

Keyword(s):

Abstract:

©

Operating System Support for NVM+DRAM Hybrid Main Memory

Jeffrey C. Mogul, Eduardo Argollo, Mehul Shah, Paolo Faraboschi

HP Laboratories
HPL-2009-256

Flash, Non-volatile RAM. Operating Systems, memory

Technology trends may soon favor building main memory as a hybrid between DRAM and non-volatile
memory, such as flash or PC-RAM. We describe how the operating system might manage such hybrid
memories, using semantic information not available in other layers. We describe preliminary experiments
suggesting that this approach is viable.

External Posting Date: November 6, 2009 [Fulltext] Approved for External Publication
Internal Posting Date: November 6, 2009 [Fulltext]

Published in the 12th Workshop on Hot Topics in Operating Systems (HatOS XII), May 18-20, 2009

Copyright The 12th Workshop on Hot Topics in Operating Systems (HatOS XII), 2009

This is a slightly expanded version of a paper that appeared in Proc. HotOS-XII, May, 2009 1

Operating System Support forNVM+DRAM Hybrid Main Memory
Jeffrey C. Mogul∗

Jeff.Mogul@hp.com
Eduardo Argollo†

Eduardo.Argollo@hp.com
Mehul Shah∗

Mehul.Shah@hp.com
Paolo Faraboschi†

Paolo.Faraboschi@hp.com

HP Labs, ∗Palo Alto, CA 94304and†Barcelona, Spain

Abstract
Technology trends may soon favor building main

memory as a hybrid between DRAM and non-volatile
memory, such as flash or PC-RAM. We describe how the
operating system might manage such hybrid memories,
using semantic information not available in other layers.
We describe preliminary experiments suggesting that this
approach is viable.

1 Introduction
For several decades, general-purpose CPUs have used

DRAM for main memory. DRAM has many good fea-
tures, and has benefited from Moore’s Law, but DRAM
is not perfect: it is relatively expensive in power and cost,
as a fraction of an entire computer, and it is hard to put
enough of it near a CPU. These problems are especially
pressing in “scale-out” server farms, where we want both
increased server density and reduced heat density.

On the other hand, flash memory can be denser,
cheaper, and more power-efficient than DRAM, but it
has problems with access timing, access unit sizes, and
endurance. Because of these problems, and because it
is reasonably non-volatile, flash is typically used in the
storage hierarchy, rather than as main memory.

The semiconductor industry has been speculating for
several years about the prospects for a “universal mem-
ory” (UM) technology that would replace both DRAM
and flash, providing the best characteristics of both (and
working around some scaling issues that might soon limit
further improvements in both DRAM and flash) [1]. Un-
fortunately, while there are many potential UM technolo-
gies, all have their problems, and mass adoption (hence
reasonable prices) is still several years away [12].

In this paper, we argue that if it becomes practical and
desirable to replace main-memory DRAM with UM, the
characteristics of UM technologies (limited endurance;
slow writes) will require explicit support from the oper-
ating system, and we describe aspects of that support.

To make things concrete, we describe a near-term de-
sign for main memory based on a hybrid of flash and
DRAM, or FLAM1. Quite possibly FLAM could improve
main memory density, power, and cost. It might seem

1Per Wikipedia, “A flam is a rudiment [of drumming] consistingof a
quiet ‘grace’ note on one hand followed by a louder ‘primary’stroke on
the opposite hand. The two notes are played almost simultaneously, and
are intended to sound like a single, ‘broader’ note.” This idea of two
distinct notes merging almost into one reminds us of the DRAM+flash
hybrid.

odd to propose using flash for main memory, since it has
very high write latencies, and wears out after relatively
few writes. Our goal, therefore, is to present a feasible
design for hardware and operating system changes that
compensate for these weaknesses of flash, and also to il-
lustrate how the OS might support other varieties of UM.

Many computer systems now use flash memory for all
or part of their storage hierarchy. Our design is different;
flash is parallel, not subordinate, to DRAM.

We argue for approaches that exploit per-page knowl-
edge, relatively simple for an OS to obtain, to inform the
movement of pages between read-write DRAM and (ef-
fectively) read-only flash. Note that the flash pages are
truly in the CPU’s memory address space – memory-read
instructions are satisfied directly from flash – but pro-
tected read-only, to allow the OS to intervene on memory
writes.

