 Load balancing comparison 
The symmetric and asymmetric load balancing 
approaches are summarized in Table 1.  Common to both 
approaches are a set of architectural features described 
above that are summarized in the common responsibilities 
cell.  Common properties are features that are provided by 
the architecture for both symmetric and asymmetric 
routing. 

Table 1: Routing Comparison 
Common Responsibilities Common Properties 

Randomize flows over multiple uplinks 
Leaf switches tolerate multipath 
Active management optimizes uplink  
Uplink choice preserved for each flow 
Single core switch for spanning tree 

Supports scalable construction 
Correct multipath routing 
Can dynamically balance load 
Per-flow packet ordering preserved 
Spanning tree for attached switches 

Symmetric Responsibilities  Symmetric Properties 
Consistent path for round trips 
No need to track message origin 

L2 learning works seamlessly 
Reduced sample data size 
Reduced optimization complexity  
Achieves very good performance 

Asymmetric Responsibilities Asymmetric Properties 
Learning requires special support 
Must track message origin across core 
Need vector stats for to-leaf packets 

Larger sample size 
Larger optimization complexity 
Achieves near optimal performance 

4. Performance Results  
A software-based simulation for the proposed architecture 
was developed to evaluate the architecture and heuristics.  
Current software models the two-tiered fat trees of 
Figure 1.  Parameters include the number of core 
switches, leaf switches, and downlinks.  The number of 
TCAM entries is parameterized and can be increased to 
enhance fine-grained routing decisions needed for larger 
networks.  Each link is bidirectional, and inbound and 
outbound resources are independently modeled.  For each 
resource, a flow that requests f flow units is completed on 
a capacity r link in time t=f/r. 
Currently, a simple performance model demonstrates 
multipath routing benefits.  Transmission begins when a 
number of flows begin crossing the network using a 
chosen policy.  Each flow competes for bandwidth on 
each link on its routed path.  Delivery is proportionally 
delayed when flows share a common link. Transmission 
ends when a final flow completes.  The flow rate is 
calculated by summing the load over all flows and 
dividing by the transmission time through a worst case 
bottleneck link. This provides an aggregate measure of 
parallelism in the network’s ability to process all flows.  
While this does not model real system dynamics, it does 
demonstrate the benefits of on-line optimization. 
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The model generates a number of flows that present a 
parameterized load using a uniform random selection of 
flow sources and flow destinations.  Flows are routed 
using four policies. Spanning tree (“span”) always 
chooses the Uport for uplink traffic and thus uses only a 
single core switch.  Random (“rand”) uses a round-robin 
mapping of TCAM entries to uplinks.  When the number 
of TCAM entries is a multiple of the number of core 
switches, this corresponds to assigning an equal number 
of hash classes that contain approximately equal amounts 
of randomly selected traffic to each uplink.  The “sym” 
and “asym” methods apply symmetric and asymmetric 
load balancing. 

 
Figure 4: Non-uniform Routing 

Figure 4 shows the performance for a network with: 4 
core switches, 16 leaf switches, 16 downlinks per leaf, 
and 256 TCAM entries.  All links have unit capacity. 
Random flows are added on a logarithmic scale as the 
number of flows is repeatedly doubled from 8 on the left 
to 262,144 on the right.  Non-uniform flows are 
generated. Each flow is generated as an independent trial 
with probability .95 of acquiring a unit load and 
probability .05 of acquiring a load of 20.  The flow rate is 
plotted as unit load equivalent flows completed per unit 
time.  Data has been smoothed by averaging over 100 
independent trial experiments. 
Two performance bounds are shown.  The bound “sat” is 
based only on the bisection bandwidth of network 
hardware and is independent of flows. Sat is achieved 
when all uplinks are simultaneously saturated in both 
directions.  The example cannot transport more than 
C×L=64 unit flows per unit time.  A tighter “bound” is 
calculated given a specific set of flows that present 
known loads for each switch.  The sum of loads that 
traverse each switch’s uplinks divided by the aggregate 
uplink capacity on that switch provides a time bound.  A 
time bound is calculated separately for the to-core and to-
leaf directions on each switch.  The worst case time 
establishes an overall time bound for the entire set of 
flows. 

