[LaBs™)

The DUDE Framework for Grayscale | mage Denoising

Giovanni Motta, Erik Ordentlich, Ignacio Ramirez, Gadiel Seroussi, Marcelo J. Weinberger

HP Laboratories
HPL-2009-252

Keyword(s):
Image denosing, impulse noise, discrete universal denoising, dude

Abstract:

We present an extension of the Discrete Universal DEnoiser (DUDE) specialized for the denoising of
grayscaleimages. The original DUDE is alow-complexity algorithm aimed at recovering discrete
sequences corrupted by discrete memoryless noise of known statistical characteristics. It isuniversal, in the
sense of asymptotically achieving, without access to any information on the statistics of the clean sequence,
the same performance as the best denoiser that does have access to such information. The denoising
performance of the DUDE, however, is poor on grayscale images of practical size. The difficulty liesin the
fact that one of the DUDE's key components is the determination of conditional empirical probability
distributions of image samples, given the sample valuesin their neighborhood. When the alphabet is
moderately large (asis the case with grayscale images), even for a small-sized neighborhood, the required
distributions would be estimated from alarge collection of sparse statistics, resulting in poor estimates that
would cause the algorithm to fall significantly short of the asymptotically optimal performance. The
present work enhances the basic DUDE scheme by incorporating statistical modeling tools that have
proven successful in addressing similar issues in lossless image compression. The enhanced framework is
tested on additive and non-additive noise, and shown to yield powerful denoisers that significantly surpass
the state of the art in the case of non-additive noise, and perform well for Gaussian noise.

External Posting Date: September 6, 2009 [Fulltext] Approved for External Publication (éa
Internal Posting Date: September 6, 2009 [Fulltext]

© Copyright 2009 Hewlett-Packard Development Company, L.P.



The DUDE Framework

for Grayscale Image Denoising

Giovanni Motta, Erik Ordentlich, Ignacio Rdrez, Gadiel Seroussi, and Marcelo J. Weinberger

Abstract

We present an extension of the Discrete Universal DEnoBEIDE) specialized for the denoising of grayscale
images. The originaDUDE is a low-complexity algorithm aimed at recovering discrete sequences corrupted by
discrete memoryless noise of known statistical characteristics. It is universal, in the sense of asymptotically achieving,
without access to any information on the statistics of the clean sequence, the same performance as the best denoiser
that does have access to such information. The denoising performance DYDIE, however, is poor on grayscale
images of practical size. The difficulty lies in the fact that one of Bi¢DE'’s key components is the determination
of conditional empirical probability distributions of image samples, given the sample values in their neighborhood.
When the alphabet is moderately large (as is the case with grayscale images), even for a small-sized neighborhood,
the required distributions would be estimated from a large collection of sparse statistics, resulting in poor estimates
that would cause the algorithm to fall significantly short of the asymptotically optimal performance. The present work
enhances the basizUDE scheme by incorporating statistical modeling tools that have proven successful in addressing
similar issues in lossless image compression. The enhanced framework is tested on additive and non-additive noise,
and shown to yield powerful denoisers that significantly surpass the state of the art in the case of non-additive noise,
and perform well for Gaussian noise.

I. INTRODUCTION

The discrete universal denoisgDUDE), introduced in [1], [2], aims at recovering a discrete, finite-alphabet
sequence, after it has been corrupted by discrete memoryless noise of known statistical characteristics. It is shown
in [2] that theDUDE is universal, in the sense of asymptotically achieving, without access to any information on
the statistics of the clean sequence, the same performance as an optimal deitloiaecess to such information.

It can also be implemented with low complexity. In [3], the definition of h@DE was formally extended to
two-dimensionally indexed data, and an implementation of the scheme for binary images was shown to outperform
other known schemes for denoising this type of data.

The DUDE algorithm performs two passes over the data. In a first pass, a conditional probability distribution is
determined for each (noisy) sample given the sample values in a (spatial) neighborhoodtest by collecting

statistics of joint occurrences. Thimntext modeis then used for determining conditional probability distributions
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for cleansamples given each (noisy) context pattern and the sample value observed at the corresponding location. In
a second pass, a denoising decision is made for each sample based on this conditional distribution. The decision is
essentially the Bayes optimal one with respect to the above distribution and a given loss function. A more detailed
description of theDUDE algorithm is given in Section Il

Although the asymptotic results of [2] apply to any finite alphabet, it was observed in [3] that extending the
results to grayscale imadeor, in general, to data over large alphabets) presented significant challenges. The main
challenge stems from the fact that, in a context model over an alphabet ol\&izemrametrized by the symbol
conditional probabilities, and with a neighborhood of sizethe number of free parameters ig¢(M—1) (for
example, in an 8-bit image, a rather smalk 3 neighborhood consisting of the eight samples closest to a given
sample, yield264.255 ~ 5-102! free parameters). This means that context-conditioned statistics for estimating these
parameters are likely to be sparse and provide little, if any, information on the structure of the image. This well
known phenomenon is sometimes referred to as the “sparse context” problem. The theoretical results of [2] indeed
show that theDUDE'’s rate of convergence to optimal performance depends strongly on the size of the context
model. This convergence rate is determined largely by the degree to which the law of large numbers has taken hold
on random subsequences of noisy samples occurring in a given context pattern and having a given underlying clean
sample value. Convergence requires that these subsequences be relatively long, implying numerous occurrences of
each noisy pattern and underlying clean sample value.

Due to these facts, the origin@UDE scheme, as defined in [2], will not approach optimal performance for images
of current or foreseeable practical size over a large (say, 256-symbol) alphabet. This problem has also been noticed
in [4, p. 509], where the direct application of tlJDE's tools to model the necessary conditional probability
distributions for grayscale images is deemed to be “almost hopeless.” Although this pessimistic assessment appears
justified at first sight, we show that the basic scheme of [2] can be enhanced with image modeling tools, enabling
effective implementations of theUDE framework in grayscale image applications.

A “sparse context” problem very similar to that confronting théDE exists, and has been successfully addressed,
in lossless image compression (see, e.g., [5], [6], or the survey [7]), where state-of-the-art algorithms are also based
on the determination of probability distributions of samples of the input image, conditioned on their céietktis
and other inference problems the concept is formalized by the notiorodél cos{8], a penalty proportional to the
number of free statistical parameters in the model, which is paid to learn or describe the estimated model parameters.
The principle underlying the tools developed for lossless image compression is that one should not impose on the
universal algorithm the task of learning properties of the datiach are known a-priotiFor example, one instance
of the problem is formally studied in [9], where it is shown how the widely used practice of coding prediction

errors (rather than original samples) can be seen as allowing the statistics of the data to be learned, effectively,

1These are images with a relatively large dynamic range (e.g., in our exar@plegrayscale values), for which the main assumption is
that the numerical sample values preserve, up to quantization, continuity of brightness in the physical world. Most of our discussion will refer
to monochrome grayscale images, although the algorithms extend by the usual methods to color images. Notice also that we assume a truly
discretesetting: the noisy symbols are discrete, and they are assumed to belong to the same finite alphabet as the clean symbols (e.g., we
consider discrete Gaussian noise). Other works in the literature often assume that the noisy samples are arbitrary real numbers, which provides
the denoiser with more information than the corresponding quantized and possibly clipped values assumed in the discrete setting. It can be
argued that such continuous information is often not available in practice, e.g. when denoising a raw digital image acquired by a digital camera.

2In the image compression case, the contexts are causal, whereas BWJIDE, the contexts are generally non-causal.



with a much smaller model. The use of prediction is based on our prior knowledge of the targeted images being
generally smooth, and of the fact that similar variations in brightness are likely to occur in regions of the image
with different baseline brightness levels. Explicit or implicit application of these principles has led to some of the

best schemes in lossless image compression [5], [6], which are all based on prediction and context modeling.

The foregoing discussion suggests that modeling tools developed and tested in lossless image compression could
be leveraged for estimating the distributions required by D®E, together with tools that are specific to the
assumptions of the denoising application. In this paper, we pursue this strategy, and show that enhancing the basic
DUDE algorithm with such tools yields powerful and practical denoisers for images corrupted by a variety of types
of noise. Although the goal of this work is not necessarily to achieve the current record in denoising performance
for each image and each type of noise studied, the enhabio®& scheme significantly surpasses the state-of-
the-art for some important types of (non-additive) noise, and performs well for Gaussian noise. We expect that
further refinements, extensive experimentation, and synergistic incorporation of ideas from other approaches will
enable improvements in denoising performance over the results reported on here. We refer to the @ibiaBced
schemes described in the paper asaanework since what is described is a general architecture for a denoising
system following the basiDUDE structure from [2], which is then specialized for each noise type of interest. Thus,
although all the schemes described will have the same basic components fulfilling the same functions, the specific
details of some of the components will vary depending on the type of noise targeted.

Denoising of signals and in particular digital images has been given considerable attention by the signal processing
community for decades, starting from the works by Kalman [10] and Wiener [11]. A comprehensive review included
in [4] gives an account of the rapid progress on the problem in recent years. Inspection of the literature reveals
that the work is divided into two fairly disjoint classes: additive (usually Gaussian) noise, and non-additive noise
(the latter includes multiplicative noise, although our focus in this class will be mostly on the so-cafiatse
noise types). We survey the main ideas behind a few of the recent approaches, which either have some conceptual
connections to our own, or will be used as references in the results of Section V. The reader is referred to [4] and
references therein for a more comprehensive account, includingakelet thresholdingpproach of [12] and the
Gaussian scale mixturesf [13].

For additive noise, the most relevant schemes are presented in [4] and [14] and are discussed next; other approaches
include thefields of expert®f [15] and thesparse representatioaf [16] (which is combined with thenultiscale
approachin [17]). Also, in a different offshoot of [2], image denoising schemes for Gaussian noise [18] have
been derived from extensions of tb&/DE ideas to continuous-alphabet signals [19]. The non-parametric Bayesian
least squares estimator developed in [4] is predicated on the observation that “every small window in a natural
image has many similar windows in the same image.” The method uses this assumption to estimate each clean
image sampler; as a weighted average of all the sampiesn the noisy image, where the weight of increases
monotonically with a measure of similarity between the contexts;oénd z; (the noisy version oft;). Despite
being couched in very different mathematical languages, there is much affinity between the approach in [4] and
the one in this paper—taken to bare-bones simplicity, kiOE approach can be seen as also taking advantage

of the quoted observation. This concept has been combined in [14] with a three-dimen3NBIQT-coefficient



denoising technique, resulting in a scheme that achieves unprecedented performance for Gaussian noise. In this
scheme, image windows with sample values similar to those in a window surrounding the sample to be denoised
are aggregated intoD array which is then denoised in tB® DCT domain using thresholding or Wiener filtering.