The key to this approach is the use of flash only for
pages with a relatively hightime-to-next-write(TTNW),
since the penalties (latency; wear-out) for flash writes are
so high. Of course, the OS can only know a page’sesti-
mated time-to-next-write(ETTNW), and we identify OS-
level information that can help make these estimates. We
also present experimental data suggesting that there are
enough high-TTNW pages to justify using FLAM.

The main point of this paper is not that flash is ideal
for this application – it is not – but that hybrid main
memories built from DRAM and Non-Volatile Memory
(NVM) are a plausible solution to some pressing prob-
lems, that software will have to manage the way these
memories are used, and that the operating system is the
best software layer to do that. The focus of our work
is to show how having the OS carefully manage what
goes into NVM, and when, can hide the non-ideal char-
acteristics of NVM while allowing us to exploit its useful
attributes. This approach should apply, with some vari-
ations, to both flash and other kinds of NVM, and we
specifically discuss Phase-Change RAM (PC-RAM).

1.1 Motivation
Data center compute farms (this paper focusses on

server applications) are increasingly limited by physical
density and power constraints, and are being built from
large numbers of relatively cheap servers. These trends
put pressure on the amount of main memory per physical
server, since they limit the number of DRAM “DIMMs”
that can be placed in proximity to a CPU socket. Adding
more DRAM chips to a server also increases bus loading,

This is a slightly expanded version of a paper that appeared in Proc. HotOS-XII, May, 2009 2

leading to signal integrity problems.
High-density DIMMs impose an exponential cost

penalty; for example, Oct. 2008 street prices for 8GB of
DRAM are $212/GB using 1 8GB DIMM, $50/GB using
2 4GB DIMMS, or $15/GB using 4 2GB DIMMs. How-
ever, adding DIMM slots consumes space on increas-
ingly small “blade” server boards, and can complicate
electrical signal integrity.

DRAM also consumes non-negligible power – per one
study, 19% to 31% of peak power for recent server de-
signs [13, Table 3-3].

We would therefore like to find a way to create at least
the illusion of larger main memories without the cost,
power, and density drawbacks of DRAM.

1.2 Memory technologies
The insight (not ours; see [16]) that inspired this paper

is that flash has many of the characteristics that we want
for main memory: per bit, it costs less, consumes less
power, and consumes less space than DRAM.

However, flash has several problems that complicate
its use as a direct replacement for DRAM:
• Erasing: Flash must be erased before it can be written.

Erasing tends to be slow, and one must erase a large
block, rather than an individual word.

• Endurance: flash typical wears out after a relatively
small number of erase+write cycles. For storage, write
bandwidths are slow enough to avoid this problem, but
not for main memory: at 5 GB/s, one can wear out
256GB of NOR in less than 60 days.

In a storage application, access frequencies can be
low enough to avoid this problem, but the frequencies
with which CPUs write to main emory could cause
wear-out way too soon.

• Slow writes: Flash writes take much longer than
DRAM writes, so flash writes are not compatible with
typical memory controllers.

• Read timing: NAND flash requires reading an entire
page, which makes it difficult to use for main mem-
ory. NOR flash, however, can be read more or less like
DRAM (albeit at lower bandwidths).
Table 1 shows values for various characteristics of sev-

eral memory technologies, which we will assume for the
purposes of this paper. It is difficult to get accurate val-
ues to make direct comparisons; for example, NOR flash
is usually fabricated with an older technology generation
than DRAM or NAND flash. We express density in terms
of the feature sizeF (actually, in terms of the areaF 2)
rather than in absolute values; this allows density com-
parisons if one assumes a fixed feature size.

Similarly, we do not directly estimate cost/bit; gen-
erally, cost is directly proportional to density assuming
both equal fabrication complexity and similar production
volumes. These assumptions might be optimistic.

Table 1 shows that NAND flash is superior to NOR

flash in both cost and density, but because NAND flash
cannot satisfy cache-line reads at speeds anywhere near
DRAM, it is a poor basis for a hybrid design.