For a modest number of flows, active management 
consistently produces large performance gains. For 
example, in Figure 4, for 4096 flows, symmetric load 
balancing (“sym”) yields a 30% performance increase 
over random.  Asymmetric load balancing outperforms 
symmetric load balancing at almost every point but 
typically by a small margin.  For a large number of flows, 
(e.g. 8192) both asymmetric and symmetric load 
balancing approach the bound and are near optimal.  For a 
very large number of flows (e.g. 262,144), “asym”, 
“sym”, and “rand” all produce near optimal (“sat”) 
results. 
For a small number of flows, all load balancing 
approaches remain substantially below the bound.  This 
overly optimistic bound allows each individual flow to 
spread across multiple uplinks.  For small numbers of 
flows, achieved results look poor when compared to this 
unrealistic bound. A tighter bound (“TB”) is calculated 
when all flows have unit load.  In the case, when N unit 
flows are transported across M unit capacity uplinks, then 
ceiling (M/N) units of time are required to complete all 
flows. 

 
Figure 5: Uniform Routing 

Figure 5 repeats the experiment of Figure 4 using uniform 
unit loads and plotting both bounds. Now, both 
symmetric and asymmetric management closely follow 
the TB bound.  The remaining experiments use uniform 
loads and plot the TB bound. 
Figure 6 explores symmetric routing performance while 
varying the number of hash bins. Experiments are 
performed for 16, 64, 256, and 1024 hash bins. While the 
performance for symmetric management with 16 hash 
bins mirrors random, performance for 1024 hash bins 
closely follows the TB bound.  Results for asymmetric 
routing (not shown) are similar but, systematically 
outperform symmetric with the same number of hash 
bins. 
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Figure 7 explores network scalability for a varying 
number of core switches. This experiment uses 16 leaf 
switches and 512 hash bins.  The number of flows is held 
constant at 100, while the bisection bandwidth is 
increased by adding core switches. Again, active 
management outperforms random for a modest number of 
flows, however, the growth in flow rate is limited due to 
the small number of flows. 

 
Figure 6: Flow Rate for Varying Hash Bins 

 

 
Figure 7: Flow Rate vs Core scaling for 100 Flows 

 

 
Figure 8: Flow Rate vs Core Scaling for 100×C Flows 

Figure 8 repeats Figure 7 but scales the number of flows 
with the number of core switches by applying 100 flows 
per core switch.  Flow rate now scales almost linearly 
with core switches and systematically outperforms 
random. 
In summary, both symmetric and asymmetric hash-based 
routing architectures can efficiently route traffic for 
scalable datacenter networks.  Several issues should be 
addressed before a practical asymmetric architecture is 
presented. A detailed and fair comparison of these two 
approaches is beyond the scope of this paper. 

5. Scalability for Centralized Routing  
A potential liability for large-scale network routing is the 
scalability of dynamic network management.  We preface 
this discussion by emphasizing that the goals of this work 
do not include support for the very largest networks that 
can be constructed at any given time.  Instead, our goals 
are to support the vast majority of real datacenters and to 
do so using a network constructed with commodity 
Ethernet switches with needed enhancements.  Currently, 
our experiments rely on a central controller to actively 
manage a large network of switches.  There are 
significant risks that either the communication costs 
between the central controller and managed switches, or 
central controller compute costs may preclude responsive 
management for networks of adequate scale.  We hope to 
identify approaches for parallelizing control functions, 
but such work is beyond the scope of this paper. 
A key benefit for hash-based routing architectures is that 
small amounts of summary data can be used to manage 
very large fabrics.  We conducted experiments to evaluate 
the scalability capabilities of a centralized network 
controller.  For these experiments, we assume a stressful 
situation where full bisection bandwidth is required for 
networks of varying scale.  In contrast, networks with less 
than full bisection bandwidth have strictly lower 
hardware costs and management difficulty. 

