

Keyword(s):

Abstract:

©

Killer Fabrics for Scalable Datacenters

Michael Schlansker, Jean Tourrilhes, Jose Renato Santos, Yoshio Turner

HP Laboratories
HPL-2009-26

Networks, Ethernet, datacenter, routing, multipath, fat tree, bandwidth, hash, TCA

Large-scale datacenters are rapidly increasing in number and size to satisfy computing and storage needs
for globally connected businesses and the World Wide Web. 10Gb/s Ethernet is now being adopted to meet
increasing bandwidth needs for in-datacenter communications. However, most datacenter network
architectures are still based on specialized hierarchical edge-core topologies which are costly to build,
difficult to maintain and consume large amounts of power. This paper describes enhancements to Layer
two Ethernet switches that support multipath L2 routing for scalable datacenters. This enables a
cost-effective scalable network architecture based on enhanced layer two Ethernet switches. The
architecture provides multipath routing for Ethernet while preserving important Ethernet features and
interoperability with traditional Ethernet gear. While this work is currently limited to scalable fat tree
networks, these topologies provide an attractive approach for scaling large datacenter networks.

External Posting Date: February 6, 2009 [Fulltext] Approved for External Publication
Internal Posting Date: February 6, 2009 [Fulltext]

Submitted to SIGCOMM, 2009

Copyright 2009 Hewlett-Packard Development Company, L.P.

1

Killer Fabrics for Scalable Datacenters
Michael Schlansker, Jean Tourrilhes, Jose Renato Santos, Yoshio Turner

Hewlett-Packard Laboratories
mike_schlansker@hp.com, jean.tourrilhes@hp.com, joserenato.santos@hp.com, yoshio.turner@hp.com

ABSTRACT
Large-scale datacenters are rapidly increasing in number
and size to satisfy computing and storage needs for
globally connected businesses and the World Wide Web.
10Gb/s Ethernet is now being adopted to meet increasing
bandwidth needs for in-datacenter communications.
However, most datacenter network architectures are still
based on specialized hierarchical edge-core topologies
which are costly to build, difficult to maintain and
consume large amounts of power. This paper describes
enhancements to Layer two Ethernet switches that
support multipath L2 routing for scalable datacenters.
This enables a cost-effective scalable network
architecture based on enhanced layer two Ethernet
switches. The architecture provides multipath routing for
Ethernet while preserving important Ethernet features and
interoperability with traditional Ethernet gear. While this
work is currently limited to scalable fat tree networks,
these topologies provide an attractive approach for
scaling large datacenter networks.

Keywords
Networks, Ethernet, datacenter, routing, multipath, fat
tree, bandwidth, hash, TCAM.

1. INTRODUCTION
This paper addresses two key problems that limit the use
of Ethernet in datacenters. First, we need network
architectures that scale with increasing datacenter needs.
We need flat layer two networks that seamlessly scale
without complex administration. Second, we need
network architectures that are constructed using the same
devices that are used in more general commodity network
settings. We need to exploit inexpensive components
used in non datacenter settings to drive down the cost for
scaling in-datacenter communications.
Datacenters support today’s information infrastructure
providing scalable application, database, and file services
needed to power the internet and complex enterprise
applications. In addition, scalable cluster computers have
evolved to solve the technical problems needed for large-
scale scientific and engineering applications. Scalable
performance relies on pools of communicating processor,
storage, and network devices. Fault tolerance is required
for always on infrastructure and server virtualization for
management flexibility. These requirements lead to a

common need for scalable datacenter networks that
provide flexible communications that support complex
interactions between datacenter components.
Due to Ethernet’s broad market penetration, large
investments are made in Ethernet hardware that exploit
the capabilities of highly-integrated VLSI components.
This provides steady price decreases and performance
increases so that current Ethernet speeds approach that of
specialized high-end datacenter fabrics. Ethernet is now
positioned to satisfy the raw low-level communication
needs of most commercial datacenter applications.
These changes provide increasing motivation to exploit
Ethernet in very large datacenters and mirror the prior
replacement of specialized and expensive high-
performance computers with inexpensive microprocessors
called “killer micros”. At that time, specialized
processors dominated high-end computing, and
microprocessors emerged as the commodity compute
solution. The combined power of silicon chips and large
engineering efforts funded by general purpose computer
revenues drove microprocessor performance. Eventually,
economies of scale won, and supercomputers are now
constructed using many commodity microprocessors. The
moral of the story is: good enough wins, volume matters,
and the low-end eats the high-end.
This work rests on the assumption that history will repeat
itself for networking. High-end datacenter networks will
be implemented using ensembles of evolved Ethernet
components that share implementation architectures with
broadly deployed Ethernet. We call these “killer fabrics”.
We are designing killer fabrics that use enhanced
commodity network components to support the needs of
tomorrow’s scalable datacenters.
Ethernet faces significant obstacles for large-scale
datacenters. A key limitation is Ethernet’s inability to
efficiently scale [1]. Therefore, datacenter architects
cannot currently exploit the aggregate communication
capability of many network components. Key limitations
arise from the use of the spanning tree protocol which is
at the heart of transparent bridging [2]. Transparent
bridging allows efficient communication to newly added
end-nodes without administrative action. Spanning tree
eliminates cycles and facilitates broadcasts needed to
locate missing end-nodes. However, the advantages of
spanning tree are offset by disadvantages that limit
Ethernet’s ability to exploit redundant paths. This leads

2

to edge-core topologies that connect inexpensive edge
switches with expensive monolithic core switches that are
needed to provide adequate bisection bandwidth.
The use of monolithic core switches is impractical for
large scale datacenters. An attractive alternative replaces
the monolithic core switch with multiple lower cost core
switches. However, to preserve high bisection bandwidth,
multiple core switches must exploit multiple network
paths. Existing approaches can exploit multiple paths on
Ethernet. Network management can statically partition
networks using layer-three IP subnets and/or layer-two
VLANs. Both approaches limit the scope of flat layer two
networks and assist in exploiting multiple paths.
However, these approaches require complex and costly
manual administration. Static network partitioning does
not work when performing datacenter-wide any-to-any
communications for data intensive operations. Static
network partitioning also restricts virtualization which
dynamically moves virtual machines and requires
dynamic changes in network connectivity. Datacenters
need flat scalable layer-two networks with dynamic
multipath L2 routing to eliminate costly core switches and
complex management.
Storage attachment also offers challenges not easily
solved by today’s Ethernet. This is primarily due to
Ethernet’s dropped packets and unpredictable
performance under congested load. Hence, storage is
often attached using Fibre Channel or InfiniBand
networks. This leads to datacenters that require separate
networks for compute-to-compute and compute-to-
storage communications and inhibits the use of shared
infrastructure for multiple communication needs.