This procedure is repeated for multiple relative positions of the same noisy sample in the window, and the final
estimate for that sample is obtained as a weighted average.

Although the models in the above works could be used with other types of noise, some of them were specifically
designed with additive Gaussian noise in mind, and the results published are for that type of noise. Non-additive
noise, on the other hand, poses different problems. A typical example for this type of noiseSalttlaed Pepper
(S&P) noise, where a portion of the image samples are saturated to either totally black or totally white. For
this type of noise where outliers are very common, median-based estimators are widespread and fairly effective.
Works like [20], [21] or [22] also exploit the fact that it is possible to identify with good accuracy candidate noisy
samples, so as to avoid changing samples that are not corrupted, and sometimes to exclude noisy samples from some
computations. Impulse noise strongly impacts image gradients, and thereforarigt@nal approach of [23] (see
also [24]) is well-suited. In this approach, used in [25] and [26] to denoise highly corrupted images, the denoised
image is the result of a tradeoff between fidelity and total variation. While the fidelity term measures the difference
between an image model based on edge-preserving priors and the observed data, the total variation term measures
the “roughness” of the image. Another, more difficult type of impulse noise is\fhary symmetricnoise, where
M stands for the alphabet size of the clean (and noisy) signals. In this type of noise, a sample is substituted, with
some probability, by a random, uniformly distributed value from the alphabet, and a simple thresholding cannot
separate out the clean samples. Image denoising/ffaary symmetric noise is also addressed in [25] and [21].

The rest of the paper is organized as follows. In Section Il we review the basic concepts, notations, and results
from [2] and [3]. Section Il describes the tools used to address model cost and other challenges in the enhanced
DUDE framework. Section IV describes the implementation of the framework &, 3/-ary symmetric noise, and
Gaussian noise. In Section V we describe experiments performed with the resulting denoisers, comparing whenever

possible with other denoisers from the literature.

Il. BAsSIC DUDE

In this section, we review the basiUDE algorithm from [2], as extended to two-dimensional data in [3].

A. Notation and problem setting

Throughout, anmageis a two-dimensional array over a finite alphabétof size |A|=M (without loss of
generality, A = {0,1,...,M—1}). We letx™*" ¢ A™*™ denote anm x n image, also denotest when the
superscriptm x n is clear from the context. LeZ denote the set of integers, and kf,«,, denote the set of
two-dimensional indiced/,,x, = {(ir,i.) € Z*|1 < i, <m, 1 <i. < n}. Thei-th component of a vecton
will be denoted byu;, or sometimeai[i] whenu is a vector expression. Similarly, we denote a typical entry of

by z; (or x[i]), i € V,uxn- When the range of an image indéxs not specified, it is assumed to bg, ..



We assume that a clean imagés corrupted bydiscrete memoryless noisbaracterized by a transition probability
matrix IT = {II(a, b) }o pc4, Wherell(a,b) is the probability that the noisy symbol tswhen the input symbol is
a. The noise affects each sample in the clean im&ge” independently, resulting in a noisy imag&*", where
z; is a random variable distributed according®yz; = b) = II(z;,b), b € A. We regard this process ag"*™
going through anoisy channelrefer toIT as thechannel matrixand toz™*™ as thechannel outputWe assume,
for simplicity, that the clean and noisy images are defined over the same alphabet—the setting in [2] is more
general, allowing for different input and output alphabets. We also assume, following [2FIti&nhon-singular.
In later sections of this paper, however, we will consider some channel matrices which are non-singular but badly
conditioned and we treat them, in practice, as singular.

A mxn image denoisefs a mappingx™*™ : A™X"— A™*" Assume a given per-symbadss functionA :
A?—[0,00), represented by a matriA = {A(a,b)}.pea, WhereA(a,b) is the loss incurred by estimating the
symbola with the symbolb. Forx,z € A™*™ we let Ly (x,z) denote the normalized denoising loss, as measured

by A, of the image denoise¢”™*"™ when the observed noisy imagezsand the underlying clean oness i.e.,

Ly(x,2) = % Z Az, x™ " (2)[d]),

1€Vmxn

where we recall thag™>"(z)[¢] is the component of™*"(z) at thei-th location. We seek denoisers that minimize
this loss in a stochastic sense (under the distribution generated by the channel). Notice that the &pgping
may depend on the channel matiik and the loss functior, but not on the clean image, i.e., givenII and A,

a noisy imagez will always result in the same denoised imag®*"(z), independently of which combination of

clean image and noise realization produeed

B. Description and properties of the DUDE

We start with some definitions that formalize the usual notion of contexteighborhoodsS is a finite subset of
7 that does not contain the origii0, 0) (referred to as theenterof the neighborhood). As an example, the 3
neighborhood referred to in Section | &= ({—1,0,1}x{-1,0,1}) \ {(0,0)}. Fori € Z?, we denote byS+i
the set{j+i|j € S}, and, by extension, we say thats its center. For an image andS+i C V,,,«,, we denote
by S7 a vector of dimensionS| over A, indexed by the elements &, such thatS?[j] = z;4;, j € S. We refer
to such vectors as-contexts or simply contexts(with a known underlying neighborhoafi implied), and say that
z; occurs in contextS? (recall thati ¢ S+3). For “border” indices; such thatS+i € V,,,«,, the vectorS? is also
well defined by assuming, e.g., that the value of any “out of bound” sample is set to an arbitrary constadt from

For a neighborhood and a generic context vecter we letm(z,s) denote thel/-dimensional column vector
whose components are

m(z,s)[a] = [{i € Viuxn : S =8,z =a}|, acA 1)

In words, m(z, s)[a] denotes the number of occurrences of the synabah contexts, in the imagez.
We denote byu ® v the component-wise (Schur) product of thé-dimensional vectoraxr and v, namely,

u® v)[a] = ula]v]a], 0 < a < M—1. The transpose of a matrix (or vectas) is denotedA”, and if A is a
( )la] = ula]v[d] p



For each index € V. xn:

1) DetermineP, (-|S?), the empirical distribution ohoisy symbolsz; whose contextS? is identical toS7.

2) From P, (-|S?) and the noise transition matrix, estimate a distributian(- | SZ, z;) of cleansymbols whose
correspondingroisy symbol is z; with contextSy. An expression for the estimated distribution is given, up| to
normalization, in (3).

3) Using the loss matrixA, produce a denoised valyg = x'3 " (z)[i] according to (2), so that the expectation
of the lossA(x, ;) with respect to the distributio®, (- | SZ, z;) estimated in Step 2 is minimized.

Fig. 1. Outline of theDUDE algorithm.

nonsingular matrix, we writed =7 as shorthand fotA=1)7. Finally, let\, and, denote the:-th columns ofA
andTI, respectively, for € A.
We are now ready to define the baSiODE. For a given neighborhood, the m xn fixed-neighborhoodUDE

Xe " is defined by
2MXn I . T. T z .
X " (z)[i] = arglgrél}«l A ( (™" m (2,87)) ® wzi), 1€ Vinxn - 2

The m x n basicDUDE x " is obtained by letting the size of the neighborha®djrow at a suitable rate with
m andn (refer to [2] and [3] for details).

The intuition behind the denoising rule in the fixed-neighborhbabE (2) is as follows. After proper normal-
ization, the vectom (z, S?) in (2) can be seen as an empirical estimatg(;|S?), of the conditional distribution of
a noisy sample given its context, and the vedor m (z, S#) as an estimate of the empirical distributiéq(-|S?)
of the underlyingcleansample given theoisycontext (we say that the multiplication by the matfik” performs
the “channel inversion”). The vector

(I "m (z,87%)) @, , 3)

in turn, can be interpreted, after normalization, as an estifRate; | S) of the posterior distribution of the clean
sample given the noisy conte” and the noisy sample;;. The expression (2) corresponds to a loss-weighted
maximum a posteriori estimate af; with respect toﬁx(- |SZ,2). In a sense, the expression in (3) combines
two pieces of “advice” on the value of the clean symbal On one hand, the estimated conditional distribution
Py (-] 87) conveys information on what the clean symbol in positids likely to be, given what is observed in the
same context in the rest of the noisy image, while on the other hand, the noisy saritpédf conveys information
on the likelihood ofz; which is independent of the rest of the image, given the memoryless assumption on the
noise. If the noise level is not too high, the advicezpfs given more weight, while in more noisy conditions, the
advice of the context gains more weight. The algorithm is outlined in Figure 1.

The universality of the denoisey/ <" has been shown in two settings. In th®chasticsetting, the imagex
is assumed to be a sample of a spatially stationary and ergodic process. The results of [2], as extended to the
two-dimensional case in [3], state that in the limit @ (m,n) — oo), almost surely (with respect to both the
input and the channel probability laws), t&DE loss does not exceed that of thestmxn denoiser. In the

semi-stochastisetting, the input is assumed to be an individual image, not generated by any probabilistic source,



while the channel is still assumed probabilistic. It is shown in this case that, almost surely (with respect to the
channel probability law), the asymptotic loss of thelDE is optimal amongsliding window denoisergsee [2]

and [3] for details). Here, the result holds independently for each individual imgge particular, the competing
denoisers could be designed with full knowledge of the pair of image¥ Notice that most image denoisers used

in practice are of the sliding-window type.

In addition to its theoretical properties, tb&DE is also practical (see [2] for an analysis showing linear running
time and sub-linear working storage complexities). The algorithm, in both its one-dimensional and two-dimensional
versions, has been implemented, tested, and shown to be very effective on binary images [2], [3], text [2], and
large HTML code files [27]. In [28] and the current work, we enhance the basic scheme to make it effective on

grayscale images.