Table 2: Scalable Server Configurations 
C - Core 
Switches 

1 2 3 4 6 8 12 24 

A – Ports 
per LAG 

24 12 8 6 4 3 2 1 

L - Leaf 
Switches 

2 4 6 8 12 16 24 48 

E - Exposed 
Ports 

48 96 144 192 288 384 576 1152 

S - Servers 480 960 1440 1920 2880 3840 5760 11520 

To generate a scalable family of networks, 48-port 
switches are used to assemble two-tiered fat trees to 
achieve a desired number of exposed (available for host 
attachment) ports.  The following detailed discussion, 
along with Table 2, describes the network construction 
approach used in these experiments.  
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In each leaf switch, the 48 ports are segregated into 24 
downlinks and 24 uplinks.  The 24 uplinks are aggregated 
into equal sized Link Aggregation Groups (LAGs).  For 
each leaf switch, one LAG attaches to each core switch, 
so there are C LAGs.  Consequently, the number of 
uplink ports per LAG is A = 24/C. Core switches have 48 
ports, so they can support L = 48/A LAGs, and therefore 
can connect to L = 48/A leaf switches.  Each leaf switch 
provides 24 downlinks, and thus we have E = L*24 
exposed 10Gb/s ports. We further assume 10 servers per 
exposed port, each sustaining 1Gb/s of data, for a total 
number of server S = L*24*10. The smallest network 
describes a useless two-tiered architecture for building a 
48 port network out of three 48 port switches.  

5.1 Scalability for Symmetric Control 
As described in Sections 3.1 and 3.2, for symmetric hash-
based routing each leaf switch samples packets, and 
maintains separate histogram entries for each hash bin 
and for both the to-core and to-leaf directions.  A central 
controller collects histogram data from each switch and 
processes the data to determine routes within a scalable 
fabric. 
For these experiments, we assume that each histogram 
entry is represented by a 32 bit sample value. The size of 
summary information for symmetric routing grows as 
H×L where H represents the number of hash bins.  The 
load balancing computation yields a result that determines 
an uplink choice for each hash class.  Output control 
results must be transmitted to each switch.  While the 
same table could be broadcast to each switch, the 
transmission cost is currently evaluated as a separate 
unicast transaction per leaf switch.  Thus, output control 
data also grows as H×L. 
For these experiments, we also assume that all input to 
and output from a controller passes through a dedicated 1 
Gb/s control network that connects the switches and 
controller.  The amount of communication data for 
control is measured as the total number of input data bits 
plus the number of output control bits summed over all 
leaf switches.  Communication time is computed by 
dividing the number of bits by the control network 
bandwidth.  We assume 100% utilization of the control 
channel, so real communication costs will be higher.  
Communication times are not the dominant time for large 
systems so more careful analysis has not yet been 
performed. 
Compute costs to determine routes also scale nonlinearly 
and represent a substantial bottleneck for large networks.  
While communication costs for symmetric routing grow 
as H×L, compute costs grow as H×L×C2.  Thus, compute 
costs can be subject to significant slowdowns for 
networks of very large scale. 

In Figure 9 we plot the symmetric control communication 
time (“sym comm.”) and compute time (“sym comp”) on 
a logarithmic scale assuming that 1024 hash bins are used 
to manage a datacenter.  Compute times are measured 
using a working implementation of our routing 
algorithms.  Compute costs are measured on an Intel 
Core2© @2.13Ghz running on a single thread of 
execution.  Communication times are computed by 
tabulating needed sample and control data and calculating 
time needed to pass all data across the 1Gb/s control 
channel. 