1.1 Contributions
In order to satisfy future datacenter needs, fabric
architectures must be developed to overcome a number of
key technical obstacles while retaining key Ethernet
compatibilities.
In this paper, we introduce a new hash-based routing
architecture that enhances Ethernet to support multipath
routing within scalable datacenter networks. This
architecture enables the use of scalable networks of
commodity Ethernet switches for large and
communication-intensive datacenters. Our proposed
improvements provide an evolutionary path for Ethernet
switch implementations to incorporate both static and
dynamic multipath routing. The architecture preserves
important Ethernet properties including plug-and-play
operation, support for end station mobility, and seamless
interoperability with conventional Ethernet networks that
are attached at the edge of the datacenter.
We identify dynamic path selection algorithms to handle
time varying traffic within a datacenter. These algorithms
have been implemented and provide substantial

improvement in network performance compared to
previous random static scheduling techniques. We
explore the scalability of these algorithms and show that
they are adequate for very large datacenters.
To reduce the high cost of multiple datacenter networks,
our architecture supports converged-fabric datacenters
that transport LAN and storage traffic on a common
network. Our architecture provides a foundation for the
active management of diverse traffic types to balance the
needs of high throughput, predictable quality of service,
fault tolerance, and power management. This includes
support for the layer-two functionality needed for both IP
and non-IP (e.g. Fibre Channel over Ethernet) traffic.
Our contributions can be divided into low-level hardware
mechanisms and high-level software architectures. The
low-level hardware mechanisms preserve and enhance
switch micro-architectures that will often be used for non-
datacenter needs. This allows the broadest deployment of
networks based on commodity chips and amortizes costly
chip design efforts over a broad base that includes both
commodity and more specialized datacenter networks.
Switch enhancements provide powerful low-level
multipath routing support and a strong hardware
foundation, for future high-level software architectures.
We have developed initial software architectures for real
datacenter networks. These architectures provide both a
practical demonstrator for the power of low-level
hardware mechanisms as well as a prototype for first
generation datacenter network management architectures.

1.2 Outline of paper
In section 2 we introduce a hash based multipath L2
routing architecture that upgrades Ethernet to support
routing in fat tree networks for scalable datacenters.
Section 3 describes algorithms that provide multipath
load balancing. Section 4 presents results that
demonstrate the performance of multipath load balancing.
Section 5 explores the scalability of centrally managed
networks using our algorithms. Section 6 describes how
our network architecture preserves important capabilities
of traditional Ethernet. Section 7 describes features of the
proposed architecture for converged-fabric networks that
combine LAN, storage, and other traffic types. Section 8
describes related work, and section 9 provides
conclusions.

2. Hash-based routing for scalable networks
This section introduces architectural principles for hash-
based L2 routing in scalable fat tree networks. Hash-
based routing is designed to be compatible with existing
Ethernet mechanisms for learning and plug-and-play
operation, and enables the utilization of redundant paths
in the fabric. The approach is applicable to multi-level
fat-tree topologies with the flexibility to independently

3

scale the bisection bandwidth and edge port count. The
required enhancements to the switch micro-architecture
greatly leverage existing hardware structures and require
only modest extensions.

2.1 Existing Ethernet
Ethernet uses the spanning tree protocol to identify an
active acyclic network that transports all packets [2].
Spanning tree establishes a cycle-free backbone for
broadcast information and identifies a unique path
between every pair of end stations, thus making all
forwarding decisions unambiguous. After a spanning tree
is identified, switches use a simple initial forwarding
procedure to send a message to a destination at an
unknown location. When a packet is sent from any end
stations A to B, each switch forwards an incoming
message on all active (spanning tree) ports except the port
on which the packet arrived. This process, called
flooding, is performed with no forwarding information
except spanning tree information that defines active ports.
However, this broadcast-based procedure is inefficient.
Adaptive forwarding enhances performance by learning a
path to each destination. A forwarding cache supports
layer two learning. Each packet contains source and
destination MAC addresses. While the destination
address is used for forwarding, the source address is used
for learning. When a message is received on a link L,
with source address X, then a forwarding cache entry is
created or updated so that subsequent messages destined
for X are forwarded on L. For each packet, the cache is
searched using its destination MAC address to identify a
forwarding port that may have been recorded when a
prior message was received from the destination. If
present, the forwarding port is used to send data to a next
hop switch. If the cache entry is lost due to replacement
or timeout, then the switch reverts to flooding.
Traditional Ethernet restricts the use of redundant paths
leading to great difficulty in large-scale datacenters. As a
network scales to support additional hosts, bisection
bandwidth is added to support increasing communication
across the entire network. When conventional Ethernet is
used to implement the datacenter fabric, larger and larger
core switches are required at the root of a spanning tree to
provide adequate bandwidth. Each core switch is
traditionally implemented as a complex and costly system
with a proprietary internal architecture and cannot be
implemented by assembling many inexpensive and off-
the-shelf commodity Ethernet switches.

2.2 Fat tree network topologies
Network topologies such as Clos networks or fat trees can
scale to arbitrarily large size using fixed port-count
switches avoiding costly core switches. These networks
independently scale in both the number of ports and
bisection bandwidth. Similar networks have been used

for many years first in telephone switching [3], then for
computer interconnection networks [4], and more recently
for scalable Ethernet networks [5][6]. We present a
family of scalable network architectures, based on these
topologies, for datacenter networking.

Figure 1 - Two-Tiered Fat Tree
Figure 1 illustrates that two-tiered fat trees can offer
independent control over both the number of edge ports
and the bisection bandwidth. This allows datacenter
architects to tailor networks for varying communication
needs. Exposed edge ports appear at the bottom where D
downlinks are provided by each of L leaf switches. As
leaf switches are added, the number of exposed edge
ports expands as D×L. Adding core switches (C)
enhances the bisection bandwidth which grows as C×L.
A key feature and a key difficulty presented by these
networks is that multiple paths exist between every pair
of edge ports. When a packet is injected into a leaf
switch, an uplink choice is confronted that is not typically
seen with traditional L2 Ethernet. However, to avoid
network cycles conventional switches run Ethernet’s
spanning tree algorithm which disables redundant links
and thus eliminates the bandwidth benefits of all but one
of the core switches. Multipath L2 routing is needed to
exploit the bandwidth that is provided by scalable and
redundant fat tree networks.
A two tiered network has a limited maximal size as
dictated by the fan-out (radix) of switches that are
available at any time. In particular, core switches must
provide at least L ports while edge switches must provide
C+D ports. With next generation 48 port 10Gb Ethernet
switches, very large two tiered networks can be
constructed, as we describe in Section 5.

2.3 Routing approach
Multipath routing can be divided into static and dynamic
approaches. Static routing describes how packets are
routed without measuring load to rebalance traffic.
Dynamic routing provides a control loop: data is collected

