[LaBs™)

SPAIN: Design and Algorithms for Constructing Large Data-Center
Ethernets from Commodity Switches

Jayaram Mudigonda, Praveen Yalagandula, Mohammad Al-Fares, Jeffrey C. Mogul

HP Laboratories
HPL- 2009-241

Keyword(s):
Ethernet, Scalable, COTS, multipath

Abstract:

Operators of data centers want a scalable network fabric that supports high bisection bandwidth
and host mobility, but which costs very little to purchase and administer. Ethernet almost solves
the problem — it is cheap and supports high link bandwidths — but traditional Ethernet does not
scale, because its spanning-tree topology forces traffic onto a single tree. Many researchers have
described “scalable Ethernet” designs to solve the scaling problem, by enabling the use of
multiple paths through the network. However, most such designs require specific wiring
topologies, which can create deployment problems, or changes to the network switches, which
could obviate the commaodity pricing of these parts.

In this paper, we describe SPAIN (“Smart Path Assignment In Networks™”). SPAIN provides
multipath forwarding using inexpensive, commodity off-the-shelf (COTS) switches, over
arbitrary topologies. SPAIN pre-computes a set of paths that exploit the redundancy in a given
network topology, then merges these paths into a set of trees; each tree is mapped as a separate
VLAN onto the physical Ethernet. SPAIN requires only minor end-host software modifications,
including a simple algorithm that chooses between pre-installed paths to efficiently spread load
over the network. We demonstrate SPAIN’s ability to improve bisection bandwidth over both
simulated and real data-center networks.

External Posting Date: October 8, 2009 [Fulltext] Approved for External Publication [ﬁa
Internal Posting Date: October 8, 2009 [Fulltext]

© Copyright 2009 Hewlett-Packard Development Company, L.P.

SPAIN: Design and Algorithms for Constructing Large Data-Center
Ethernets from Commodity Switches

Jayaram Mudigonda®
Jayaram.Mudigonda@hp.com

*HP Labs, Palo Alto, CA 94304

Abstract

Operators of data centers want a scalable network fab-
ric that supports high bisection bandwidth and host mo-
bility, but which costs very little to purchase and admin-
ister. Ethernet almost solves the problem — it is cheap and
supports high link bandwidths — but traditional Ethernet
does not scale, because its spanning-tree topology forces
traffic onto a single tree. Many researchers have de-
scribed “scalable Ethernet” designs to solve the scaling
problem, by enabling the use of multiple paths through
the network. However, most such designs require spe-
cific wiring topologies, which can create deployment
problems, or changes to the network switches, which
could obviate the commodity pricing of these parts.

In this paper, we describe SPAIN (“Smart Path As-
signment In Networks). SPAIN provides multipath
forwarding using inexpensive, commodity off-the-shelf
(COTYS) switches, over arbitrary topologies. SPAIN pre-
computes a set of paths that exploit the redundancy in a
given network topology, then merges these paths into a
set of trees; each tree is mapped as a separate VLAN
onto the physical Ethernet. SPAIN requires only mi-
nor end-host software modifications, including a sim-
ple algorithm that chooses between pre-installed paths
to efficiently spread load over the network. We demon-
strate SPAIN’s ability to improve bisection bandwidth
over both simulated and real data-center networks.

1 Introduction

Data-center operators often take advantage of scale,
both to amortize fixed costs, such as facilities and staff,
over many servers, and to allow high-bandwidth, low-
latency communications among arbitrarily large sets of
machines. They thus desire scalable data-center net-
works. Data-center operators also must reduce costs for
both equipment and operations; commodity off-the-shelf
(COTS) components often provide the best total cost of
ownership (TCO).

Ethernet is becoming the primary network technology
for data centers, especially as protocols such as Fibre
Channel over Ethernet (FCoE) begin to allow conver-

Praveen Yalagandula™
Praveen. Yalagandula@hp.com

Mohammad Al-Fares™
malfares @cs.ucsd.edu

Jeffrey C. Mogul*
Jeff. Mogul @hp.com

*TUC San Diego

gence of all data-center networking onto a single fabric.
COTS Ethernet has many nice features, especially ubiq-
uity, self-configuration, and high link bandwidth at low
cost, but traditional Layer-2 (L2) Ethernet cannot scale to
large data centers. Adding IP (Layer-3) routers “solves”
the scaling problem via the use of subnets, but introduces
new problems, especially the difficulty of supporting dy-
namic mobility of virtual machines. The lack of a single
flat address space makes it much harder to move a VM
between subnets. Also, the use of IP routers instead of
Ethernet switches can increase hardware costs and com-
plicate network management.

This is not a new problem; plenty of recent research
papers have proposed scalable data-center network de-
signs based on Ethernet hardware. All such propos-
als address the core scalability problem with traditional
Ethernet, which is that to support self-configuration of
switches, it forces all traffic into a single spanning
tree [29] — even if the physical wired topology provides
multiple paths that could, in principle, avoid unnecessary
sharing of links between flows.

In Sec. 3, we discuss previous proposals in specific
detail. Here, at the risk of overgeneralizing, we assert
that SPAIN improves over previous work by providing
multipath forwarding using inexpensive, COTS Ethernet
switches, over arbitrary topologies, and supporting incre-
mental deployment; we are not aware of previous work
that does all four.

Support for COTS switches probably reduces costs,
and certainly reduces the time before SPAIN could be
deployed, compared to designs that require even small
changes to switches. Support for arbitrary topologies is
especially important because it allows SPAIN to be used
without re-designing the entire physical network, in con-
trast to designs that require hypercubes, fat-trees, etc.,
and because there may be no single topology that best
meets all needs. Together, both properties allow incre-
mental deployment of SPAIN in an existing data-center
network, without reducing its benefits in a purpose-built
network. SPAIN can also function without a real-time
central controller, although it may be useful to exploit

such a controller to achieve certain QoS goals.

In SPAIN, a network management system first pre-
computes a set of paths that exploit the redundancy in
a given network topology, and then merges these paths
into a set of trees, with the goal of utilizing the redun-
dancy in the physical wiring both to provide high bisec-
tion bandwidth (low over-subscription), and to support
several failover paths between any given pair of hosts.
Each tree is then mapped onto a separate VLAN, exploit-
ing the VLAN support in COTS Ethernet switches. In
most cases, only a small number of VLANS suffices to
cover the physical network.

SPAIN does require modifications to end-host sys-
tems, including a simple algorithm that chooses between
pre-installed paths to efficiently spread load over the net-
work. These modifications are quite simple; we describe
several alternatives, including an in-kernel version using
an existing Linux module, and a user-mode version that
requires no kernel changes.

We have evaluated SPAIN both in simulation and in
an actual deployment on a network testbed. We show
that SPAIN adds only minor end-host overheads, that
it supports near-optimal bisection bandwidth on a vari-
ety of topologies, that it can be deployed incrementally
with immediate performance benefits, and that it toler-
ates faults in the network.

2 Background and goals

Ethernet is known for its ease-of-use. Hosts come
with preset addresses and simply need to be plugged in;
each network switch automatically learns the locations
of other switches and of end hosts. Switches organize
themselves into a spanning tree to form loop-free paths
between all source-destination pairs. Hence, not surpris-
ingly, Ethernet now forms the basis of virtually all en-
terprise and data center networks. This popularity made
many Ethernet switches an inexpensive commodity and
led to continuous improvements. 10Gbps Ethernet is fast
becoming commoditized [19], the first 40Gbps commer-
cial version is expected by the end of 2009 [16], and the
standardization of 100Gbps is already underway [6].

Network operators would like to be able to scale Eth-
ernet to an entire data center, but it is very difficult to
do so, as we detail in section 2.2. Hence, today most
such networks are designed as several modest-sized Eth-
ernets (IP subnets), connected by one or two layers of IP
routers [3, 4, 10].

2.1 Why we want Ethernet to scale

The use of multiple IP subnets, especially within a
data center, requires one to carefully fuse together, and
then manage the interactions of, a variety of network ar-
chitectures based on very different forwarding, control
and administrative approaches. Consider a typical net-
work composed of Ethernet-based IP subnets. This not

only requires the configuration of IP subnets and rout-
ing protocols—which is considered a hard problem in
itself [22]—but also sacrifices the simplicity of Ether-
net’s plug-and-play operation. For instance, as explained
in [3, 4], in such a hybrid network, to allow the end
hosts to efficiently reach the IP-routing layer, all Ether-
net switches must be configured such that their automatic
forwarding table computation is forced to pick only the
shortest paths between the IP-routing layer and the hosts.

Dividing a data center into a set of IP subnets has
other drawbacks. It imposes the need to configure DHCP
servers for each subnet; to design an IP addressing as-
signment that does not severely fragment the IP address
space (especially with IPv4); and makes it hard to deal
with topology changes [22]. For example, migrating a
live virtual machine from one side of the data center
to another, to deal with a cooling imbalance, requires
changing that VM’s IP address — this can disrupt exist-
ing connections.

For these reasons, it becomes very attractive to scale a
single Ethernet to connect an entire data center or enter-
prise.

2.2 Why Ethernet is hard to scale

Ethernet’s lack of scalability stems from three main
problems:

1. Its use of the Spanning Tree Protocol to automati-

cally ensure a loop-free topology.

2. Packet floods for learning host locations.

3. Host-generated broadcasts, especially for ARP.

We discuss each of these issues.

Spanning tree: Spanning Tree Protocol (STP) [29]
was a critical part of the initial success of Ethernet; it
allows automatic self-configuration of a set of relatively
simple switches. Using STP, all the switches in an L2
domain agree on a subset of links between them, so as
to form a spanning tree over all switches. By forwarding
packets only on those links, the switches ensure connec-
tivity while eliminating packet-forwarding loops. Other-
wise, Ethernet would have had to carry a hop-count or
TTL field, which would have created compatibility and
implementation challenges.

