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The DUDE Framework

for Grayscale Image Denoising
Giovanni Motta, Erik Ordentlich, Ignacio Ramı́rez, Gadiel Seroussi, and Marcelo J. Weinberger

Abstract

We present an extension of the Discrete Universal DEnoiser (DUDE) specialized for the denoising of grayscale

images. The originalDUDE is a low-complexity algorithm aimed at recovering discrete sequences corrupted by

discrete memoryless noise of known statistical characteristics. It is universal, in the sense of asymptotically achieving,

without access to any information on the statistics of the clean sequence, the same performance as the best denoiser

that does have access to such information. The denoising performance of theDUDE, however, is poor on grayscale

images of practical size. The difficulty lies in the fact that one of theDUDE’s key components is the determination

of conditional empirical probability distributions of image samples, given the sample values in their neighborhood.

When the alphabet is moderately large (as is the case with grayscale images), even for a small-sized neighborhood,

the required distributions would be estimated from a large collection of sparse statistics, resulting in poor estimates

that would cause the algorithm to fall significantly short of the asymptotically optimal performance. The present work

enhances the basicDUDE scheme by incorporating statistical modeling tools that have proven successful in addressing

similar issues in lossless image compression. The enhanced framework is tested on additive and non-additive noise,

and shown to yield powerful denoisers that significantly surpass the state of the art in the case of non-additive noise,

and perform well for Gaussian noise.

I. I NTRODUCTION

The discrete universal denoiser(DUDE), introduced in [1], [2], aims at recovering a discrete, finite-alphabet

sequence, after it has been corrupted by discrete memoryless noise of known statistical characteristics. It is shown

in [2] that theDUDE is universal, in the sense of asymptotically achieving, without access to any information on

the statistics of the clean sequence, the same performance as an optimal denoiserwith access to such information.

It can also be implemented with low complexity. In [3], the definition of theDUDE was formally extended to

two-dimensionally indexed data, and an implementation of the scheme for binary images was shown to outperform

other known schemes for denoising this type of data.

The DUDE algorithm performs two passes over the data. In a first pass, a conditional probability distribution is

determined for each (noisy) sample given the sample values in a (spatial) neighborhood, orcontext, by collecting

statistics of joint occurrences. Thiscontext modelis then used for determining conditional probability distributions

G. Motta is with Qualcomm Inc., San Diego, California, U.S.A. E-mail: gmotta@qualcomm.com. This work was done while the author was
with Hewlett-Packard Company.

E. Ordentlich, G. Seroussi, and M. J. Weinberger are with Hewlett-Packard Laboratories, Palo Alto, California, U.S.A. E-mail:{erik.ordentlich,
gadiel.seroussi, marcelo.weinberger}@hp.com.
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for cleansamples given each (noisy) context pattern and the sample value observed at the corresponding location. In

a second pass, a denoising decision is made for each sample based on this conditional distribution. The decision is

essentially the Bayes optimal one with respect to the above distribution and a given loss function. A more detailed

description of theDUDE algorithm is given in Section II.

Although the asymptotic results of [2] apply to any finite alphabet, it was observed in [3] that extending the

results to grayscale images1 (or, in general, to data over large alphabets) presented significant challenges. The main

challenge stems from the fact that, in a context model over an alphabet of sizeM , parametrized by the symbol

conditional probabilities, and with a neighborhood of sized, the number of free parameters isMd(M−1) (for

example, in an 8-bit image, a rather small3 × 3 neighborhood consisting of the eight samples closest to a given

sample, yields264·255 ≈ 5·1021 free parameters). This means that context-conditioned statistics for estimating these

parameters are likely to be sparse and provide little, if any, information on the structure of the image. This well

known phenomenon is sometimes referred to as the “sparse context” problem. The theoretical results of [2] indeed

show that theDUDE’s rate of convergence to optimal performance depends strongly on the size of the context

model. This convergence rate is determined largely by the degree to which the law of large numbers has taken hold

on random subsequences of noisy samples occurring in a given context pattern and having a given underlying clean

sample value. Convergence requires that these subsequences be relatively long, implying numerous occurrences of

each noisy pattern and underlying clean sample value.

Due to these facts, the originalDUDE scheme, as defined in [2], will not approach optimal performance for images

of current or foreseeable practical size over a large (say, 256-symbol) alphabet. This problem has also been noticed

in [4, p. 509], where the direct application of theDUDE’s tools to model the necessary conditional probability

distributions for grayscale images is deemed to be “almost hopeless.” Although this pessimistic assessment appears

justified at first sight, we show that the basic scheme of [2] can be enhanced with image modeling tools, enabling

effective implementations of theDUDE framework in grayscale image applications.

A “sparse context” problem very similar to that confronting theDUDE exists, and has been successfully addressed,

in lossless image compression (see, e.g., [5], [6], or the survey [7]), where state-of-the-art algorithms are also based

on the determination of probability distributions of samples of the input image, conditioned on their contexts.2 In this

and other inference problems the concept is formalized by the notion ofmodel cost[8], a penalty proportional to the

number of free statistical parameters in the model, which is paid to learn or describe the estimated model parameters.

The principle underlying the tools developed for lossless image compression is that one should not impose on the

universal algorithm the task of learning properties of the datawhich are known a-priori. For example, one instance

of the problem is formally studied in [9], where it is shown how the widely used practice of coding prediction

errors (rather than original samples) can be seen as allowing the statistics of the data to be learned, effectively,

1These are images with a relatively large dynamic range (e.g., in our examples,256 grayscale values), for which the main assumption is
that the numerical sample values preserve, up to quantization, continuity of brightness in the physical world. Most of our discussion will refer
to monochrome grayscale images, although the algorithms extend by the usual methods to color images. Notice also that we assume a truly
discretesetting: the noisy symbols are discrete, and they are assumed to belong to the same finite alphabet as the clean symbols (e.g., we
consider discrete Gaussian noise). Other works in the literature often assume that the noisy samples are arbitrary real numbers, which provides
the denoiser with more information than the corresponding quantized and possibly clipped values assumed in the discrete setting. It can be
argued that such continuous information is often not available in practice, e.g. when denoising a raw digital image acquired by a digital camera.

2In the image compression case, the contexts are causal, whereas for theDUDE, the contexts are generally non-causal.
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with a much smaller model. The use of prediction is based on our prior knowledge of the targeted images being

generally smooth, and of the fact that similar variations in brightness are likely to occur in regions of the image

with different baseline brightness levels. Explicit or implicit application of these principles has led to some of the

best schemes in lossless image compression [5], [6], which are all based on prediction and context modeling.

The foregoing discussion suggests that modeling tools developed and tested in lossless image compression could

be leveraged for estimating the distributions required by theDUDE, together with tools that are specific to the

assumptions of the denoising application. In this paper, we pursue this strategy, and show that enhancing the basic

DUDE algorithm with such tools yields powerful and practical denoisers for images corrupted by a variety of types

of noise. Although the goal of this work is not necessarily to achieve the current record in denoising performance

for each image and each type of noise studied, the enhancedDUDE scheme significantly surpasses the state-of-

the-art for some important types of (non-additive) noise, and performs well for Gaussian noise. We expect that

further refinements, extensive experimentation, and synergistic incorporation of ideas from other approaches will

enable improvements in denoising performance over the results reported on here. We refer to the enhancedDUDE

schemes described in the paper as aframework, since what is described is a general architecture for a denoising

system following the basicDUDE structure from [2], which is then specialized for each noise type of interest. Thus,

although all the schemes described will have the same basic components fulfilling the same functions, the specific

details of some of the components will vary depending on the type of noise targeted.

Denoising of signals and in particular digital images has been given considerable attention by the signal processing

community for decades, starting from the works by Kalman [10] and Wiener [11]. A comprehensive review included

in [4] gives an account of the rapid progress on the problem in recent years. Inspection of the literature reveals

that the work is divided into two fairly disjoint classes: additive (usually Gaussian) noise, and non-additive noise

(the latter includes multiplicative noise, although our focus in this class will be mostly on the so-calledimpulse

noise types). We survey the main ideas behind a few of the recent approaches, which either have some conceptual

connections to our own, or will be used as references in the results of Section V. The reader is referred to [4] and

references therein for a more comprehensive account, including thewavelet thresholdingapproach of [12] and the

Gaussian scale mixturesof [13].

For additive noise, the most relevant schemes are presented in [4] and [14] and are discussed next; other approaches

include thefields of expertsof [15] and thesparse representationof [16] (which is combined with themultiscale

approach in [17]). Also, in a different offshoot of [2], image denoising schemes for Gaussian noise [18] have

been derived from extensions of theDUDE ideas to continuous-alphabet signals [19]. The non-parametric Bayesian

least squares estimator developed in [4] is predicated on the observation that “every small window in a natural

image has many similar windows in the same image.” The method uses this assumption to estimate each clean

image samplexi as a weighted average of all the sampleszj in the noisy image, where the weight ofzj increases

monotonically with a measure of similarity between the contexts ofzj and zi (the noisy version ofxi). Despite

being couched in very different mathematical languages, there is much affinity between the approach in [4] and

the one in this paper—taken to bare-bones simplicity, theDUDE approach can be seen as also taking advantage

of the quoted observation. This concept has been combined in [14] with a three-dimensional (3D) DCT-coefficient
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denoising technique, resulting in a scheme that achieves unprecedented performance for Gaussian noise. In this

scheme, image windows with sample values similar to those in a window surrounding the sample to be denoised

are aggregated into a3D array which is then denoised in the3D DCT domain using thresholding or Wiener filtering.

This procedure is repeated for multiple relative positions of the same noisy sample in the window, and the final

estimate for that sample is obtained as a weighted average.

Although the models in the above works could be used with other types of noise, some of them were specifically

designed with additive Gaussian noise in mind, and the results published are for that type of noise. Non-additive

noise, on the other hand, poses different problems. A typical example for this type of noise is theSalt and Pepper

(S&P) noise, where a portion of the image samples are saturated to either totally black or totally white. For

this type of noise where outliers are very common, median-based estimators are widespread and fairly effective.

Works like [20], [21] or [22] also exploit the fact that it is possible to identify with good accuracy candidate noisy

samples, so as to avoid changing samples that are not corrupted, and sometimes to exclude noisy samples from some

computations. Impulse noise strongly impacts image gradients, and therefore thevariational approach of [23] (see

also [24]) is well-suited. In this approach, used in [25] and [26] to denoise highly corrupted images, the denoised

image is the result of a tradeoff between fidelity and total variation. While the fidelity term measures the difference

between an image model based on edge-preserving priors and the observed data, the total variation term measures

the “roughness” of the image. Another, more difficult type of impulse noise is theM -ary symmetricnoise, where

M stands for the alphabet size of the clean (and noisy) signals. In this type of noise, a sample is substituted, with

some probability, by a random, uniformly distributed value from the alphabet, and a simple thresholding cannot

separate out the clean samples. Image denoising forM -ary symmetric noise is also addressed in [25] and [21].