I11. iDUDE: AN ENHANCED FRAMEWORK FOR GRAYSCALE IMAGE DENOISING

In this section, we describe some tools added toDiBE framework to enable effective denoising of grayscale
images. We shall refer to the enhanced frameworkD&OE. The enhancements are described here in generality

covering a broad class of channels. Detailed implementations for specific channels are presented in Section IV.

A. Addressing the model cost problem

Estimating empirical conditional distributiorf3( - | SZ) of image samples given their (noisy) context is a crucial
component of th®UDE algorithm. As mentioned in Section |, estimating these distributions by collecting sample
counts for “raw” contextsS? is ineffective for images of practical size. To address this problem, we exploit our
prior knowledge of the structure of the input data via a stochastic mBgé!l | S*) in which contexts share and
aggregate their information. This will allow us to learn additional information about the distribution of;;sgiyen
its contextS?, from occurrences of samples, depending on how “closeS? is to S7 in an appropriate sense. We
will then use our estimate dPx (- | S¥) as an estimate aPy(-|S?), and apply the denoising rule. Expressed in a
different mathematical language, this “shared learning” paradigm can be seen to be taken to the limit in [4], where
every context contributes, in an appropriately weighted form, to the denoising of every location of the image.

For the targeted grayscale images, prior knowledge takes the form of assumptions of brightness continuity (or, in
short,smoothnegs statistical invariance under constant shifts in absolute brightiESsrivariancg, andsymmetry
Next, we discuss these assumptions, and how they translate to various modeling tools. The assumptions and tools
apply tocleanimages (denoted as), and they will clearly break down in some cases of images affected by noise.
We defer the discussion of how, nevertheless, the tools are usedilDUb& framework to Subsection III-D. Until

then, we ignore the effect of noise.

Al) SmoothnessBy this property, contexts that are close as vectors will tend to produce similar conditional
distributions for their center samples. Therefore, they can be clustered@anttitioning classe®f vectors
that are “similar” in some sense, e.g., close in Euclidean space, and the conditional statistics of the member
contexts can be aggregated into one conditional distribution for the class, possibly after some adjustment

in the support of each distribution (see A2 below). There is a trade-off between the size of a conditioning



A2)

A3)

class (or the total number of classes) and the accuracy of the merged distributions as approximations of the
individual context-conditioned distributions. If classes are too large, they will include contexts with dissimilar
associated conditional distributions, and the merged distribution will not be a good representative of the
individual member distributions. If classes are too small, the associated merged statistics will be sparse,
and they will not have faithfully captured the structure of the data. This is the well known trade-off in
stochastic modeling which is at the core of the minimum description length (MDL) approach to statistical
inference [29]. Algorithmic approaches to the optimization of the model size (number of classes) exist, and
have been implemented successfully in lossless image compression [30]. However, simpler schemes based
on carefully tuned but fixed models, such as those used in [5], [6] achieve similar levels of performance at a
lower complexity cost. We will take the latter approach in our design of a context mod&UdE. Although

we have mentioned Euclidean distance between contexts (as vectors) as a natural measure of “closeness,”
similarities in other features may also be used, such as a measure adtiviey levelin the context (e.g.,
empirical variance), or a signature of the contextésture [6]. The use of these tools iDUDE will be
discussed concretely when we describe implementations in Section V.

DC invariance(i). Since similar contexts are expected to generate conditional statistics which are similar

in shape but with slightly misaligned supports, merged conditional statistics generated as in A1 would be
“blurred.” This misalignment can be compensated for by usingreaictor for the center sample of each
context as a function of the context samples, and accumulating statistics of the prediction errors rather than
the original sample values. It has long been known (see, e.g., [31]) that such prediction error distributions
are peaked and centered near zero (Laplacian or generalized Gaussian models have proven very useful to
model these distributions). When the merged distribution is used for a specific sample, e.g., in Step 2 of the
procedure in Figure 1, the prediction error distribution should be re-centered at the predicted value for the
sample, which can always be recovered from the sample’s original context. The next item shows how the use
of prediction allows for a broader notion of similarity between contexts.

DC invariance(ii). Since contexts that differ only by a constant brightness level are likely to produce similar
conditional distributions up to a shift in their support, statistics may be conditioneplaatients(differences

between spatially close sample values) rather than the sample values themselves, so that conditional statistics
of contexts that differ only by a constant intensity vector are merged. More specificadlyisifh context,

a€A, anda denotes a constant vector with all entries equad,tthen
P(z;=b|s)~ P(z;=b+a|s+a), bbtac A sstac Al (4)

where thex: sign denotes that we expect these probabilities to be “similar” in some sense appropriate to
the application. Clearly, before they are merged, the conditional distributions must be shifted so that they
are centered at a common point. This is accomplished by using prediction as described in A2. Also, when
gradients are used to build contexts in lieu of the original sample values, the clustering described in A1 above

is appliedafter the switch to gradient space. Notice that although the use of prediction described here and
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Fig. 2. Merging of context conditional distributions.

the one described in A2 are related and derive from the same assumption, they are not equivalent. The use
of prediction as mentioned in A2 is advantageous but optional when original samples are used to form the
contexts, but it becomes mandatory if contexts are based on gradients.

A4) SymmetryPatterns often repeat in different orientations, and statistics are not very sensitive to left/right,
up/down, or black/white reflectiofsThus, contexts that become close as vectors after shape-preserving
rotations or reflections of the underlying neighborhood pattern, or gradient sign changes (i.e., change in sign
of all the differences mentioned in A3), will tend to produce similar conditional distributions, which can
be merged as in A1-A3. To take advantage of these symmetries, contexts should be brought, by means of
sign changes, and shape-preserving neighborhood rotations and reflections, to some canonical representation
that uniquely represents the context’s equivalence class under the allowed mappings (an example of such
a canonical representation will be described below in Example 1). When bringing a context to canonical
representation involves a gradient sign change, the support of the corresponding conditional distribution should

be flipped around zero before merging with the other distributions in the conditioning class.

Clearly, the accuracy and appropriateness of the assumptions underlying A1-A4 will vary across images, or even
across parts of the same image. Nevertheless, they have proven very useful in image compression and other image
modeling applications. In particular, the use of a prediction function inR®E framework allows for conditional
distributions that would otherwise be considered different to “line-up” and be merged in a useful way. Thus, as in
data compression, prediction is an important tool in model cost reduction [9] and the quality of the predictor affects
the performance of the system. The better the predictor, the more skewed the distribution of prediction error values,
which, in turn, will lead to a “sharper” selection of a likely reconstruction symbol as learned from the context (see
the discussion following (2)).

Example 1:Figure 2 shows an example of the application of the tools described in A1-A4. Assums§ ithat
the 3x3 neighborhood of samples closest to the center sample, and that the empirical distribution of this sample

conditioned on each of the contexts labelé@énd B is as illustrated on the right-hand side of Figure 2. We use the

3By black/white reflection invariance we mean thasifs a context vector, anev is a constant vector with all entries equal to the largest
possible sample valuéy/ —1, then we expecPx(z |s) ~ Px(M—1—x|w—s).
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average of each context, namelyg(A) = 124, andavg(B) = 144, as a predictor. We then subtract the predicted

value from each sample to obtaindéferential representationD(C), of each context, as follows:

-44|-25| -8 45| 24| 8
DA)= |-7|x]|-6 and D(B)=|8|x|6
-3|16(77 2 |-16-77

We define the canonical representation of a context as one in which the upper left corner contains the largest entry,
in absolute value, of the four corners of the context (this can always be arrived9at wgtations), and the upper

right corner contains the largest entry, again in absolute value, of the two corners on the secondary diagonal of the
neighborhood (this can be achieved by a reflection, if needed, around the main diagonal after the initial rotation).

Furthermore, we require the entry at the upper-left corner to be nonnegative, and we flip the sign of the context if

this is not the caséThe array marked!’ in the figure shows the result of the above transformations on cortext

For contextB, the same transformations would result in the vali&@ at the upper left corner. Therefore, we change

the sign of all the entries in the context, resulting in the array labBleih the figure. This sign change also means

that prediction errors are accounted for in the merged histogram with their signs changed, or equivalently, that the
original empirical distribution conditioned oB is reflected around zero before merging. Finally, we observe that

the canonical representatiod$ and B’ are close in Euclidean distance, and we assume that they will be assigned

to the same conditioning class. Thus, the distributions conditioned’cend B’ merge, resulting in the common

distribution centered at zero represented on the left-hand side of the figure.

B. The formal model and its estimation from clean data

In this subsection, we formalize the prediction-based méte(- | S*) outlined in Subsection IlI-A for samples
x; of an imagex conditioned on their contexts* for a given neighborhoodS (which, as mentioned, we will
not attempt to optimize). We first define the notation and terminology.iLet4dS — A denote a mapping that
predicts a sample as a function of its context, andlet A5 — ZS denote a function mapping a context to a
differential representation (e.g., through the use of gradients) which is invariant under constant translations of the
context components. Lét: Z° — ZS denote a function that maps differential representations to a unique canonical
representation by applying shape-preserving rotations and reflectioh@tg., as described in Example®iFinally,
let Q:7° — {91,92,...,9k}, K > 1, denote a classification function mapping canonical representations to a
set of K conditioning classesor clusters(this function may be image-dependent). Abusing notation, we will also
useQ to denote the composition @, C, and Q, so thatQ(Sy) denotes the cluster corresponding to a configxt

Our model of the image is generated by conditional probability distributiofs (e | Q,;), of prediction error
valuese, —M+1 < e < M—1, associated with each conditioning clagg, « = 1,2, ..., K (the above ranges of
k ande are implicitly assumed throughout the discussion). Under this model, a predictioneenes probability

Pr(e| Q) and the corresponding conditional distributidi (x| Q) of a samplex, 0 < x < M—1, that occurs

“We omit a discussion of ambiguities and tie-breakers, which are easily handled so that the canonical representation is unique.
5To simplify notation, we will assume the canonical representation does not include sign changes; this technique is also easily implemented,
cf. Example 1 and [5], [6].
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in contextSy, given its conditioning clas®,, = Q(Sy), is implied by the relation
z = max (0, min(e + Z(So), M — 1)) .