STP, however, creates significant problems for scal-
able data-center networks:

o Limited bisection bandwidth: Since there is (by
definition) only one path through the spanning tree
between any pair of hosts, a source-dest pair can-
not use multiple paths to achieve the best possible
bandwidth. Also, since links on any path are proba-
bly shared by many other host pairs, congestion can
arise, especially near the root of the tree. The aggre-
gate throughput of the network can be much lower
than the sum of the NIC throughputs.

e High-cost core switches: Aggregate throughput

can be improved by use of a high-fanout, high-
bandwidth switch at the root of the tree. Scaling
root-switch bandwidth can be prohibitively expen-
sive [10], especially since this must be replicated
to avoid a single point of failure for the entire data
center. Also, the STP must be properly configured
to ensure that the spanning tree actually gets rooted
at this expensive switch.

e Low reliability: Since the spanning tree leads to
lots of sharing at links closer to the root, a failure
can affect an unnecessarily large fraction of paths.

e Reduced flexibility in node placement: Gener-
ally, for a given source-dest pair, the higher the
common ancestor in the spanning tree, the higher
the number of competing source-dest pairs that
share links in the subtree, and thus the lower
the throughput that this given pair can achieve.
Hence, to ensure adequate throughput, frequently-
communicating source-dest pairs must be con-
nected to the same switch, or to neighboring
switches with the lowest possible common ancestor.
Such restrictions, particularly in case of massive-
scale applications that require high server-to-server
bandwidth, inhibit flexibility in workload placement
or cause substantial performance penalties [10, 19].

SPAIN avoids these problems by employing multiple
spanning trees, which can fully exploit the path redun-
dancy in the physical topology, especially if the wiring
topology is not a simple tree.

Packet floods: Ethernet’s automatic self-
configuration is often a virtue: a host can be plugged
into a port anywhere in the network, and the switches
discover its location by observing the packets it trans-
mits [35]. A switch learns the location of a MAC address
by recording, in its learning table, the switch port on
which it first sees a packet sent from that address. To
support host mobility, switches periodically forget these
bindings and re-learn them.

If a host has not sent packets in the recent past, there-
fore, switches will not know its location. When forward-
ing a packet whose destination address is not in its learn-
ing table, a switch must “flood” the packet on all of its
ports in the spanning tree (except on the port the packet
arrived on). This flooding traffic can be a serious limit to
scalability [2, 22].

In SPAIN, we use a mechanism called chirping (see
Sec. 6) which avoids most timeout-related flooding.

Host broadcasts: Ethernet’s original shared-bus de-
sign made broadcasting easy; not surprisingly, proto-
cols such as the Address Resolution Protocol (ARP)
and the Dynamic Host Configuration Protocol (DHCP)
were designed to exploit broadcasts. Since broadcasts
consume resources throughout a layer-2 domain, broad-
casting can limit the scalability of Ethernet broadcast-

ing [4, 15, 22, 26]. Greenberg et al. [17] observe that
“...the overhead of broadcast traffic (e.g., ARP) limits the
size of an IP subnet to a few hundred servers...”

SPAIN does not eliminate broadcasts, but we can ex-
ploit certain aspects of both the data-center environment
and our willingness to modify end-host implementations.
See Sec. 11 for more discussion.

3 Related Work

Spanning trees in Ethernet have a long history. The
original algorithm was first proposed in 1985 [29], and
was adapted as the IEEE 802.1D standard in 1990. Since
then it has been improved and adapted along several
dimensions. While the Rapid Spanning Tree Protocol
(802.1s) reduces convergence time, the Per-VLAN Span-
ning Tree (802.1Q) improves link utilization by allowing
each VLAN to have its own spanning tree. Sharma et al.
exploit these multiple spanning trees to achieve improved
fault recovery [36]. In their work, Viking manager, a cen-
tral entity, communicates and pro-actively manages both
switches and end hosts. Based on its global view of the
network, the manager selects (and, if needed, dynami-
cally re-configures) the spanning trees.

Most proposals for improving Ethernet scalability fo-
cus on eliminating the restrictions to a single spanning
tree.

SmartBridge, proposed by Rodeheffer et al. [32], com-
pletely eliminated the use of a spanning tree. Smart-
Bridges learn, based on the principles of diffused com-
putation, locations of switches as well as hosts to for-
ward packets along the shortest paths. STAR, a sub-
sequent architecture by Lui et al. [24] achieves simi-
lar benefits while also facilitating interoperability with
the 802.1D standard. Perlman’s RBridges, based on an
IS-IS routing protocol, allow shortest paths, can inter-
operate with existing bridges, and can also be optimized
for IP [30]. Currently, this work is being standardized by
the TRILL working group of IETF [7]. Note that TRILL
does not support multiple paths, because IS-IS provides
only shortest-path routes.

Myers et al. [26] propose to eliminate the basic reason
for the spanning tree, the reliance on broadcast as the
basic primitive, by combining link-state routing with a
directory for host information.

More recently, Kim et al. [22] propose the SEAT-
TLE architecture for very large and dynamic Ethernets.
Their switches combine link-state routing with a DHT
to achieve broadcast elimination and shortest-path for-
warding, without suffering the large space requirements
of some of the prior approaches; otherwise, SEATTLE is
quite similar to TRILL.

Greenberg et al. [19] propose an architecture that
scales to 100,000 or more servers. They exploit pro-
grammable commodity layer-2 switches, allowing them

to modify the data and control planes to support hot-spot-
free multipath routing. A sender host for each flow con-
sults a central directory and determines a random inter-
mediary switch; it then bounces the flow via this inter-
mediary. When all switches know of efficient paths to
all other switches, going via a random intermediary is
expected to achieve good load spreading.

Several researchers have proposed specific regular
topologies that support scalability. Fat trees, in par-
ticular, have received significant attention. Al-Fares et
al. [10] advocate combining fat trees with a specific IP
addressing assignment, thereby supporting novel switch
algorithms that provide high bisection bandwidth with-
out expensive core switches. Mysore et al. [27] update
this approach in their PortLand design, which uses MAC-
address re-writing instead of IP addressing, thus creating
a flat L2 network. Scott et al. [34] similarly use MAC-
address re-writing in MOOSE, but without imposing a
specific topology; however, MOOSE uses shortest-path
forwarding, rather than multipath.

VL2 [18] provides the illusion of a large L2 network
on top of an IP network with a Clos [14] topology, using
a logically centralized directory service. VL2 depends
on both equal-cost multipath (ECMP) forwarding and IP
Anycast addressing in a manner that is only applicable
to Clos topologies; we do not believe VL2’s approach
applies to most other topologies.

The commercial switch vendor Woven Systems [8]
also used a fat tree for the interconnect inside their switch
chassis, combing their proprietary vScale chips with Eth-
ernet switch chips that include specific support for fat-
trees [5]. The vScale chips use a proprietary algorithm to
spread load across the fat-tree paths.

In contrast to fat-tree topologies, others have proposed
recursive topologies such as hypercubes. These include
DCell [21] and BCube [20].

SPAIN differs from all of this prior work because it
uses unmodified COTS switches, works with arbitrary
topologies, supports incremental deployment, and re-
quires no centralized controllers.

4 The design of SPAIN

We start with our specific goals for SPAIN, including

the context in which it operates. Our goals are to:

e Deliver more bandwidth and better reliability than
spanning tree.

e Support arbitrary topologies, not just fat-tree or hy-
percube, and extract the best bisection bandwidth
from any topology.

e Utilize unmodified, off-the-shelf,
priced (COTS) Ethernet switches.

e Minimize end host software changes, and be incre-
mentally deployable.

commodity-

In particular, we want to support flat Layer-2 addressing
and routing, so as to:

e Simplify network manageability by retaining the
plug-and-play properties of Ethernet at larger
scales.

e Facilitate non-routable protocols, such as Fi-
breChannel over Ethernet (FCoE) that are required
for “fabric convergence” within data centers [23].
Fabric convergence, the replacement of special-
purpose interconnects such as FibreChannel with
standard Ethernet, can reduce hardware costs, man-
agement costs, and rack space.

e Improve the flexibility of virtual server and stor-
age placement within data centers, by reducing the
chances that arbitrary placement could create band-
width problems, and by avoiding the complexity of
VM migration between IP subnets.

We explicitly limit the focus of SPAIN to data-center net-
works, rather than trying to solve the general problem
of how to scale Ethernet. Also, while we believe that
SPAIN will scale to relatively large networks, our goal is
not to scale to arbitrary sizes, but to support typical-sized
data-centers.

4.1 Overview of SPAIN

In SPAIN, we pre-compute a set of paths that exploit
the redundancy in a given network topology, and merge
these paths into a set of trees, with the goal of utiliz-
ing the redundancy in the physical wiring both to pro-
vide high bisection bandwidth and to improve fault toler-
ance. We map each tree to a separate VLAN, and install
these VLANSs on the switches. We usually need only a
few VLANS to cover the physical network, since a single
VLAN tree can include multiple disjoint subtrees.

SPAIN allows a pair of end hosts to use different
VLAN:Ss, potentially traversing different links at differ-
ent times, for different flows; hence, SPAIN can achieve
higher throughput and better fault-tolerance than tradi-
tional spanning-tree Ethernet.

SPAIN reserves VLAN 1 to include all nodes. This
default VLAN is thus always available as a fallback path,
or if we need to broadcast or multicast to all nodes. We
believe that we can support multicast more efficiently by
mapping multicast trees onto special VLANS, but this is
future work.

SPAIN requires only a few features that are already
present in most COTS switches: MAC-address learn-
ing and VLAN support. Optionally, SPAIN can exploit
other switch features to improve performance, scale,
and fault tolerance, or to reduce manual configuration:
LLDP; SNMP queries to get LLDP information; and
Per-VLAN Spanning Tree or Multiple Spanning Tree
(see Sec. 5.6). For data centers where MAC addresses
are known a priori, we have designed another approach

— VLAN 1
-- VLAN2

—— Both 1&2
-
D]

Figure 1: Example of VLANS used for multipathing

called FIB-pinning, which is described in more detail in
Section 5.7.