Table 1 shows values forsingle-level cell(SLC) flash.
Multi-level cell(MLC) flash can store 2 bits per cell, dou-
bling its density but at the cost of a higher bit-error rate
and lower endurance. MLC NAND flash is widely avail-
able, and Spansion has developed a cost-effective MLC
NOR design [11, 16]. However, it is not clear that flash
can be scaled much further into the future [10].

Proposed future memory technologies include Ferro-
electric RAM, Magnetic RAM, Spin-Torque Transfer
RAM, Resistive RAM, but these are still too exotic or are
clearly bad candidates for main memory. (Burret al. [5]
give a nice, up-to-date summary of non-volatile mem-
ory technologies, but they focus on storage-hierarchy ap-
plications.) However, the table includes data on Phase-
Change RAM (PC-RAM; confusingly sometimes called
PRAM, PCM, OUM, or C-RAM), which is at least a
plausible candidate. PC-RAM uses heat to change a
chalcogenide glass between crystalline and amorphous
states. PC-RAM has much better endurance than flash,
but apparently it is still finite.

Therefore, in this paper we explore two options for
software-managed hybrid main memories: NOR flash
and PC-RAM.

1.3 Other alternatives for using NVM
We note that there are many other ways to use NVM

in computer systems. There are obviously many uses of
NVM in the storage system [5]. One might also con-
sider designing hybrid main-memory hardware that is
fully transparent to software (perhaps this is Spansion’s
approach [16]), which avoids the need for SW changes.
However, the OS can make better decisions, using its se-
mantic information about memory pages.

One could use NAND flash on the PCI bus as a very
fast backing store for demand-paged DRAM, but PCI
cannot not achieve the high memory bandwidth that a
NOR+DRAM hybrid can support.

Recently, Conditet al. [8] have proposed using byte-
addressable, persistent memory (such as PC-RAM) on
the memory bus for the specific purpose of implement-
ing a file system with improved atomicity and perfor-
mance. Their design, while it eliminates the need for
some DRAM buffering of file-system data, does not at-
tempt in general to replace DRAM, and it requires some
minor changes to the CPU cache architecture.

2 Design issues: NOR-flash hybrids
Here we sketch both hardware and software designs

for SW-managed hybrids using NOR flash. (Sec. 3 will
discuss how the designs might vary if using PC-RAM.)

This is a slightly expanded version of a paper that appeared in Proc. HotOS-XII, May, 2009 3

Table 1: Characteristics assumed in this paper (sources include [4, 9, 10, 14, 15])

Technology Density Endurance Rand. read Write Erase Erase Idle “on”
(cycles) time size power

DRAM 6-8F
2

10
15

∼ 40–60 ns ∼ 40–60 ns — — ∼4W–8W/DIMM
NAND flash 4-5F

2
10

5–106 5–50 us 200 us/page 2 ms e.g. 512KB ∼0
NOR flash 10F

2
10

5–106 70 ns 1 us 1 sec e.g. 128KB ∼0
PC-RAM 8-16F

2
10

8–1011 60 ns? 100–1000 ns — — ∼0

Note: most of these values either vary with technology or arepoorly defined

2.1 Hardware design
We start by assuming that new hardware designs ought

to be pin-compatible with standard DRAM DIMMs and
memory controllers. While it is intriguing to consider
how one might change these standard interfaces to bet-
ter exploit novel main-memory technologies, incremen-
tal deployment is easier if one sticks to standards.

We propose a FLAM DIMM that contains as many
NOR flash chips as possible, a modest amount of DRAM
for buffering writes, and a simple controller ASIC.

The address space of the DIMM would be divided into
several regions:
• Flash: directly mapped for cache-line-wide reads. The

CPU would not be able to write directly to this region.
• DRAM copy buffer (CB) : mapped for both reads and

writes by the CPU.
• Control registers: accessed via the standard System

Management Bus (SMBus), mapped into I/O space.
Basic migration mechanism: Since flash cannot be

written directly by CPU store operations, we instead
stage page-sized writes in the CB. That is, when the OS
decides to move a pagePd from main-memory DRAM
to FLAM, it allocates a pre-erased flash pagePf (see sec.
2.2 for more details), copiesPd into a free page in the CB
Pb, and then signals the FLAM controller to copy from
Pb to Pf . This copy can proceed at flash-write speeds
(i.e., slowly) without stalling the CPU. (In order to sus-
tain the necessary write bandwidth, the NOR flash will
have to be banked 8–16 ways.) When that copy is done,
the controller signals the OS, which can then remap the
corresponding virtual pagePv from Pd to Pf , and inval-
idate the TLB entry. (Modern CPUs allow flushing one
entry rather than the entire TLB.)