The rest of the paper is organized as follows. In Section II we review the basic concepts, notations, and results

from [2] and [3]. Section III describes the tools used to address model cost and other challenges in the enhanced

DUDE framework. Section IV describes the implementation of the framework for S&P,M -ary symmetric noise, and

Gaussian noise. In Section V we describe experiments performed with the resulting denoisers, comparing whenever

possible with other denoisers from the literature.

II. BASIC DUDE

In this section, we review the basicDUDE algorithm from [2], as extended to two-dimensional data in [3].

A. Notation and problem setting

Throughout, animage is a two-dimensional array over a finite alphabetA of size |A|=M (without loss of

generality,A = {0, 1, . . . ,M−1}). We let xm×n ∈ Am×n denote anm × n image, also denotedx when the

superscriptm × n is clear from the context. LetZ denote the set of integers, and letVm×n denote the set of

two-dimensional indicesVm×n = {(ir, ic) ∈ Z2 | 1 ≤ ir ≤ m, 1 ≤ ic ≤ n }. The i-th component of a vectoru

will be denoted byui, or sometimesu[i] whenu is a vector expression. Similarly, we denote a typical entry ofx

by xi (or x[i]), i ∈ Vm×n. When the range of an image indexi is not specified, it is assumed to beVm×n.
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We assume that a clean imagex is corrupted bydiscrete memoryless noisecharacterized by a transition probability

matrix Π = {Π(a, b)}a,b∈A, whereΠ(a, b) is the probability that the noisy symbol isb when the input symbol is

a. The noise affects each sample in the clean imagexm×n independently, resulting in a noisy imagezm×n, where

zi is a random variable distributed according toP (zi = b) = Π(xi, b), b ∈ A. We regard this process asxm×n

going through anoisy channel, refer toΠ as thechannel matrix, and tozm×n as thechannel output. We assume,

for simplicity, that the clean and noisy images are defined over the same alphabet—the setting in [2] is more

general, allowing for different input and output alphabets. We also assume, following [2], thatΠ is non-singular.

In later sections of this paper, however, we will consider some channel matrices which are non-singular but badly

conditioned and we treat them, in practice, as singular.

A m×n image denoiseris a mappingχ̂m×n : Am×n→Am×n. Assume a given per-symbolloss functionΛ :

A2→[0,∞), represented by a matrixΛ = {Λ(a, b)}a,b∈A, whereΛ(a, b) is the loss incurred by estimating the

symbola with the symbolb. For x, z ∈ Am×n we let Lχ̂(x, z) denote the normalized denoising loss, as measured

by Λ, of the image denoiser̂χm×n when the observed noisy image isz and the underlying clean one isx, i.e.,

Lχ̂(x, z) =
1

mn

∑
i∈Vm×n

Λ(xi, χ̂
m×n(z)[i]),

where we recall that̂χm×n(z)[i] is the component of̂χm×n(z) at thei-th location. We seek denoisers that minimize

this loss in a stochastic sense (under the distribution generated by the channel). Notice that the mappingχ̂m×n

may depend on the channel matrixΠ and the loss functionΛ, but not on the clean imagex, i.e., givenΠ andΛ,

a noisy imagez will always result in the same denoised imageχ̂m×n(z), independently of which combination of

clean image and noise realization producedz.

B. Description and properties of the DUDE

We start with some definitions that formalize the usual notion of context. AneighborhoodS is a finite subset of

Z2 that does not contain the origin(0, 0) (referred to as thecenterof the neighborhood). As an example, the3× 3

neighborhood referred to in Section I isS = ({−1, 0, 1}×{−1, 0, 1}) \ {(0, 0)}. For i ∈ Z2, we denote byS+i

the set{j+i | j ∈ S}, and, by extension, we say thati is its center. For an imagez andS+i ⊆ Vm×n we denote

by Sz
i a vector of dimension|S| overA, indexed by the elements ofS, such thatSz

i [j] = zi+j , j ∈ S. We refer

to such vectors asS-contexts, or simplycontexts(with a known underlying neighborhoodS implied), and say that

zi occurs in contextSz
i (recall thati 6∈ S+i). For “border” indicesi such thatS+i 6⊆ Vm×n, the vectorSz

i is also

well defined by assuming, e.g., that the value of any “out of bound” sample is set to an arbitrary constant fromA.

For a neighborhoodS and a generic context vectors, we letm(z, s) denote theM -dimensional column vector

whose components are

m(z, s)[a] = |{i ∈ Vm×n : Sz
i = s, zi = a}| , a ∈ A. (1)

In words,m(z, s)[a] denotes the number of occurrences of the symbola, in contexts, in the imagez.

We denote byu � v the component-wise (Schur) product of theM -dimensional vectorsu and v, namely,

(u � v)[a] = u[a]v[a], 0 ≤ a ≤ M−1. The transpose of a matrix (or vector)A is denotedAT , and if A is a
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For each indexi ∈ Vm×n:

1) DetermineP̂z (· | Sz
i ), the empirical distribution ofnoisysymbolszj whose contextSz

j is identical toSz
i .

2) From P̂z (· | Sz
i ) and the noise transition matrix, estimate a distributionP̂x (· | Sz

i , zi) of cleansymbols whose

correspondingnoisysymbol iszi with contextSz
i . An expression for the estimated distribution is given, up to

normalization, in (3).

3) Using the loss matrixΛ, produce a denoised valuêχ = χ̂m×n
S (z)[i] according to (2), so that the expectation

of the lossΛ(χ̂, x̂i) with respect to the distribution̂Px (· | Sz
i , zi) estimated in Step 2 is minimized.

Fig. 1. Outline of theDUDE algorithm.

nonsingular matrix, we writeA−T as shorthand for(A−1)T . Finally, let λa andπa denote thea-th columns ofΛ

andΠ, respectively, fora ∈ A.

We are now ready to define the basicDUDE. For a given neighborhoodS, them×n fixed-neighborhoodDUDE

χ̂m×n
S is defined by

χ̂m×n
S (z)[i] = arg min

ξ∈A
λT

ξ ·
( (

Π−T m (z,Sz
i )
)
� πzi

)
, i ∈ Vm×n . (2)

The m× n basicDUDE χ̂m×n
univ is obtained by letting the size of the neighborhoodS grow at a suitable rate with

m andn (refer to [2] and [3] for details).

The intuition behind the denoising rule in the fixed-neighborhoodDUDE (2) is as follows. After proper normal-

ization, the vectorm (z,Sz
i ) in (2) can be seen as an empirical estimate,P̂z(·|Sz

i ), of the conditional distribution of

a noisy sample given its context, and the vectorΠ−T m (z,Sz
i ) as an estimate of the empirical distributionPx(·|Sz

i )

of the underlyingcleansample given thenoisycontext (we say that the multiplication by the matrixΠ−T performs

the “channel inversion”). The vector (
Π−T m (z,Sz

i )
)
� πzi , (3)

in turn, can be interpreted, after normalization, as an estimateP̂x(xi | Sz
i ) of the posterior distribution of the clean

sample given the noisy contextSz
i and the noisy samplezi. The expression (2) corresponds to a loss-weighted

maximum a posteriori estimate ofxi with respect toP̂x(· | Sz
i , zi). In a sense, the expression in (3) combines

two pieces of “advice” on the value of the clean symbolxi. On one hand, the estimated conditional distribution

P̂x(· | Sz
i ) conveys information on what the clean symbol in positioni is likely to be, given what is observed in the

same context in the rest of the noisy image, while on the other hand, the noisy samplezi itself conveys information

on the likelihood ofxi which is independent of the rest of the image, given the memoryless assumption on the

noise. If the noise level is not too high, the advice ofzi is given more weight, while in more noisy conditions, the

advice of the context gains more weight. The algorithm is outlined in Figure 1.

The universality of the denoiser̂χm×n
univ has been shown in two settings. In thestochasticsetting, the imagex

is assumed to be a sample of a spatially stationary and ergodic process. The results of [2], as extended to the

two-dimensional case in [3], state that in the limit (asmin(m,n) → ∞), almost surely (with respect to both the

input and the channel probability laws), theDUDE loss does not exceed that of thebest m×n denoiser. In the

semi-stochasticsetting, the input is assumed to be an individual image, not generated by any probabilistic source,
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while the channel is still assumed probabilistic. It is shown in this case that, almost surely (with respect to the

channel probability law), the asymptotic loss of theDUDE is optimal amongsliding window denoisers(see [2]

and [3] for details). Here, the result holds independently for each individual imagex (in particular, the competing

denoisers could be designed with full knowledge of the pair of imagesx, z). Notice that most image denoisers used

in practice are of the sliding-window type.

In addition to its theoretical properties, theDUDE is also practical (see [2] for an analysis showing linear running

time and sub-linear working storage complexities). The algorithm, in both its one-dimensional and two-dimensional

versions, has been implemented, tested, and shown to be very effective on binary images [2], [3], text [2], and

large HTML code files [27]. In [28] and the current work, we enhance the basic scheme to make it effective on

grayscale images.

III. iDUDE: AN ENHANCED FRAMEWORK FOR GRAYSCALE IMAGE DENOISING

In this section, we describe some tools added to theDUDE framework to enable effective denoising of grayscale

images. We shall refer to the enhanced framework asiDUDE. The enhancements are described here in generality

covering a broad class of channels. Detailed implementations for specific channels are presented in Section IV.

A. Addressing the model cost problem

Estimating empirical conditional distributionsPx( · | Sz
i ) of image samples given their (noisy) context is a crucial

component of theDUDE algorithm. As mentioned in Section I, estimating these distributions by collecting sample

counts for “raw” contextsSz
i is ineffective for images of practical size. To address this problem, we exploit our

prior knowledge of the structure of the input data via a stochastic modelPX( · | Sx
i ) in which contexts share and

aggregate their information. This will allow us to learn additional information about the distribution of, say,xi given

its contextSz
i , from occurrences of sampleszj , depending on how “close”Sz

i is to Sz
j in an appropriate sense. We

will then use our estimate ofPX( · | Sx
i ) as an estimate ofPx( · | Sz

i ), and apply the denoising rule. Expressed in a

different mathematical language, this “shared learning” paradigm can be seen to be taken to the limit in [4], where

every context contributes, in an appropriately weighted form, to the denoising of every location of the image.

For the targeted grayscale images, prior knowledge takes the form of assumptions of brightness continuity (or, in

short,smoothness), statistical invariance under constant shifts in absolute brightness (DC invariance), andsymmetry.

Next, we discuss these assumptions, and how they translate to various modeling tools. The assumptions and tools

apply toclean images (denoted asx), and they will clearly break down in some cases of images affected by noise.