Fig. 1 illustrates SPAIN with a toy example, which
could be a fragment of a larger data-center network.
Although there is a link between switches S1 and S2,
the standard STP does not forward traffic via that link.
SPAIN creates two VLANSs, with VLANI covering the
normal spanning tree, and VLAN?2 covering the alternate
link. Once the VLANSs have been configured, end-host
A could (for example) use VLANI1 for flows to C while
end-host B uses VLAN2 for flows to D, thereby dou-
bling the available bandwidth versus traditional Ether-
net. (SPAIN allows more complex end-host algorithms,
to support fault tolerance and load balancing.)

Note that TRILL or SEATTLE, both of are shortest-
path protocols, would only use the path corresponding to
VLAN2.

SPAIN requires answers to three questions:

1. Given an arbitrary topology of links and switches,
with finite switch resources, how should we com-
pute the possible paths to use between host pairs?

2. How can we set up the switches to carry these
paths?

3. How do pairs of end hosts choose which of several
possible paths to use?

Thus, SPAIN includes three key components, for path
computation, path setup, and path selection. The first
two can run offline (although online reconfiguration
could help improve network-wide QoS and failure re-
silience); the path selection process runs online at the
end hosts for each flow.

5 Offline configuration of the network

In this section, we describe the centralized algorithms
SPAIN uses for offline network configuration: path com-
putation and path setup. (Sec. 6 discusses the online,
end-host-based path selection algorithms.)

These algorithms address several challenges:

e Which set of paths to use?: The goal is to com-
pute smallest set of paths that exploit all of the re-
dundancy in the network.

e How to map paths to VLANs: We must mini-
mize the number of VLANSs used, since Ethernet
only allows 4096 VLANSs, and some switches sup-
port fewer. Also, each VLAN consumes switch re-

sources — a switch needs to cache a learning-table
entry for each known MAC on each VLAN.

e How to handle unplanned topology changes:
Physical topologies (links and switches) change ei-
ther due to failures and repairs of links and switches,
or due to planned upgrades. Our approach is
to recompute and re-install paths only during up-
grades, which should be infrequent, and depend on
dynamic fault-tolerance techniques to handle un-
planned changes.

We discuss these issues in detail.

5.1 Practical issues

SPAIN’s centralized configuration mechanism must
address two practical issues: learning the actual topol-
ogy, and configuring the individual switches with the cor-
rect VLANS.

Switches use the Link-Layer Discovery Protocol
(LLDP) (IEEE Standard 802.1AB) to advertise their
identities and capabilities. They collect the information
they receive from their neighbors and store it in their
SNMP MIB. We can leverage this support to program-
matically determine the topology of the entire L2 net-
work.

Switches maintain a VLAN-map table, to track the
VLANS allowed on each physical interface, along with
information about whether packets will arrive with a
VLAN header or not. Each interface can be set in un-
tagged mode or tagged mode for each VLAN.! If a port
is in tagged mode for a VLAN v, packets received on that
interface with VLAN tag v in the Ethernet header are
accepted for forwarding. If a port is in untagged mode
for VLAN w, all packets received on that port without
a VLAN tag are assumed to be part of VLAN v. Any
packet with VLAN v received on a port not configured
for VLAN v are simply dropped. For SPAIN, we assume
that this VLAN assignment can be performed program-
matically using SNMP.

For each graph computed by the path layout pro-
gram, SPAIN’s switch configuration module instantiates
a VLAN corresponding to that graph onto the switches
covered by that VLAN. For a graph G(V, E') with VLAN
number v, this module contacts the switch correspond-
ing to each vertex in V and sets all ports of that switch
whose corresponding edges appear in F in tagged mode
for VLAN v. Also, all ports facing end-hosts are set to
tagged mode for VLAN v, so that tagged packets from
end-hosts are accepted.

5.2 Path-set computation

Our first goal is to compute a path set: a set of link-
by-link loop-free paths connecting pairs of end hosts
through the topology.

IThis is the terminology used by ProCurve. CISCO uses access and
trunk mode.

Algorithm 1 Algorithm for Path Computation

1: Given:

2: Gfull = (Vfu“, Efu”)i The full topology,
3: w: Edge weights,

s: Source, d: Destination

k: Desired number of paths per s, d pair

G(V,E) = compact(Gysun); /* graph compaction */

: Initialize: Ve € E : w(e) =0

10: /* shortest computes weighted shortest path */
11: Path p = shortest(G,s,d,w);

12: fore € pdo

13: w(e)+ = |E]

14: end for

16: while (|P| < k) do
17: p=shortest(G,s,d,w)
18: if p € P then

19: /* no more useful paths */
20: break ;
21: endif

222 P=PU{p}
23: fore € pdo

24: w(e)+ = |E|
25: end for

26: end while

27:

28: return P

A good path set achieves two simultaneous objectives.
First, it exploits the available topological redundancy.
That is, the path set includes enough paths to ensure
that any source-destination pair, at any given time, can
find at least one usable path between them. By “usable
path”, we mean a path that does not go through bottle-
necked or failed links. Hence a path set that includes
all possible paths is trivially the best, in terms of ex-
ploiting the redundancy. However, such a path set might
be impractical, because switch resources (especially on
COTS switches) might be insufficient to instantiate so
many paths. Thus, the second objective for a good path
set is that it has as few paths as possible.

We accomplish this in three steps, as shown in Algo-
rithm 1. First (Line 7), we compact the topology graph
to reduce the number of nodes (and hence edges), which
speeds up the subsequent steps. Otherwise, a network
with tens of thousands of nodes might involve billions of
source-destination pairs [11, 33].

Computing paths for each of these pairs is unneces-
sary and wasteful. We can derive an essential subset of
this graph, much smaller than the original, based on two
observations:

o First, we need to compute paths only between edge

switches. This is because an end-to-end host-to-
host path can be trivially determined by extend-

ing, at either end, the corresponding edge-switch-
to-edge-switch path with the two access links.

e Second, wherever possible we remove chains of
nodes. By “chain” we mean a series of nodes that
form a line topology in two dimensions; each node,
except for the those at the ends, connects to exactly
two other nodes (on right and left sides). We can re-
move chains because they do not contribute to path
diversity, even though they increase the number of
source-destination pairs.

Given that the complexity of computing the shortest
paths across all pairs is O(|V|3), where V is the set of
nodes, these two optimizations yield huge computation
savings. As quantified in Section 8, these two simple op-
timizations reduce the node count by a factor of 2.85 on
average, and as much as 8.6 on one of the topologies on
which we simulated these algorithms.

Second (Lines 9-14), we initialize the set of paths
for each source-destination pair to include the shortest
path. Shortest paths are attractive because, they min-
imize the network resources needed for each packet,
and in general, have a higher probability of staying us-
able after failures. That is, under the simplifying as-
sumption that each link independently fails (either bot-
tlenecks or goes down) with a constant probability f,
then a path p of length |p| will be usable with probability
Pu(p) = (1 — (1 = f)P). (We informally refer to this
probability, that a path will be usable, as its “usability,”
and similarly for the probability of a set of paths between
a source-destination pair.) Clearly, since the shortest path
has the smallest length, it will have the highest P,,.

Finally (Lines, 16-22), we grow the path set to meet
the desired degree (k) of path diversity between any pair
of hosts. Note that a path set is usable if at least one of
the paths is usable. We denote the usability of a path set
ps as PS,,(ps). This probability depends not only on the
lengths of the paths in the set, but also on the degree of
shared links between the paths. A best path set of size &
has the maximum P.S,,(+) of all possible path sets of size
k. However, it is computationally infeasible to find the
best path set of size k. Hence, we use a greedy algorithm
that adds one path at a time, and that prefers the path that
has the minimum number of links in common with paths
that are already in the path set.

We prefer adding a link-disjoint path, because a sin-
gle link failure can not simultaneously take down both
the new path and the existing paths. However, the longer
the new path, the smaller the additional improvement in
the path set’s usability, since (1 — (1 — f)!?|) decreases
with increasing |p|. Thus, in some circumstances it may
be beneficial to prefer a path with shared links but which
is much shorter than a fully link-disjoint path. Our al-
gorithm, however, always prefers link-disjoint paths be-
cause, as shown below in Sec. 5.2.1, in most networks

with realistic topologies and operating conditions, a link-
disjoint path improves the usability of a path set by the
largest amount.

As shown in lines 12-14 and 23-25, we implement
our preference for link-disjoint paths by incrementing the
edge weights of the path we have added to the path set by
a large number (number of edges). This ensures that the
subsequent shortest-path computation picks a link that is
already part of the path set only if it absolutely has to.

5.2.1 Benefits of link-disjoint paths

Algorithm 1 gives preference to link-disjoint paths, over
alternative paths that are shorter but which have links in
common with one or more already-selected paths. Here
we explain why.

Consider a path set with a single path A of length a.
Let paths X and Y, with lengths x and y respectively,
be the next two equivalent candidate paths. The paths
X and Y are equivalent in that the two sets {A, X } and
{A, Y} have the same probability of being usable, given
that any link fails with a probability f. Suppose X shares
exactly one link with A, whereas Y shares none (i.e., Y is
fully link-disjoint with A). Let u = (1 — f), the per-link
probability that the link will be usable. The probability
that both paths A and X in the path-set {A, X} will be
down simultaneously is

PS;({A, X)) = (1 —u)+u(l—u*"1)(1—u*"1) (1)

Since paths A and Y do not share any common links,
the probability of both being down at the same time is

PS({AY) = (1 —u)(1-uw) @

Since paths X and Y have same probability of usabil-
ity, this implies

PSa({A, X}) = Pa({A, Y} 3)

Then y can be derived as y = [In(u(®~Y —¢) /In(u)]+
1, where c is the constant [u(*~1) (1 — u)/(1 — u®)].