4

to measure points of congestion within the network; new
routing information is calculated; and then new routing
tables are set to improve throughput by rerouting traffic
around congestion. Dynamic routing should be made on
global measurements, as a local decision can impact a
remote bottleneck.
A central issue with dynamic routing is the overhead of
management traffic and routing computation. A good
way to reduce both the management traffic and routing
computation is to not individuate every flow but to assign
flows to a limited number of hash classes. Hash-based
routing provides a powerful tool for managing multipath
traffic within fat-tree-style Ethernet networks. It provides
an effective approach for both static and dynamic routing.
Packet source and destination addresses are processed
using a hash to pseudo randomly assign flows to hash
classes. Each packet’s forwarding route is specified
based on the resulting hash class. Hash functions may
use higher layer (e.g. IP) information in addition to MAC
addresses to facilitate randomization across multiple
paths. Hash functions are selected so that all packets of a
network flow map to one hash class. This ensures that
packets of the same flow traverse a single network path,
and preserves packet order within the flow.
Hash-based routing can be divided into asymmetric and
symmetric counterparts. For each source address S, and
each destination address D, H(S, D) represents the hash
class for every message sent from S to D. Symmetric
routing uses symmetric hashes that have H(S, D) = H(D,
S), and a symmetric placement of routes. The symmetry
property is used to ensure that after a message flows
through a path from a source to any destination, that the
same path is retraced by a reply. Symmetric hash routing
facilitates the learning process that preserves the plug and
play Ethernet. Experiments below rely on a hash that
adds source and destination MAC addresses, multiplies
by a large prime, and masks bits to yield a result.
Hash-based routing actively manages the flow of packets
through a fat tree as shown in Figure 1. Routing is not
limited to full bisection bandwidth networks – low cost
networks with reduced bisection bandwidth are also
supported. Core switches are assumed to be unmodified
Ethernet switches. Leaf switches are enhanced to support
multipath routing but preserve the feature set and micro
architecture of a conventional Ethernet switch.
The fat tree topology greatly simplifies the routing
problem. When a message flows through a fat tree from
any source to any destination, a series of one or more
uplink choices are confronted until reaching a switch S
that can route downward to the destination. At each
uplink choice, any selected uplink identifies a next hop on
one of the shortest paths to the desired destination. A
hash function assigns all uplink messages to randomly
selected hash classes. Active load balancing routes hash

classes on carefully selected uplinks. Due to the nature of
fat trees, uplink selection does not dictate whether any
specific destination is reached and can be freely used for
load balancing or traffic segregation independent of any
concern for correct routing.
After reaching switch S, a sequence of downlink choices
are confronted. At each tier, a single correct downlink
must be selected to reach the target. The correct
identification of downlinks uses traditional layer-two
forwarding. Therefore unmodified core switches can be
used and the architecture preserves the simple
administration of plug & play networks which results
from learning.

2.4 Plug-and-play Ethernet
Ethernet’s spanning tree and learning functions provide
plug-and-play operation, allowing dynamic addition and
removal of switches and end stations at the edge of a
fabric. Enhancements to leaf switches are needed to
combine Ethernet’s existing plug-and-play with enhanced
multi-path routing.
To prevent the spanning tree protocol from disabling any
uplinks at each leaf switch, we carefully control which
uplinks participate in the spanning tree protocol. The
uplinks are chosen such that all participating uplinks join
the spanning tree. Non-participating uplinks remain
enabled. In particular, we designate one core switch as
the Ucore. In each leaf, the uplink Uport is connected to
the Ucore (see fig 1). The leaf is modified to identify the
Uport as well as all downlinks as participating links in the
spanning tree protocol, and to disable spanning tree on
the remaining uplinks. The rest of the cores are
effectively excluded from the spanning tree protocol,
rendering spanning tree formation identical to a
conventional network with a single core. The Ucore is
configured to be the root for spanning tree formation. The
spanning tree protocol systematically enables links that
are on least cost paths to the root. The use of the Ucore
as the root guarantees that the Uport links are spanning
tree members even when additional switches are added
that interconnect multiple leaf switches.
To make Ethernet learning compatible with multi-path
routing, all the uplinks of a leaf switch are treated as a
single virtual uplink. The Uport provides a single virtual
port name for all uplink ports. All downward traversing
packets that are received by a leaf switch on an uplink
look as if they were received on the Uport. Packets that
are destined to the Uport are processed by the hash
routing mechanism, which implements a multipath
routing choice to determine the chosen physical uplink on
which to forward.
Leaf switch downlinks, and all core links, provide a
single path to any given destination. Therefore, for
downward routing, the forwarding path can be learned by

5

the adaptive forwarding. By building downward routing
on traditional adaptive forwarding, Ethernet plug and play
and device mobility are preserved.

2.5 The Enhanced Ethernet switch
Ethernet switches commonly use a processing pipeline
that includes the packet header processing, forwarding
cache, and TCAM lookup stages. Figure 2 shows these
functions in white boxes illustrating the conventional
portion of an Ethernet switch. The enhanced Ethernet
switch preserves these features but is enhanced by adding
blocks (shown in gray) that support multipath routing and
active load balancing. Those simple additions include the
uplink identifier, hash, and gather hash statistics blocks.

Switch

TCAM
Lookup

Layer 2
Forwarding

Cache

...

Hash

Packet
Header

Uport

Network
Manager Gather

Hash
Statistics

...

Uplinks

Downlinks

Identify
Uplinks

Figure 2: Enhanced Switch Microarchitecture

The role of the identify uplink block is to substitute the
Uport as the arrival port for any packet that arrives on an
uplink. As a result, the forwarding cache treats all uplink
arrivals as arrivals on Uport. In traditional switches, link
aggregation groups (LAGs) are groups of links that are
treated as a single link to aggregate link bandwidth
between pairs of switches. Our switch treats uplinks in a
manner similar to conventional LAGs, and existing LAG
support may be reused for this block.
Arriving packets are then processed by the learning
function in the forwarding cache. If the packet was
received from a downlink, it enters the source MAC
address and the receiving port into the forwarding table.
If the packet was received on an uplink port, the “identify
uplink” block has substituted the Uport name as the name
of the port, and an entry is created in the forwarding table
that associates the packet’s source address with the Uport.
The forwarding cache then processes the packet’s
destination to determine a forwarding port. Destination
address processing specifies one of three results: the
forwarding port is either: unknown, a downlink, or the
Uport. When the port is unknown, the packet is flooded
on the Uport and all downlinks (except the arrival port).
When the forwarding port specifies a downlink, the
packet is forwarded on that link. When the forwarding

port specifies the Uport, the actual port will be one of the
uplinks and is selected in the subsequent TCAM lookup.
The hash block computes the hash field from the packet
header. This hash provides routing diversity for small
lookup tables and may include a variety of header fields.
The actual multipath routing and load balancing can be
done using a TCAM or using a RAM-based lookup table.
The TCAM within existing Ethernet switches enhances
flexibility and supports higher layer functions. A
frequent traditional use for TCAMs is to implement
access control lists and QoS. We prefer TCAM-based
implementations for a variety of reasons. This allows the
reuse of an existing function rather than adding a single
purpose block. TCAMs allow joint processing of the hash
value with other header fields, such as VLAN, Ethertype,
and type or class of service, for differentiating flows. The
use of TCAMs also enables rules that override hash based
routing for specific hosts or flows, for example to route
control traffic to a specific core switch itself.