 
Figure 9: Performance for Symmetric and 

Asymmetric Control Traffic and Route Calculation 
The update rate is the reciprocal of the larger of the 
communication and compute times. Initial objectives 
were to support a global reaction to changing traffic at 
rates of between 100 times and 10 times a second.  This 
objective is easily met throughout most of the range.  For 
large datacenters with 11520 hosts, compute costs 
dominate communication costs and limit the update rate 
to about 50 per second.  For most datacenters of interest, 
we believe that this experiment demonstrates a 
surprisingly high responsiveness for centralized 
management using summary hash data.  Efforts to 
improve the performance of sequential algorithms and to 
develop distributed parallel algorithms may provide 
additional room for growth. 

5.2 Scalability for Asymmetric control 
Asymmetric load balancing suffers scalability limitations 
due to the need to collect and distribute more data, and 
the need for more complex optimization algorithms.  The 
size of summary information for the asymmetric routing 
case grows as H×L for uplink data, but downlink data 
requires H×L2 distinct samples as a per-source-switch 
vector is maintained for each hash class and in every 
destination switch.  The cost for distributing TCAM 
control is H×L as a size H lookup table is distributed to 
each leaf switch.  While the optimization algorithm is 
very similar to symmetric routing, a separate routing 
decision is made for each leaf switch thus increasing the 
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computational requirements.  While communications 
costs for asymmetric routing grow as H×L2, compute 
costs for asymmetric routing scale as H×L2×C2. 
Asymmetric load balancing compute costs can lead to a 
control bottleneck for large scale networks.  As seen in 
Figure 9, compute costs limit the asymmetric update rate 
for a centralized network manager for 11520 servers to 
about 1 update per second.  Again, it is hoped that the 
update rate can be improved with further effort in 
parallelizing or improving algorithms. 

5.3 Performance Scalability 

 
Figure10: Datacenter Performance Scalability 

The performance scalability for the datacenters of Table 2 
is demonstrated in Figure 10.  In this experiment, 
datacenters are managed using 1024 hash entries, and the 
number of flows is two times the number of hosts.  
Additional experiments (not shown) demonstrate that 
while increasing the number of hash entries moves 
performance up toward TB, decreasing hash entries 
moves performance down toward random. While our 
demonstrated approach scales well, improved 
management responsiveness is of great interest. 

6. Preserving Ethernet Features 
Our architecture supports traditional Ethernet features that 
are important for future network architectures including 
VLANs and robust fault tolerant behavior.  
Support for Virtual LANs (VLANs) is a traditional 
Ethernet feature that logically partitions large physical 
networks into smaller virtual networks.  While VLANs 
share hardware as necessary, layer-two communications 
is limited to the scope of a single VLAN.  This feature 
improves performance by limiting broadcasts and 
improves security by limiting the scope of traffic to 
appropriate links and end stations. The proposed 
multipath architecture inherits VLAN support when 
switches that support traditional VLANs are used to 
construct the network.  Figure 11 illustrates a fat-tree that 
has been logically partitioned into red and green VLANs.  

Some switches and some links carry traffic that is 
exclusive to only one VLAN (red or green).  Other 
switches and links carry traffic for both VLANs (gray).  
The figure illustrates that hash-based multipath L2 
routing can preserve traditional VLAN benefits. 
A key benefit for hash-based L2 routing is that it behaves, 
from an external view, as a conventional Ethernet 
network.  As shown in Figure 11, the architecture allows 
the arbitrary attachment of conventional Ethernet 
equipment at any of the exposed leaf ports.  As with 
traditional Ethernet, networks can be attached to the hash-
based fat tree at multiple points.  While multipath routing 
is supported within the fat tree, redundant links within the 
conventional portion of the network are used only to 
support fault tolerance.  An example, “Router” is also 
shown in Figure 11.  This router has two points of 
attachment for each of the two VLANs to the central 
network.  A storage subsystem and conventional switches 
are similarly attached.  These devices all benefit from 
Ethernet’s ability to use spanning tree to reconfigure a 
network after a hardware failure. 