Figure 2 plots the length of an equivalent link-disjoint
path (y in the derivation above) for a given length of
a path that shares a single link (x in the derivation
above). We fix a at 5, approximately the median path
length for all of the topologies that we simulated (see
Sec. 8), and consider two somewhat conservative es-
timates for p, = 1 — PS4({A, X}) (or equivalently,
pu=1—PSq({A,Y})),0.95 and 0.99.

It can be seen that for a link-disjoint path to become
undesirable, it must be substantially longer than the cor-
responding shared-link path. For instance, any link-
disjoint path that is less than 10 hops long is better than
a shared-link path of length 5; the link-disjoint path can
be 27 hops long if p, is 0.99. This shows that even a
very long link-disjoint path is preferable over a shorter
but link-sharing path.

35

£ ‘ ‘

g p,=0.95 —— R
£ =0.99 ---- om0
5 3 - Pu —==

0 -1

°

T 25 ——

2 20

ks

©

2 15

g]
2 10

5 —]

s 5

j=2)

=

& 0

0 1 2 3 4 5 6 7 8 9 10
Length of the path (with one shared link)

Figure 2: Comparison of candidate paths.

5.3 Mapping path sets to VLANSs

Given a set of paths with the desired diversity, SPAIN
must then map them onto a minimal set of VLANSs. (Re-
member that there are at most 4096 possible VLANSs on
an Ethernet, and some switches might not have the re-
sources to support even that many.)

We need to ensure that the subgraphs formed by the
paths of each VLAN are loop-free, so that the switches
work correctly in the face of forwarding-table lookup
misses. On such a lookup miss for a packet on a VLAN
v, a switch will flood the packet to all outgoing inter-
faces of VLAN v — if the VLAN has a loop, the packet
will circulate forever. (We could run the spanning-tree
protocol on each VLAN to ensure there are no loops,
but then there would be no point in adding links to the
SPAIN VLANS that the STP would simply remove from
service.)

Notation: Given a graph G(V, E), a path p is defined
as an ordered set of vertices (p*, p?, ..., p/?!) where p* €
Viforl <i<|p|, (p?,p’™!) € Efor1 < j < |p|, and
|p| denotes the length of the path p.

Problem 1. VLAN Minimization: Given a set of paths
P = {p1,p2,....,n} in a graph G = (V, E), find an
assignment of paths to VLANs, with minimal number of
VLANSs, such that the subgraph formed by the paths of
each VLAN is loop-free.

5.3.1 VLAN Minimization is NP-Hard

In this section, we show that the VLAN Minimization
problem is NP-hard. For the proof, we consider a more
restricted version of this problem where all paths in P
end at the same destination node. We refer to such path
sets as unique-destination path sets. We show that this
restricted problem is NP-hard. Thus it follows that the
generalized VLAN Minimization is NP-hard.

Formally, a unique-destination path set P =
lpil _
=

{p1,p2, ..., pn} satisfies the following property: p

P1—=>

pP2- = e /

Figure 3: Example illustrating vlan-compatibility. Paths
P1 and P2 are vlan-compatible in case (A) and not in case

(B).
@ O 0

Figure 4: Example illustrating the non-transitivity of
vlan-compatibility operator.

pljpj‘ for 1 < 4,7 < n. In such a path set, we define
two paths to be vian-compatible if and only if any com-
mon node on those two paths have the same next hop.
Formally, we define vian-compatibility for two paths as
follows:

Definition 1. Given two paths, p1 and po, in a unique-
destination path set, we define p1 and po to be vlan-
compatible if and only if for all 1 < i < |pi| and
1<j < |pal, (0} =1%) = (Wi = p3™).

In plain words, two paths to a destination are vian-
compatible if once they join, they never again go separate
ways until reaching the destination. We demonstrate this
with different examples in Figure 3.

The above definition can be easily extended to a set of
paths.

Definition 2. A unique-destination path set P =

Figure 5: Example illustrating the construction step of a
VLAN Minimization instance for a link (u, v) in a Vertex
Coloring instance.

{p1,p2, ..., K} is defined to be vlan-compatible if and
only if, forall1 <i < kand1 < j <k, p; and p; are
vlan-compatible.

Note that vian-compatibility is not a transitive relation.
See Figure 4 for a contradictory example where {p;, p2}
and {ps, p3} are vlan-compatible but p; and p3 are not.
Hence we need to check the vian-compatibility between
every pair in a path set before we can declare that path
set to be vlan-compatible.

Problem 2. Restricted VLAN Minimization: Given
a unique-destination path set P = {p1,pa,...,Dn} in a
graph G = (V, E), find an assignment of VLANS to each
of these paths such that a minimal number of VLANs are
used and the subgraph formed by the paths in each VLAN
is loop-free.

Theorem 1. Problem 2 is NP-hard.

Proof Outline. We prove this by polynomial reduction
from the Graph Vertex-Coloring problem, which is
known to be NP-complete [39]. In a Vertex-Coloring de-
cision problem, given an undirected graph G = (V, E)
and k colors, decide if each vertex u € V' can be colored
with one of the k colors such that no adjacent vertex v
of u, i.e., (v,u) € E, is assigned the same color as u.
We reduce this decision problem to an instance of the
Restricted VLAN Minimization Problem 2.

We construct a graph G’ = (V’, E’) and a unique-
destination path set P from a given vertex coloring prob-
lem G = (V, E). We construct P such that all paths end
in a destination vertex d. We will construct one path in P
for each vertex in the graph coloring instance. Our goal
is to build G’ and P such that two paths p; and py in P
are vlan-compatible if and only if the corresponding ver-
tices in the graph coloring instances do not have a link
between them.

Initially V! = dJV and E' = {J,cy{(v,d)}. For
each vertex u € V, we initialize a path p,, with just
two nodes: (u,d) and add it to P. Then, for each link
(u,v) € E, we add three nodes uvy, uve, uvz to G’ and
extend p, and p, as follows: p, = (uvs,uvy) - p, and
py = (uvs,uvy) - py, where (-) denotes the ordered-
concatenation operator. We also add the relevant four
links to E’. Figure 5 illustrates this step. Note that be-
fore this step, path p, and p, have a unique first node.
Hence, this construction ensures that path p,, and path p,,
are not vlian-compatible. At the end of this construction
for all edges, any two nodes a,b € V s.t. (a,b) € E, p,
and p;, will be vian-compatible.

A solution to this VLAN Minimization instance will
give the minimum number of VLANSs m needed for set-
ting up those paths. If m < k, then we return answer
yes to the vertex coloring problem, otherwise we return
no.

By construction, |V’/| = 1+ |V| + 3|E| and |E'| =
|[V| 4+ 4|E|. Hence, the resulting VLAN Minimization
instance is polynomial in terms the space and in terms
of the construction time. Hence, we have shown poly-
nomial reducibility from graph vertex coloring to the re-
stricted VLAN Minimization problem. O

Theorem 2. The VLAN Minimization problem 1 is NP-
hard.

Proof. This problem is a generalized version of Prob-
lem 2, which we prove is NP-hard in Theorem 1. Hence,
VLAN Minimization problem is NP-hard. O

5.3.2 A heuristic greedy algorithm

Because VLAN minimization is NP-hard, we employ a
greedy VLAN-packing heuristic, Algorithm 2. Given the
set of all paths P computed in Algorithm 1, Algorithm 2
processes the paths serially, constructing a set of sub-
graphs SG that include those paths. For each path p, if
p is not covered by any subgraph in the current set SG,
the algorithm tries to greedily pack that path p into any
one of the subgraphs in the current set (lines 10-13). If
the greedy packing step fails for a path, a new graph is
created with this path, and added to SG (lines 15-18).

Running this algorithm just once might not yield a so-
lution near the optimum. Therefore, we use the best solu-
tion from N runs, randomizing the order in which paths
are chosen for packing, and the order in which the cur-
rent set of subgraphs SG are examined.

5.3.3 An example

Fig. 6 shows a relatively simple wiring topology with
seven switches. One can think of this as a 1-level tree

Algorithm 2 Greedy VLAN Packing Heuristic

I: Given: G = (V, E), k

2: SG = /* set of loop-free subgraphs*/

3: forv € V do

4: foru e Vdo

5 P =ComputePaths(G, v, u, k) ;

6 for p € P /* in a random order */ do
7: if p not covered by any graph in SG then
8
9

Success = FALSE;
for S € SG /* in a random order */ do

10: if p does not create loop in S then
11: Addpto S

12: Success = TRUE ;

13: end if

14: end for

15: if Success == FALSE then
16: S’ = new graph with p
17: SG = SGUJ{s'}

18: end if

19: end if

20: end for

21: end for

22: end for

23: return SG

(with switch #1 as the root), augmented by adding three
cross-connect links to each non-root switch.

Fig. 7 shows how the heuristic greedy algorithm
(Alg. 2) chooses seven VLANSs to cover this topology.
VLAN #1 is the original tree (and is used as the default
spanning tree).

5.4 Parallel Algorithm

The serial nature of Algorithm 2 does not scale well.
We can parallelize VLAN computation on a node-by-
node basis (where a “node” is an edge switch), using
an algorithm based on graph-coloring heuristics. For
each node in the input graph, an instance of the paral-
lel algorithm computes the paths from all other nodes to
the given node, and computes the minimum number of

Z4N
h‘

Figure 6: A seven-switch topology.
show the original tree.

Highlighted links

VLAN 7

©)
7

o
e

@7

VLAN 6

10

e VLAN 2 e
@
© 7
2 ®
3 @
VLAN 3

VLAN 4

@) ®)
4)
© @
e VLAN 5

®)
®

()
(=)

Figure 7: VLANSs covering the seven-switch topology of Fig. 6, found by Alg. 2 (greedy VLAN-packing)

VLANS required for laying out those paths. There are no
dependencies between these instances, so one can expect
linear speedup in the number of edge switches.

Note that the problem of computing VLANs for a
given destination node in a graph is essentially the re-
stricted VLAN minimization problem, defined in Prob-
lem 2. Not only can we polynomially reduce the graph
vertex coloring problem to the restricted VLAN Mini-
mization problem, but we also observe that an instance
of the restricted VLAN Minimization problem can be re-
duced back to an instance of the graph vertex-coloring
problem. Several heuristics and approximation algo-
rithms have been proposed for graph coloring [39]. We

can leverage those techniques to compute a solution for
a restricted VLAN minimization instance.