We defer the discussion of how, nevertheless, the tools are used in theiDUDE framework to Subsection III-D. Until

then, we ignore the effect of noise.

A1) Smoothness.By this property, contextsSx
i that are close as vectors will tend to produce similar conditional

distributions for their center samples. Therefore, they can be clustered intoconditioning classesof vectors

that are “similar” in some sense, e.g., close in Euclidean space, and the conditional statistics of the member

contexts can be aggregated into one conditional distribution for the class, possibly after some adjustment

in the support of each distribution (see A2 below). There is a trade-off between the size of a conditioning
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class (or the total number of classes) and the accuracy of the merged distributions as approximations of the

individual context-conditioned distributions. If classes are too large, they will include contexts with dissimilar

associated conditional distributions, and the merged distribution will not be a good representative of the

individual member distributions. If classes are too small, the associated merged statistics will be sparse,

and they will not have faithfully captured the structure of the data. This is the well known trade-off in

stochastic modeling which is at the core of the minimum description length (MDL) approach to statistical

inference [29]. Algorithmic approaches to the optimization of the model size (number of classes) exist, and

have been implemented successfully in lossless image compression [30]. However, simpler schemes based

on carefully tuned but fixed models, such as those used in [5], [6] achieve similar levels of performance at a

lower complexity cost. We will take the latter approach in our design of a context model foriDUDE. Although

we have mentioned Euclidean distance between contexts (as vectors) as a natural measure of “closeness,”

similarities in other features may also be used, such as a measure of theactivity level in the context (e.g.,

empirical variance), or a signature of the context’stexture [6]. The use of these tools iniDUDE will be

discussed concretely when we describe implementations in Section IV.

A2) DC invariance(i). Since similar contexts are expected to generate conditional statistics which are similar

in shape but with slightly misaligned supports, merged conditional statistics generated as in A1 would be

“blurred.” This misalignment can be compensated for by using apredictor for the center sample of each

context as a function of the context samples, and accumulating statistics of the prediction errors rather than

the original sample values. It has long been known (see, e.g., [31]) that such prediction error distributions

are peaked and centered near zero (Laplacian or generalized Gaussian models have proven very useful to

model these distributions). When the merged distribution is used for a specific sample, e.g., in Step 2 of the

procedure in Figure 1, the prediction error distribution should be re-centered at the predicted value for the

sample, which can always be recovered from the sample’s original context. The next item shows how the use

of prediction allows for a broader notion of similarity between contexts.

A3) DC invariance(ii). Since contexts that differ only by a constant brightness level are likely to produce similar

conditional distributions up to a shift in their support, statistics may be conditioned ongradients(differences

between spatially close sample values) rather than the sample values themselves, so that conditional statistics

of contexts that differ only by a constant intensity vector are merged. More specifically, ifs is a context,

a∈A, anda denotes a constant vector with all entries equal toa, then

P (xi = b | s) ≈ P (xi = b + a | s + a) , b, b+a ∈ A, s, s+a ∈ A|S| , (4)

where the≈ sign denotes that we expect these probabilities to be “similar” in some sense appropriate to

the application. Clearly, before they are merged, the conditional distributions must be shifted so that they

are centered at a common point. This is accomplished by using prediction as described in A2. Also, when

gradients are used to build contexts in lieu of the original sample values, the clustering described in A1 above

is appliedafter the switch to gradient space. Notice that although the use of prediction described here and
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Fig. 2. Merging of context conditional distributions.

the one described in A2 are related and derive from the same assumption, they are not equivalent. The use

of prediction as mentioned in A2 is advantageous but optional when original samples are used to form the

contexts, but it becomes mandatory if contexts are based on gradients.

A4) Symmetry.Patterns often repeat in different orientations, and statistics are not very sensitive to left/right,

up/down, or black/white reflections.3 Thus, contexts that become close as vectors after shape-preserving

rotations or reflections of the underlying neighborhood pattern, or gradient sign changes (i.e., change in sign

of all the differences mentioned in A3), will tend to produce similar conditional distributions, which can

be merged as in A1–A3. To take advantage of these symmetries, contexts should be brought, by means of

sign changes, and shape-preserving neighborhood rotations and reflections, to some canonical representation

that uniquely represents the context’s equivalence class under the allowed mappings (an example of such

a canonical representation will be described below in Example 1). When bringing a context to canonical

representation involves a gradient sign change, the support of the corresponding conditional distribution should

be flipped around zero before merging with the other distributions in the conditioning class.

Clearly, the accuracy and appropriateness of the assumptions underlying A1–A4 will vary across images, or even

across parts of the same image. Nevertheless, they have proven very useful in image compression and other image

modeling applications. In particular, the use of a prediction function in theiDUDE framework allows for conditional

distributions that would otherwise be considered different to “line-up” and be merged in a useful way. Thus, as in

data compression, prediction is an important tool in model cost reduction [9] and the quality of the predictor affects

the performance of the system. The better the predictor, the more skewed the distribution of prediction error values,

which, in turn, will lead to a “sharper” selection of a likely reconstruction symbol as learned from the context (see

the discussion following (2)).

Example 1:Figure 2 shows an example of the application of the tools described in A1–A4. Assume thatS is

the 3×3 neighborhood of samples closest to the center sample, and that the empirical distribution of this sample

conditioned on each of the contexts labeledA andB is as illustrated on the right-hand side of Figure 2. We use the

3By black/white reflection invariance we mean that ifs is a context vector, andw is a constant vector with all entries equal to the largest
possible sample value,M−1, then we expectPx(x | s) ≈ Px(M−1−x |w−s).
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average of each context, namely,avg(A) = 124, andavg(B) = 144, as a predictor. We then subtract the predicted

value from each sample to obtain adifferential representation, D(C), of each contextC, as follows:

D(A) =
-3 16 77

-7 -6

-44 -25 -8

× and D(B) =
2 -16 -77

8 6

45 24 8

×

We define the canonical representation of a context as one in which the upper left corner contains the largest entry,

in absolute value, of the four corners of the context (this can always be arrived at by90◦ rotations), and the upper

right corner contains the largest entry, again in absolute value, of the two corners on the secondary diagonal of the

neighborhood (this can be achieved by a reflection, if needed, around the main diagonal after the initial rotation).

Furthermore, we require the entry at the upper-left corner to be nonnegative, and we flip the sign of the context if

this is not the case.4 The array markedA′ in the figure shows the result of the above transformations on contextA.

For contextB, the same transformations would result in the value−77 at the upper left corner. Therefore, we change

the sign of all the entries in the context, resulting in the array labeledB′ in the figure. This sign change also means

that prediction errors are accounted for in the merged histogram with their signs changed, or equivalently, that the

original empirical distribution conditioned onB is reflected around zero before merging. Finally, we observe that

the canonical representationsA′ andB′ are close in Euclidean distance, and we assume that they will be assigned

to the same conditioning class. Thus, the distributions conditioned onA′ andB′ merge, resulting in the common

distribution centered at zero represented on the left-hand side of the figure.

B. The formal model and its estimation from clean data

In this subsection, we formalize the prediction-based modelPX( · | Sx
i ) outlined in Subsection III-A for samples

xi of an imagex conditioned on their contextsSx
i for a given neighborhoodS (which, as mentioned, we will

not attempt to optimize). We first define the notation and terminology. Letx̃ : AS → A denote a mapping that

predicts a sample as a function of its context, and letD : AS → ZS denote a function mapping a context to a

differential representation (e.g., through the use of gradients) which is invariant under constant translations of the

context components. LetC : ZS → ZS denote a function that maps differential representations to a unique canonical

representation by applying shape-preserving rotations and reflections toS (e.g., as described in Example 1).5 Finally,

let Q : ZS → {Q1,Q2, . . . ,QK} , K ≥ 1 , denote a classification function mapping canonical representations to a

set ofK conditioning classes, or clusters(this function may be image-dependent). Abusing notation, we will also

useQ to denote the composition ofD, C, andQ, so thatQ(S0) denotes the cluster corresponding to a contextS0.

Our model of the imagex is generated by conditional probability distributionsPE(e | Qκ), of prediction error

valuese, −M+1 ≤ e ≤ M−1, associated with each conditioning classQκ, κ = 1, 2, . . . ,K (the above ranges of

κ and e are implicitly assumed throughout the discussion). Under this model, a prediction errore has probability

PE(e | Qκ) and the corresponding conditional distributionPX(x | Qκ) of a samplex, 0 ≤ x ≤ M−1, that occurs

4We omit a discussion of ambiguities and tie-breakers, which are easily handled so that the canonical representation is unique.
5To simplify notation, we will assume the canonical representation does not include sign changes; this technique is also easily implemented,

cf. Example 1 and [5], [6].
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in contextS0, given its conditioning classQκ = Q(S0), is implied by the relation

x = max
(
0,min(e + x̃(S0),M − 1)

)
.

In words, the conditional distributionPE(e | Qκ) is shifted byx̃(S0) and the mass corresponding to negative values

accumulates at0, whereas the mass corresponding to values larger thanM−1 accumulates atM−1 (i.e., the signal

“saturates” at the black and white levels).6 This relation is more conveniently expressed in vector notation, by

letting ua
M denote an indicator (column) vector of lengthM , with a 1 in position a, 0 ≤ a ≤ M−1, and zeros

elsewhere, and representing the observation of a samplex asux
M . Define theM × (2M−1) matrix

C(a) =



�
M−1−a

-

1 1 · · · 1

0 0 · · · 0
...

...
...

0 0 · · · 0

∣∣∣∣∣∣∣∣∣∣∣∣
IM

∣∣∣∣∣∣∣∣∣∣∣∣

0 0 · · · 0
...

...
...

0 0 · · · 0

�
a

-
1 1 · · · 1

 , a ∈ A, (5)

whereIk denotes an identity matrix of orderk. With these definitions, the relation betweenx ande takes the form

ux
M = C(x̃(S0))ue+M−1

2M−1 . (6)

Similarly, we will regard conditional probability distributionsPU ( · | c) as (column) vectorsPU (c), indexed by the

sample space ofPU .