Figure 11: Traditional Ethernet Feature Support 

7. Converged Fabric Networks 
Important progress has been made in developing and 
standardizing Ethernet technologies to support the 
attachment of high-performance storage.  Fibre Channel 
over Ethernet (FCoE) defines a new standard for 
transporting Fibre Channel traffic while preserving 
established Fibre Channel management functions. [8].  
FCoE uses a collection of low level Ethernet features 
called CEE (Converged Enhanced Ethernet).  CEE 
includes congestion management, priority scheduling, and 
per priority pause features needed to support lossless and 
prioritized storage transport. 
Converged fabric networks offer the promise of using a 
single datacenter fabric for all in-datacenter 
communications.  If CEE functionality is provided in both 
core and leaf switches, then end-to-end CEE functions 
can be provided through the network.  This provides a 
powerful and uniform approach for managing LAN and 
storage traffic within a converged-fabric datacenter. 
A key benefit of our use of TCAMs to manage flows is 
that type-specific management can be provided as a 
natural extension to the multipath load balancing 
discussed in previous sections.  A flow classification 
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module examines the headers of incoming packets and 
extracts information needed to make routing decisions.  
Important information includes the type of the packet 
(e.g. IP vs FCoE), the VLAN, and any other indication of 
flow type or priority.  Flow classification information is 
used in a subsequent TCAM processing step which 
supports the non-uniform treatment of specialized traffic 
classes and assists in providing Quality of Service 
functions needed for many applications. 

Table 3: Example of type-specific network 
management 

Active 
Cores 

Policy match keys Hashbins 
allocated 

Cores 
allocated 

8 
Type==FCoE, VLAN==* H⇒ 16 C⇒ 2 
Type==IP, VLAN==V1 H⇒ 1 C⇒ 1 
Type==IP, VLAN==* H⇒ 32 C⇒ 5 

7 
Type==FCoE, VLAN==* H⇒ 16 C⇒ 2 
Type==IP, VLAN==V1 H⇒ 1 C⇒ 1 
Type==IP, VLAN==* H⇒ 32 C⇒ 4 

6 
Type==FCoE, VLAN==* H⇒ 16 C⇒ 2 
Type==IP, VLAN==V1 H⇒ 1 C⇒ 1 
Type==IP, VLAN==* H⇒ 32 C⇒ 3 

5 
Type==FCoE, VLAN==* H⇒ 1 C⇒ 1 
Type==IP, VLAN==V1 H⇒ 1 C⇒ 1 
Type==IP, VLAN==* H⇒ 32 C⇒ 3 

4 
Type==FCoE, VLAN==* H⇒ 1 C⇒ 1 
Type==IP, VLAN==V1 H⇒ 1 C⇒ 1 
Type==IP, VLAN==* H⇒ 16 C⇒ 2 

3 
Type==FCoE, VLAN==* H⇒ 1 C⇒ 1 
Type==IP, VLAN==V1 H⇒ 1 C⇒ 1 
Type==IP, VLAN==* H⇒ 1 C⇒ 1 

Table 3 presents an example high-level method for 
specifying traffic management policies.  This method 
describes a partitioning of available uplinks and core 
switches among traffic types. This allows, for example, 
an administrator to specify that specialized traffic such as 
FCoE must be isolated onto dedicated uplinks.  The table 
describes high-level actions that a central controller 
should take under a variety of network failure conditions.  
In the example of Table 3, we assume that a fully 
functional network provides 8 core switches.  Core 
switches may fail or core switches can be disabled to save 
power under light load.  For each number of active core 
switches, a set of load distribution rules is specified 
which a central controller uses to generate detailed 
TCAM entries for leaf switches.  The number of active 
cores for each scenario is specified in the left-hand 
column of the Table.  As the network status changes, the 
central controller consults the table to identify the 
appropriate rules that correspond to the current status. 
In this example, we assume that routing decisions are 
sensitive to the Ethertype, the VLAN, and the hash class 
in which a packet is classified.  Within each row, rules are 
processed in priority order from top to bottom.  For each 
rule, the match keys match the Ethertype and VLAN tag, 
and the lookup returns the number of hashbins and 
number of cores allocated to that class of traffic. The first 
rule of the table specifies that when 8 cores are active, 