Algorithm 3 shows the per-destination VLAN compu-
tation algorithm. We first compute paths from all nodes
to a given destination node d in the input graph, resulting
in a path set P. We then construct a graph vertex col-
oring instance Geoior = (Veotors Ecolor) for this set of
paths as follows. For each path in P, we create vertex in
G color- For every two paths that are not vian-compatible,
we place an edge between the corresponding vertices in
Geolor- This ensures that those two paths are assigned
different colors in a solution for the vertex coloring prob-
lem. We run a simple greedy vertex-coloring heuris-

11

Algorithm 3 Per destination VLAN computation

Algorithm 4 Algorithm for Merging VLANs

1: Given: Topology Graph G = (V, E), number of
paths k, destination d
Pathset P = ()
forv e Vdo

P = P|JComputePaths(G, v, d, k) ;
end for
Veolor = {U17U27 '-'7'U|P\}; Eeotor = (D;
for p;,p; € Pdo

if vian-compatible(p;,p;) = FALSE then

Ecotor = Ecotor U{Ui7 Uj}

end if
end for
12: (k, f) =vertex-coloring(G coior = (Veotors Ecolor))
13: /* f maps each vertex v; (and hence path p;) to one

of k colors */

14: SGd =,
15: for 1 <i < kdo
16: G; =MergePaths({p; € P: f(v;) =i});
17: SGd = SGdUGl
18: end for
19: return SGy4

R A A

—_ =
—= o

tic [39] on this graph coloring instance, which returns
a number k representing the number of colors needed
for coloring the input graph, and a function f mapping
each vertex in the input graph to one of the colors. Af-
ter running the vertex-coloring heuristics on G o0y, We
merge each subset paths with a single color into a sub-
graph. Thus, the algorithm returns a set of subgraphs
corresponding to the VLANSs laid out for the given desti-
nation.

With this approach, the number of VLANSs needed will
be > ,cp [SGal, where SG is the set of subgraphs re-
turned by the Algorithm 3 for a destination d. Remem-
ber that we can have at most 4096 VLANS. In a network
with a few thousand switches, this summation can easily
exceed 4096. So, we use a greedy merging heuristic to
further reduce the number of VLANS required.

Subgraph Merging: After computing the set of sub-
graphs for each destination, we try to merge the sub-
graphs of different destinations, to reduce the overall
number of VLANSs required. Note that any two sub-
graphs computed by Algorithm 3 for two different desti-
nations can be merged into a single graph, if and only if
such merging causes no loops in the combined graph.

Algorithm 4 describes our heuristic to merge as many
subgraphs as possible. The input to this routine is the
union |,y SGq, where V and SG are as defined in
Algorithm 3. In plain words, the input is the set com-
prising all subgraphs computed for all destinations using
Algorithm 3. For each graph in the input, this algorithm
tries to combine that graph with as many other graphs in
the input as possible. The subroutine i sThereALoop

1: Given: A set of VLAN Graphs
{G1,Gs, .G}
2 G =
3: for G; € Gdo
4 G=G-{G;}
for G; € G do
Gm =G; UG,
if isThereALoop(G,,,) == FALSE then
G=G—-{G;}
Gi=Gpn
10: end if
11: end for
122 G =G HG:}
13: end for
14: return G’

G =

R A 4

used in this Algorithm runs a breadth-first search on the
input graph, to check for the presence of a loop. In effect,
the algorithm considers candidate subgraphs in some or-
der, does a trial merge of one subgraph into the current
merged subset, and accepts the result if it is loop-free.

Note that the order in which the graphs are combined
will affect the size of the final result. For our implemen-
tation, we have taken the simple approach of considering
the graphs in a random order.

5.5 Algorithm performance
Since our algorithm is an approximate solution to an
NP-hard problem, we applied it to a variety of differ-
ent topologies that have been suggested for data-center
networks, to see how many VLANSs it requires. Where
possible, we also present the optimal number of VLANS.
We considered the following topologies:

e FatTree(p) [10]: This topology, a 2-ary 3-tree, is
parametrized on p, where p is the number of ports
per switch. This creates a full bisection bandwidth
network for p3 /4 end hosts. Between any switches,
there are (p/2)? edge-disjoint paths.

e BCube(p, [) [20]: This topology is parametrized on
two variables p and [, where p is the number of ports
per switch used in the topology and [is the number
of levels in the recursive construction of the topol-
ogy. BCube is presented as a server-centric archi-
tecture, where each server has [NICs and also acts
as a switch. For this paper, we simply redraw each
of the server/switch combinations as an edge switch
with several end-host servers connected. Between
any two switches, there are [edge-disjoint paths.

e 2-D HyperX(k) [9]: This topology is parametrized
on k, where k is the number of switches in each
dimension of a 2-D mesh. Each switch is connected
directly to all switches in the same row and the same

column. Hence, between any two switches, there
are 2(k — 1) edge-disjoint paths.

e CiscoDC(m,a): Cisco’s recommended data cen-
ter network [11]. This is a three-layer topology
with two core switches at the top, several pairs
of aggregation level switches (each pair referred
to as an aggregation module), and several pairs of
access switches associated with each aggregation
module. Switches in each access-switch pair have
a link between them, and are also connected to
both the switches of their aggregation module. We
parametrize this topology on two variables m and
a, representing the number of aggregation modules
and the number of access switch pairs associated
with each aggregation module. There are 2ma ac-
cess switches and 3 edge-disjoint paths between any
two access switches in this network.

Table 1: Performance of VLAN mapping heuristic

Topology Minimal SPAIN’s Trials (V)
of VLANs heuristic for best
FatTree (p) (p/2)? (p/2)? 1 for all p
BCube (p, 1) P P 290 for (2,3)
6 for (3,2)
2-D HyperX Unknown 12 for k=3 475
(k) O(k?) 38 for k=4 304
CiscoDC Unknown 9 for (2,2) 1549
(m,a) 12 for (3,2) 52
18 for (4,3) 39
our testbed 4 4 4
Fig. 6 7 7 137

Table 1 shows the performance of SPAIN’s VLAN
mapping heuristic on different topologies. The heuris-
tic matches the optimal mapping on FatTree and BCube.
We don’t yet know the optimal value for CiscoDC or 2-D
HyperX, although for 2-D HyperX, k3 is a loose upper
bound. The table also shows that, for the Open Cirrus
subset used in our experiments (Sec. 10), the heuristic
uses the optimal number (4) of VLANS.

The above strategy is quite successful on FatTree and
BCube topologies. For FatTree, our heuristic automat-
ically determines the best VLAN layout as the set of
spanning trees rooted at each of the root switch. Thus
with (k/2)? VLANS, all (k/2)? paths between any two
edge switches are covered. For BCube, our algorithm re-
turns the set of spanning trees each rooted at a non-edge
switch. Thus with n*~1k VLANs, we can cover all k
paths for any pair of edge switches.

The last column in the table shows the number of tri-
als (IV) it took for SPAIN’s VLAN packing algorithm to
generate its best result; we show the worst case over five

12

runs, and the averages are much smaller. In some cases,
luck seems to play a role in how many trials are required.
Each row took less than 60 sec., using a single CPU (for
these computations, we used the serial algorithm, not the
parallel algorithm).

5.6 Fault tolerance in SPAIN

A SPAIN-based network must disable the normal STP
behavior on all switches; otherwise, they will block the
use of their non-spanning-tree ports, preventing SPAIN
from using those links in its VLANSs. (SPAIN configures
its VLANs to avoid loops, of course.) Disabling STP
means that we lose its automatic fault tolerance.

Instead, SPAIN’s fault tolerance is based on the pre-
provisioning of multiple paths between pairs of hosts,
and on end-host detection and recovery from link and
switch failures; see Sec. 6.6 for details.

However, SPAIN could use features like Cisco’s pro-
prietary Per-VLAN Spanning Tree (PVST) or the IEEE
802.1s standard Multiple Spanning Tree (MST) to im-
prove fault tolerance. SPAIN could configure switches
so that, for each VLAN, PVST or MST would prefer the
ports in that VLAN over other ports (using per port span-
ning tree priorities or weights). This allows a switch to
fail over to the secondary ports if PVST or MST detects a
failure. SPAIN would still use its end-host failure mech-
anisms for rapid repair of flows as the spanning tree pro-
tocols have higher convergence time, and in case some
switches do not support PVST/MST.

5.7 FIB pinning

The design of SPAIN presented so far depends on
switches to initially learn the locations of MAC ad-
dresses in the topology. A learning switch, for every
packet received on an interface ¢ with a source MAC-
address m,.. on VLAN v, records an entry (v, mg,c) —
1. Thus, the switch learns that address mg,. can be
reached via interface ¢ for VLAN v. It records this in
its Forwarding Information Base (FIB) table. A switch’s
FIB table maintains mappings from a (VLAN, MAC-
address) pair to an outgoing interface.

When a switch receives a packet with destination
MAC address that it has not yet learned, then it floods
that packet on all interfaces except the one on which it
has received the packet. Thus, the learning process can
create overheads from the resultant packet-flooding; as
we describe in Sec. 6, SPAIN’s end-host algorithms nor-
mally includes a chirping protocol, which significantly
reduces flooding due to switch table timeouts.

If we want to avoid the need for learning, flooding,
and the chirping protocol, we can implement SPAIN in-
stead using a variant called FIB pinning. FIB pinning
leverages our ability to directly program the FIB tables
on the switches via SNMP, and assumes that a central
controller knows the MAC addresses and locations of

each NIC (real or virtual) in the network. In FIB pinning,
SPAIN not only sets up the VLAN-map table, it also pre-
configures switches so that they know which hosts are on
each VLAN, and where.