Figure 3: Load Balancing with TCAM Lookup Table

A TCAM lookup key, shown in Figure 3, is formed by
combining the hash field and the destination port field
resulting from the forwarding cache lookup. Additional
TCAM fields distinguish packet types that receive
specialized treatment. Our example uses traffic types IP
(IP) and Fibre Channel over Ethernet (FC). The key is
used as an input for TCAM lookup that queries the entire
contents of an associative table for a match. A match
identifies a result out-port that directs traffic to a carefully
selected uplink.
The TCAM lookup table entries are set by the network
manager to distribute load across multiple uplinks. Each
entry is matched against the lookup key for a zero, one, or
don’t care in each field position. Each entry contains a
match field (including hash, type, and forwarding port) as
well as the resulting out-port field that identifies the
actual port for a matching entry. If the hash value and
forwarding port TCAM fields match corresponding key

6

fields, then the out-port field is substituted as the actual
uplink. Our example TCAM lookup matches the second
TCAM entry and selects uplink U1 for the actual port.
Consider an example where IP traffic is balanced over
uplinks. Traffic is divided into 16 groups where each
group is identified by a hash class. The example ignores
two of the six hash bits and matches the remaining four
bits to select a corresponding hash class. Load balancing
is accomplished as each hash class receives a carefully
selected assignment of traffic to an uplink. For each
possible hash (e.g. 16 combinations for a 4-bit hash field),
one TCAM entry is created that contains the hash
constant that identifies the chosen traffic group.
Additionally, the entry specifies the forwarding port as
“Uport” and the type as “IP”. Finally, the entry specifies
an out port field that selects the actual uplink choice.
Non-matching packets are unprocessed and the
forwarding port is used as the actual output port. Packets
destined for downlinks do not match the Uport in the
forwarding port field and no action results. After
successful processing in the forwarding table, a packet
that is destined for any uplink matches the Uport field.
However, each uplink packet matches the hash field for a
single TCAM entry. This entry determines the actual port
substituted by the TCAM and specifies the chosen uplink.
Types IP and FC are matched and treated separately. This
allows for the type-specific treatment of traffic and will
be discussed in further detail in section 7.

2.6 Recursive network construction
Hash-based routing is scalable to networks of arbitrary
size. In particular, the two-tiered fat tree shown in
Figure 1 can be implemented hierarchically, expanded to
arbitrary size, and controlled using hash-based routing.
If a two-tiered network were expanded to a very large
network, core switches with a very large number of ports
would be needed. Due to chip pin-out and area
limitations, core switches with arbitrary port count cannot
be constructed using a single-chip. However, large port
count core switches can be constructed by noting that the
fat tree of Figure 1 itself has all of the properties needed
to serve as a core switch for a larger fat tree. This allows
the recursive construction of large networks. The
substitution of a compound fat tree network to provide a
core switch within a larger fat-tree can be repeated to
form networks of arbitrary scale. Our load balancing
approach, presented below, can be hierarchically applied
within each compound core switch and among core
switches to control networks of arbitrary scale.

3. Active load balancing
This section demonstrates hash-based routing using a
centralized control architecture for active management.
While decentralized approaches are of great interest, this

paper describes a centralized management approach
which is appealing due to the inherent simplicity.
Centralized managers quickly propagate information
throughout a fabric but suffer inherent risks in limiting
scalability. We demonstrate surprisingly good scalability
for centrally managed fabrics below.
Active load balancing can be separated into symmetric
and asymmetric approaches. For symmetric load
balancing, all round-trip communications traverse a single
bidirectional path. While the asymmetric approach
provides higher performance, the symmetric approach
simplifies data collection, route computation and Ethernet
learning.

3.1 Data collection
Active load balancing requires measurements that identify
network bottlenecks. Each leaf switch samples packets at
a rate that balances processing costs with sampling
accuracy. Measurements are gathered in separate hash
classes for hash-based multipath routing. Packets from
one downlink to another are ignored. For packets that
traverse an uplink, a histogram entry is augmented for
that packet’s hash class. Separate data is collected for the
to-core (upward) and to-leaf (downward) directions on
each uplink. For the to-core direction, each switch
accumulates a single histogram value for each hash class.
For the to-leaf direction, each switch accumulates a single
histogram value for symmetric routing and a vector for
asymmetric routing. Many TCAM implementations
include a hit count for each TCAM entry. In most cases,
these hit counts are sufficient to gather measurements for
symmetric routing.

3.2 Load balancing for symmetric routing
Symmetric routing ensures that a common path is used for
round trip communications. Symmetric routing relies on
a symmetric hash with H(S, D) = H(D, S). To improve
randomization, layer-two and higher-layer Ethernet
information may be incorporated into source and
destination specifications as long as the same hash value
results for outbound and returning messages for round-
trip communications. To preserve route symmetry, while
each hash class can be placed independently on any
uplink, each hash class must be placed on corresponding
uplinks leading to the same core switch for all leaf
switches. This ensures that round trip communications
traverse a common path between any source and
destination pair. For the symmetric case, each leaf switch
collects link use statistics for the to-core (upward) and to-
leaf (downward) directions. For each switch, two values
are needed for each hash class that indicate the up-bound
and down-bound traffic resulting from the network-wide
placement of a given hash class to a selected uplink.
A key benefit for the symmetric approach is that, due to
the round-trip nature of most communications, core

7

switches can use traditional learning to determine
destination paths. When a core switch needs to forward a
packet it is almost certain that the same switch has, or will
see, a reply packet that learns the destination port and
avoids flooding. When symmetry is relaxed, replies to a
message that traverses one core switch may traverse an
alternate core switch, and learning may fail to eliminate
core switch flooding.
We have developed heuristics to optimize multipath
traffic based on measured traffic flow. Our greedy
algorithm iterates across hash classes and optimizes
uplink selection for each class after prior classes have
been placed. In each step, an uplink is selected that
minimizes the sum of squared traffic across all links.
Minimizing square traffic places high penalties on heavily
loaded links.
After all hash classes are assigned to uplinks, the central
controller downloads TCAM entries for all switches. For
slow time varying traffic, we show that network
performance is greatly improved using this process.

3.3 Load balancing for asymmetric routing
Asymmetric load balancing follows the approach of
symmetric load balancing with a few key differences.
Asymmetric routing relaxes the need for a symmetric
hash function and a distinct uplink is independently
selected for each hash class on each leaf switches.
Additional sample data is needed for asymmetric routing.
For the to-core direction, the uplink choice made for each
hash class on each leaf switch has a local effect that is
measured with a scalar value at each source leaf switch.
For the to-leaf direction, the uplink choice made for each
hash class on each switch has a remote and distributed
effect that is measured as a vector of values at each
destination leaf switch. Each value measures the effect of
a routing choice in the ith source switch on the to-leaf link
resource usage at the given destination switch.
For packets that arrive across leaf switch uplinks in the
to-leaf direction, asymmetric routing requires sampling
logic that identifies the originating source leaf switch and
accumulates measured load in a vector. While this can be
accomplished, this represents one of the difficulties for
asymmetric routing. One approach maintains a table
associating each source MAC address with a hosting leaf
switch. This table is replicated in each switch and
referenced for each sampled to-leaf packet. However,
maintaining this table interferes with plug-and-play
support as, for example, when an end station is moved
from one leaf switch to another, tables must be updated.
Another issue for asymmetric routing is that adaptive
forwarding in the core switch may not properly learn
MAC addresses. The core switch may see only packets
destined to a MAC address and never see packet coming

from that address, those packets being routed through
another core switch. For asymmetric routing to work,
either core switches need modification or the edge
switches needs to send gratuitous packets to cause the
core switch to learn needed MAC addresses.

3.4 Load balancing comparison
The symmetric and asymmetric load balancing
approaches are summarized in Table 1. Common to both
approaches are a set of architectural features described
above that are summarized in the common responsibilities
cell. Common properties are features that are provided by
the architecture for both symmetric and asymmetric
routing.