In words, the conditional distributioRz (e | Q,.) is shifted byz(Sy) and the mass corresponding to negative values
accumulates &, whereas the mass corresponding to values larger Athari accumulates ad/ —1 (i.e., the signal
“saturates” at the black and white levefsYhis relation is more conveniently expressed in vector notation, by
letting u$, denote an indicator (column) vector of lengiti, with a 1 in positiona, 0 < a < M—1, and zeros

elsewhere, and representing the observation of a sampeu?,. Define theM x (2M —1) matrix

M—1-a
1 1 1 0 0 0
00 - 0 A
Cla)=| . | In LacA (5)
N : 0O 0 --- 0
0 0 0 11 --- 1

wherel,;, denotes an identity matrix of ordér With these definitions, the relation betweemande takes the form
uf, = C(#(So))ugi ;" (6)

Similarly, we will regard conditional probability distributiond;( - | ¢) as (column) vector® (c), indexed by the
sample space ofy.

With access tax, the distributionP 5 (Q,;) can be estimated from samples occurring in the contexS* by
selecting a suitablestimation matrixM(Z;), that depends on the predicted valtie= Z(S), and accumulating
M(z;) u}} into a vectore,, of dimension2)/ —1. The role ofM(Z;) is to map theM -dimensional indicator vector
u}; into a vector of the same dimension as the desired estimate. Specifically, ftifgQ(S¥), the estimate

—1
Pu(Q) = Y, M(#)CE) > M@)uj | 2R Y M(@)uj; 7
1QF=0Qx 1:0¥=0, :0X=0Q,

where the matrixR acts as a normalization factor, is in fact unbiased for any choice of the estimation matrices
M(#;) that leads to a well-defineR.” This property is readily seen by replacing= z; in (6), pre-multiplying
each side of (6) byM(Z;), summing both sides over all the indexesuch thatQ¥ = 9., and noting that the
expectation ofu§M " under Pg(-|Q,) is Pr(Q,). A natural choice folVI(i;) is the matrixS;,, where
]T

Sa & [Onxmr-1-a) | Tnr| Onrxa ] a€A, ®)

with 0, representing gxk zero matrix. This choice corresponds to incrementing the entry; of e,; by one

80ur implementation uses this saturation model for simplicity. Other, more sophisticated models are possible.
“If necessary, pseudo-inverse techniques can be used, as discussed in Subsection IlI-F. However, as will become clear later in this subsection,
the invertibility problem will not arise for our choice of estimate.
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1) Initialization. Initialize to zero a histograng,., of prediction error residual occurrences for each context cluster
Ok, 1<Kk <K.
2) Statistics collectionFor each index € Vi, xn:
a) Setz; = z(S;), the predicted value for;.
b) SetSY = D(SY), the differential representation & .
c) SetCY = C(SY), the canonical representation 8f .
d) SetQY = Q(CY), the conditioning class aof; .
e) Sete. «— e, + M'(z;) u}; for x such thatQ,, = 9OY.
3) Normalization.For eachr, normalizee, to obtainP z(Q..).
4) Conditional distributions for individual contextfor each index € V,,xx:
a) Setz;, SY, and QY as in Step 2 above.
b) SetPx(SY) = C(&)Pr(QY).

Fig. 3. Estimation of conditional distributions based on prediction and context classification.

for index i : the observation of; gives the observer a sample from the “window'z;, M —1—z;] (of size M) of
the support (of siz€ M —1) of Pg(-| Q).

The normalization byR differs from the natural choice of (uniformly) normalizing by the sdn) e,[e]. This
difference accounts for two factors: first, the saturation in the model (6), and second, the fact that the number of
times a given entry of e,, has an opportunity to be incremented, denoteddepends on the number of predicted
valuesz; such thate falls in the window—z; < e < M—1—x;. Notice, however, that the variance of the ratio
e.le]/n. is, under reasonable assumptions, inversely proportional.td herefore, small values of, will produce
estimates of high variance for the corresponding entrPgt -1 9,) and, hence, uniform normalization has the
effect of producing estimates with a more uniform variance, which is a desirable property. Consequently, we will
replaceR with a diagonal matrix effecting uniform normalization and use the resulting estimatesfor| Q,.).

With the estimated distributiof; (- | 9*) in hand, the corresponding estimate/of ( - | SX) based orx is given
by the vector

Px(SF) = C(#:) Pu(QF), i € Vinxn - )

The overall modeling procedure is outlined in Figure 3 where, in preparation for the situation in which the model
is estimated from noisy data, we have decoupled three images that so far have been foldedh@tooisy input
imagez, anavailableimagey (which will be derived fromz), and the clean image. Thus, contexts are denoted
SY and are formed frony, and the update af,, uses the observed sample(rather than the unavailable valug),
appropriately replacindI(z;) with a matrixM’(Z;) to be introduced in Subsection IlI-D. The case of estimating
the model from clean data correspondste y = x.

In Figure 3, as in the preceding discussion, we have assumed, for simplicity, that the prediction fanistion
fixed, in the sense that its value depends only on the sample values of the context it is applied to. The actual
procedure used ifDUDE is enhanced with the addition of an adaptive component to the prediction function, that
depends also on image statistics associated to the context, and a two-stage context clustering strategy. We discuss

these enhancements next.
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CLEAN NOISY MERGED

0 a Ml :
0 b M1

0 b M1

Fig. 4. Effect of &P noise on merging of similarly-shaped distributions centered at different values.

C. Two-stage modeling

It has been observed (see, e.g., [5]) that conditional distributions of prediction errors produced by a fixed
predictor exhibit context-dependent biases. To improve prediction accurb@s @ancellationcomponent is used
in conjunction with the fixed predictor. To derive this component, contexts are clustered in two stages.

Let z be a fixed predictor, as discussed in Subsection IlI-B. We assume that a first-stage classification function
R :7Z° — {Ry,Ra,...,Rs}, J > 1, mapping canonical representations to prediction clusters (or classes), is
defined. LetZ, denote the set of sample indicgsuch thatR, = R(S}) (where, again, we abuse the notation for
R), and letn, = |Z;|. For each clusteR,, 1 < ¢ < J, we compute a bias correction value that will be applied to

samples inZ, as
eo=—Y (&, —&(SY)), Le{l,2,.... ]}, (10)

n
tjez,

The final predicted value fat;, i € Zy,, is then given byz; = [Z; + ¢4,], where[v] denotes the integer closest to
v. Due to this rounding operation, rounding to an integer is no longer necessary in the fixed prediction fanction
Therefore, we reinterpret this function as one mapping contexts to real numbers, while the refined predictor can be
seen as an integer-valued functidS*) that depends on the samplesSfi, and also on the image through the
bias value estimated fdR(SY).

After applying the bias correction, statistics for the corrected prediction errors are collected in a (generally) coarser
set of context clusters, i.e., the clust®g arere-clusteredinto the set of conditioning classé®;, Qs, ..., Ok},
where each clas®,., 1 < k < K, merges samples from several clust®s Hereafter, we interpret the modeling
procedure in Figure 3 as using the prediction functioand corresponding prediction valugsthroughout in lieu

of £ and z;, respectively.

D. Model estimation in the presence of noise

The discussion in Subsections IlI-A-IlI-C has focused on the modeling of a clean image, ignoring the effect of
noise. To illustrate the effect of applying the preceding modeling assumptions to noisy data to eﬁt;r(l&ﬁ:

consider, for example, a8 channel. In this channel, a fractionof the samples are saturated to black (sample
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value0) or white (sample valué/—1) with equal probability. Clearly, noisy samples in this case generally will not
obey smoothness or DC-invariance assumptions. This affects both the samples whose distributions we are modeling,
and the contexts that condition these distributions. On the one hand, contexts that are similar (and could be clustered)
in the clean image will generally not remain so in the noisy image. On the other hand, distributions that have similar
shapes up to translation in the clean image may not remain so, as they may be differently positioned with respect
to the spikes a0 and M —1 caused by the noise. The latter effect is illustrated in Figure 4, where it is clear that,
since the merged statistics are not typical oféaPSchannel output, application of the channel inversion procedure

and denoising as in Figure 1 will not remove the noise.

Although the effect of noise may be more benign for other channels, given the above discussion, our approach
will not be to apply the preceding modeling assumptions to the noisy data. Rather, we will translate the operations
required by the tools to a “cleaner” domain, where the working assumptions are more likely to hold. To this
end, we will further assume that the formal model of Subsection IlI-B (for the clean samples) still applies when
the (unavailable) clean context is replaced by the corresponding onepie-fitered imagey. The imagey is
available for model estimation and can be obtained as the result of a “rough” denoising of the noisy insaug
a (possibly simpler) denoiser appropriate for the type of noise (e.g., a median filtex Fon&@se). In the iterative
process described in Subsection Ill4£,can also be the output of a previous iterationiDODE. Thus, we will
postulate thasS) can replaceS}* in the modeling of theé—th sample, as described in Figure 3. Our rationale for this
assumption is based on the fact thas?) is still a good predictor of:;, and therefore an effective model with few
conditioning classes, via context aggregation, can be built forihe imagey is also used for bias cancellation,
with y; replacingz; in the bias calculation (10). For zero-mean, additive noise, we could use the noisy samples
since the effect of noise will tend to cancel. However, such a strategy would fail for non-additive noise.

It should be noted that pre-filtering introduces some dependence of cos{éexas their noisy center samples
z;, since the value of; might have participated in the rough denoising of some of the componerg$.ofhis
“contamination” is undesirable since, by virtue of the independence assumptions on the channel, in the denoising
rule (2), the information on; is fully incorporated inw,, to produce, via the Schur product, the correct overall clean
symbol likelihoods used by the rule. However, it turns out that practical heuristics will allow us to detect when this
dependence is strong enough to negatively impact the performance of the denoising algorithm and act accordingly
(see Subsection IV-B). Pre-filtering can also be seen as a tool for capturing higher-order dependencies without
increasing model cost. Clearly, with conditioning classes based on a pre-filtered image, the conditioning events for
the original noisy samples depend on a larger number of original samples than the size of the neighborhood used.
Thus, pre-filtering increases the effective size of the contexts used to condition the distributions, without increasing
the number of conditioning classes.