In the basic SPAIN approach, we pre-configure each
switch to know which of its links belong to each VLAN,
and we ensure that each VLAN is loop-free; the switches
can then use flooding to learn the path to each unknown
destination MAC address on each VLAN. In the FIB-
pinning approach, we pre-configure the switch FIBs to
contain next-hop entries for each (v, Mmges¢) — ¢ pair, so
no flooding or learning is necessary. This also means that
we can share VLANSs between per-destination trees, re-
ducing the number of VLANS required for a given topol-
ogy.

This VLAN sharing can create loops within VLANS.
As long as an end host follows SPAIN’s rules for select-
ing the right VLAN to reach a specific destination, its
packets will be forwarded without looping. However, if
a non-SPAIN host tries to use one of these VLANS, this
can led to an infinite forwarding loop, so the switch ports
connected to non-SPAIN hosts must be configured to dis-
allow the use of SPAIN’s VLANS. (Also, a buggy SPAIN
host could lead to looping packets, by sending packets to
a non-SPAIN host on one of these VLANS.)

Because FIB pinning requires central knowledge of
the location of MAC addresses, it is therefore not as
widely applicable as the learning-based approach. It re-
quires a highly-available online central controller that
can respond to link failures by changing the FIB entries.
It may also create problems for VM migration, since FIB
entries in all switches must be updated in sync with a
VM'’s change of physical location within the network. Fi-
nally, a major disadvantage of FIB pinning is that it can
require a very large number of FIB entries. Even when
no host connected to an edge-switch ever communicates
with a destination d, the FIB of that edge switch must
still be populated with entries for d, because we have no
way to know a priori that such communication will never
take place.

Thus, a key trade-off between the basic learning-based
approach and FIB pinning is that the former uses some
extra bandwidth due to flooding on learning misses,
while the latter may require large FIB tables.

5.7.1 FIB-pinning algorithm

To pin a path from a source host s to a destination host
d, we can assign a VLAN v to that path, and populate an
entry for (v, d) in the FIB for each switch on that path.
Note that reducing the number of VLANSs is impor-
tant, even if we can use a large number of VLANs. If
two paths to a destination d go through a switch s, as-
signing two different VLANS to these paths requires two

13

Algorithm 5 Algorithm for assigning VLANs and gen-
erating FIB entries in the FIB Pinning Approach
1: Given: Topology Graph G = (V, E), number of
paths k, destination d
: Pathset P = ()
: forv e Vdo
P = P|JComputePaths(G, v, d, k) ;
end for
Veolor = {vla V25 -eey U\P|}; Ecotor = ®7
: for p;,p; € Pdo
if vian-compatible(p;,p;) = FALSE then
Ecotor = Ecolor U{Ui7 Uj}
end if
: end for
: (kv f) :vertex-coloring(Gcolor = (V::olora Ecolor))
13: /* f maps each vertex v; (and hence path p;) to one
of k colors */
14: for1 <i<ndo
150 for1l < j < |p;| do

R A A T

—_ = =

16: /* Add a FIB entry to switch p{ for each ma-
chine at edge-switch d */

17: for machine m at switch d do

18: On switch p!, add FIB entry: (f(i),m) —
int(p] ", p})

19: /* Function int(ss, s1) returns interface on s1
that connects to sy */

20: end for

21: end for

22: end for

different FIB entries in the switch s. In contrast, only one
FIB entry is required if we can assign a single VLAN to
both these paths.

This is important, because switch FIB table sizes are
limited. Typical switches have 16K FIB entries on their
fast datapath (on-chip SRAM) and 128K FIB entries, in
off-chip DRAM, on a slower datapath. A switch that
can re-learn the locations of MAC addresses can han-
dle, at some performance cost due to re-flooding, more
addresses than will fit into its FIB table. But with FIB
pinning, there is no way to support more (VLAN, MAC)
pairs than that can be fit simultaneously into the FIB ta-
ble of the smallest switch in the network.

Note that we can assign the VLAN number for mul-
tiple paths to a single destination d, if all of these
paths are vlan-compatible. Hence, we can reuse the
per-destination VLAN computation algorithm (Algo-
rithm 3). As mentioned before, we can reuse the VLAN
numbers across destinations; hence, we do not need to
run the merging algorithm (Algorithm 4).

We present our algorithm for FIB Pinning in Algo-
rithm 5. This algorithm first creates a corresponding
vertex-coloring problem instance, and uses its solution
for determining VLAN:S, similar to the Algorithm 5. The

algorithm then fills in each switch’s FIB table on each
path. We invoke Algorithm 5 separately for each desti-
nation.

Overall, the number of VLANs |V| required with the
FIB-pinning approach is the maximum of the number of
VLAN:Ss required for any destination. If D is the set of
destinations in our topology, and kg is the number of
VLAN:Ss required for a destination d, then

V] = gleagkd. 4)

The number of FIB entries needed on a switch is the
sum of number of unique VLANSs for each destination.
Assuming Py is the set of paths to a destination d, mgq
is the number of end hosts attached to that destination
edge-switch d, and f; maps a path for destination d to a
VLAN number, the number of FIB entries F needed on
a switch s is

Fo=Y max| |J {fa} ®

deD pEPq,s€p

Note that F; grows both with the number of total end
hosts in the network and with the number of VLANs
used. In Sec. 8.2, we study the number of FIB entries
needed for topologies of various sizes.

6 End-host algorithms

Once the off-line algorithms have computed the
paths and configured the switches with the appropriate
VLAN:S, all of the online intelligence in SPAIN lies in the
end hosts.> SPAIN’s end-host algorithms are designed
to meet five goals: (1) effectively spread load across
the pre-computed paths, (2) minimize the overheads of
broadcasting and flooding, (3) efficiently detect and re-
act to failures in the network, (4) facilitate end-point mo-
bility (e.g., VM migration), and (5) enable incremental
deployment. These algorithms can be implemented in
several different ways, as described in Sec. 9, none of
which require significant changes to the end-host OS or
hypervisor. We generically refer to the implementation
as the “SPAIN driver,” although it need not be an actual
device driver.

The SPAIN driver has four major functions: boot-time
initialization, sending a packet, receiving a packet, and
re-initializing a host after it moves to a new edge switch.

An end host uses the following data structures and pa-
rameters:

e ES(m): the ID of the edge switch to which MAC address

m is currently connected.

e Vicacn(es): the set of VLANS that reach the edge switch

€s.

2SPAIN could support the use of a centralized service to help end-
hosts optimize their load balancing, but we have not yet implemented
this service, nor is it a necessary feature.

14

e R: the reachability VLAN map, a bit map encoding the
union of Vieqcn(®) over all es, computed by the algo-
rithms in Section 5.

e Visabie(es): the set of VLANS that have recently tested
as usable to reach es.

® Thepin 1s the length of time after which non-TCP flows
go through the VLAN re-pinning process.

® Tiene is the minimum amount of time since last send on
a VLAN that triggers a chirp (see below).

e Vient(es): the set of VLANS that we sent a packet via es
within the last Ts¢n¢ seconds.

SPAIN uses a protocol we calling chirping for several
functions. A host sends a chirp packet with the triple
<IP Address, MAC address, Edge-switch ID>. Chirp
packets also carry a want_reply flag to trigger a unicast
chirp in response; broadcasts chirp never set this flag. All
hosts that receive a chirp update their ARP tables with
this /P — M AC address binding; they also update the
ES(m) table. SPAIN sends unicast chirps often enough
to preempt most of the flooding that would arise from
entries timing out of switch learning tables.

6.1 Host initialization

After a host boots and initializes its NIC drivers,
SPAIN must do some initialization. The first step is to
download the VLAN reachability map R from a repos-
itory. (The repository could be found via a new DHCP
option.) While this map could be moderately large (about
5MB for a huge network with 500K hosts and 10K edge
switches using all 4K possible VLANS), it is compress-
ible and cachable, and since it changes rarely, a re-
download could exploit differential update codings.

Next, the driver determines the ID of the edge switch
to which it is connected, by listening for Link Layer Dis-
covery Protocol (LLDP) messages, which switches peri-
odically send on each port. The LLDP rate (typically,
once per 30 sec.) is low enough to avoid significant
end-host loads, but fast enough that a SPAIN driver that
listens for LLDP messages in parallel with other host-
booting steps should not suffer much delay.

Finally, the host broadcasts a chirp packet, on the de-
fault VLAN (VLAN 1). Although broadcasts are unreli-
able, if host Y fails to receive a broadcast chirp from host
X, it Y will later recover by sending a unicast chirp (with
the wants_response flag set) when it needs to select a
VLAN for communicating with host X.

6.2 Sending a Packet

SPAIN achieves high bisection bandwidth by spread-
ing traffic across multiple VLANs. The SPAIN driver
must choose which VLAN to use for each flow (we nor-
mally avoid changing VLANSs during a flow, to limit
packet reordering). Therefore, the driver must decide
which VLAN to use when a flow starts, and must also de-
cide whether to change VLANS (for reasons such as rout-
ing around a fault, or improving load-balance for long

Algorithm 6 Selecting a VLAN

1: /* determine the edge switch of the destination */

2: m = get_dest_mac(flow)

3: es=get_es(m)

4: /* candidate VLANS: those that reach es */

5. if candidate_vlans is empty then

6 /* No candidate VLANSs; */

7 /* Either es is on a different SPAIN cloud or m is a non-

SPAIN host */
8: return the default VLAN (VLAN 1)
9: end if

10: /* see if any of the candidates are usable */

11: usable_vlans = candidate_vlans () Vusabie(€S)
12: if usable_vlans is empty then

13: return the default VLAN (VLAN 1)

14: end if

15: init_probe(candidate_vlans — usable_vlans)
16: return a random V' € usable_vlans.

flows, or to support VM mobility). We divide these into
two algorithms: for VLAN selection, and for triggering
re-selection of the VLAN for a flow (which we call re-
pinning).