Table 1: Routing Comparison
Common Responsibilities Common Properties

Randomize flows over multiple uplinks
Leaf switches tolerate multipath
Active management optimizes uplink
Uplink choice preserved for each flow
Single core switch for spanning tree

Supports scalable construction
Correct multipath routing
Can dynamically balance load
Per-flow packet ordering preserved
Spanning tree for attached switches

Symmetric Responsibilities Symmetric Properties
Consistent path for round trips
No need to track message origin

L2 learning works seamlessly
Reduced sample data size
Reduced optimization complexity
Achieves very good performance

Asymmetric Responsibilities Asymmetric Properties
Learning requires special support
Must track message origin across core
Need vector stats for to-leaf packets

Larger sample size
Larger optimization complexity
Achieves near optimal performance

4. Performance Results
A software-based simulation for the proposed architecture
was developed to evaluate the architecture and heuristics.
Current software models the two-tiered fat trees of
Figure 1. Parameters include the number of core
switches, leaf switches, and downlinks. The number of
TCAM entries is parameterized and can be increased to
enhance fine-grained routing decisions needed for larger
networks. Each link is bidirectional, and inbound and
outbound resources are independently modeled. For each
resource, a flow that requests f flow units is completed on
a capacity r link in time t=f/r.
Currently, a simple performance model demonstrates
multipath routing benefits. Transmission begins when a
number of flows begin crossing the network using a
chosen policy. Each flow competes for bandwidth on
each link on its routed path. Delivery is proportionally
delayed when flows share a common link. Transmission
ends when a final flow completes. The flow rate is
calculated by summing the load over all flows and
dividing by the transmission time through a worst case
bottleneck link. This provides an aggregate measure of
parallelism in the network’s ability to process all flows.
While this does not model real system dynamics, it does
demonstrate the benefits of on-line optimization.

8

The model generates a number of flows that present a
parameterized load using a uniform random selection of
flow sources and flow destinations. Flows are routed
using four policies. Spanning tree (“span”) always
chooses the Uport for uplink traffic and thus uses only a
single core switch. Random (“rand”) uses a round-robin
mapping of TCAM entries to uplinks. When the number
of TCAM entries is a multiple of the number of core
switches, this corresponds to assigning an equal number
of hash classes that contain approximately equal amounts
of randomly selected traffic to each uplink. The “sym”
and “asym” methods apply symmetric and asymmetric
load balancing.

Figure 4: Non-uniform Routing

Figure 4 shows the performance for a network with: 4
core switches, 16 leaf switches, 16 downlinks per leaf,
and 256 TCAM entries. All links have unit capacity.
Random flows are added on a logarithmic scale as the
number of flows is repeatedly doubled from 8 on the left
to 262,144 on the right. Non-uniform flows are
generated. Each flow is generated as an independent trial
with probability .95 of acquiring a unit load and
probability .05 of acquiring a load of 20. The flow rate is
plotted as unit load equivalent flows completed per unit
time. Data has been smoothed by averaging over 100
independent trial experiments.
Two performance bounds are shown. The bound “sat” is
based only on the bisection bandwidth of network
hardware and is independent of flows. Sat is achieved
when all uplinks are simultaneously saturated in both
directions. The example cannot transport more than
C×L=64 unit flows per unit time. A tighter “bound” is
calculated given a specific set of flows that present
known loads for each switch. The sum of loads that
traverse each switch’s uplinks divided by the aggregate
uplink capacity on that switch provides a time bound. A
time bound is calculated separately for the to-core and to-
leaf directions on each switch. The worst case time
establishes an overall time bound for the entire set of
flows.

For a modest number of flows, active management
consistently produces large performance gains. For
example, in Figure 4, for 4096 flows, symmetric load
balancing (“sym”) yields a 30% performance increase
over random. Asymmetric load balancing outperforms
symmetric load balancing at almost every point but
typically by a small margin. For a large number of flows,
(e.g. 8192) both asymmetric and symmetric load
balancing approach the bound and are near optimal. For a
very large number of flows (e.g. 262,144), “asym”,
“sym”, and “rand” all produce near optimal (“sat”)
results.
For a small number of flows, all load balancing
approaches remain substantially below the bound. This
overly optimistic bound allows each individual flow to
spread across multiple uplinks. For small numbers of
flows, achieved results look poor when compared to this
unrealistic bound. A tighter bound (“TB”) is calculated
when all flows have unit load. In the case, when N unit
flows are transported across M unit capacity uplinks, then
ceiling (M/N) units of time are required to complete all
flows.

Figure 5: Uniform Routing

Figure 5 repeats the experiment of Figure 4 using uniform
unit loads and plotting both bounds. Now, both
symmetric and asymmetric management closely follow
the TB bound. The remaining experiments use uniform
loads and plot the TB bound.
Figure 6 explores symmetric routing performance while
varying the number of hash bins. Experiments are
performed for 16, 64, 256, and 1024 hash bins. While the
performance for symmetric management with 16 hash
bins mirrors random, performance for 1024 hash bins
closely follows the TB bound. Results for asymmetric
routing (not shown) are similar but, systematically
outperform symmetric with the same number of hash
bins.

9

Figure 7 explores network scalability for a varying
number of core switches. This experiment uses 16 leaf
switches and 512 hash bins. The number of flows is held
constant at 100, while the bisection bandwidth is
increased by adding core switches. Again, active
management outperforms random for a modest number of
flows, however, the growth in flow rate is limited due to
the small number of flows.

Figure 6: Flow Rate for Varying Hash Bins

Figure 7: Flow Rate vs Core scaling for 100 Flows

Figure 8: Flow Rate vs Core Scaling for 100×C Flows

Figure 8 repeats Figure 7 but scales the number of flows
with the number of core switches by applying 100 flows
per core switch. Flow rate now scales almost linearly
with core switches and systematically outperforms
random.
In summary, both symmetric and asymmetric hash-based
routing architectures can efficiently route traffic for
scalable datacenter networks. Several issues should be
addressed before a practical asymmetric architecture is
presented. A detailed and fair comparison of these two
approaches is beyond the scope of this paper.

5. Scalability for Centralized Routing
A potential liability for large-scale network routing is the
scalability of dynamic network management. We preface
this discussion by emphasizing that the goals of this work
do not include support for the very largest networks that
can be constructed at any given time. Instead, our goals
are to support the vast majority of real datacenters and to
do so using a network constructed with commodity
Ethernet switches with needed enhancements. Currently,
our experiments rely on a central controller to actively
manage a large network of switches. There are
significant risks that either the communication costs
between the central controller and managed switches, or
central controller compute costs may preclude responsive
management for networks of adequate scale. We hope to
identify approaches for parallelizing control functions,
but such work is beyond the scope of this paper.
A key benefit for hash-based routing architectures is that
small amounts of summary data can be used to manage
very large fabrics. We conducted experiments to evaluate
the scalability capabilities of a centralized network
controller. For these experiments, we assume a stressful
situation where full bisection bandwidth is required for
networks of varying scale. In contrast, networks with less
than full bisection bandwidth have strictly lower
hardware costs and management difficulty.

Table 2: Scalable Server Configurations
C - Core
Switches

1 2 3 4 6 8 12 24

A – Ports
per LAG

24 12 8 6 4 3 2 1

L - Leaf
Switches

2 4 6 8 12 16 24 48

E - Exposed
Ports

48 96 144 192 288 384 576 1152

S - Servers 480 960 1440 1920 2880 3840 5760 11520

To generate a scalable family of networks, 48-port
switches are used to assemble two-tiered fat trees to
achieve a desired number of exposed (available for host
attachment) ports. The following detailed discussion,
along with Table 2, describes the network construction
approach used in these experiments.