Our task is now to estimate the above model dlmanimage samples, conditioned on contexts formed from an
available imagey (which is obtained from the noisy imagsg. To this end we follow the procedure of Figure 3,
but take into consideration the fact that we have accesgs ftather than to the clean image Notice that while our
goal coincides with the main step in the baselgDE algorithm, namely to produce an estimate of the posterior

distribution of the clean symbat; given the noisy contexf? and the noisy symbot;, we will accomplish it
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directly, without going through the intermediate step of estimating distributions of noisy samples.

To see how the model is estimated from noisy data usingDiBE approach, we revisit the derivation in
Subsection 111-B. When the image being sampled is noisy, each samplevides information about th@M —1)-
vector P (Q,;), subject to the same arbitrary shifts and saturation as before (see Equation (6)), but also to
noise. Now, recall from the discussion following (2) that, MuDE, the channel inversion is accomplished by
pre-multiplication by the matriXI~7". Thus, just as an occurrence of contributesM(Z;)u}; to the estimate
in (7) (when based on clean data), an occurrence cfn be seen as contributidd (#;)II-Tu3;. This motivates

the DUDE-like estimate (for the prediction setting)
Pr(Q.) =R (Z M (&) 17 uM> (11)

whereR’ is a normalization matrix. It can be shown thafRf is set toR as in (7) (withZ; in lieu of z;), then
(11) becomes an unbiased estimatePof(Q,;). Replacing agaiRR’ with a uniform normalization, it follows that
the procedure in Figure 3 applies, with

M/ (i) = S;, TT™7 (12)

and S;, as defined in (8). At first sight, with this choice, the updateepfin Figure 3 involves)M operations
per image sample. However, as we shall see in Section IV, for the channels of interest, this procedure can be
implemented with one scalar increment to a histogram of prediction errors per sample, followed by adjustments
whose complexity is independent of the image size.

The above estimate can be interpreted as follows. Deflng = Q.. N {S) | #(S)) = p}, referred to as a
sub-cluster For a clusterQ,,, the result of Step 2 of the procedure in Figure 3 (with the choice (12Mofz;))

can be written as

e = Y S;ITuj=> > s Tuj
:SY€Qu PEA:SYEQ,
= > s8I > up=> 8, (I "m,,) (13)
peEA i:87€Qxp pEA

where m,, , denotes a vector of occurrence counts of noisy symbols in the sub-cl@gtgr The expression
IT-"m,, , in the sum on the right-hand side of (13) represents an estimate of the empirical distri&g(timhgw)
of samplesa € A conditioned on the sub-clust&?,, ,, where the multiplication byI-7 performs the “channel
inversion.” Shifted byS,, it becomes a conditional distribution of prediction errors. Equation (13) says that our
estimate follows along the lines of the baBIODE, except that it does so for the sub-clust€);s,,. The distributions
of prediction errors for clean symbols obtained for the sub-clusters are merged t(ﬁ’yi(elqtiQ,{), and the estimated
conditional distribution ofc; givenS; is given by Equation (9). Notice, however, that the goodness of this estimate
does not rely on the law of large numbers “kicking in” feachsub-cluster, but rather for each cluster.

In general, the matridl’(i;) in (12) may have negative entries, which may place the estiifat@,.) obtained
in Step 3 of Figure 3 outside the probability simplex. This situation reflects statistical fluctuations and is more likely

to occur if the sample size is not large enough. The estimate is then modified as follows.degtote the entries
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o Sety = F(z), a pre-filtered version of the noisy input image
« Repeat untily satisfies the stopping criterion:
— Construct a se@” of K conditioning classes, and apply the procedure of Figure 3 to estimate the conditional
distributionsP x (SY), i € Vinxn.
— Denoisez using the rule (15) with the conditional distributions derived in the previous step, agdiienote

the resulting denoised image.

Fig. 5. Iterative denoising with pre-filtering.

of Pp(Qy), —M+1 < e < M—1, and, for real numbers, b, let (a — b)* denotea — b if a > b, or 0 otherwise.
Consider a real number, 0<y<1. Since)__p. = 1, there exists a real number, such that

M-—1

> (et =1 (14)

e=—M+1

It is not difficult to verify that if v = 1, the vector with entrie3, = (p. — i)™ represents the point on the
probability simplex that is closest ih, distance toPE(QK). The transformation fronf)E(QH) to the vector of
entriesp,, can be seen as a “smoothing” BfE(QK), which clips its negative entries, if any, and possibly also some
of the small positive ones. Choosing< 1 and renormalizing effects a more aggressive smoothing of the tails of
the distribution, which was found to be useful in practice to obtain more robust denoising performance. We refer
to this operation as eegularizationof the estimated distributio?E(Q,i), and include it as part of Step 3 in the
procedure of Figure 3.

Finally, the corresponding estimafeX(SZ.y) obtained in Step 4b of the procedure of Figure 3 is used to compute
the estimated posterior

Po(SY,2) =Px(S)) o,

employed by theédUDE rule (see Equation (3)). The rule (2) then takes the form

Y25 (z)[i] = in AL Py(SY,2), i € Vinxn . 15
x5 " (z)[i] arg min Ag (8 .2i), 1 x (15)

E. Iterative process

The process of using a pre-filtered imagefor the purpose of context formation can be repeateditively,
using theiDUDE output from one iteration as the input for the next, starting from some “roughly denoised” image.
The iterations tend to improve the quality of the cont&Xt and increase the effective size of the neighborhoods,
as discussed. The iterative procedure can be stopped after a fixed number of iterations, provided that a method
for detecting undesirable “contamination” of the contexts with the values of their center samples is used (see
Subsection IV-C). The iterative procedure is summarized in Figure 5, where we den@tethg set of conditioning
classes derived from an image It is important to notice that, in each iteration, while the prediction classes
{R1,R2,...,Rs} and the predictions: are computed from pre-filtered samples frgmthe statistics used for
estimating the cluster-conditioned distributions used in the actual denoising (the wegiare derived from the

original noisy samples ia.
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F. Channel matrix inversion

iDUDE, as the originaDUDE, relies on computing the inverse of the channel transition mafiio estimate
the posterior distributions used in the denoising decisions. Althduigk formally non-singular for the channels
we consider, it is very badly conditioned in some important cases, and, most notably, in the Gaussian case. Notice,
however, that the choice of estimation matriddgz;) in (11) is arbitrary, and that a different choice, that would
formally cancelII-7, may alleviate the problem. Another approach for these channels is to proceed as in the
derivations of (7) and (11), but perform the channel inversion by solving for the conditional distribﬁ’tj@@’@”)
with a numerical procedure to minimize a function of the foii — V - P(Q,.)|| (up to numerical tolerances
and stability), subject to the constraint tHag(Q,.) represent valid probability distributions, whelfe || denotes

some norm orn(2M —1)—vectors,
U=> M@)uy, V=Y M) I’ C()
% %

and the sums are over all occurrences)f. The matricedMI(z;) = S;, are again a natural but arbitrary choice,

and can be replaced with a suitable set of estimation matrices that would result in a better numerical behavior.
Maximum-likelihood estimation ofPz(Q,) is also possible, at a higher computational cost. This approach

becomes attractive when both the noise process and the conditional distriR#¢ak,) admit simple parametric

models; we illustrate it by describing its application in the (quantized) Gaussian noise case. As mentioned, context-

conditioned distributions of prediction errors for clean natural images are well modeled by a discrete Laplacian [31],

[32], which is parametrized by a decay factoand a meam (not necessarily an integer value). Denotjig= [ 1],

a prediction errok is assigned, under this model, probabilitfs, ;)0¢=+ if e > p/ and(1—0—C(6, u))* —¢~1

otherwise, where the coefficiefit(d, ;1) is such that the mean of the distribution equaldNe assume this model

for the difference(z; — #(S¥)), conditioned on the cluster &, where we recall that(Sy) is the (unobserved)

predicted value for:; that would have been obtained by applying the predictor on the clean imafe estimate

the unknown, cluster-dependent parameteys from the data, we first notice that

2= (SY) = (5 — w) + (2 — #(S)) + (3(SF) — #(SY)) (16)

7

Assuming, for simplicity, that the prediction function is an averagé emples(z(S*) — #(S?)) is well modeled

by a zero-mean normal random variable with varianégk. While #(SY) is a better approximation té(S¥),

we adopt this normal model also féf:(S*) — #(SY)). Thus, conditioned orf), the left-hand side of (16) can

be modeled as the convolution of a zero-mean normal distribution with variahde+ k~') and a Laplacian.

We refer to such a convolution asL& distribution or LG(6, 11, <?), with ¢? denoting the variance of the normal
distribution participating in the convolution; in the foregoing examptes= 02(1 + k~1). Explicit formulas for the
probability mass function of a discrete LG distribution and its derivatives with respect to the parathetensd

¢ can be derived in terms of the error function(erf Although these expressions are rather unwieldy, they lend
themselves to numerical computations, and therefore allow for a numerical maximum-likelihood estimation of the

parameter$) and p. (s is assumed given) from the statisties— 2(S)) collected for the conditioning class cluster
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Fig. 6. Neighborhood for the WGT modeling scheme.

of S7. With these estimated parameters on hand, we write
wi = (v — #(S))) + (2(85F) — 2(S))) + 2(5))

and estimateP x (SY) to be a LGH, fi,0%/k) centered ati:(SY), whered and /i are the estimated Laplacian

parameters. This derivation extends to cases where other linear or piecewise-linear predictors are used, with

appropriate adjustments of the constanabove. For more complex predictors, the parametean be estimated

together with the other parameters, under the constraintstiats. The estimatd5X(Sf'), in turn, would be a

LG(é, ft,s2—c?). In our implementation we use a simplified version of this procedure, described in Subsection IV-F.
Aside from providing an alternative to the channel matrix inversion, this parametric approach has model cost

advantages, since only two parametérsand p, need to be estimated per conditioning class [32], as opposed to

M—1 parameters when individual probabilities for each symbol are estimated.