A small portion of the CB would be set aside to hold
the specifics of commands from the OS to the controller:
for a copy commands, the (Pb, Pf) pair; for an erase
command, the offset and size of the sector(s) to erase.

This simple hardware design poses several challenges:
• Communication with the controller : We expect that

a small portion of the CB will have to be set aside to
hold the specifics of commands from the OS to the con-
troller: for a copy commands, the (Pb, Pf) pair; for an
erase command, the offset and size of the sector(s) to
erase.

• BIOS support: BIOS software might be confused by

FLAM hardware in the main-memory address space,
and would probably have to be modified; for exam-
ple, to avoid subjecting the flash to a memory test, and
to notify the OS which parts of the hardware address
space are FLAM and which are standard DRAM.

One possibly solution would be to make the first
page of FLAM read-only, consisting of a magic number
and a set of configuration values, followed by a cryp-
tographic hash of that data. The kernel would read the
page and validate this hash, indicating with very high
probability that it is seeing a FLAM device, and also
learning its characteristics.

2.2 Basic software design
Given our proposed hardware design, the basic soft-

ware mechanism is simple and is useful for UM tech-
nologies with limited or slow writes. We defer several
more interesting problems to sec. 2.3 (deciding what
pages to put into flash), sec. 2.4 (garbage-collecting the
flash), and sec. 2.5 (wear-leveling).

Initially upon booting, the OS allocates all memory
pages from DRAM. Based on heuristics described in sec.
2.3, it starts migrating pages from DRAM to FLAM.

The basic migration mechanism described in sec. 2.1
needs some elaboration. For example, the OS must set
the page-table entries forPd (during migration) andPf

(after migration) to be either read-only or read+execute,
since any writes during migration could lead to inconsis-
tencies, and any writes after migration won’t work. If
SW generates a store to one of these pages, it will fault.
Before the write can proceed after the fault, the OS must
either abort the migration (if it is still in progress), or
copy the page back from FLAM to DRAM. In effect, a
migrated page is handled similar to a copy-on-write page
(and a shared migrated page might end up in both FLAM
and DRAM after a true COW fault).

2.3 Deciding which pages to put in FLAM
Some relatively small fraction of memory is kernel-

private address space that cannot easily be migrated.
However, pages used for user address space and file
system buffering, which consume most of the DRAM,
should be candidates for migration.

Within the set of candidate pages, the OS must choose
those that have the best “return on investment” for mi-
gration to FLAM. This policy can vary depending on

This is a slightly expanded version of a paper that appeared in Proc. HotOS-XII, May, 2009 4

HW technology. We propose several heuristics, includ-
ing some tests that use static information:
• Page types: Operating systems tend to associate pages

with type information. Code pages, for example, are
good candidates for migration to FLAM; stack pages
are bad candidates. Our guess is that non-file pages
shared between two processes might be bad candidates.

• File types: File types can be good indicators of ET-
TNW. Vogels reported [17] that the local-disk file size
distribution “is dominated by executables, [DLLs], and
fonts” – all read-only – and on network shares “the set
of large files is augmented with development databases,
archives and installation packages” – probably also
read-only.

• File reference modes: Vogels pointed out [17] that
Windows offers atemporary fileattribute to optimize
its buffer cache behavior, that up to 80% of files in a
Windows file trace were deleted within 4 secs. of cre-
ation, and that “at least 25%-35%” of these deleted new
files could benefit from that attribute. Clearly, pages
from files marked temporary should not be migrated to
FLAM; unfortunately, most applications do not mark
their temporary files.

• Application-supplied page attributes: We speculate
that certain large, memory-hungry applications that un-
derstand their workload, such as databases, could pro-
vide coarse ETTNW values for certain pages, such as
index files.

and some dynamic tests:
• File names: The OS could record the historical TTNW

distribution (or its smoothed mean) of otherwise hard-
to-classify files; limiting this DB to relatively large,
frequently accessed files would maximize the benefits.
Pages from a file with a large observed TTNW could
be migrated to FLAM.