Algorithm 6 shows the procedure for VLAN selec-
tion, given a destination MAC address m. The driver
uses the £.5(m) table (maintained by chirps) to find the
edge switch es for the destination, and then uses the
Reachability Map R to find the set of VLANS that reach
es. (Non-SPAIN hosts do not appear in ES(m), and so
are reached via the default VLAN.) The driver then com-
putes the candidate set by removing VLANS that are not
in Vi sapie(es) (which is updated during processing of in-
coming packets; see Algorithm 8).

If the candidate set is non-empty, the driver selects a
member at random and uses this VLAN for the flow.® If
the set is empty (there are no known-usable VLANS), the
flow is instead assigned to VLAN 1. The driver initiates
probing of a subset of all the VLANS that reach the es
but are currently not usable.

SPAIN probes a VLAN V to determine whether it can
be used to reach a given destination MAC m (or its ES)
by sending a unicast chirp message to m on V. If the path
through VLAN V is usable and if the chirp reaches m,
the receiving SPAIN driver responds with its own unicast
chirp message on V, which in turn results in V being
marked as in the probing host (the bit V,,sqpie(e8) is set
to 1).

When to re-pin?: Occasionally, SPAIN must change
the VLAN assigned to a flow, or re-pin the flow. Re-
pinning helps to solve several problems:

1. Fault tolerance: when a VLAN fails (that is, a link

or switch on the VLAN fails), SPAIN must rapidly
move the flow to a usable VLAN, if one is available.

3SPAIN with a dynamic centralized controller could bias this choice
to improve global load balance; see Sec. 9.

15

2. VM migration: if a VM migrates to a new edge
switch, SPAIN may have to re-assign the flow to a
VLAN that reaches that switch

3. Improving load balance: in the absence of an on-
line global controller to optimize the assignment of
flows to VLAN:S, it might be useful to shift a long-
lived flow between VLANS at intervals, so as to
avoid pathological congestion accidents for the en-
tire lifetime of a flow.

4. Better VLAN probing: the re-pinning process
causes VLAN probing, which can detect that a
“down” VLAN has come back up, allowing SPAIN
to exploit the revived VLAN for better load balance
and resilience.

When SPAIN detects either of the first two conditions, it
immediately initiates re-pinning for the affected flows.

However, re-pinning for the last two reasons should

not be done too frequently, since this causes problems of
its own, especially for TCP flows: packet reordering, and
(if re-pinning changes the available bandwidth for a flow)
TCP slow-start effects. Hence, the SPAIN driver distin-
guishes between TCP and non-TCP flows. For non-TCP
flows, SPAIN attempts re-pinning at regular intervals.

For TCP flows, re-pinning is done only to address fail-

ure or serious performance problems. SPAIN initiates
re-pinning for these flows only when the congestion win-
dow has become quite small, and the current (outgoing)
packet is a retransmission. Together, these two condi-
tions ensure that we do not interfere with TCP’s own
probing for available bandwidth, and also eliminate the
possibility of packet reordering.

Algorithm 7 illustrates the decision process for re-

pinning a flow; it is invoked whenever the flow attempts
to send a packet.

6.3 Receiving a Packet

Algorithm 8 shows pseudo-code for SPAIN’s packet
reception processing. All chirp packets are processed to
update the host’s ARP table and E'S table (which maps
MAC addresses to edge switches); if the chirp packet re-
quests a response, SPAIN replies with its own unicast
chirp on the same VLAN.

If the packet is a broadcast or multicast packet, it is
simply sent up to the higher protocols, without further
processing by the SPAIN driver.

The driver treats any incoming packet (including
chirps) as proof of the health of the path to its source
edge switch es via the arrival VLAN.* It records this ob-
servation in the V,,sqp1 (€5) bitmap, for use by Algorithm
6.

Finally, before delivering the received packet to the

“In the case of an asymmetrical failure in which our host’s packets
are lost, SPAIN will ultimately declare the path dead after our peer
gives up on the path and stops using it to send chirps to us.

16

Algorithm 7 Determine if a flow needs VLAN selection

Algorithm 8 Receiving a Packet

1: if last_move_time >= last_pin_time then
2 /* we moved since last VLAN selection - re-pin flow */
3 return true;
4: end if
5: current_es = get_es(dst_mac)
6: if saved_es (from the flow state) ! = current_es then
7. /* destination moved — update flow state & re-pin */
8 saved_es = current_es;
9: return true
10: end if
11: if current _vlan(flow) < 0 then
12: return true /* new flows need VLAN selection */
13: end if
14: if proto_of(flow) # T'C P then
15: if (now — last_pin_time) > Trepin then

16: return true /* periodic re-pin */

17: endif

18: else

19: if cwnd(flow) < Wiepinthresh && isrxmt(flow)
then

20: return true /* TCP flow might prefer another path */

21: end if

22: end if

23: return false /* no need to repin */

protocol stack, SPAIN sends a unicast chirp to the source
host if one has not been sent recently. (The pseudo-code
omits a few details, including the case where the map-
ping ES(mac) is unknown. The code also omits details
of deciding which chirps should request a chirp in re-
sponse.)

6.4 Table housekeeping

The SPAIN driver must do some housekeeping func-
tions to maintain some of its tables. First, every time a
packet is sent, SPAIN sets the corresponding VLAN’s bit
in Veent (65)

Periodically, the Vieni(es) and Visapie(es) tables
must be cleared, at intervals of T.,,; seconds. To avoid
chirp storms, it might be a good idea to perform these
table-clearing steps in evenly-spaced chunks, rather than
clearing the entire table at once.

6.5 Support for end-host mobility

SPAIN makes a host that moves (e.g., for VM migra-
tion) responsible for informing all other hosts about its
new location. After a host has finished its migration, it
broadcasts a chirp, which causes the recipient hosts to
update their ARP and E'S tables. Since a partial failure
of a VLAN might only affect the new location, the mi-
grating host should also flush its Vy,sqpie (€$) table.

6.6 Handling failures

Failure detection, for a SPAIN end host, consists of
detecting a VLAN failure and selecting a new VLAN for
the affected flows; we have already described VLAN se-
lection (Algorithm 6).

: vlan = get_vlan(packet)

m = get_src_mac(packet)

. if is_chirp(packet) then

update_ARP_table(packet)

update_ES_table(packet,vlan)

if wants_chirp_response(packet) then
send_unicast_chirp(mac, vlan)

end if

: end if

10: if not_unicast(packet) then

11: deliver packet to protocol stack

12: end if

13: es = get_es(m) /* determine sender’s edge switch */

14: /* mark packet-arrival VLAN as usable for es */

15: Visabie(es) = Visavie(es) J vlan

16: /* chirp if we haven’t sent to es via vlan recently */

17: if the vian bit in Vient(es) is not set then

18: send_unicast_chirp(mac, vlan)

19: /* Vient(es) is cleared every Tsent sec. */

20: end if

21: deliver packet to protocol stack

R I A o e

While we do not have a formal proof, we believe that
SPAIN can almost always detect that a VLAN has failed
with respect to an edge switch es, because most failures
result in observable symptoms, such as a lack of incom-
ing packets (including chirp responses) from es, or from
severe losses on TCP flows to hosts on es.

SPAIN’s design improves the chances for rapid failure
detection because it treats all received packets as probes
(to update V,,54p1¢), and because it aggregates path-health
information per edge switch, rather than per destination
host. However, because switch or link failures usually do
not fully break an entire VLAN, SPAIN does not discard
an entire VLAN upon failure detection; it just stops using
that VLAN for the affected edge switch(es).

SPAIN also responds rapidly to fault repairs; the re-
ceipt of any packet from a host connected to an edge
switch will re-establish the relevant VLAN as a valid
choice. SPAIN also initiates re-probing of a failed
VLAN if a flow that could have used the VLAN is either
starting or being re-pinned. At other times, SPAIN re-
probes less aggressively, to avoid unnecessary network
overhead.

6.7 End-host-based load balancing

To this point, we have deferred discussing how an end
host chooses between multiple usable paths. This choice,
however, can dramatically affect the performance of a
multi-path data center network, because it is the primary
mechanism for dynamic load balancing.

SPAIN does not depend on a specific load-balancing
scheme, but allows the use of a wide variety, including
both centralized and decentralized approaches. Except
in the case (described in Sec. 6.6) where a path fail-

ure causes VLAN re-selection, SPAIN chooses a VLAN
only at the start of a flow.

Techniques that can be implemented entirely locally
at each end host include randomly choosing a VLAN for
each flow; cycling among the available VLANs (round-
robin); or hashing on some part of the flow address tuple
so as to spread load according to a static policy.

Alternatively, SPAIN can exploit an optional online
centralized controller, to provide global management of
network load. In this model, the global controller (which
could be implemented as a distributed system, for avail-
ability and performance) monitors the links in the net-
work to detect significant load imbalances, and causes
end hosts to choose VLANSs so as to shift load away
from overloaded links. (Similarly, the NOX network op-
erating system controller for OpenFlow “can utilize real-
time information about network load and the utilization
of switches to install flows on uncongested links” [38].)

One plausible approach, which we have implemented
in our prototype (see Sec. 9.1), is for the centralized con-
troller to augment the reachability map R with weights
for each VLAN. The end host’s selection algorithm
(e.g., random, round-robin, or hash-based) then biases
its VLAN selection based on these weights. The map
can be updated periodically, at a rate low enough to avoid
much network load, but fast enough to respond to chang-
ing conditions. If update is lost or the controller fails, the
SPAIN end-host behavior is sufficiently autonomous to
allow communication to continue, albeit with some load
imbalance.

A possible variation on this approach is for the con-
troller to deliver differently-weighted versions of R to
each end-host, although we are not sure this is necessary
to achieve good load balance.

7 How SPAIN meets its goals

In this section, we discuss how the design of SPAIN
addresses the major goals we described in Sec. 4.

Efficiently exploit multiple paths in arbitrary
topologies: SPAIN’s use of multiple VLANs allows it
to spread load over all physical links in the network, not
just those on a single spanning tree. SPAIN’s use of end-
host techniques to spread load over the available VLANs
also contributes to this efficiency.