IV.  MPLEMENTATION FOR VARIOUS NOISE TYPES

In this section, we describe implementations of th&DE framework for three types of noise, namelg S
noise, M-ary symmetric noise (which leaves a sample intact with a certain probability), or replaces it with
a uniformly distributed random value from the complement of the alphabet with probadjjitgnd quantized
additive white Gaussian noise. We assume that the Euclidegmorm is used for the loss functioh in all cases
(other norms are easily implemented by suitably adapting the optimization (15)). In all cases, we follow the flow
of the DUDE algorithm, with model estimation as outlined in Figure 3. We begin by describing components that

are common to more than one channel, and then discuss the specifics of the implementation for each channel.

A. Prediction and context classification

Our context model is based on the5 neighborhoodS shown in Figure 6. We describe a predictor and a
quantization scheme that map a generic contgktfrom an imagey into a fixed prediction valuer(SY), a
conditioning classQ(SY), and a prediction clas®(SY). The predictor and quantizer draw from ideas in [6]

and [5] to classify contexts by computing a context signature derived from gradients as well as a bitmap reflecting
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the context’s “texture.” For ease of reference, we will refer to both the predictor and the context quantizer as WGT
(wing gradients and textuje

We denote by, ;) the value of the sample in coordindte b) of the neighborhood in Figure 6, with2 < a,b <
2. As the neighborhood slides accross the image, the actual coordinates of the context sarples 8yeicV,, xn;
for clutter reduction, we omit the center coordinat@ this discussion and in the Appendix. A context is brought
to canonical form via rotations and reflections as described in Example 1, with “entry at the upper-left corner”
interpreted as the SUMy_z 2) + ¥(—1,2) + ¥(—1,1) + ¥(-2,1), and analogously for the other corners. Context signs
are not implemented.

Once the context is in canonical form, it is decomposed into eight (overlappimg)s four horizontal/vertical
wings labeledV, S, E andWW, and four diagonal wings labeled E, SE, NW and SW. Referring to Figure 6, the
N wing consists of the samples with coordinatesl, 0), (1,0), (-1,1), (0,1), (1,1), and(0,2). The S, E, and
W wings are defined similarly, following appropria®@° rotations. As for the diagonals, theE wing is formed
by the samples with coordinatés, 1), (—1,-1), (2,0), (1,—1), (0,—2), and (2, —2), with the NW, SE, SW
being formed by appropriat®° rotations. For each wing, we compute a sample average and a directional gradient.
The fixed predictoti is computed as a nonlinear weighted function of the wing averages and gradient magnitudes,
with more weight given to wings with lower gradient magnitudes. The goal is to emphasize parts of the context
that are “smooth” (i.e., of low gradient), and de-emphasize parts that might be crossed by sharp edges. The precise
details of the computation are given in the Appendix.

Gradient magnitudes computed for prediction are also used to derive an integer-aetivéyl leve|] A(S)), for
each context, as also described in detail in the Appendix. Conditioning classes are obtained by qua§iZing
into K regions, such that the induced classes are of approximately the same cardinality. To form the prediction
classes, the activity level classification is refined by computing a representation teikthee of the context. This
representation takes the form of a bitmap with one bit per context sample; the bit is(séttte corresponding
sample value is smaller than the valiigS;") predicted by the fixed predictor, or tootherwise [6].

The classification of the contexts into prediction classes is accomplished by computing a context signature
combining the activity level and the firét bits from the texture bitmapl” > 0, taken in order of increasing
distance from the center. Thus, the number of prediction classés=igk 27". Notice that since the activity level
of a context is derived from differences (gradients) between sample values, and the texture map from comparisons

with a predicted value, the resulting context classification is DC-invariant.

B. Choosing denoiser parameters without access to the clean image

In practice, the optimal settings of variolBUDE parameters, such as the number of prediction and conditioning
classes, or the number of iterations in the procedure of Figure 5, may vary from image to image. The most obvious
difficulty in choosing image-dependent settings is that denoising performance cannot be measured directly, since
the clean image is not available to the denoiser. Thus, we have no direct way of telling whether one setting is better
or worse than another. Nevertheless, various methods for choosing the best parameterp@ygheve proven

effective in practice, and can be used also ifoWDE. Some of these methods are based on using an observable
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parameter that correlates with denoising performance, and optimizing the settings based on the observable. An
example of such a heuristic, described in [2], suggests usingdheressibilityof the denoised sequence. More
principled techniques, based on an unbiased estimate dW& loss, are described in [33].

In our implementations, we have grouped images by size ("very small”, "small”, "large”), and by noise level for
each channel, and have chosen one set of parameters for each size/channel/noise level combination. The choices,
which are fairly robust, were guided by performance on an available set of training images, and also by some basic
guidelines on context models: larger images can sustain larger models, and so do cleaner images (intuitively, since
less can be learned from noisy data than from clean data). The specific parameter values are given in Table Il of

Section V.

C. Monitoring of the statistical model during iteration

As mentioned in Subsection IlI-E, th®UDE iteration of Figure 5 introduces dependencies between contexts
SY and their noisy center samples, since the value of; might have participated (directly or indirectly) in the
rough denoising of some of the componentsS3f. We have observed empirically that these dependencies can
cause significant deviations from the expected behavior of the statistical model, which, in turn, can translate to a
deterioration of the denoising performance after a number of iterations. To prevent this effect, we employ a heuristic
that is particularly useful for the non-additive channels.

The heuristic monitors the fraction of potentially noisy samples in each conditioning class, and verifies that the
fraction is consistent with the channel parameters. To determine whgtheris noisy given thaQ(S})=9,., we
measure the fraction of timesoccurs inQ,, and#(SY) € A®", where A™ is the subset of\/’ values inA that
are farthest away from (the exact value of\/’ is not critical; M’ = M/2 has worked well in our experiments).

The rationale of the heuristic is that, due to the smoothness of images,c is unlikely if #(SY) € A", so
the measured frequency of occurrencecd$ a good estimate of its probability due to noise in clugigr. This
estimate can then be compared against the probability;-6é¢ due to noise on the channel at hand (i&2 in
the R P case, where only=0 and c=M —1 are potential noisy values, an (M —1) in the M-ary symmetric
case, where a corrupted sample can assume any valueAjomAssuming the conditioning class is sufficiently
populated, a significant deviation of the count from its expected value (measured, say, in multiples of its standard
deviation) is strong evidence for the violation of the statistical assumptions of the denoiser. When such a situation
is detected, theéDUDE will refrain from making corrections for samples in the affected class, and will leave the
value from the pre-filtered image untouched, while samples in “healthier” classes will continue to be refined in the
iterative procedure. A threshold of ten to fifteen standard deviations has proven effective in our experiments.

Figure 7 illustrates the effectiveness of the heuristic. The figure plots the PSNR of the denoised image as a
function of the number of iterations for one of th& S denoising experiments of Section V. When the heuristic
is not used, there is a large drop in PSNR in the fifth iteration. The drop is prevented when the heuristic is used,
and the PSNR follows a concave curve that stabilizes after a few iterations, making the choice of stopping point
for the iteration far less critical.

In more generality, when all the off-diagonal entries in each column of the channel rmktpe equal, which
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Fig. 7. Effect of statistics monitoring on th®UDE iteration performance &P noise).

is the case for the two non-additive channels studied here, the probability-et: given x; # ¢ (and the cluster
Q,.) is clearly the common off-diagonal value in coluranFor other channels, it may be possible to obtain useful
bounds that still allow for meaningful detection of deviations from the expected noise behavior.

Notice that during the first application of thBUDE, the procedure above can be usedestimatethe channel
parameters, rather than compare against them. Thus, the assumption of known channel parameters is not essential

in these cases.

D. Implementation for Salt and Pepper noise

The channel transition matrix for&¥ noise, and its inverse, are given by

-2 0 -0 2 -2 0 0o -3
& 1-6--0 $ -4 1 0

G R - s |o<e<n an)
&0 15 ¢ -2 0 1 -3

The matrices are well conditioned, except wheapproaches orfe.

1) Pre-filtering: TheiDUDE implementation for the &P channel uses a pre-filtét based on anodified selective
median(MSM) filter for the first step of the procedure of Figure 5. The filter is applied only to samples valued
and M —1. It estimates the sample at the center dfx& window by computing the median of a set 2if values,
namely, the non-center sample values in the window and their average. The pre-filter is improved by running the
MSM filter iteratively (still within the first step in Figure 5), using the MSM output of one iteration as the input to
the next, and refining the estimate for the samples valuadd A/ —1 in the original noisy image. This iteration
generally stabilizes, and can be stopped whenithalistance between the outputs of one iteration and the next
falls below a certain threshold (which is not very critical). We refer to this improved pre-filter &srated MSM,

or, in short, IMSM. The improvement of IMSM over MSM is illustrated in Table 11l and Figure 8 of Section V.

8We report on the symmetric case for simplicity. Asymmetric cases where the probability of switchingrtd/—1 are not necessarily
equal are easily handled by adjusting the matrices in (17) accordingly.
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The output from the IMSM pre-filter is used as input to the first application ofibtubE in the second stage
of the procedure of Figure 5.

2) Prediction and context modelthe WGT predictor and context model are used.

3) Model estimation:With the matrixl‘[_;p1 of (17), the update in Step 2e of Figure 3 (wi¥l’(%;) defined
in (12)) consists of addingl —§)~! to e, [2;—;], and subtractingﬁ from e, [—;] ande, [M —1—&;]. Notice
that the latter two subtractions depend on the predicted vaJudut not onz;. Thus, the computation of the
statistice,, can be implemented by just maintaining, for each conditioning cfdssa conventional histogram
of occurrences of differences—i;, together with a histogram of predicted valugs each requiring one scalar
increment per sample. After scanning the image in the first pass abDtheE, the counts in the two histograms
suffice to derivee,..

4) Denoising rule:For theLs norm, ignoring integer constraints, the minimum in tb&DE decision rule (15) is
attained by the expectatioy, of = underPy (x| SY, z;). Forz; = 0, writing P, (S7, z;) explicitly asy P x (SY) &,
where~ is an appropriate normalization coefficient, and substituting the first coluniigf5) from (17) for m,

we obtain
0Fy

E1:2(1—5)1904“5’
whereE, is the expectation of underPx (z | SY) andp, = Px(0|SY). The reconstructed value far, is obtained
by rounding¢; to the nearest integer (which gives the precise integer solution to (15)). An analogous formula can

be derived for the case when = M —1.