FCoE traffic should be load balanced in 16 distinct hash 
classes and sent to 2 dedicated core switches. 
For each number of active cores, three rules are specified: 
one for all FCoE traffic, one for IP traffic on a special 
high priority VLAN (V1), and one for all remaining IP 
traffic.  The number of allocated core switches within 
each row total to the number of active switches available 
for that row.  Using this table, low-level software can 
automatically implement management procedures for a 
datacenter under a variety of failure conditions.  

8. Related Work 
Datacenter networks are currently constructed using 
multiple network technologies. Ethernet dominates low-
end networks.  The prevalence of Ethernet as the 
commodity networking solution, and Ethernet’s 
familiarity to network administrators, place Ethernet at 
the top of the preferred list for most networking solutions.  
For many large-scale, high-performance, or time-critical 
applications, Ethernet does not provide the required 
functionality.  Many technical compute cluster designers 
were unable to rely on Ethernet due to  inadequate 
scalability and poor performance under congested load.  
Where Ethernet was inadequate, high-end networks such 
as Quadrics [9], Myrinet [10], and InfiniBand [11] were 
employed.  These networks have smaller customer bases 
which rely on less commonly used network architectures 
targeted for performance-critical applications.  
Customized networks for supercomputers were early 
adopters of scalable networks based on fat trees or other 
network topologies.  These networks provided low level 
messaging services needed for   parallel programming but 
did not specifically address the needs of low cost and 
highly scalable Ethernet datacenter applications. [12] 
[13][14][15][16] 
Non-Ethernet vendors including Myricom and Quadrics 
have proprietary technologies for multi-path L2 routing 
that are designed to accelerate unordered data transport.  
These technologies are especially useful for accelerating 
scalable messaging applications such as those based on 
MPI.  These vendors are now developing and selling 
Ethernet based networks as Ethernet’s base performance 
approaches that of specialized networks. 
InfiniBand is used for many high-end applications and 
currently offers very cost-effective high bandwidth 
communications.  InfiniBand is scalable to very large 
scale in a variety of network topologies [10].  However, 
when InfiniBand is used in conjunction with Ethernet, 
conversions are required between transport standards.  
Separate administrative expertise is required for both 
networks.  We believe that Ethernet’s marked domination 
at the low end will stimulate large engineering 
investments and substantial price decreases to position 
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Ethernet as a preferred solution even for high-end 
network solutions. 
Hash-based routing can be compared to destination-based 
or flow-based routing.  Techniques that route packets 
based on destination addresses alone (e.g., as in 
InfiniBand) limit a network’s flexibility to distribute 
traffic across core switches.  In contrast, approaches such 
as OpenFlow [7] route packets based on flow 
specifications that can include both source and destination 
information at MAC and IP layers. Selecting routes based 
on complete flow specifications which include source and 
destination pairs presents great difficulties especially for 
dynamic routing.  For networks having a large number of 
end stations (E), providing routing resources for up to E2 
address pairs can be expensive.  A dynamically routed 
network must provide resources to: measure flow 
information, calculate routes, and state to set routing 
choices for a very large number of pairs. Hash-based 
routing also uses both source and destination information 
but greatly reduces information needed to monitor and 
control network traffic for dynamic routing. 
Scalable Ethernet networks, based on switch chips from 
Fulcrum Microsystems, have been deployed for real 
datacenters [4][5].  Fulcrum switches incorporate a 
symmetric address hash to allow the construction of 
scalable fat tree networks for large datacenters.  
Fulcrum’s architecture does not support dynamic load 
balancing.  We cannot determine whether Fulcrum’s 
proprietary technology provides important flexibility in 
programming the deployment of uplinks.  This flexibility 
is needed to configure a broad range of fat tree networks.  
The Woven Corporation adds “Vscale” ASICs at the edge 
of a Fulcrum-based network fabric for dynamic load 
balancing.  This proprietary technology is expensive and 
requires separate Fulcrum switch ASICs and Woven 
Vscale ASICs.  
Al-Fares et al. propose a network architecture that 
combines fat-tree network topologies with a structured 
addressing approach to simplify packet forwarding [1].  
This approach supports multipath routing, but requires 
structured addresses that directly indicate a chosen path 
through the network. This limitation interferes with 
support for plug and play operation and end station 
mobility. The attachment of legacy network components 
at the perimeter of the datacenter is also not addressed.  
For dynamic routing, the approach relies on the 
identification of individual flows.  A number of 
difficulties arise when the number of flows exceeds the 
ability of switches and the central router to maintain and 
process needed per-flow information. 
Multipath routing and congestion avoidance has been 
explored for Clos networks [18]. Credit based 
management approaches have been proposed that 
propagate congestion measures backwards from 