With access tox, the distributionPE(Qκ) can be estimated from samplesxi occurring in the contextSx
i by

selecting a suitableestimation matrixM(x̃i), that depends on the predicted valuex̃i = x̃(Sx
i ), and accumulating

M(x̃i)uxi

M into a vectoreκ of dimension2M−1. The role ofM(x̃i) is to map theM -dimensional indicator vector

uxi

M into a vector of the same dimension as the desired estimate. Specifically, lettingQx
i , Q(Sx

i ), the estimate

P̂E(Qκ) =

 ∑
i:Qx

i =Qκ

M(x̃i)C(x̃i)

−1 ∑
i:Qx

i =Qκ

M(x̃i)uxi

M

 , R ·

 ∑
i:Qx

i =Qκ

M(x̃i)uxi

M

 (7)

where the matrixR acts as a normalization factor, is in fact unbiased for any choice of the estimation matrices

M(x̃i) that leads to a well-definedR.7 This property is readily seen by replacingx = xi in (6), pre-multiplying

each side of (6) byM(x̃i), summing both sides over all the indexesi such thatQx
i = Qκ, and noting that the

expectation ofue+M−1
2M−1 underPE( · | Qκ) is PE(Qκ). A natural choice forM(x̃i) is the matrixSx̃i

, where

Sa ,
[
0M×(M−1−a) | IM | 0M×a

]T
, a ∈ A , (8)

with 0j×k representing aj×k zero matrix. This choice corresponds to incrementing the entryxi− x̃i of eκ by one

6Our implementation uses this saturation model for simplicity. Other, more sophisticated models are possible.
7If necessary, pseudo-inverse techniques can be used, as discussed in Subsection III-F. However, as will become clear later in this subsection,

the invertibility problem will not arise for our choice of estimate.
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1) Initialization. Initialize to zero a histogram,eκ, of prediction error residual occurrences for each context cluster

Qκ, 1 ≤ κ ≤ K.

2) Statistics collection.For each indexi ∈ Vm×n:

a) Set x̃i = x̃(Sy
i ), the predicted value forxi.

b) Set S̄y
i = D(Sy

i ), the differential representation ofSy
i .

c) SetCyi = C(S̄y
i ), the canonical representation of̄Sy

i .

d) SetQy
i = Q(Cyi ), the conditioning class ofSy

i .

e) Seteκ ← eκ + M′(x̃i)u
zi
M for κ such thatQκ = Qy

i .

3) Normalization.For eachκ, normalizeeκ to obtainP̂E(Qκ).

4) Conditional distributions for individual contexts.For each indexi ∈ Vm×n:

a) Set x̃i, Sy
i , andQy

i as in Step 2 above.

b) Set P̂X(Sy
i ) = C(x̃i) P̂E(Qy

i ) .

Fig. 3. Estimation of conditional distributions based on prediction and context classification.

for index i : the observation ofxi gives the observer a sample from the “window”[−x̃i,M−1−x̃i] (of sizeM ) of

the support (of size2M−1) of PE( · | Qκ).

The normalization byR differs from the natural choice of (uniformly) normalizing by the sum
∑

e eκ[e]. This

difference accounts for two factors: first, the saturation in the model (6), and second, the fact that the number of

times a given entrye of eκ has an opportunity to be incremented, denotedne, depends on the number of predicted

valuesx̃i such thate falls in the window−x̃i ≤ e ≤ M−1−x̃i. Notice, however, that the variance of the ratio

eκ[e]/ne is, under reasonable assumptions, inversely proportional tone. Therefore, small values ofne will produce

estimates of high variance for the corresponding entry ofP̂E( · | Qκ) and, hence, uniform normalization has the

effect of producing estimates with a more uniform variance, which is a desirable property. Consequently, we will

replaceR with a diagonal matrix effecting uniform normalization and use the resulting estimate forP̂E( · | Qκ).

With the estimated distribution̂PE( · | Qx
i ) in hand, the corresponding estimate ofPX( · | Sx

i ) based onx is given

by the vector

P̂X(Sx
i ) = C(x̃i) P̂E(Qx

i ) , i ∈ Vm×n . (9)

The overall modeling procedure is outlined in Figure 3 where, in preparation for the situation in which the model

is estimated from noisy data, we have decoupled three images that so far have been folded intox: the noisy input

imagez, an available imagey (which will be derived fromz), and the clean imagex. Thus, contexts are denoted

Sy
i and are formed fromy, and the update ofeκ uses the observed samplezi (rather than the unavailable valuexi),

appropriately replacingM(x̃i) with a matrixM′(x̃i) to be introduced in Subsection III-D. The case of estimating

the model from clean data corresponds toz = y = x.

In Figure 3, as in the preceding discussion, we have assumed, for simplicity, that the prediction functionx̃ is

fixed, in the sense that its value depends only on the sample values of the context it is applied to. The actual

procedure used iniDUDE is enhanced with the addition of an adaptive component to the prediction function, that

depends also on image statistics associated to the context, and a two-stage context clustering strategy. We discuss

these enhancements next.
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b0 M−1

a0 M−1

CLEAN

b0 M−1

a0 M−1

NOISY

0

MERGED

Fig. 4. Effect of S&P noise on merging of similarly-shaped distributions centered at different values.

C. Two-stage modeling

It has been observed (see, e.g., [5]) that conditional distributions of prediction errors produced by a fixed

predictor exhibit context-dependent biases. To improve prediction accuracy, abias cancellationcomponent is used

in conjunction with the fixed predictor. To derive this component, contexts are clustered in two stages.

Let x̃ be a fixed predictor, as discussed in Subsection III-B. We assume that a first-stage classification function

R : ZS → {R1,R2, . . . ,RJ}, J ≥ 1, mapping canonical representations to prediction clusters (or classes), is

defined. LetI` denote the set of sample indicesj such thatR` = R(Sx
j ) (where, again, we abuse the notation for

R), and letn` = |I`|. For each clusterR`, 1 ≤ ` ≤ J , we compute a bias correction value that will be applied to

samples inI` as

ε` =
1
n`

∑
j∈I`

(xj − x̃(Sx
j )) , ` ∈ {1, 2, . . . , J} . (10)

The final predicted value forxi, i ∈ I`0 , is then given bŷxi = [x̃i + ε`0 ], where[v] denotes the integer closest to

v. Due to this rounding operation, rounding to an integer is no longer necessary in the fixed prediction functionx̃.

Therefore, we reinterpret this function as one mapping contexts to real numbers, while the refined predictor can be

seen as an integer-valued functionx̂(Sx
i ) that depends on the samples inSx

i , and also on the imagex through the

bias value estimated forR(Sx
i ).

After applying the bias correction, statistics for the corrected prediction errors are collected in a (generally) coarser

set of context clusters, i.e., the clustersR` are re-clusteredinto the set of conditioning classes{Q1,Q2, . . . ,QK},

where each classQκ , 1 ≤ κ ≤ K , merges samples from several clustersR`. Hereafter, we interpret the modeling

procedure in Figure 3 as using the prediction functionx̂ and corresponding prediction valuesx̂i throughout in lieu

of x̃ and x̃i, respectively.

D. Model estimation in the presence of noise

The discussion in Subsections III-A–III-C has focused on the modeling of a clean image, ignoring the effect of

noise. To illustrate the effect of applying the preceding modeling assumptions to noisy data to estimateP̂z(Sz
i ),

consider, for example, a S&P channel. In this channel, a fractionδ of the samples are saturated to black (sample
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value0) or white (sample valueM−1) with equal probability. Clearly, noisy samples in this case generally will not

obey smoothness or DC-invariance assumptions. This affects both the samples whose distributions we are modeling,

and the contexts that condition these distributions. On the one hand, contexts that are similar (and could be clustered)

in the clean image will generally not remain so in the noisy image. On the other hand, distributions that have similar

shapes up to translation in the clean image may not remain so, as they may be differently positioned with respect

to the spikes at0 andM−1 caused by the noise. The latter effect is illustrated in Figure 4, where it is clear that,

since the merged statistics are not typical of a S&P channel output, application of the channel inversion procedure

and denoising as in Figure 1 will not remove the noise.

Although the effect of noise may be more benign for other channels, given the above discussion, our approach

will not be to apply the preceding modeling assumptions to the noisy data. Rather, we will translate the operations

required by the tools to a “cleaner” domain, where the working assumptions are more likely to hold. To this

end, we will further assume that the formal model of Subsection III-B (for the clean samples) still applies when

the (unavailable) clean context is replaced by the corresponding one in apre-filtered imagey. The imagey is

available for model estimation and can be obtained as the result of a “rough” denoising of the noisy imagez using

a (possibly simpler) denoiser appropriate for the type of noise (e.g., a median filter for S&P noise). In the iterative

process described in Subsection III-E,y can also be the output of a previous iteration ofiDUDE. Thus, we will

postulate thatSy
i can replaceSx

i in the modeling of thei–th sample, as described in Figure 3. Our rationale for this

assumption is based on the fact thatx̃(Sy
i ) is still a good predictor ofxi, and therefore an effective model with few

conditioning classes, via context aggregation, can be built fromy. The imagey is also used for bias cancellation,

with yi replacingxi in the bias calculation (10). For zero-mean, additive noise, we could use the noisy sampleszi,

since the effect of noise will tend to cancel. However, such a strategy would fail for non-additive noise.

It should be noted that pre-filtering introduces some dependence of contextsSy
i on their noisy center samples

zi, since the value ofzi might have participated in the rough denoising of some of the components ofSy
i . This

“contamination” is undesirable since, by virtue of the independence assumptions on the channel, in the denoising

rule (2), the information onzi is fully incorporated inπzi
to produce, via the Schur product, the correct overall clean

symbol likelihoods used by the rule. However, it turns out that practical heuristics will allow us to detect when this

dependence is strong enough to negatively impact the performance of the denoising algorithm and act accordingly

(see Subsection IV-B). Pre-filtering can also be seen as a tool for capturing higher-order dependencies without

increasing model cost. Clearly, with conditioning classes based on a pre-filtered image, the conditioning events for

the original noisy samples depend on a larger number of original samples than the size of the neighborhood used.

Thus, pre-filtering increases the effective size of the contexts used to condition the distributions, without increasing

the number of conditioning classes.

Our task is now to estimate the above model forclean image samples, conditioned on contexts formed from an

available imagey (which is obtained from the noisy imagez). To this end we follow the procedure of Figure 3,

but take into consideration the fact that we have access toz, rather than to the clean imagex. Notice that while our

goal coincides with the main step in the baselineDUDE algorithm, namely to produce an estimate of the posterior

distribution of the clean symbolxi given the noisy contextSz
i and the noisy symbolzi, we will accomplish it
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directly, without going through the intermediate step of estimating distributions of noisy samples.