• Page history: In theory, the OS could track the TTNW
for each page, and migrate pages with high observed
TTNW. In practice, the DRAM space overhead for this
tracking could be excessive, as we discovered when
trying to design Linux modifications for generating
page lifetime traces (see sec. 4.2). (Remember, the
whole point of FLAM is to save DRAM.)
Throughout this paper, we have argued for using NVM

as main memory while ignoring its non-volatility ben-
efits. Of course, several OS and application functions
could benefit from non-volatile main memory, and the
OS could use this information to drive FLAM migration.
We should note, however, that some superficially suit-
able applications (e.g., RIO [6]) may not have sufficient
low page-write rates to work with FLAM.

Migration decisions would, of course, also depend
on other factors, such as how much free FLAM space
is available, and tradeoffs between the extra CPU load
for migration versus the inefficiency of running out of

DRAM. This is likely to involve more heuristics than the-
ory, just as with page-frame reclamation algorithms [3].

2.4 Garbage collection
Since flash erase blocks are larger than pages, the OS

will have to garbage collect as FLAM pages migrate back
to DRAM, so that it can erase blocks in order to maintain
a large-enough pool of free FLAM pages. We assume
typical “copying garbage collector” mechanisms will ap-
ply, such as allocating pages with similar expecting life-
times to the same erase block. For example, pages from
the same mapped file probably have similar lifetimes.

Determining how large a “large-enough” pool of free
FLAM pages may require adaptation to the different
write and erase delays of different NVM technologies.
We believe that the kernel could parameterize its own
queueing model based on on-line observations of these
delays.

2.5 Wear leveling
Because flash has limited endurance, the OS needs to

implement wear-leveling for the FLAM. Generally, this
requires tracking the allocation status (allocated, free,
erased) and erase-count for each FLAM block. The OS
can then migrate pages to the erased block with the low-
est erase-count. Since this metadata must persist across
crashes and reboots, it should itself be stored in the
FLAM, for non-volatility.

Flash endurance appears to be stated in terms of the
number of erase cycles guaranteed by the vendor. We
suspect that many flash blocks have longer endurance
(and some will have shorter endurance) than this value;
however, we have not been able to learn what endurance
distributions look like.

As we understand it, flash writes basically work by
damaging the dielectric, and wear-out occurs when this
damage is permanent. Therefore, we believe that if the
OS reads a FLAM page immediately after migration and
compares it successfully to the source page, the OS can
assume that the page has not yet worn out. If the com-
parison fails, the OS can abort the migration, and set
the page’s erase-count to infinity. This approach might
squeeze out more lifetime from flash.

2.6 Support for virtual machines
Our design assumes that the operating system kernel

both controls the hardware and has extensive informa-
tion about the way that applications use memory pages.
When the operating system runs on top of a virtual ma-
chine monitor (VMM), these two aspects are split: the
VMM controls the hardware, and the operating system
knows about page-type-specific memory uses. In order
to exploit FLAM and virtual machines simultaneously,
which may be a pre-requisite for most data-center appli-
cations of FLAM, we expect that it will be necessary to
use paravirtualization – that is, provide an explicit inter-

This is a slightly expanded version of a paper that appeared in Proc. HotOS-XII, May, 2009 5

face between the OS and the VMM to support the use of
FLAM.

3 Designs for hybrids using PC-RAM
PC-RAM differs from flash in several important char-

acteristics, both in terms of scaling (i.e., higher densities
and potentially lower costs/bit) and endurance. We have
seen a variety of estimated endurances for PC-RAM,
possibly because there is some uncertainty as to which
chalcogenic material yields the best tradeoffs [15], and
also because the endurance for a large array is expected
to be lower than for a single bit [4]. It seems reasonable
to assume an endurance of10

8, which is 2 or 3 orders of
magnitude better than flash, but still finite.

PC-RAM also eliminates the erase phase associated
with flash, greatly simplifying the overall system design.

While PC-RAM parts are almost ready to appear (e.g.,
from Samsung in 2009), we have not been able to find
data sheets that specify read and write timings. It ap-
pears that PC-RAM writes cannot be faster than about
100ns [15], which implies that it might still be necessary
to buffer writes in DRAM (as in sec. 2.1). We expect
reads to happen at DRAM-like speeds, however.