E. Implementation for thé/-ary symmetric channel

The M-ary symmetric channel is defined by a transition probability mdiEx(d), with entries

1-6, b=acA,

(MMy),, =
Was 5 bhe A\{a}.

(18)

This matrix is generally well-conditioned (except néas (M — 1)/M), and its inversdl,,' (d) is given by

AL b=a€ A,
(), , = (7M1 (19)

—Mﬁ, be A\ {a}.
1) Pre-filtering: The MSM filter described in Subsection IV-D.1, without iteration, is used for the first step of
the procedure in Figure 5.
2) Prediction and context modelfhe WGT predictor and context model are used.
3) Model estimation:It follows from (19) that the column with index in HQT can be written in the form

M—-1 )

A—oM 1"~ qgar—1 M €4 (20)

whereu§, is an indicator vector as defined in Section I, ahg} is an all-one column of dimensiof/. Thus,

to implement the update in Step 2e of Figure 3 in the case ofMhary symmetric channel it suffices, again,
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to maintain a conventional histogram of occurrences of differenges;, together with a histogram of predicted
valuesz;, from which the statistie,; is obtained at the end of the first pass of tb&DE over the image.
4) Denoising rule: With the entries ofIIy given in (18), the computation of the expectation &funder

Py (€| 87, z) for the M-ary symmetric channel yields

£ = 0Ex + (1 =0)M —1)p., 2
S+ (1 =0)M -1)p.,

where E, is defined as before, and, = Px(z; | S?). TheiDUDE estimate forz; is the integer closest ;.

F. Implementation for Gaussian noise

We consider the quantized additive white Gaussian channel, where real-valued;neiseV (0, 02) is added
(independently) to each clean symhglto produce(; = x; + n;, the observed output; being the value closest to
¢; in A. The entries of the channel transition matfil; are readily derived from these definitions in terms of the
error function erf-).

1) Pre-filtering: No pre-filter is used. The iteration of Figure 5 includes at most two applications ¢bUieE,
using the identity forF. In principle, pre-filtering and iteration are optional for the Gaussian channel, since an
image affected by Gaussian noise can still be seen as satisfying our assumptions A1-A4 on grayscale images, and
therefore these assumptions could be used for modé¥yig| SZ). This is reflected in our results in Section V,
where we do not use pre-filtering or iteration for the high SNR regime. When we do use one round of iteration in
the low SNR regime, the gains are relatively modest. Now, since our results for this channel are preliminary (as
will be discussed in Section V), a state-of-the-art denoiser for Gaussian noise such as the one in [14], used as a
pre-filter, would have resulted in improved performance. However, the use of such a pre-filter would not reflect the
spirit of the (lightweight) rough denoising step.

2) Prediction and context modelfwo variants of theDUDE framework were implemented. Both use the WGT
predictor of Subsection IV-A. The first variant uses also the WGT context model. This variant is fast, and performs
well in the high SNR regime.

In the second variant, contexf§ are first brought to differential canonical forf{S;") (see Figure 3). Taking the
C(SY) as24-dimensional real vectors, the contexts are initially classified MtolustersVy, V5, ..., Vy by means
of the Linde-Buzo-Gray (LBG) vector quantization algorithm [34], with the metric used to measure distance
between contexts. The activity level of a contet is defined in this case dsgd?, wheres? is the empirical
variance of samples in the context. Conditioning clagg8esQs, ..., Ok are defined by uniformly quantizing the
activity level. The set of prediction classes is then defined @ NV, |1 <i < K, 1 <j < N}, namely, a total
of J = K - N classes. The LBG variant of the context model is slower, but performs better, and is the preferred
mode of operation, at lower SNR.

3) Model estimation: We follow the parametric approach outlined in Subsection llI-F, but with a simpler
estimation procedure for the cluster-dependent paramétared ;. of the (discrete) Laplacian component of the
LG model for P (- | SY). First, denoting the variance of the Laplacian#y we observe that by the definition of

the LG model, its variance? is given byv? = 72 + o%(1 + k~1). Given the parameters of the Laplaciai,takes
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the form

2 = L 399)2 +r(l—r) (21)

wherer denotes the fractional part @f. In the first pass of theDUDE we compute the empirical meaf,;, and
variance,?2, of the differences;; — #(SY) observed in each clagg,.. Next, we estimate the varianeg of the

Laplacian component fo@,, as
72 =max (fe(1 — 74), 00 — 0 (1+ k7)) (22)

wherer, denotes the fractional part ¢f, and we recall thak is a parameter that accounts for the number of
samples participating in the weighted average in the WGT predictor (wg &s&). The maximum in (22) accounts
for the fact that an estimate’ — o2(1+ k') for the variance could be smaller than the minimum possible variance
7.(1 — 7) of the discrete Laplacian (obtained fér= 0, see (21)), due to statistical fluctuations or an inaccurate

choice of the parametér. Finally, givenji,. and72, we use (21) to solve for an estimate.

V. RESULTS

In this section, we present results obtained with theDE on images corrupted by simulate& B, M-ary,
and Gaussian noise. For each type of noise, we compare our results with those of a sample of recent denoising
algorithms from the literature for which an objective basis for comparison was availableDODE experiments
are based on a research prototype implementation written in C++, and run on a vintage 2007 Intel-based personal
computef For a very rough complexity reference, we measured the running time ofDE iteration in this
implementation (using the WGT context model) on 228 x 2560 image Bike at approximately 7 seconds, for
a throughput of approximately 730 Kpixels/sec. Running times for a given context model do not vary significantly
with the noise type or level.

The images used in the experiments are listed in Table I. The “very small” heading in the table refers to a set
of 24 images of dimension884x256 (referred to asSeto4) available at [35], for which results of denoising with
the state-of-the-art scheme of [26] at various levels &PShoise are available. The “small312 x 512) images in
the table are from the set traditionally used in the image processing litetét8iace the images in either set are
rather small by today’s standards, we include also larger images from the benchmark set used in the development
of the JPEG-LS standard [5].

We evaluate denoising performance by measuring Peak Signal to Noise Ratio (PSNR) between the denoised
image and the original clean image. Table Il summarizes the iteration and model size parameters used for the
various experiments and noise types. The parameters, and the g@uba configuration for each noise type,
were defined in Section IV. We use one set of iteration and model size parameters for each combination of image
size category, noise type, and noise level, rather than parameters optimized for each individual image. The fixed
predictor parameterg and o (cf. Appendix) were set as followgi = 8% of maximum gradient magnitude in the

9Specifically, Intel(R) Xeon(R) 5160 CPU, 3 GHz clock speed, 3 GB RAM, running Linux.

10we use the versions available at the DenoiseLab site [36]. Additionally, to allow comparison with [26] als®lax &l2 image, we use

the (different) version of the Lena image reported on in [26], which we refer to as*L&aare not aware of other images for which a reliable
comparison with [26] is possible.
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very small images small images large images

image size |source|image size |source|image size source
Set of 24384 x256([35] |[Lena |[512x512|TR Tools |1524x1200|JLSY
'(g‘:‘tgif Lena* [512x512|[26] ||Toolsk |1524x1200|JLSK

Boat |512x512|TR ||Womank 2048x 2560 | JLSK
Barbarg512x512| TR || Bike 2048x2560| JLSY

TABLE |

IMAGES USED IN THE EXPERIMENTS LEGEND: TR: TRADITIONAL IMAGES; JLS: IMAGES FROM THEJPEG-LSBENCHMARK SET; Y: Y

CHANNEL OF YCRCB COLOR SPACE K: K CHANNEL OF CMYK COLOR SPACE

Gaussian

S&P M-ary symmetric LBG WGT
v. small| small large small large small | large || all
6 |[RKTIRKT|RKT| 6 |RKT|RKT|oc|RIK N|K N|KT
10%(10 4 8|10 4 1415 32 16{10%|15 4 1415 8 16| 5 32 25696 25632 6
30%|10 4 8(10 4 1415 32 16|20%|15 4 14 20[ 2 (32 19232 192
50%|10 4 8|10 4 1420 32 16/30%|15 4 1015 8 16
70%|20 4 8|20 4 1420 32 14{40%|(20 4 9
50%|20 4 8|20 16 8

TABLE I

[

PARAMETERS USED IN THE EXPERIMENTS R: NUMBER OFiDUDE ITERATIONS; K, T MODEL SIZE PARAMETERS(CF. SEC. IV-A); N:

NUMBER OF LBG CLUSTERS(SEC. IV-F.2).

context,a = 0.075 for the &P channelp = 0.1 for the M-ary symmetric channel; for the Gaussian chanpel,
and o were optimized to minimize the observable prediction RMSE for each noisy imagegwihying between
5% and 17%, and « between0 and 0.05. This is one case where it is “legitimate” to optimize the parameter for

each image, since the optimization is based on observable data.

A. P noise

The traditional test images (e.g., Boat, Barbara, Lena), contain very few, if any, pure black (value 0) or pure white
(value M —1) samples. Therefore, for these image, tl&PSchannel behaves like an erasure channel, and noisy
samples are easily identified. We include the images Toolsk and Womank to téBuUthe in a more challenging
situation. These images have significant amounts of pure black and white pixels, both in large solid regions, and
in isolated occurrences scattered across the image.

Table 1l summarizes the results for th&B channel. Visual examples are given in Figure 8. For this channel,
we compare our results to those of [26] on the Lemariant of the Lena image, and on the mentiorged,,
from [35]. For the latter, for brevity, we list thaveragePSNR over the set images (as done also for the results
reported in [26]). In all cases, we compare also with the modified selective median (MSM) filter described in
Section IV-D.1, and its iterated version (IMSM). The results shbWDE outperforming [26] in all cases, and by
significant margins in the case of the Lénamage. The advantage abUDE diminishes as images become very

small and noise levels become high, as expected from a statistical context-model-based scheme.