To see how the model is estimated from noisy data using theDUDE approach, we revisit the derivation in

Subsection III-B. When the image being sampled is noisy, each samplezi provides information about the(2M−1)-

vector PE(Qκ), subject to the same arbitrary shifts and saturation as before (see Equation (6)), but also to

noise. Now, recall from the discussion following (2) that, inDUDE, the channel inversion is accomplished by

pre-multiplication by the matrixΠ−T . Thus, just as an occurrence ofxi contributesM(x̂i)uxi

M to the estimate

in (7) (when based on clean data), an occurrence ofzi can be seen as contributingM(x̂i)Π−T uzi

M . This motivates

the DUDE-like estimate (for the prediction setting)

P̂E(Qκ) = R′ ·

(∑
i

M(x̂i)Π−T uzi

M

)
(11)

whereR′ is a normalization matrix. It can be shown that ifR′ is set toR as in (7) (with x̂i in lieu of x̃i), then

(11) becomes an unbiased estimate ofPE(Qκ). Replacing againR′ with a uniform normalization, it follows that

the procedure in Figure 3 applies, with

M′(x̂i) = Sx̂i
Π−T (12)

and Sx̂i as defined in (8). At first sight, with this choice, the update ofeκ in Figure 3 involvesM operations

per image sample. However, as we shall see in Section IV, for the channels of interest, this procedure can be

implemented with one scalar increment to a histogram of prediction errors per sample, followed by adjustments

whose complexity is independent of the image size.

The above estimate can be interpreted as follows. DefineQκ,p = Qκ ∩ {Sy
i | x̂(Sy

i ) = p}, referred to as a

sub-cluster. For a clusterQκ, the result of Step 2 of the procedure in Figure 3 (with the choice (12) forM′(x̂i))

can be written as

eκ =
∑

i:Sy
i ∈Qκ

Sx̂i Π−T uzi

M =
∑
p∈A

∑
i:Sy

i ∈Qκ,p

SpΠ−T uzi

M

=
∑
p∈A

SpΠ−T
∑

i:Sy
i ∈Qκ,p

uzi

M =
∑
p∈A

Sp

(
Π−T mκ,p

)
(13)

where mκ,p denotes a vector of occurrence counts of noisy symbols in the sub-clusterQκ,p. The expression

Π−T mκ,p in the sum on the right-hand side of (13) represents an estimate of the empirical distributionP̂x( a | Qκ,p)

of samplesa ∈ A conditioned on the sub-clusterQκ,p, where the multiplication byΠ−T performs the “channel

inversion.” Shifted bySp, it becomes a conditional distribution of prediction errors. Equation (13) says that our

estimate follows along the lines of the basicDUDE, except that it does so for the sub-clustersQκ,p. The distributions

of prediction errors for clean symbols obtained for the sub-clusters are merged to yieldP̂E( · | Qκ), and the estimated

conditional distribution ofxi givenSy
i is given by Equation (9). Notice, however, that the goodness of this estimate

does not rely on the law of large numbers “kicking in” foreachsub-cluster, but rather for each cluster.

In general, the matrixM′(x̂i) in (12) may have negative entries, which may place the estimateP̂E(Qκ) obtained

in Step 3 of Figure 3 outside the probability simplex. This situation reflects statistical fluctuations and is more likely

to occur if the sample size is not large enough. The estimate is then modified as follows. Letpe denote the entries
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• Sety = F(z), a pre-filtered version of the noisy input imagez.

• Repeat untily satisfies the stopping criterion:

– Construct a setQy of K conditioning classes, and apply the procedure of Figure 3 to estimate the conditional

distributionsP̂X(Sy
i ), i ∈ Vm×n.

– Denoisez using the rule (15) with the conditional distributions derived in the previous step, and lety denote

the resulting denoised image.

Fig. 5. Iterative denoising with pre-filtering.

of P̂E(Qκ), −M+1 ≤ e ≤ M−1, and, for real numbersa, b, let (a− b)+ denotea− b if a > b, or 0 otherwise.

Consider a real numberγ, 0≤γ≤1. Since
∑

e pe = 1, there exists a real numberµγ such that

M−1∑
e=−M+1

(pe − µγ)+ = γ . (14)

It is not difficult to verify that if γ = 1, the vector with entriesp′e = (pe − µγ)+ represents the point on the

probability simplex that is closest inL2 distance toP̂E(Qκ). The transformation from̂PE(Qκ) to the vector of

entriesp′e can be seen as a “smoothing” ofP̂E(Qκ), which clips its negative entries, if any, and possibly also some

of the small positive ones. Choosingγ < 1 and renormalizing effects a more aggressive smoothing of the tails of

the distribution, which was found to be useful in practice to obtain more robust denoising performance. We refer

to this operation as aregularizationof the estimated distribution̂PE(Qκ), and include it as part of Step 3 in the

procedure of Figure 3.

Finally, the corresponding estimatêPX(Sy
i ) obtained in Step 4b of the procedure of Figure 3 is used to compute

the estimated posterior

P̂x(Sy
i , zi) = P̂X(Sy

i )� πzi

employed by theDUDE rule (see Equation (3)). The rule (2) then takes the form

χ̂m×n
S (z)[i] = arg min

ξ∈A
λT

ξ ·P̂x(Sy
i , zi), i ∈ Vm×n . (15)

E. Iterative process

The process of using a pre-filtered imagey for the purpose of context formation can be repeatediteratively,

using theiDUDE output from one iteration as the input for the next, starting from some “roughly denoised” image.

The iterations tend to improve the quality of the contextSy
i and increase the effective size of the neighborhoods,

as discussed. The iterative procedure can be stopped after a fixed number of iterations, provided that a method

for detecting undesirable “contamination” of the contexts with the values of their center samples is used (see

Subsection IV-C). The iterative procedure is summarized in Figure 5, where we denote byQy the set of conditioning

classes derived from an imagey. It is important to notice that, in each iteration, while the prediction classes

{R1,R2, . . . ,RJ} and the predictionŝx are computed from pre-filtered samples fromy, the statistics used for

estimating the cluster-conditioned distributions used in the actual denoising (the vectorseκ) are derived from the

original noisy samples inz.



17

F. Channel matrix inversion

iDUDE, as the originalDUDE, relies on computing the inverse of the channel transition matrixΠ to estimate

the posterior distributions used in the denoising decisions. AlthoughΠ is formally non-singular for the channels

we consider, it is very badly conditioned in some important cases, and, most notably, in the Gaussian case. Notice,

however, that the choice of estimation matricesM(x̂i) in (11) is arbitrary, and that a different choice, that would

formally cancelΠ−T , may alleviate the problem. Another approach for these channels is to proceed as in the

derivations of (7) and (11), but perform the channel inversion by solving for the conditional distributionsP̂E(Qκ)

with a numerical procedure to minimize a function of the form||U −V · P̂E(Qκ)|| (up to numerical tolerances

and stability), subject to the constraint thatP̂E(Qκ) represent valid probability distributions, where|| · || denotes

some norm on(2M−1)–vectors,

U =
∑

i

M(x̂i)uzi

M , V =
∑

i

M(x̂i)ΠT C(x̂i)

and the sums are over all occurrences ofQκ. The matricesM(x̂i) = Sx̂i
are again a natural but arbitrary choice,

and can be replaced with a suitable set of estimation matrices that would result in a better numerical behavior.

Maximum-likelihood estimation ofPE(Qκ) is also possible, at a higher computational cost. This approach

becomes attractive when both the noise process and the conditional distributionsPE(Qκ) admit simple parametric

models; we illustrate it by describing its application in the (quantized) Gaussian noise case. As mentioned, context-

conditioned distributions of prediction errors for clean natural images are well modeled by a discrete Laplacian [31],

[32], which is parametrized by a decay factorθ and a meanµ (not necessarily an integer value). Denotingµ′ = dµe,

a prediction errore is assigned, under this model, probabilityC(θ, µ)θe−µ′ if e ≥ µ′ and(1− θ−C(θ, µ))θµ′−e−1

otherwise, where the coefficientC(θ, µ) is such that the mean of the distribution equalsµ. We assume this model

for the difference(xi − x̂(Sx
i )), conditioned on the cluster ofSy

i , where we recall that̂x(Sx
i ) is the (unobserved)

predicted value forxi that would have been obtained by applying the predictor on the clean imagex. To estimate

the unknown, cluster-dependent parametersθ, µ from the data, we first notice that

zi − x̂(Sy
i ) = (zi − xi) + (xi − x̂(Sx

i )) + (x̂(Sx
i )− x̂(Sy

i )) . (16)

Assuming, for simplicity, that the prediction function is an average ofk samples,(x̂(Sx
i )− x̂(Sz

i )) is well modeled

by a zero-mean normal random variable with varianceσ2/k. While x̂(Sy
i ) is a better approximation tôx(Sx

i ),

we adopt this normal model also for(x̂(Sx
i ) − x̂(Sy

i )). Thus, conditioned onSy
i , the left-hand side of (16) can

be modeled as the convolution of a zero-mean normal distribution with varianceσ2(1 + k−1) and a Laplacian.

We refer to such a convolution as aLG distribution, or LG(θ, µ, ς2), with ς2 denoting the variance of the normal

distribution participating in the convolution; in the foregoing example,ς2 = σ2(1 + k−1). Explicit formulas for the

probability mass function of a discrete LG distribution and its derivatives with respect to the parametersθ, µ and

ς can be derived in terms of the error function erf(·). Although these expressions are rather unwieldy, they lend

themselves to numerical computations, and therefore allow for a numerical maximum-likelihood estimation of the

parametersθ andµ (ς is assumed given) from the statisticszi − x̂(Sy
i ) collected for the conditioning class cluster
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Fig. 6. Neighborhood for the WGT modeling scheme.

of Sy
i . With these estimated parameters on hand, we write

xi = (xi − x̂(Sx
i )) + (x̂(Sx

i )− x̂(Sy
i )) + x̂(Sy

i )

and estimatePX(Sy
i ) to be a LG(θ̂, µ̂, σ2/k) centered at̂x(Sy

i ), where θ̂ and µ̂ are the estimated Laplacian

parameters. This derivation extends to cases where other linear or piecewise-linear predictors are used, with

appropriate adjustments of the constantk above. For more complex predictors, the parameterς can be estimated

together with the other parameters, under the constraint thatς ≥ σ. The estimatêPX(Sy
i ), in turn, would be a

LG(θ̂, µ̂, ς2−σ2). In our implementation we use a simplified version of this procedure, described in Subsection IV-F.

Aside from providing an alternative to the channel matrix inversion, this parametric approach has model cost

advantages, since only two parameters,θ and µ, need to be estimated per conditioning class [32], as opposed to

M−1 parameters when individual probabilities for each symbol are estimated.

IV. I MPLEMENTATION FOR VARIOUS NOISE TYPES

In this section, we describe implementations of theiDUDE framework for three types of noise, namely, S&P

noise,M -ary symmetric noise (which leaves a sample intact with a certain probability1 − δ, or replaces it with

a uniformly distributed random value from the complement of the alphabet with probabilityδ), and quantized

additive white Gaussian noise. We assume that the Euclidean (L2) norm is used for the loss functionΛ in all cases

(other norms are easily implemented by suitably adapting the optimization (15)). In all cases, we follow the flow

of the DUDE algorithm, with model estimation as outlined in Figure 3. We begin by describing components that

are common to more than one channel, and then discuss the specifics of the implementation for each channel.