One aspect of PC-RAM is that there is a risk of ther-
mal cross-talk: “repeated programming operations on a
cell can induce an unwanted heating of the adjacent bits
that can lose the data stored.” [14]. Although Piranoet
al. suggest that this should not be a problem in practice
down to a feature size (F) of 65 nm, there is some pos-
sibility that at finer scales, thermal cross-talk could be a
problem. This suggests that the OS might need to control
how frequently certain regions of PC-RAM are written,
to avoid cross-talk.

Therefore, a hybrid using PC-RAM instead of NOR
should allow us to simplify the design in several ways:
no garbage collection: since there is no need to pre-
erase large blocks, andpossibly simpler wear-leveling:
since PC-RAM endurance should allow fairly frequent
writes (a mean write-spacing of 1.6 seconds for a 5-year
lifetime, assuming10

8 cycles allowed). However, PC-
RAM might add some complexity; for example, wear-
out might not be immediately detectable using read-after-
write, if (for example) “resistance drift” is to blame [4].

4 Preliminary experiments
The experiments we report here are quite preliminary.

Our goal was to understand whether enough memory
pages are accessed read-only for long enough intervals to
justify migrating them into FLAM. (Prior work by Clark
et al. exploited this same phenomenon for VM migra-
tion [7].)

We define “long enough” as a mean allowable Time
Between Writes to a Page (TBWP), based on the en-
durance of the NVM technology and a desirable lifetime
for the hardware. We chose a 5-year lifetime (which is

probably slightly longer than typical server replacement
life cycles). 5 years is 1.58e8 seconds, and so for en-
durances of106 (flash) and10

8 (PC-RAM), our target
TBWPs are 158 sec. and 1.58 sec., respectively.

We considered three experimental approaches: hard-
ware tracing via simulation, page-level tracing via ker-
nel modification, and simulation of a FLAM system. We
have only tried the first approach, so far.

4.1 Simulator-based tracing
We can get precise traces of when pages are written

using an architectural simulator. We used COTSon, a rel-
atively fast simulator [2]. However, even with COTSon,
tracing at this level is slow. which limits the amount of
simulated execution we can achieve. For example, one
of our runs, covering 213 traced seconds, took 10 days.

We ran simulations of a 1-core Opteron CPU (64KB
L1 caches, 2 MB L2 write-back cache, 2 GB main mem-
ory, 4KB/page) and Linux 2.6.15 running one of two ap-
plications: Nutch, a web-search engine (1.2 GHZ CPU),
and the SPECjbb benchmark (3 GHz). SPECjbb was
slightly modified for simulation feasibility, and was con-
figured for 28 warehouses.

We had COTSon trace all physical memory write-
backs from the L2 cache, then computed a series of
“write intervals” for each (physical) page; the length of
an interval is the TBWP. We then calculated the median
(50th percentile) TBWP for each page; fig. 1(b) shows
the distribution of the fraction of pages as a function of
their median TBWP.

Although these traces are too short to show definitive
TBWP results for a target of 158 sec., fig. 1(a) shows
that more than half of the pages in both benchmarks have
median TBWP above 15.8 sec. Even if we want at least
75% of a page’s write intervals to be longer than the tar-
get (see fig. 1(c)), we could still put about half of the
pages in PC-RAM.

We also simulated a 4-core Nutch trial (800GHz
Opteron, 8 MB L2), with a different dataset and work-
load. This trial modifies pages more rapidly, but still
leaves more than half of RAM entirely unused; we are
not sure yet what accounts for the difference in behavior.

4.2 Linux-based page-lifetime tracing
To trace page references over much longer intervals

than simulation can support, we tried to modify Linux
to trace the dirty/clean state of pages. We augmented
each page frame descriptor with two flags: HasBeenDirt-
ied and PrevHasBeenDirtied. We modified the macro
that sets the dirty flag (PGDIRTY) so that it sets Has-
BeenDirtied, but the macro that clears PGDIRTY does
not clear HasBeenDirtied.