6 =10% 6 =30% & = 50% 6 =T70% image
image | MSM IMSM iDUDE | MSM IMSM iDUDE | MSM IMSM iDUDE | MSM IMSM iDUDE ) MSM IMSM CHNO5 iDUDE

Lena 40.1 40.4 45.2| 34.1 35.2 39.7| 274 32.0 36.3] 16.7 29.1 32.8 Setoyg
Boat 36.3 36.5 41.0| 30.6 31.2 35.3| 25.5 28.3 32.0| 16.4 25.7 28.9 10% | 36.3 36.5 404 409
Barbara| 32.6 33.0 38.7| 27.4 28.3 31.7| 23.4 26.0 27.7| 15.8 24.2 24.7 30% | 30.6 314 345 35.1
Tools 25.6 25.2 31.8| 22.1 22.2 26.9| 19.2 20.1 23.5| 14.1 18,5 20.6 50% | 25.0 284 31.1 31.6
Toolsk | 27.1 26.8 31.0| 23.6 23.8 26.4| 20.0 21.7 23.6| 12.9 20.2 21.2 70% | 158 259 28.1 28.6

Womank 34.0 33.9 40.7| 30.0 30.3 34.9| 246 279 31.2| 143 26.1 28.1 Lena*
Bike T31.2 31.3 39.4| 265 27.4 33.1] 224 24.7 29.0] 15.0 22.1 25.1 10% | 38.9 39.2 423 4478
30% | 329 339 356 38.8
50% | 264 308 323 354
70% | 161 28.0 29.3 31.7

TABLE Il

RESULTS FORS& P NOISE. MSM: MODIFIED SELECTIVE MEDIAN (CF. SECTION IV-D.1); IMSM: ITERATED MSM; CHNO5: THE

DENOISER OF[26]. COMPARISON WITH CHNOS5DISPLAYED SEPARATELY.

(e) Noisy,é = 70%

(f) MSM (16.4dB)

(g) IMSM (25.7dB)

Fig. 8. Denoising of Boat affected by88° noise (al00x 100 image segment is shown).

B. M-ary symmetric noise

(h) iDUDE (28.9dB)

26

Table IV summarizes our results for the-ary symmetric channel. The results are compared with those of

the MSM filter, and, for the Lena image, with those published for the state-of-the-art scheme in [21]; a visual

comparison is presented in Figure 9. As befobg/DE significantly outperforms the references.
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“i

(a) Noisy,s = 20% (16.2dB) (b) MED (30.1dB) (c) iDUDE (36.9dB)

Fig. 9. Denoising of Lena affected by/-ary symmetric noise witlh = 20% (a 160x 160 image segment is shown).

image: Lena
6 =10% 6 =30% 6 =50% 9 -
. 6 |MED ROAD iDUDE
image |MED iDUDE|MED iDUDE|MED iDUDE
10%| 30.0 - 39.8

Boat [26.9 33.9|25.8 29.6|23.5 26.6
Barbarg 23.1 29.9|22.7 25.4|21.2 235
Tools [18.9 26.9|18.4 223|17.1 19.2
Bike 234 311|224 26.0/19.9 222

20%| 30.1 35.0 36.9
30%|29.3 33.2 344
40%| 27.8 31.4 32.8
50%| 25.5 29.4 30.4

TABLE IV
RESULTS FORM -ARY SYMMETRIC NOISE. MED: MEDIAN OF A 5x5 WINDOW; ROAD: RANK-ORDEREDABSOLUTE DIFFERENCES[21].

COMPARISON WITHROAD FOR THELENA IMAGE DISPLAYED SEPARATELY.

C. Gaussian noise

Table V summarizes our results for the Gaussian channel, comparing with the state-of-the-art Block Matching
3D (BM3D) [14], and with the Non Local Means (NML) scheme of [4]We report results for the high SNR
regime ¢=>5), and the low SNR regimes&20). For the high SNR regime, we include results for the two variants
of iDUDE discussed in Section IV-F.2, namely, one based on LBG clustering, and one based on the WGT model
(referred to asDUDEF). TheiDUDEF variant is competitive at this noise level, and achieves the speeds mentioned
above. In the low SNR regime, the LBG-based scheme has a more significant performance advantage, and we
report only on this variant. This work has focused on demonstrating the wide applicability @Ub& framework
for various types of noise and images, rather than optimizing performance specifically for the Gaussian channel,
which is work in progress. Although our results for this channel do not reach the performance of [14], they are
competitive with those obtained with the denoiser of [4], comparing favorably=dt, and somewhat below at
0=20. Figure 10 shows denoising error images (i.e., images of differences between denoised and clean samples,
re-centered at28) for a portion of the Boat image at=10. The figure shows thaDUDE and NLM achieve the
same PSNR, withDUDE showing better recovery of edges (which are less marked in the corresponding image)
and NLM better performance on smoother areas. BM3D does well on both types of image region, and has better

performance overall.

11Results for the NLM algorithm were obtained, fee=5, using the algorithm described in [4], and fer=20, using the slightly different
version of the algorithm made available in Matlab by the authors [37]. These versions were found to give the best PSNRs for the respective
values ofo. In all cases, the averaging window was set to 21x21, the similarity window to 7x7, and the parameteroptimized for each
image ando. Results for BM3D were obtained with the Matlab code available at [38].
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image c=5 o=20

BM3D NLM iDUDE iDUDEF| BM3D NLM iDUDE
Lena 38.7 377 380 37.8| 33.0 313 313
Boat 372 361 36.6 36.3| 309 296 294
Barbarg 38.3 37.1 36.9 36.2| 31.7 301 286
Tools 36.3 355 359 35.7| 285 272 270
Bike 388 376 377 374| 321 308 298

TABLE V

RESULTS FORGAUSSIAN NOISE BM3D: BLOCK MATCHING 3D [14]; NLM: NON LocAL MEANS [4]; iDUDE: iDUDE USING LBG

CONTEXT CLUSTERING iDUDEF: FAST VARIANT USING WGT CONTEXT CLUSTERING

(a) Clean (b) BM3D (33.8 dB) (c) NLM (32.9 dB) (d) iDUDE (32.9 dB)

Fig. 10. Denoising of Boat affected by Gaussian noise with10. A 128 x 128 portion of the denoising error image is shown for each
denoiser. The grayscale value in locatibrof each error image shown {8 - (x; — z;) + 128], where the valueg; and z,; correspond,
respectively, to the denoised and the clean sample in locétiand the square brackets denote clamping to the rém@s5] (multiplication

by 8 enhances visibility of the predominant small-magnitude error values).

APPENDIX
DETAILS OF THEWGT PREDICTOR AND CONTEXT CLASSIFIER

We recall that each context is decomposed into eight (overlapping) wings labeléd £ andW, NE, SE,
NW andSW, defined in Section IV. We recall also that, ;) denotes the value of the sample in coordinaie)

of the neighborhood in Figure 6. We compute a weighted averggeyf each wing, as follows:

ay = <2y(0,1) + \/i(y(—m) +ya,1)) + y(o,g)> /(34 2V2)
2ya.0) + V20 +ya.-n) + y(2,0)> /(34 2V2)
2y10,1) + V21,1 + ¥0,1) + Vo)) /3 +2V2)
21,0 + V2(U1.1) + Y1) + Y20 ) /(B +2V2)
(Y0,1) +¥1,0) + Y1 ) /(1+2V2)

(Y0,-1) +¥1,0) +¥,-1 ) /(14 2v2)

(Y01 + ¥-1.0) + U1, /(1 +2v2)

(

Y0,1) T Y(=1,0)) T Y- 11)/(14‘2\/5)

ap =

as =

aw

asg =

asw =

&&&&

aNw =

(
(
(
e = |
(
(
(
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(in each linear combination, the coefficient of a sample is inversely proportional to its distance to the center of the

neighborhood). Additionally, we compute a gradient magnitutle for each wing, as follows:

dy = ’y(o.;) —Y0,2) + ¥1,0) — ¥1,1) + Y-1,0) — Y-1,1) |
ds = |Y0,-2) = Y0,-1) T Y(1,-1) — Y(1.0) + Y(-1,-1) — Y(—1,0) |
dg = |¥e0) — Y0 + Y1) — Yo1) + Ya,-1) — Yo,-1) |
dy = ’y(fl,o) = Y(=2,0) T Y0,1) — Y(-1,1) + Y(0,-1) — Y(~1,-1) ’
dneg = % |Z/(2,2) —Ya,1) T Y0,2) —Y-1,1) T Y20 —Ya,-1) ’
dsgp = % |y(2,—2) —Y,-1) T Y0,-2) — Y(-1,-1) T Y2,00 — Y@a,1) |
dyw = % |y(—1,—1) —Y(-2,00 T Y(-1,1) — Y(-2,2) T Y1,1) ~ Y(0,2) ’
dsw = % |Y(—1.1) = Y(—2.0) + Y(—1.-1) = Y(—2,-2) + Y(1,-1) — Y(0.~2) |

(diagonal gradients are scaled k{2).

The fixed prediction value is computed as a linear combination of a subset of the wing averages, with positive
weights that decrease with the respective wing gradient, but drop to zero for wings whose gradient magnitude
exceeds the minimum gradient in the context by more than a cegtamlient thresholdg, which is a parameter
of the predictor. Specifically, definin@ui, = min{dy,ds,dw,dg,dnw,dNE, dsE, dsw }, wing weightsw,, are

determined as follows:

(I+ad)™",  dy—dmn<g, pe{N, W, E,S, NW, NE, SW, SE,
Wp =
0, otherwise.
Here,« is a parameter of the predictor that controls the effect of the gradient magnitudes on the weights; smaller
values ofa make the weights vary less with the gradients, with uniform weighting when0. We will tend to
use smaller values af when the noise level is high: gradients are less “credible” under those conditions. Finally,

the fixed prediction for the context is computed as

2 pe {N,S,W,E,NW,NE,SW,SE Wplp

T(S)) =
’ 2 pe{N,S,W,ENW,NE,SW,SE Wp

(23)
Horizontal/vertical wing gradients are also used to compute the activity level valfethe context, as follows:

A(SY)=dn +ds+dr +dw.
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