A. Prediction and context classification

Our context model is based on the5×5 neighborhoodS shown in Figure 6. We describe a predictor and a

quantization scheme that map a generic contextSy
i from an imagey into a fixed prediction valuẽx(Sy

i ), a

conditioning classQ(Sy
i ), and a prediction classR(Sy

i ). The predictor and quantizer draw from ideas in [6]

and [5] to classify contexts by computing a context signature derived from gradients as well as a bitmap reflecting
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the context’s “texture.” For ease of reference, we will refer to both the predictor and the context quantizer as WGT

(wing gradients and texture).

We denote byy(a,b) the value of the sample in coordinate(a, b) of the neighborhood in Figure 6, with−2 ≤ a, b ≤

2. As the neighborhood slides accross the image, the actual coordinates of the context samples arei+(a, b), i∈Vm×n;

for clutter reduction, we omit the center coordinatei in this discussion and in the Appendix. A context is brought

to canonical form via rotations and reflections as described in Example 1, with “entry at the upper-left corner”

interpreted as the sumy(−2,2) + y(−1,2) + y(−1,1) + y(−2,1), and analogously for the other corners. Context signs

are not implemented.

Once the context is in canonical form, it is decomposed into eight (overlapping)wings: four horizontal/vertical

wings labeledN , S, E andW , and four diagonal wings labeledNE, SE, NW andSW . Referring to Figure 6, the

N wing consists of the samples with coordinates(−1, 0), (1, 0), (−1, 1), (0, 1), (1, 1), and(0, 2). The S, E, and

W wings are defined similarly, following appropriate90◦ rotations. As for the diagonals, theSE wing is formed

by the samples with coordinates(1, 1), (−1,−1), (2, 0), (1,−1), (0,−2), and (2,−2), with the NW , SE, SW

being formed by appropriate90◦ rotations. For each wing, we compute a sample average and a directional gradient.

The fixed predictor̃x is computed as a nonlinear weighted function of the wing averages and gradient magnitudes,

with more weight given to wings with lower gradient magnitudes. The goal is to emphasize parts of the context

that are “smooth” (i.e., of low gradient), and de-emphasize parts that might be crossed by sharp edges. The precise

details of the computation are given in the Appendix.

Gradient magnitudes computed for prediction are also used to derive an integer-valuedactivity level, A(Sy
i ), for

each context, as also described in detail in the Appendix. Conditioning classes are obtained by quantizingA(Sy
i )

into K regions, such that the induced classes are of approximately the same cardinality. To form the prediction

classes, the activity level classification is refined by computing a representation of thetextureof the context. This

representation takes the form of a bitmap with one bit per context sample; the bit is set to0 if the corresponding

sample value is smaller than the valuex̃(Sy
i ) predicted by the fixed predictor, or to1 otherwise [6].

The classification of the contexts into prediction classes is accomplished by computing a context signature

combining the activity level and the firstT bits from the texture bitmap,T ≥ 0, taken in order of increasing

distance from the center. Thus, the number of prediction classes isJ = K 2T . Notice that since the activity level

of a context is derived from differences (gradients) between sample values, and the texture map from comparisons

with a predicted value, the resulting context classification is DC-invariant.

B. Choosing denoiser parameters without access to the clean image

In practice, the optimal settings of variousiDUDE parameters, such as the number of prediction and conditioning

classes, or the number of iterations in the procedure of Figure 5, may vary from image to image. The most obvious

difficulty in choosing image-dependent settings is that denoising performance cannot be measured directly, since

the clean image is not available to the denoiser. Thus, we have no direct way of telling whether one setting is better

or worse than another. Nevertheless, various methods for choosing the best parameters for theDUDE have proven

effective in practice, and can be used also foriDUDE. Some of these methods are based on using an observable
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parameter that correlates with denoising performance, and optimizing the settings based on the observable. An

example of such a heuristic, described in [2], suggests using thecompressibilityof the denoised sequence. More

principled techniques, based on an unbiased estimate of theDUDE loss, are described in [33].

In our implementations, we have grouped images by size (”very small”, ”small”, ”large”), and by noise level for

each channel, and have chosen one set of parameters for each size/channel/noise level combination. The choices,

which are fairly robust, were guided by performance on an available set of training images, and also by some basic

guidelines on context models: larger images can sustain larger models, and so do cleaner images (intuitively, since

less can be learned from noisy data than from clean data). The specific parameter values are given in Table II of

Section V.

C. Monitoring of the statistical model during iteration

As mentioned in Subsection III-E, theiDUDE iteration of Figure 5 introduces dependencies between contexts

Sy
i and their noisy center sampleszi, since the value ofzi might have participated (directly or indirectly) in the

rough denoising of some of the components ofSy
i . We have observed empirically that these dependencies can

cause significant deviations from the expected behavior of the statistical model, which, in turn, can translate to a

deterioration of the denoising performance after a number of iterations. To prevent this effect, we employ a heuristic

that is particularly useful for the non-additive channels.

The heuristic monitors the fraction of potentially noisy samples in each conditioning class, and verifies that the

fraction is consistent with the channel parameters. To determine whetherzi=c is noisy given thatQ(Sy
i )=Qκ, we

measure the fraction of timesc occurs inQκ and x̂(Sy
i ) ∈ Afar

c , whereAfar
c is the subset ofM ′ values inA that

are farthest away fromc (the exact value ofM ′ is not critical;M ′ = M/2 has worked well in our experiments).

The rationale of the heuristic is that, due to the smoothness of images,xi = c is unlikely if x̂(Sy
i ) ∈ Afar

c , so

the measured frequency of occurrence ofc is a good estimate of its probability due to noise in clusterQκ. This

estimate can then be compared against the probability ofzi=c due to noise on the channel at hand (i.e.,δ/2 in

the S&P case, where onlyc=0 and c=M−1 are potential noisy values, andδ/(M−1) in the M -ary symmetric

case, where a corrupted sample can assume any value fromA). Assuming the conditioning class is sufficiently

populated, a significant deviation of the count from its expected value (measured, say, in multiples of its standard

deviation) is strong evidence for the violation of the statistical assumptions of the denoiser. When such a situation

is detected, theiDUDE will refrain from making corrections for samples in the affected class, and will leave the

value from the pre-filtered image untouched, while samples in “healthier” classes will continue to be refined in the

iterative procedure. A threshold of ten to fifteen standard deviations has proven effective in our experiments.

Figure 7 illustrates the effectiveness of the heuristic. The figure plots the PSNR of the denoised image as a

function of the number of iterations for one of the S&P denoising experiments of Section V. When the heuristic

is not used, there is a large drop in PSNR in the fifth iteration. The drop is prevented when the heuristic is used,

and the PSNR follows a concave curve that stabilizes after a few iterations, making the choice of stopping point

for the iteration far less critical.

In more generality, when all the off-diagonal entries in each column of the channel matrixΠ are equal, which
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Fig. 7. Effect of statistics monitoring on theiDUDE iteration performance (S&P noise).

is the case for the two non-additive channels studied here, the probability ofzi = c given xi 6= c (and the cluster

Qκ) is clearly the common off-diagonal value in columnc. For other channels, it may be possible to obtain useful

bounds that still allow for meaningful detection of deviations from the expected noise behavior.

Notice that during the first application of theiDUDE, the procedure above can be used toestimatethe channel

parameters, rather than compare against them. Thus, the assumption of known channel parameters is not essential

in these cases.

D. Implementation for Salt and Pepper noise

The channel transition matrix for S&P noise, and its inverse, are given by

Πsp(δ) =



1− δ
2 0 · · · 0 δ

2

δ
2 1−δ · · · 0 δ

2

...
...

...
...

...
δ
2 0 · · · 1−δ δ

2

δ
2 0 · · · 0 1− δ

2


, Π−1

sp (δ) =
1

1−δ



1− δ
2 0 · · · 0 − δ

2

− δ
2 1 · · · 0

...
...

...
...

... − δ
2

− δ
2 0 · · · 1 − δ

2

− δ
2 0 · · · 0 1− δ

2


, 0 ≤ δ < 1. (17)

The matrices are well conditioned, except whenδ approaches one.8

1) Pre-filtering: The iDUDE implementation for the S&P channel uses a pre-filterF based on amodified selective

median(MSM) filter for the first step of the procedure of Figure 5. The filter is applied only to samples valued0

andM−1. It estimates the sample at the center of a5×5 window by computing the median of a set of25 values,

namely, the non-center sample values in the window and their average. The pre-filter is improved by running the

MSM filter iteratively (still within the first step in Figure 5), using the MSM output of one iteration as the input to

the next, and refining the estimate for the samples valued0 andM−1 in the original noisy image. This iteration

generally stabilizes, and can be stopped when theL2 distance between the outputs of one iteration and the next

falls below a certain threshold (which is not very critical). We refer to this improved pre-filter as aniteratedMSM,

or, in short, IMSM. The improvement of IMSM over MSM is illustrated in Table III and Figure 8 of Section V.

8We report on the symmetric case for simplicity. Asymmetric cases where the probability of switching to0 or M−1 are not necessarily
equal are easily handled by adjusting the matrices in (17) accordingly.
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The output from the IMSM pre-filter is used as input to the first application of theiDUDE in the second stage

of the procedure of Figure 5.

2) Prediction and context model:The WGT predictor and context model are used.

3) Model estimation:With the matrixΠ−1
sp of (17), the update in Step 2e of Figure 3 (withM′(x̂i) defined

in (12)) consists of adding(1− δ)−1 to eκ[zi−x̂i], and subtracting δ
2(1−δ) from eκ[−x̂i] andeκ[M−1−x̂i]. Notice

that the latter two subtractions depend on the predicted valuex̂i, but not onzi. Thus, the computation of the

statistic eκ can be implemented by just maintaining, for each conditioning classQκ, a conventional histogram

of occurrences of differenceszi−x̂i, together with a histogram of predicted valuesx̂i, each requiring one scalar

increment per sample. After scanning the image in the first pass of theiDUDE, the counts in the two histograms

suffice to deriveeκ.

4) Denoising rule:For theL2 norm, ignoring integer constraints, the minimum in theiDUDE decision rule (15) is

attained by the expectation,ξ, of x underP̂x(x | Sy
i , zi). Forzi = 0, writing P̂x(Sy

i , zi) explicitly asγ P̂X(Sy
i )�π0,

whereγ is an appropriate normalization coefficient, and substituting the first column ofΠsp(δ) from (17) for π0,

we obtain

ξi =
δEx

2(1− δ)p0 + δ
,

whereEx is the expectation ofx underP̂X(x | Sy
i ) andp0 = P̂X( 0 | Sy

i ). The reconstructed value forxi is obtained

by roundingξi to the nearest integer (which gives the precise integer solution to (15)). An analogous formula can

be derived for the case whenzi = M−1.