10

In each leaf switch, the 48 ports are segregated into 24
downlinks and 24 uplinks. The 24 uplinks are aggregated
into equal sized Link Aggregation Groups (LAGs). For
each leaf switch, one LAG attaches to each core switch,
so there are C LAGs. Consequently, the number of
uplink ports per LAG is A = 24/C. Core switches have 48
ports, so they can support L = 48/A LAGs, and therefore
can connect to L = 48/A leaf switches. Each leaf switch
provides 24 downlinks, and thus we have E = L*24
exposed 10Gb/s ports. We further assume 10 servers per
exposed port, each sustaining 1Gb/s of data, for a total
number of server S = L*24*10. The smallest network
describes a useless two-tiered architecture for building a
48 port network out of three 48 port switches.

5.1 Scalability for Symmetric Control
As described in Sections 3.1 and 3.2, for symmetric hash-
based routing each leaf switch samples packets, and
maintains separate histogram entries for each hash bin
and for both the to-core and to-leaf directions. A central
controller collects histogram data from each switch and
processes the data to determine routes within a scalable
fabric.
For these experiments, we assume that each histogram
entry is represented by a 32 bit sample value. The size of
summary information for symmetric routing grows as
H×L where H represents the number of hash bins. The
load balancing computation yields a result that determines
an uplink choice for each hash class. Output control
results must be transmitted to each switch. While the
same table could be broadcast to each switch, the
transmission cost is currently evaluated as a separate
unicast transaction per leaf switch. Thus, output control
data also grows as H×L.
For these experiments, we also assume that all input to
and output from a controller passes through a dedicated 1
Gb/s control network that connects the switches and
controller. The amount of communication data for
control is measured as the total number of input data bits
plus the number of output control bits summed over all
leaf switches. Communication time is computed by
dividing the number of bits by the control network
bandwidth. We assume 100% utilization of the control
channel, so real communication costs will be higher.
Communication times are not the dominant time for large
systems so more careful analysis has not yet been
performed.
Compute costs to determine routes also scale nonlinearly
and represent a substantial bottleneck for large networks.
While communication costs for symmetric routing grow
as H×L, compute costs grow as H×L×C2. Thus, compute
costs can be subject to significant slowdowns for
networks of very large scale.

In Figure 9 we plot the symmetric control communication
time (“sym comm.”) and compute time (“sym comp”) on
a logarithmic scale assuming that 1024 hash bins are used
to manage a datacenter. Compute times are measured
using a working implementation of our routing
algorithms. Compute costs are measured on an Intel
Core2© @2.13Ghz running on a single thread of
execution. Communication times are computed by
tabulating needed sample and control data and calculating
time needed to pass all data across the 1Gb/s control
channel.

Figure 9: Performance for Symmetric and

Asymmetric Control Traffic and Route Calculation
The update rate is the reciprocal of the larger of the
communication and compute times. Initial objectives
were to support a global reaction to changing traffic at
rates of between 100 times and 10 times a second. This
objective is easily met throughout most of the range. For
large datacenters with 11520 hosts, compute costs
dominate communication costs and limit the update rate
to about 50 per second. For most datacenters of interest,
we believe that this experiment demonstrates a
surprisingly high responsiveness for centralized
management using summary hash data. Efforts to
improve the performance of sequential algorithms and to
develop distributed parallel algorithms may provide
additional room for growth.

5.2 Scalability for Asymmetric control
Asymmetric load balancing suffers scalability limitations
due to the need to collect and distribute more data, and
the need for more complex optimization algorithms. The
size of summary information for the asymmetric routing
case grows as H×L for uplink data, but downlink data
requires H×L2 distinct samples as a per-source-switch
vector is maintained for each hash class and in every
destination switch. The cost for distributing TCAM
control is H×L as a size H lookup table is distributed to
each leaf switch. While the optimization algorithm is
very similar to symmetric routing, a separate routing
decision is made for each leaf switch thus increasing the

11

computational requirements. While communications
costs for asymmetric routing grow as H×L2, compute
costs for asymmetric routing scale as H×L2×C2.
Asymmetric load balancing compute costs can lead to a
control bottleneck for large scale networks. As seen in
Figure 9, compute costs limit the asymmetric update rate
for a centralized network manager for 11520 servers to
about 1 update per second. Again, it is hoped that the
update rate can be improved with further effort in
parallelizing or improving algorithms.

5.3 Performance Scalability

Figure10: Datacenter Performance Scalability

The performance scalability for the datacenters of Table 2
is demonstrated in Figure 10. In this experiment,
datacenters are managed using 1024 hash entries, and the
number of flows is two times the number of hosts.
Additional experiments (not shown) demonstrate that
while increasing the number of hash entries moves
performance up toward TB, decreasing hash entries
moves performance down toward random. While our
demonstrated approach scales well, improved
management responsiveness is of great interest.

6. Preserving Ethernet Features
Our architecture supports traditional Ethernet features that
are important for future network architectures including
VLANs and robust fault tolerant behavior.
Support for Virtual LANs (VLANs) is a traditional
Ethernet feature that logically partitions large physical
networks into smaller virtual networks. While VLANs
share hardware as necessary, layer-two communications
is limited to the scope of a single VLAN. This feature
improves performance by limiting broadcasts and
improves security by limiting the scope of traffic to
appropriate links and end stations. The proposed
multipath architecture inherits VLAN support when
switches that support traditional VLANs are used to
construct the network. Figure 11 illustrates a fat-tree that
has been logically partitioned into red and green VLANs.

Some switches and some links carry traffic that is
exclusive to only one VLAN (red or green). Other
switches and links carry traffic for both VLANs (gray).
The figure illustrates that hash-based multipath L2
routing can preserve traditional VLAN benefits.
A key benefit for hash-based L2 routing is that it behaves,
from an external view, as a conventional Ethernet
network. As shown in Figure 11, the architecture allows
the arbitrary attachment of conventional Ethernet
equipment at any of the exposed leaf ports. As with
traditional Ethernet, networks can be attached to the hash-
based fat tree at multiple points. While multipath routing
is supported within the fat tree, redundant links within the
conventional portion of the network are used only to
support fault tolerance. An example, “Router” is also
shown in Figure 11. This router has two points of
attachment for each of the two VLANs to the central
network. A storage subsystem and conventional switches
are similarly attached. These devices all benefit from
Ethernet’s ability to use spanning tree to reconfigure a
network after a hardware failure.

Figure 11: Traditional Ethernet Feature Support

7. Converged Fabric Networks
Important progress has been made in developing and
standardizing Ethernet technologies to support the
attachment of high-performance storage. Fibre Channel
over Ethernet (FCoE) defines a new standard for
transporting Fibre Channel traffic while preserving
established Fibre Channel management functions. [8].
FCoE uses a collection of low level Ethernet features
called CEE (Converged Enhanced Ethernet). CEE
includes congestion management, priority scheduling, and
per priority pause features needed to support lossless and
prioritized storage transport.
Converged fabric networks offer the promise of using a
single datacenter fabric for all in-datacenter
communications. If CEE functionality is provided in both
core and leaf switches, then end-to-end CEE functions
can be provided through the network. This provides a
powerful and uniform approach for managing LAN and
storage traffic within a converged-fabric datacenter.
A key benefit of our use of TCAMs to manage flows is
that type-specific management can be provided as a
natural extension to the multipath load balancing
discussed in previous sections. A flow classification

12

module examines the headers of incoming packets and
extracts information needed to make routing decisions.
Important information includes the type of the packet
(e.g. IP vs FCoE), the VLAN, and any other indication of
flow type or priority. Flow classification information is
used in a subsequent TCAM processing step which
supports the non-uniform treatment of specialized traffic
classes and assists in providing Quality of Service
functions needed for many applications.