We modified the/proc/kpageflags interface to
expose the new flags, and to provide a way to cause
all valid page frames to be scanned, rippling Has-
BeenDirtied to PrevHasBeenDirtied and then clearing

This is a slightly expanded version of a paper that appeared in Proc. HotOS-XII, May, 2009 6

HasBeenDirtied.
EveryN seconds, a user-mode daemon uses the modi-

fied/proc/kpageflags interface to record these bit
values for all valid pages, and then to ripple the bits.

Thus, the trace records accurately list all pages that
have ever been dirtied during theN -sec. interval. The
trace can also record information such as the page’s pro-
cess ID, type, and (if appropriate) the mapped file inode.
While we get onlyN -second TBWP granularity from
this method (vs. exact TBWP values from hardware sim-
ulation), the traces are a lot smaller and can cover a lot
more time.

(Currently, we have not finished debugging this ap-
proach, so we have no valid results to report.)

5 Challenges and some next steps
Evaluation and commercialization of FLAM faces a

number of challenges, including:
• Need for better simulations: Our simulations (Sec. 4)

covered very brief execution periods for just a few ap-
plications. We also were unable to simulate the effect
of incorporating page-type-specific and application-
specific knowledge.

• Trace-based evaluation: Our trace-based evaluation
approach (Sec. 4.2) could answer many of the ques-
tions about using page-type-specific knowledge, but it
needs to be debugged first.

• Prediction accuracy: We are not sure whether the ker-
nel could predict TTNW with sufficient accuracy to
make FLAM viable.

• Costs for FLAM hardware : While the FLAM hard-
ware design is conceptually rather simple, to actually
implement it in a way that avoid adding significant
costs (for engineering and manufacturing) might be dif-
ficult.

• Design choices for FLAM hardware: The best choice
of NVM memory technology (Flash vs. PC-RAM
vs. Resistive RAM, etc.) for FLAM is still unclear.
We also do not know how much DRAM to include
for buffering, and or what the appropriate page sizes
should be.

• Kernel support: We believe that adding kernel support
for FLAM is feasible, but our limited experience with
the Linux virtual memory system suggests that this
could be a tedious, error-prone task for a non-expert.
There might also be some challenges with respect to
software and space overheads.

• VMM support : As we note in Sec. 2.6, extend-
ing FLAM to virtual machines will require additional
work.

• Garbage-collection and wear-leveling: These issues,
while probably tractable, will require significant soft-
ware effort and parameter tuning.

Therefore, we view our work on FLAM as very prelimi-
nary, and not a true proof of concept.

6 Summary
We have argued that it might be advantageous to build

main memory out of NVM+DRAM hybrids. To do so,
• Some operations (e.g., writes for NOR flash and pos-

sibly for PC-RAM; reads and writes for NAND flash)
will require DRAM buffering to match the timing con-
straints of a synchronous interface. This buffering will
be visible to the OS, and so will affect the OS’s page-
migration implementation.

• Avoiding problems with endurance will require some
intelligence to decide what pages should migrate to
NVM, and when; the OS appears the best place to ap-
ply that intelligence.

• Similarly, slow write speeds (especially for NOR flash)
will also require OS-based intelligence to manage page
migration.
In short, the exploitation of future universal memory

technologies is likely to create new opportunities for OS
research and innovation.

References
[1] J. Åkerman. Towards a Universal Memory.Science,

308(5721):508–510, 22 Apr. 2005. Summary athttp:
//scienceweek.com/2005/sw050520-1.htm.

[2] E. Argollo, A. Falcón, P. Faraboschi, M. Monchiero, and
D. Ortega. COTSon: Infrastructure For Full System Sim-
ulation. Operating Systems Review, 43(1), Jan. 2009.

[3] D. P. Bovet and M. Cesati.Understanding the Linux Ker-
nel, Third Edition. O’Reilly, 2005.

[4] M. J. Breitwisch. Phase change memory.Interconnect
Technology Conf., pages 219–221, June 2008.

[5] G. W. Burr, B. N. Kurdi, J. C. Scott, C. H. Lam,
K. Gopalakrishnan, and R. S. Shenoy. Overview of
candidate device technologies for storage-class memory.
IBM J. Research and Development, 52(4/5), Jul./Sep.
2008.

[6] P. M. Chen, W. T. Ng, S. Chandra, C. Aycock, G. Ra-
jamani, and D. Lowell. The Rio File Cache: Surviving
Operating System Crashes. InProc. ASPLOS, pages 74–
83, 1996.