E. Implementation for theM -ary symmetric channel

The M -ary symmetric channel is defined by a transition probability matrixΠM(δ), with entries

(ΠM)a,b =

 1− δ, b = a ∈ A,

δ
M−1 , b ∈ A \ {a} .

(18)

This matrix is generally well-conditioned (except nearδ = (M − 1)/M ), and its inverseΠ−1
M (δ) is given by

(ΠM)−1
a,b =

 M−δ−1
(1−δ)M−1 , b = a ∈ A,

− δ
(1−δ)M−1 , b ∈ A \ {a} .

(19)

1) Pre-filtering: The MSM filter described in Subsection IV-D.1, without iteration, is used for the first step of

the procedure in Figure 5.

2) Prediction and context model:The WGT predictor and context model are used.

3) Model estimation:It follows from (19) that the column with indexa in Π−T
M can be written in the form

M − 1
(1− δ)M − 1

ua
M − δ

(1− δ)M − 1
1M , a ∈ A, (20)

whereua
M is an indicator vector as defined in Section III, and1M is an all-one column of dimensionM . Thus,

to implement the update in Step 2e of Figure 3 in the case of theM -ary symmetric channel it suffices, again,
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to maintain a conventional histogram of occurrences of differenceszi−x̂i, together with a histogram of predicted

valuesx̂i, from which the statisticeκ is obtained at the end of the first pass of theiDUDE over the image.

4) Denoising rule: With the entries ofΠM given in (18), the computation of the expectation ofξ under

P̂x( ξ | Sz
i , zi) for the M -ary symmetric channel yields

ξi =
δEx + ((1− δ)M − 1) pzi

zi

δ + ((1− δ)M − 1) pzi

,

whereEx is defined as before, andpzi
= P̂X( zi | Sz

i ). The iDUDE estimate forxi is the integer closest toξi.

F. Implementation for Gaussian noise

We consider the quantized additive white Gaussian channel, where real-valued noiseηi ∼ N (0, σ2) is added

(independently) to each clean symbolxi to produceζi = xi + ηi, the observed outputzi being the value closest to

ζi in A. The entries of the channel transition matrixΠG are readily derived from these definitions in terms of the

error function erf( · ).

1) Pre-filtering: No pre-filter is used. The iteration of Figure 5 includes at most two applications of theiDUDE,

using the identity forF . In principle, pre-filtering and iteration are optional for the Gaussian channel, since an

image affected by Gaussian noise can still be seen as satisfying our assumptions A1–A4 on grayscale images, and

therefore these assumptions could be used for modelingP̂z( · | Sz
i ). This is reflected in our results in Section V,

where we do not use pre-filtering or iteration for the high SNR regime. When we do use one round of iteration in

the low SNR regime, the gains are relatively modest. Now, since our results for this channel are preliminary (as

will be discussed in Section V), a state-of-the-art denoiser for Gaussian noise such as the one in [14], used as a

pre-filter, would have resulted in improved performance. However, the use of such a pre-filter would not reflect the

spirit of the (lightweight) rough denoising step.

2) Prediction and context model:Two variants of theiDUDE framework were implemented. Both use the WGT

predictor of Subsection IV-A. The first variant uses also the WGT context model. This variant is fast, and performs

well in the high SNR regime.

In the second variant, contextsSy
i are first brought to differential canonical formC(Sy

i ) (see Figure 3). Taking the

C(Sy
i ) as24-dimensional real vectors, the contexts are initially classified intoN clustersV1, V2, . . . , VN by means

of the Linde-Buzo-Gray (LBG) vector quantization algorithm [34], with theL2 metric used to measure distance

between contexts. The activity level of a contextSy
i is defined in this case aslog σ̂2

i , where σ̂2
i is the empirical

variance of samples in the context. Conditioning classesQ1,Q2, . . . ,QK are defined by uniformly quantizing the

activity level. The set of prediction classes is then defined as{Qi ∩ Vj | 1 ≤ i ≤ K, 1 ≤ j ≤ N }, namely, a total

of J = K · N classes. The LBG variant of the context model is slower, but performs better, and is the preferred

mode of operation, at lower SNR.

3) Model estimation:We follow the parametric approach outlined in Subsection III-F, but with a simpler

estimation procedure for the cluster-dependent parametersθ and µ of the (discrete) Laplacian component of the

LG model forPx( · | Sy
i ). First, denoting the variance of the Laplacian byτ2, we observe that by the definition of

the LG model, its varianceν2 is given byν2 = τ2 +σ2(1+ k−1). Given the parameters of the Laplacian,τ2 takes
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the form

τ2 =
2θ

(1− θ)2
+ r(1− r) (21)

wherer denotes the fractional part ofµ. In the first pass of theiDUDE we compute the empirical mean,µ̂κ, and

variance,ν̂2
κ, of the differenceszi − x̂(Sy

i ) observed in each classQκ. Next, we estimate the varianceτ2
κ of the

Laplacian component forQκ as

τ̂2
κ = max

(
r̂κ(1− r̂κ), ν̂2

κ − σ2(1 + k−1)
)

(22)

where r̂κ denotes the fractional part of̂µκ and we recall thatk is a parameter that accounts for the number of

samples participating in the weighted average in the WGT predictor (we usek = 5). The maximum in (22) accounts

for the fact that an estimatêν2
κ−σ2(1+k−1) for the variance could be smaller than the minimum possible variance

r̂κ(1− r̂κ) of the discrete Laplacian (obtained forθ = 0, see (21)), due to statistical fluctuations or an inaccurate

choice of the parameterk. Finally, givenµ̂κ and τ̂2
κ , we use (21) to solve for an estimateθ̂κ.

V. RESULTS

In this section, we present results obtained with theiDUDE on images corrupted by simulated S&P, M -ary,

and Gaussian noise. For each type of noise, we compare our results with those of a sample of recent denoising

algorithms from the literature for which an objective basis for comparison was available. OuriDUDE experiments

are based on a research prototype implementation written in C++, and run on a vintage 2007 Intel-based personal

computer.9 For a very rough complexity reference, we measured the running time of oneiDUDE iteration in this

implementation (using the WGT context model) on the2048 × 2560 image Bike at approximately 7 seconds, for

a throughput of approximately 730 Kpixels/sec. Running times for a given context model do not vary significantly

with the noise type or level.

The images used in the experiments are listed in Table I. The “very small” heading in the table refers to a set

of 24 images of dimensions384×256 (referred to asSet24) available at [35], for which results of denoising with

the state-of-the-art scheme of [26] at various levels of S&P noise are available. The “small” (512× 512) images in

the table are from the set traditionally used in the image processing literature.10 Since the images in either set are

rather small by today’s standards, we include also larger images from the benchmark set used in the development

of the JPEG-LS standard [5].

We evaluate denoising performance by measuring Peak Signal to Noise Ratio (PSNR) between the denoised

image and the original clean image. Table II summarizes the iteration and model size parameters used for the

various experiments and noise types. The parameters, and the generaliDUDE configuration for each noise type,

were defined in Section IV. We use one set of iteration and model size parameters for each combination of image

size category, noise type, and noise level, rather than parameters optimized for each individual image. The fixed

predictor parametersg andα (cf. Appendix) were set as follows:g = 8% of maximum gradient magnitude in the

9Specifically, Intel(R) Xeon(R) 5160 CPU, 3 GHz clock speed, 3 GB RAM, running Linux.
10We use the versions available at the DenoiseLab site [36]. Additionally, to allow comparison with [26] also on a512×512 image, we use

the (different) version of the Lena image reported on in [26], which we refer to as Lena∗. We are not aware of other images for which a reliable
comparison with [26] is possible.
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very small images small images large images

image size source image size source image size source

Set of 24 384×256 [35] Lena 512×512 TR Tools 1524×1200 JLSY

images
(Set24) Lena∗ 512×512 [26] Toolsk 1524×1200 JLSK

Boat 512×512 TR Womank 2048×2560 JLSK

Barbara512×512 TR Bike 2048×2560 JLSY

TABLE I

IMAGES USED IN THE EXPERIMENTS. LEGEND: TR: TRADITIONAL IMAGES ; JLS: IMAGES FROM THEJPEG-LSBENCHMARK SET; Y: Y

CHANNEL OF YCRCB COLOR SPACE; K: K CHANNEL OF CMYK COLOR SPACE.

Gaussian

S&P M -ary symmetric LBG WGT

v. small small large small large small large all

δ R K T R K T R K T δ R K T R K T σ R K N K N K T

10% 10 4 8 10 4 14 15 32 16 10% 15 4 14 15 8 16 5 1 32 256 96 256 32 6

30% 10 4 8 10 4 14 15 32 16 20% 15 4 14 20 2 32 192 32 192

50% 10 4 8 10 4 14 20 32 16 30% 15 4 10 15 8 16

70% 20 4 8 20 4 14 20 32 14 40% 20 4 9

50% 20 4 8 20 16 8

TABLE II

PARAMETERS USED IN THE EXPERIMENTS. R: NUMBER OF iDUDE ITERATIONS; K, T : MODEL SIZE PARAMETERS(CF. SEC. IV-A); N :

NUMBER OF LBG CLUSTERS(SEC. IV-F.2).

context,α = 0.075 for the S&P channel,α = 0.1 for the M -ary symmetric channel; for the Gaussian channel,g

andα were optimized to minimize the observable prediction RMSE for each noisy image, withg varying between

5% and 17%, andα between0 and 0.05. This is one case where it is “legitimate” to optimize the parameter for

each image, since the optimization is based on observable data.

A. S&P noise

The traditional test images (e.g., Boat, Barbara, Lena), contain very few, if any, pure black (value 0) or pure white

(value M−1) samples. Therefore, for these image, the S&P channel behaves like an erasure channel, and noisy

samples are easily identified. We include the images Toolsk and Womank to test theiDUDE in a more challenging

situation. These images have significant amounts of pure black and white pixels, both in large solid regions, and

in isolated occurrences scattered across the image.