Table 3: Example of type-specific network
management

Active
Cores

Policy match keys Hashbins
allocated

Cores
allocated

8
Type==FCoE, VLAN==* H⇒ 16 C⇒ 2
Type==IP, VLAN==V1 H⇒ 1 C⇒ 1
Type==IP, VLAN==* H⇒ 32 C⇒ 5

7
Type==FCoE, VLAN==* H⇒ 16 C⇒ 2
Type==IP, VLAN==V1 H⇒ 1 C⇒ 1
Type==IP, VLAN==* H⇒ 32 C⇒ 4

6
Type==FCoE, VLAN==* H⇒ 16 C⇒ 2
Type==IP, VLAN==V1 H⇒ 1 C⇒ 1
Type==IP, VLAN==* H⇒ 32 C⇒ 3

5
Type==FCoE, VLAN==* H⇒ 1 C⇒ 1
Type==IP, VLAN==V1 H⇒ 1 C⇒ 1
Type==IP, VLAN==* H⇒ 32 C⇒ 3

4
Type==FCoE, VLAN==* H⇒ 1 C⇒ 1
Type==IP, VLAN==V1 H⇒ 1 C⇒ 1
Type==IP, VLAN==* H⇒ 16 C⇒ 2

3
Type==FCoE, VLAN==* H⇒ 1 C⇒ 1
Type==IP, VLAN==V1 H⇒ 1 C⇒ 1
Type==IP, VLAN==* H⇒ 1 C⇒ 1

Table 3 presents an example high-level method for
specifying traffic management policies. This method
describes a partitioning of available uplinks and core
switches among traffic types. This allows, for example,
an administrator to specify that specialized traffic such as
FCoE must be isolated onto dedicated uplinks. The table
describes high-level actions that a central controller
should take under a variety of network failure conditions.
In the example of Table 3, we assume that a fully
functional network provides 8 core switches. Core
switches may fail or core switches can be disabled to save
power under light load. For each number of active core
switches, a set of load distribution rules is specified
which a central controller uses to generate detailed
TCAM entries for leaf switches. The number of active
cores for each scenario is specified in the left-hand
column of the Table. As the network status changes, the
central controller consults the table to identify the
appropriate rules that correspond to the current status.
In this example, we assume that routing decisions are
sensitive to the Ethertype, the VLAN, and the hash class
in which a packet is classified. Within each row, rules are
processed in priority order from top to bottom. For each
rule, the match keys match the Ethertype and VLAN tag,
and the lookup returns the number of hashbins and
number of cores allocated to that class of traffic. The first
rule of the table specifies that when 8 cores are active,

FCoE traffic should be load balanced in 16 distinct hash
classes and sent to 2 dedicated core switches.
For each number of active cores, three rules are specified:
one for all FCoE traffic, one for IP traffic on a special
high priority VLAN (V1), and one for all remaining IP
traffic. The number of allocated core switches within
each row total to the number of active switches available
for that row. Using this table, low-level software can
automatically implement management procedures for a
datacenter under a variety of failure conditions.

8. Related Work
Datacenter networks are currently constructed using
multiple network technologies. Ethernet dominates low-
end networks. The prevalence of Ethernet as the
commodity networking solution, and Ethernet’s
familiarity to network administrators, place Ethernet at
the top of the preferred list for most networking solutions.
For many large-scale, high-performance, or time-critical
applications, Ethernet does not provide the required
functionality. Many technical compute cluster designers
were unable to rely on Ethernet due to inadequate
scalability and poor performance under congested load.
Where Ethernet was inadequate, high-end networks such
as Quadrics [9], Myrinet [10], and InfiniBand [11] were
employed. These networks have smaller customer bases
which rely on less commonly used network architectures
targeted for performance-critical applications.
Customized networks for supercomputers were early
adopters of scalable networks based on fat trees or other
network topologies. These networks provided low level
messaging services needed for parallel programming but
did not specifically address the needs of low cost and
highly scalable Ethernet datacenter applications. [12]
[13][14][15][16]
Non-Ethernet vendors including Myricom and Quadrics
have proprietary technologies for multi-path L2 routing
that are designed to accelerate unordered data transport.
These technologies are especially useful for accelerating
scalable messaging applications such as those based on
MPI. These vendors are now developing and selling
Ethernet based networks as Ethernet’s base performance
approaches that of specialized networks.
InfiniBand is used for many high-end applications and
currently offers very cost-effective high bandwidth
communications. InfiniBand is scalable to very large
scale in a variety of network topologies [10]. However,
when InfiniBand is used in conjunction with Ethernet,
conversions are required between transport standards.
Separate administrative expertise is required for both
networks. We believe that Ethernet’s marked domination
at the low end will stimulate large engineering
investments and substantial price decreases to position

13

Ethernet as a preferred solution even for high-end
network solutions.
Hash-based routing can be compared to destination-based
or flow-based routing. Techniques that route packets
based on destination addresses alone (e.g., as in
InfiniBand) limit a network’s flexibility to distribute
traffic across core switches. In contrast, approaches such
as OpenFlow [7] route packets based on flow
specifications that can include both source and destination
information at MAC and IP layers. Selecting routes based
on complete flow specifications which include source and
destination pairs presents great difficulties especially for
dynamic routing. For networks having a large number of
end stations (E), providing routing resources for up to E2
address pairs can be expensive. A dynamically routed
network must provide resources to: measure flow
information, calculate routes, and state to set routing
choices for a very large number of pairs. Hash-based
routing also uses both source and destination information
but greatly reduces information needed to monitor and
control network traffic for dynamic routing.
Scalable Ethernet networks, based on switch chips from
Fulcrum Microsystems, have been deployed for real
datacenters [4][5]. Fulcrum switches incorporate a
symmetric address hash to allow the construction of
scalable fat tree networks for large datacenters.
Fulcrum’s architecture does not support dynamic load
balancing. We cannot determine whether Fulcrum’s
proprietary technology provides important flexibility in
programming the deployment of uplinks. This flexibility
is needed to configure a broad range of fat tree networks.
The Woven Corporation adds “Vscale” ASICs at the edge
of a Fulcrum-based network fabric for dynamic load
balancing. This proprietary technology is expensive and
requires separate Fulcrum switch ASICs and Woven
Vscale ASICs.
Al-Fares et al. propose a network architecture that
combines fat-tree network topologies with a structured
addressing approach to simplify packet forwarding [1].
This approach supports multipath routing, but requires
structured addresses that directly indicate a chosen path
through the network. This limitation interferes with
support for plug and play operation and end station
mobility. The attachment of legacy network components
at the perimeter of the datacenter is also not addressed.
For dynamic routing, the approach relies on the
identification of individual flows. A number of
difficulties arise when the number of flows exceeds the
ability of switches and the central router to maintain and
process needed per-flow information.
Multipath routing and congestion avoidance has been
explored for Clos networks [18]. Credit based
management approaches have been proposed that
propagate congestion measures backwards from

bottleneck network outputs to earlier decision points
within the network. These approaches require that
switches generate and process control traffic to propagate
needed credit information through a switched fabric. This
requires complex per-packet processing that is not a
simple upgrade to existing commodity Ethernet switches.
TCAM hardware structures are commonly used for flow
classification in IP routers [19]. In a paper by Dong et al.,
TCAM-like classification is performed using RAMs to
process IP packets [20].
Multipath routing has been explored for IP routing, as
described in Request for Comment documents from the
Internet Engineering Task Force [21] [22]. The
constraints of IP routing are different from the constraints
of MAC routing, MAC routing needs to consider a larger
set of routes and does not have a structured address space.
Prior research also pursues architectures for ultra-large-
scale layer two networks. The use of flat layer two
networks throughout large enterprises eliminates complex
administrative requirements needed to partition large
networks. However, for this to be successful, Ethernet
enhancements are needed to limit broadcast traffic scope
and to support multipath routing [23].