bottleneck network outputs to earlier decision points 
within the network. These approaches require that 
switches generate and process control traffic to propagate 
needed credit information through a switched fabric. This 
requires complex per-packet processing that is not a 
simple upgrade to existing commodity Ethernet switches. 
TCAM hardware structures are commonly used for flow 
classification in IP routers [19]. In a paper by Dong et al., 
TCAM-like classification is performed using RAMs to 
process IP packets [20]. 
Multipath routing has been explored for IP routing, as 
described in Request for Comment documents from the 
Internet Engineering Task Force [21] [22]. The 
constraints of IP routing are different from the constraints 
of MAC routing, MAC routing needs to consider a larger 
set of routes and does not have a structured address space. 
Prior research also pursues architectures for ultra-large-
scale layer two networks. The use of flat layer two 
networks throughout large enterprises eliminates complex 
administrative requirements needed to partition large 
networks.  However, for this to be successful, Ethernet 
enhancements are needed to limit broadcast traffic scope 
and to support multipath routing [23]. 

9. Conclusions 
Hash-based L2 routing provides a combination of benefits 
not matched by prior datacenter fabric architectures. 
Hash-based static load balancing distributes traffic over 
multiple routes to exploit multipath routing within 
scalable Ethernet networks.  Dynamic load balancing 
improves performance by identifying traffic bottlenecks 
and moving traffic to less highly loaded network 
components.  Dynamic balancing also provides a tool to 
balance performance, reliability, and power for diverse 
traffic types as resources can be reallocated and core 
switches can be taken off-line and restored while a 
datacenter continues to operate.  Fault tolerance is 
supported as fat-tree networks provide redundant 
connectivity needed for reliable communications. 
Load balancing is performed with minimal new state that 
is independent of the number of end-nodes and the 
number of end-node connection pairs.  This is 
accomplished while preserving plug and play network 
operation and the mobility of layer-2 and layer-3 devices.  
The architecture allows for the flexible attachment of 
conventional Ethernet hardware.  Finally, the solution has 
been crafted as a modest enhancement to the current 
layer-2 switch architecture. 
Management architectures have been developed and 
demonstrated that show substantial performance 
improvement and, in many situations, provide high 
network efficiency approaching known bounds.  We have 
demonstrated that communication and compute capability 
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needed for central management scales for very large 
networks commonly used in modern datacenters.  This 
work validates the use of hash-based symmetric routing 
as a practical approach for managing large scale 
datacenter networks based on commodity Ethernet 
switches while preserving traditional Ethernet properties. 
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