Table III summarizes the results for the S&P channel. Visual examples are given in Figure 8. For this channel,

we compare our results to those of [26] on the Lena∗ variant of the Lena image, and on the mentionedSet24

from [35]. For the latter, for brevity, we list theaveragePSNR over the set images (as done also for the results

reported in [26]). In all cases, we compare also with the modified selective median (MSM) filter described in

Section IV-D.1, and its iterated version (IMSM). The results showiDUDE outperforming [26] in all cases, and by

significant margins in the case of the Lena∗ image. The advantage ofiDUDE diminishes as images become very

small and noise levels become high, as expected from a statistical context-model-based scheme.
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δ = 10% δ = 30% δ = 50% δ = 70%

image MSM IMSM iDUDE MSM IMSM iDUDE MSM IMSM iDUDE MSM IMSM iDUDE

Lena 40.1 40.4 45.2 34.1 35.2 39.7 27.4 32.0 36.3 16.7 29.1 32.8

Boat 36.3 36.5 41.0 30.6 31.2 35.3 25.5 28.3 32.0 16.4 25.7 28.9

Barbara 32.6 33.0 38.7 27.4 28.3 31.7 23.4 26.0 27.7 15.8 24.2 24.7

Tools 25.6 25.2 31.8 22.1 22.2 26.9 19.2 20.1 23.5 14.1 18.5 20.6

Toolsk 27.1 26.8 31.0 23.6 23.8 26.4 20.0 21.7 23.6 12.9 20.2 21.2

Womank 34.0 33.9 40.7 30.0 30.3 34.9 24.6 27.9 31.2 14.3 26.1 28.1

Bike 31.2 31.3 39.4 26.5 27.4 33.1 22.4 24.7 29.0 15.0 22.1 25.1

image/

δ MSM IMSM CHN05 iDUDE

Set24

10% 36.3 36.5 40.4 40.9

30% 30.6 31.4 34.5 35.1

50% 25.0 28.4 31.1 31.6

70% 15.8 25.9 28.1 28.6

Lena*

10% 38.9 39.2 42.3 44.8

30% 32.9 33.9 35.6 38.8

50% 26.4 30.8 32.3 35.4

70% 16.1 28.0 29.3 31.7

TABLE III

RESULTS FORS& P NOISE. MSM: MODIFIED SELECTIVE MEDIAN (CF. SECTION IV-D.1); IMSM: ITERATED MSM; CHN05: THE

DENOISER OF[26]. COMPARISON WITH CHN05 DISPLAYED SEPARATELY.

(a) Noisy,δ = 30% (b) MSM (30.6dB) (c) IMSM (31.2dB) (d) iDUDE (35.3dB)

(e) Noisy,δ = 70% (f) MSM (16.4dB) (g) IMSM (25.7dB) (h) iDUDE (28.9dB)

Fig. 8. Denoising of Boat affected by S&P noise (a100×100 image segment is shown).

B. M -ary symmetric noise

Table IV summarizes our results for theM -ary symmetric channel. The results are compared with those of

the MSM filter, and, for the Lena image, with those published for the state-of-the-art scheme in [21]; a visual

comparison is presented in Figure 9. As before,iDUDE significantly outperforms the references.
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(a) Noisy,δ = 20% (16.2dB) (b) MED (30.1dB) (c) iDUDE (36.9dB)

Fig. 9. Denoising of Lena affected byM -ary symmetric noise withδ = 20% (a 160×160 image segment is shown).

δ = 10% δ = 30% δ = 50%

image MED iDUDE MED iDUDE MED iDUDE

Boat 26.9 33.9 25.8 29.6 23.5 26.6

Barbara 23.1 29.9 22.7 25.4 21.2 23.5

Tools 18.9 26.9 18.4 22.3 17.1 19.2

Bike 23.4 31.1 22.4 26.0 19.9 22.2

image: Lena

δ MED ROAD iDUDE

10% 30.0 – 39.8

20% 30.1 35.0 36.9

30% 29.3 33.2 34.4

40% 27.8 31.4 32.8

50% 25.5 29.4 30.4

TABLE IV

RESULTS FORM -ARY SYMMETRIC NOISE. MED: MEDIAN OF A 5×5 WINDOW; ROAD: RANK -ORDEREDABSOLUTE DIFFERENCES[21].

COMPARISON WITH ROAD FOR THELENA IMAGE DISPLAYED SEPARATELY.

C. Gaussian noise

Table V summarizes our results for the Gaussian channel, comparing with the state-of-the-art Block Matching

3D (BM3D) [14], and with the Non Local Means (NML) scheme of [4].11 We report results for the high SNR

regime (σ=5), and the low SNR regime (σ=20). For the high SNR regime, we include results for the two variants

of iDUDE discussed in Section IV-F.2, namely, one based on LBG clustering, and one based on the WGT model

(referred to asiDUDEF). The iDUDEF variant is competitive at this noise level, and achieves the speeds mentioned

above. In the low SNR regime, the LBG-based scheme has a more significant performance advantage, and we

report only on this variant. This work has focused on demonstrating the wide applicability of theiDUDE framework

for various types of noise and images, rather than optimizing performance specifically for the Gaussian channel,

which is work in progress. Although our results for this channel do not reach the performance of [14], they are

competitive with those obtained with the denoiser of [4], comparing favorably atσ=5, and somewhat below at

σ=20. Figure 10 shows denoising error images (i.e., images of differences between denoised and clean samples,

re-centered at128) for a portion of the Boat image atσ=10. The figure shows thatiDUDE and NLM achieve the

same PSNR, withiDUDE showing better recovery of edges (which are less marked in the corresponding image)

and NLM better performance on smoother areas. BM3D does well on both types of image region, and has better

performance overall.

11Results for the NLM algorithm were obtained, forσ=5, using the algorithm described in [4], and forσ=20, using the slightly different
version of the algorithm made available in Matlab by the authors [37]. These versions were found to give the best PSNRs for the respective
values ofσ. In all cases, the averaging window was set to 21x21, the similarity window to 7x7, and the parameterh was optimized for each
image andσ. Results for BM3D were obtained with the Matlab code available at [38].
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image σ = 5 σ = 20

BM3D NLM iDUDE iDUDEF BM3D NLM iDUDE

Lena 38.7 37.7 38.0 37.8 33.0 31.3 31.3

Boat 37.2 36.1 36.6 36.3 30.9 29.6 29.4

Barbara 38.3 37.1 36.9 36.2 31.7 30.1 28.6

Tools 36.3 35.5 35.9 35.7 28.5 27.2 27.0

Bike 38.8 37.6 37.7 37.4 32.1 30.8 29.8

TABLE V

RESULTS FORGAUSSIAN NOISE. BM3D: BLOCK MATCHING 3D [14]; NLM: NON LOCAL MEANS [4]; iDUDE: iDUDE USING LBG

CONTEXT CLUSTERING; iDUDEF : FAST VARIANT USING WGT CONTEXT CLUSTERING.

(a) Clean (b) BM3D (33.8 dB) (c) NLM (32.9 dB) (d) iDUDE (32.9 dB)

Fig. 10. Denoising of Boat affected by Gaussian noise withσ=10. A 128 × 128 portion of the denoising error image is shown for each
denoiser. The grayscale value in locationi of each error image shown is[8 · (χi − xi) + 128], where the valuesχi and xi correspond,
respectively, to the denoised and the clean sample in locationi, and the square brackets denote clamping to the range[0, 255] (multiplication
by 8 enhances visibility of the predominant small-magnitude error values).

APPENDIX

DETAILS OF THE WGT PREDICTOR AND CONTEXT CLASSIFIER

We recall that each context is decomposed into eight (overlapping) wings labeledN , S, E and W , NE, SE,

NW andSW , defined in Section IV. We recall also thaty(a,b) denotes the value of the sample in coordinate(a, b)

of the neighborhood in Figure 6. We compute a weighted average,ap, of each wing, as follows:

aN =
(
2y(0,1) +

√
2(y(−1,1) + y(1,1)) + y(0,2)

)
/(3 + 2

√
2)

aE =
(
2y(1,0) +

√
2(y(1,1) + y(1,−1)) + y(2,0)

)
/(3 + 2

√
2)

aS =
(
2y(0,−1) +

√
2(y(−1,−1) + y(1,−1)) + y(0,−2)

)
/(3 + 2

√
2)

aW =
(
2y(−1,0) +

√
2(y(−1,1) + y(−1,−1)) + y(−2,0)

)
/(3 + 2

√
2)

aNE =
(√

2(y(0,1) + y(1,0)) + y(1,1)

)
/(1 + 2

√
2)

aSE =
(√

2(y(0,−1) + y(1,0)) + y(1,−1)

)
/(1 + 2

√
2)

aSW =
(√

2(y(0,−1) + y(−1,0)) + y(−1,−1)

)
/(1 + 2

√
2)

aNW =
(√

2(y(0,1) + y(−1,0)) + y(−1,1)

)
/(1 + 2

√
2)
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(in each linear combination, the coefficient of a sample is inversely proportional to its distance to the center of the

neighborhood). Additionally, we compute a gradient magnitude,dp, for each wing, as follows:

dN =
∣∣ y(0,1) − y(0,2) + y(1,0) − y(1,1) + y(−1,0) − y(−1,1)

∣∣
dS =

∣∣ y(0,−2) − y(0,−1) + y(1,−1) − y(1,0) + y(−1,−1) − y(−1,0)

∣∣
dE =

∣∣ y(2,0) − y(1,0) + y(1,1) − y(0,1) + y(1,−1) − y(0,−1)

∣∣
dW =

∣∣ y(−1,0) − y(−2,0) + y(0,1) − y(−1,1) + y(0,−1) − y(−1,−1)

∣∣
dNE = 1√

2

∣∣ y(2,2) − y(1,1) + y(0,2) − y(−1,1) + y(2,0) − y(1,−1)

∣∣
dSE = 1√

2

∣∣ y(2,−2) − y(1,−1) + y(0,−2) − y(−1,−1) + y(2,0) − y(1,1)

∣∣
dNW = 1√

2

∣∣ y(−1,−1) − y(−2,0) + y(−1,1) − y(−2,2) + y(1,1) − y(0,2)

∣∣
dSW = 1√

2

∣∣ y(−1,1) − y(−2,0) + y(−1,−1) − y(−2,−2) + y(1,−1) − y(0,−2)

∣∣
(diagonal gradients are scaled by

√
2).

The fixed prediction value is computed as a linear combination of a subset of the wing averages, with positive

weights that decrease with the respective wing gradient, but drop to zero for wings whose gradient magnitude

exceeds the minimum gradient in the context by more than a certaingradient thresholdg, which is a parameter

of the predictor. Specifically, definingdmin = min{dN , dS , dW , dE , dNW , dNE , dSE , dSW }, wing weightswp are

determined as follows:

wp =

 (1 + αdp)
−1

, dp − dmin ≤ g, p ∈ {N, W, E, S, NW, NE, SW, SE} ,

0 , otherwise .

Here,α is a parameter of the predictor that controls the effect of the gradient magnitudes on the weights; smaller

values ofα make the weights vary less with the gradients, with uniform weighting whenα = 0. We will tend to

use smaller values ofα when the noise level is high: gradients are less “credible” under those conditions. Finally,

the fixed prediction for the context is computed as

x̃(Sy
i ) =

∑
p∈{N,S,W,E,NW,NE,SW,SE} wpap∑

p∈{N,S,W,E,NW,NE,SW,SE} wp
. (23)

Horizontal/vertical wing gradients are also used to compute the activity level valueA of the context, as follows:

A(Sy
i ) = dN + dS + dE + dW .
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