9. Conclusions
Hash-based L2 routing provides a combination of benefits
not matched by prior datacenter fabric architectures.
Hash-based static load balancing distributes traffic over
multiple routes to exploit multipath routing within
scalable Ethernet networks. Dynamic load balancing
improves performance by identifying traffic bottlenecks
and moving traffic to less highly loaded network
components. Dynamic balancing also provides a tool to
balance performance, reliability, and power for diverse
traffic types as resources can be reallocated and core
switches can be taken off-line and restored while a
datacenter continues to operate. Fault tolerance is
supported as fat-tree networks provide redundant
connectivity needed for reliable communications.
Load balancing is performed with minimal new state that
is independent of the number of end-nodes and the
number of end-node connection pairs. This is
accomplished while preserving plug and play network
operation and the mobility of layer-2 and layer-3 devices.
The architecture allows for the flexible attachment of
conventional Ethernet hardware. Finally, the solution has
been crafted as a modest enhancement to the current
layer-2 switch architecture.
Management architectures have been developed and
demonstrated that show substantial performance
improvement and, in many situations, provide high
network efficiency approaching known bounds. We have
demonstrated that communication and compute capability

14

needed for central management scales for very large
networks commonly used in modern datacenters. This
work validates the use of hash-based symmetric routing
as a practical approach for managing large scale
datacenter networks based on commodity Ethernet
switches while preserving traditional Ethernet properties.

10. References
[1] Mohammad Al-Fares, Alexander Loukissas, Amin

Vahdat: A Scalable, Commodity Data Center
Network Architecture, SIGCOMM 2008.

[2] LAN/MAN Standards Committee of the IEEE
Computer Society, ed. (2004), ANSI/IEEE Std
802.1D - 2004: IEEE Standard for Local and
Metropolitan Area Networks: Media Access Control
(MAC) Bridges, IEEE

[3] C. Clos: A Study of Non-Blocking Switching
Networks, Bell Systems Technical Journal, vol. 32,
March 1953.

[4] Charles E. Leiserson: Fat-trees: universal networks
for hardware-efficient supercomputing, IEEE
Transactions on Computers, Volume 34 , Issue 10
(October 1985) , Pages: 892 - 901.

[5] Fulcrum white paper on scalable networks: http:
//www.fulcrummicro.com/product_library/applicatio
ns/clos.pdf.

[6] Fulcrum Microsystems: “FocalPoint Switches in the
Datacenter” http://www.fulcrummicro.com
/product_library/applications/datacenter.pdf.

[7] N. McKeown, T. Anderson, H. Balakrishnan, G.
Parulkar, L. Peterson, J. Rexford, S. Shenker, and J.
Turner. OpenFlow: enabling innovation in campus
networks. Proc. of SIGCOMM 2008.

[8] Fibre Channel over Ethernet within the T11
standards body: http://www.t11.org/index.htm.

[9] Fabrizio Petrini, Wu-chun Feng, Adolfy Hoisie,
Salvador Coll, Eitan Frachtenberg : The Quadrics
Network: High-Performance Clustering Technology,
IEEE Micro, 22(1), Jan. 2002.

[10] N. Boden, D. Cohen, R. Felderman, A. Kulawik, C.
Seitz, and J. Seizovic: Myrinet: A Gigabit-per-
second Local Area Network, IEEE Micro, 15(1),
1995.

[11] Introduction to InfiniBand,
http://www.infinibandta.org/newsroom/whitepapers/
intro_to_infiniband_1207.pdf.

[12] Charles Leiserson, Zahi Abuhamdeh, David Douglas,
Carl Feynman, Mahesh Ganmukhi, Jeffrey Hill,
Daniel Hillis, Bradley Kuszmau, Margaret St
Pierre, David Wells, Monica Wong-Chang, Shan-

Wen Yang, and Robert Zak: The Network
Architecture of the Connection Machine CM-5,
Journal of Parallel and Distributed Computing, 1992.

[13] John Kim, William J. Dally, Dennis Abts: Adaptive
Routing in High-Radix Clos Network, SC2006,
Tampa Florida, USA.

[14] John Kim, William J. Dally, Dennis Abts: Flattened
butterfly: a cost-efficient topology for high-radix
networks, Proceedings of the 34th Annual
International Symposium on Computer Architecture,
pp 126-137, 2007.

[15] John Kim, William J. Dally, Steve Scott, Dennis
Abts: Technology-Driven, Highly-Scalable
Dragonfly Topology, Proceedings of the 35th Annual
International Symposium on Computer Architecture,
2008.

[16] Charles D. Norton and Thomas A. Cwik, Early
Experiences with the Myricom 2000 Switch on an
SMP Beowulf-Class Cluster for Unstructured
Adaptive Meshing, IEEE International Conference
on Cluster Computing, 2001.

[17] J. Duato, I. Johnson, J. Flich, F. Naven, P. García,
and T. Nachiondo: A New Scalable and Cost-
Effective Congestion Management Strategy for
Lossless Multistage Interconnection Networks, Proc.
IEEE Symp. High-Perf. Computer Arch. (HPCA),
San Francisco, USA, Feb. 2005.

[18] Nikolaos I. Chrysos: Congestion Management for
Non-Blocking Clos Networks, ACM/IEEE Symp. on
Architectures for Networking and Comm. Systems
(ANCS'07), December 3–4, 2007, Orlando, Florida,
USA.

[19] Karthik Lakshminarayanan, Anand Rangarajan,
Srinivasan Venkatachary: Algorithms for Advanced
Packet Classification with Ternary CAMs,
SIGCOMM’05, August 21–26, 2005.

[20] Qunfeng Dong, Suman Banerjee, Jia Wang, Dheeraj
Agrawal, Sshutosh Shukula: Wire speed packet
classification without tcams: a few more registers
(and a bit of logic) are enough, SIGMETRICS‘07,
June 12–16, 2007, San Diego, CA.

[21] RFC 2991: Multipath Issues in Unicast and Multicast
Next-Hop Selection,
http://www.apps.ietf.org/rfc/rfc2991.html.

[22] RFC 2992: Analysis of an Equal-Cost Multi-Path
Algorithm, //www.apps.ietf.org/rfc/rfc2992.html

[23] Changhoon Kim, Matthew Caesar, Jennifer Rexford:
Floodless in SEATTLE: A Scalable Ethernet
Architecture for Large Enterprises, SIGCOMM
2008.