[7] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield. Live migration of
Virtual Machines. InProc. NSDI, pages 273–286, 2005.

[8] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, D. Burger,
B. C. Lee, and D. Coetzee. Better I/O Through Byte-
Addressable, Persistent Memory. InProc. SOSP-22,
pages 133–146, Big Sky, MT, Oct 2009.

[9] X. Dong, N. Muralimanohar, N. Jouppi, and Y. Xie.
Leveraging PCRAM Technology to Reduce Checkpoint-
ing Overhead in MPP Systems. Under review, 2009.

[10] S. K. Lai. Flash memories: Successes and challenges.
IBM J. Research and Development, 52(4/5), Jul./Sep.
2008.

[11] D. Lammers. Spansion Seeks DRAM Replacement
in Servers. http://www.semiconductor.net/article/

CA6571267.html, 18 Jun. 2008.
[12] M. LaPedus and D. McGrath. ’Universal mem-

ory’ race still on the starting block. EE Times,

This is a slightly expanded version of a paper that appeared in Proc. HotOS-XII, May, 2009 7

19 Dec. 2008. http://www.eetimes.com/
showArticle.jhtml?articleID=212501437.

[13] K. Leigh. Design and Analysis of Network and IO Con-
solidations in a General-Purpose Infrastructure. PhD
thesis, University of Houston, 2007.

[14] A. Pirovano, A. Redaelli, F. Pellizzer, F. Ottogalli,
M. Tosi, D. Ielmini, A. Lacaita, and R. Bez. Reliabil-
ity study of phase-change nonvolatile memories.IEEE
Trans. Device and Materials Reliability, 4(3):422–427,
Sept. 2004.

[15] S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner,
Y.-C. Chen, R. M. Shelby, M. Salinga, D. Krebs, S.-H.
Chen, H.-L. Lung, and C. H. Lam. Phase-change random
access memory: A scalable technology.IBM J. Research
and Development, 52(4/5), Jul./Sep. 2008.

[16] Spansion, Inc. Using Spansion EcoRAM to Improve
TCO and Power Consumption in Internet Data Centers.
http://www.spansion.com/about/news/
events/spansion_ecoram_whitepaper_06%
08.pdf, 2008.

[17] W. Vogels. File system usage in Windows NT 4.0. In
Proc. SOSP, pages 93–109, 1999.

This is a slightly expanded version of a paper that appeared in Proc. HotOS-XII, May, 2009 8

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 0 50 100 150 200 250
%

 o
f p

ag
es

 w
/ 5

0%
ile

 T
B

W
P

 >
=

 x
Time between writes to page (TBWP) in seconds

SPECjbb (148.9 sec, 514855 pages touched)
Nutch (118.5 sec, 190721 pages touched)

Nutch 4-core (212.9 sec, 259429 pages touched)

(a) 25th %ile TBWP

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 0 50 100 150 200 250

%
 o

f p
ag

es
 w

/ 5
0%

ile
 T

B
W

P
 >

=
 x

Time between writes to page (TBWP) in seconds

SPECjbb (148.9 sec, 514855 pages touched)
Nutch (118.5 sec, 190721 pages touched)

Nutch 4-core (212.9 sec, 259429 pages touched)

(b) Median (50th %ile) TBWP

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 0 50 100 150 200 250

%
 o

f p
ag

es
 w

/ 7
5%

ile
 T

B
W

P
 >

=
 x

Time between writes to page (TBWP) in seconds

SPECjbb (148.9 sec, 514855 pages touched)
Nutch (118.5 sec, 190721 pages touched)

Nutch 4-core (212.9 sec, 259429 pages touched)

(c) 75th %ile TBWP

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 0 50 100 150 200 250

%
 o

f p
ag

es
 w

/ 9
5%

ile
 T

B
W

P
 >

=
 x

Time between writes to page (TBWP) in seconds

SPECjbb (148.9 sec, 514855 pages touched)
Nutch (118.5 sec, 190721 pages touched)

Nutch 4-core (212.9 sec, 259429 pages touched)

(d) 95th %ile TBWP

Figure 1: Distributions of times between writes to pages