Support COTS Ethernet switches: SPAIN requires
only standard features from Ethernet switches. Also, be-
cause SPAIN does not require routing all non-local traffic
through a single core switch, it avoids the need for ex-
pensive switches with high port counts or high aggregate
bandwidths.

Tolerate faults: SPAIN pre-computes multiple paths
through the network, so that when a path fails, it can im-
mediately switch flows to alternate paths. Also, by avoid-
ing the need for expensive core switches, it decreases the

17

need to replicate expensive components, or to rely on a
single component for a large subset of paths.

SPAIN constantly checks path quality (through ac-
tive probing, monitoring incoming packets, and monitor-
ing the TCP congestion window), thereby allowing it to
rapidly detect path failures.

Support incremental deployment: None of SPAIN’s
end-host processing depends on an assumption that
all end hosts implement SPAIN. (Our experiments in
Sec. 10.4, showing the performance of SPAIN in incre-
mental deployments, did not require any changes to ei-
ther the SPAIN code or the non-SPAIN hosts.) Traffic to
and from non-SPAIN hosts automatically follows the de-
fault VLAN, because these hosts never send chirp mes-
sages and so the SPAIN hosts never update their F.S(m)
maps for these hosts.

8 Simulation results

We first evaluate SPAIN using simulations of a vari-
ety of network topologies. Later, in Sec. 10, we will
show experimental measurements using a specific topol-
ogy, but simulations are the only feasible way to explore
a broader set of network topologies and scales.

We use simulations to (i) show how SPAIN increases
link coverage and potential reliability; (ii) quantify the
switch-resource requirements for SPAIN’s VLAN-based
approach; and (iii) show how SPAIN increases the poten-
tial aggregate throughput for a network.

We simulated both regular topologies (those generated
by a rule) and arbitrary topologies. For regular topolo-
gies, we used several fat-tree designs (p = 4,8, 16, 48,
refer to Section 5.5). For a source of arbitrary topolo-
gies, we used some AS-level topologies from the Rock-
etFuel project [37]. These are, of course, not data-center
networks, but we use them (for lack of a ready source
of enterprise network topologies) to illustrate the broad
capabilities of SPAIN. For these AS-level topologies, we
assume 50 end machines per each node in the topology.
For a fat-tree topology, the port count p of the switches
determines the topology and the number of end hosts that
can be connected. With 48-port switches, FatTree(48)
connects 27648 end-machines while providing full bisec-
tion bandwidth.

In this section, we refer to the desired number of paths
per source-destination pair in a topology as the Path-
Set size PS. FatTree(p) has X = (p/2)? edge-disjoint
paths between any source-destination pair; hence, we use
PS = X as the path-set size for the simulations on Fat-
Trees. Since RocketFuel (RF) topologies are arbitrary,
we consider different path-set sizes varying from 1 (no
guaranteed redundancy) to 3.

Table 2 shows properties of the topologies we evalu-
ated, and summarizes the results of our simulations. In
this table, for the RF topologies, we include results only

for a path-set size of 3.

The table shows the Autonomous System (AS) num-
ber for each of the RF topologies (T1-T6), and the num-
ber of switches, links, and hosts in each simulated topol-
ogy.

As described in Section 5.2, we perform a graph com-
paction step, to reduce the working topology size for
path computation and path layout phases. The F), and
F, columns show the reduction factors in the number of
vertices and edges, respectively, achieved by the graph-
compaction step in Algorithm 1. Because our path com-
putation and path layout algorithms are of O(V2(V +
E)) time complexity, these reduction factors (of up to
8.6) result in a large reduction in execution times of those
phases.

The Coverage column shows the fraction of links cov-
ered by a spanning tree (SPAIN always covers 100% of
the links, if enough VLANSs are available.)

The NCP (no-connectivity pairs) column is indicative
of the fault tolerance of a SPAIN network; it shows the
expected fraction of source-destination pairs that lack
connectivity, with a simulated link-failure probability of
0.04, averaged over 10 randomized trials. (These are for
PS = 3; even for PS = 1, SPAIN would be somewhat
more fault-tolerant than STP.)

The VLANs column shows the number of VLANS re-
quired for each topology; note that for TS5, the number
exceeds Ethernet’s 4K limit, but we can support T5 with
PS = 2, or with 94% coverage at P.S = 3.

The Throughput column shows the aggregate through-
put possible through the network, assuming unit per-link
and per-sender throughputs, and fair sharing of links be-
tween flows. We assume that SPAIN chooses at random
from the three available paths, and we report the mean of
10 randomized trials, normalized so that STP = 1.

In summary, SPAIN’s paths cover more than twice
the links, and with more than three times the reliability,
of spanning-tree’s paths. Even in most large, arbitrary
topologies, SPAIN can find a VLAN assignment within
Ethernet’s 4K limit, and improves throughput over span-
ning tree.

In the rest of this section, we expand upon these sum-
marized results.

8.1 Path Set Quality

We use two metrics to quantify the quality of paths
that we compute: (i) Link Coverage: this metric tracks
the fraction of links of a network covered by the VLANSs,
and (ii) Reliability: this metric tracks how many source-
destination pairs can communicate under independent
link failures, with link failure probability f. We compare
these metrics against Spanning Tree, for various path-set
sizes PS.

18

pPS=1 ——
PS=2 —s—

08| PS=3 —=— |
STP

06 |

04}

Fraction of node pairs with no connectivity

l /
0 & L L L L L L

0.02 0.04 006 0.08 0.1 0.12 0.14 0.16 0.18 0.2
Link failure probability

Figure 8: For different probabilities of link failure, com-
parison of reliability between SPAIN’s paths and the
Spanning Tree paths on topology T5: We plot the frac-
tion of node pairs with no connectivity, which is also the
failure probability of a randomly chosen path.

Link-Coverage For all topologies, and for the path-set
sizes we simulated (PS = 1..3 for T1-T6, and (p/2)?
for FatTree(p)), SPAIN achieves 100% link coverage.

Note that for smaller path-set sizes on fat-tree topolo-
gies, SPAIN will not achieve 100% link coverage, but
will never be worse than Spanning Tree.

By contrast, Table 2 shows (in the Coverage column)
that Spanning Tree can exploit only very few links (2%-—
37.5%) in the highly-redundant fat-tree topologies, and
fewer than 52% of the links in the arbitrary topologies
T1-Te.

Reliability For a given probability f of link failure, we
compute the fraction NCP of source-destination pairs
that loose connectivity in the Spanning Tree case and in
the SPAIN case. NC P also denotes the failure probabil-
ity of a randomly chosen path for the given link failure
probability f. We performed 10 simulation trials, and
report the averages in all of the following results.

In Figure 8, for topology TS5, we plot the reliability
NCP for different path set sizes, and compare them
against Spanning Tree. Note that SPAIN’s path sets have
considerably better reliability in comparison to the Span-
ning Tree paths. We observed similar curves for other
topologies. Table 3 presents this reliability metric across
all topologies, for f = 0.04.

From these results, it is clear that SPAIN provides
better reliability than Spanning Tree. The results show
that larger path set sizes increase reliability, but even for
PS = 1 in topologies T1-T6, SPAIN improves reliabil-
ity over Spanning Tree.

8.2 Feasibility

We use the term “feasibility” to describe SPAIN’s abil-
ity to find a VLAN mapping that fits within Ethernet’s
limit of 4096 VLANSs. Table 4 shows number of VLANs

19

[Topology [AS # “ #Switches [#Links [#Hosts “ F, [Fe “ Coverage [NCP (STP) [NCP (SPAIN) H VLANs [Throughput]
FT(4) - 20 32 16 || 1.0 | 1.0 37.5 35% 0% 4 2.00
FT(8) - 80 256 128 1.0 | 1.0 15.62 17% 0% 16 4.00
FT(16) - 320 2048 1024 || 1.0 | 1.0 7.03 21% 0% 64 8.00
FT(48) - 2880 | 55296 27648 1.0 | 1.0 2.17 17% 0% 576 24.00

T1 4755 41 136 2050 || 1.3 | 1.2 S51.72 16% 1% 198 1.69
T2 1755 295 1086 14750 || 1.6 | 1.3 41.95 23% 1% 2272 1.81
T3 3967 375 1698 18750 || 1.2 | 1.1 40.08 45% 2% 3153 2.12
T4 3257 411 1306 20550 || 2.2 | 15 43.62 26% 2% 1895 1.67
TS 3356 1620 13480 81000 || 2.2 | 1.2 12.57 29% 1% 5361 8.00
T6 1221 2532 6112 | 126600 || 8.2 | 3.7 36.93 30% 4% 2188 2.73

Key: F, = vertex reduction factor; F. = edge reduction factor; Coverage = % of links covered by STP; NCP= % of node pairs with no
connectivity, for link-failure probability = 0.04; V LANs = # VLANSs required; T'hroughput = aggregate throughput, normalized to STP, for
sufficient flows to saturate the network, except for TS (see Sec. 8.3). (Path-set size = 3 for topologies T1-T6, and (p/2)? for FT(p) topologies)

Table 2: Summary of simulation results

NC P = failure prob. of a random path
Topology SPAIN
STP PS=1 | PS=2 PS=3
T1 0.16 0.11 | 0.02 0.01
T2 0.23 0.17 | 0.04 0.01
T3 0.45 021 | 0.06 0.02
T4 0.26 0.20 | 0.04 0.02
T5 0.29 0.13 | 0.03 0.01
T6 0.30 0.18 | 0.06 0.04
STP PS = (p/2)?
FT(4) 0.35 0
FT(8) 0.17 0
FT(16) 0.21 0
FT(48) 0.17 0

Table 3: Reliability metric for different topologies at
link failure probability of 0.04: Comparison between
SPAIN’s paths for different sizes (PS) and Spanning Tree
Protocol (STP).

required for different topologies and for various path-set
sizes. For fat-tree topologies, we use the same numbers
presented in the Section 5.5. For topologies T1-T6, path-
set sizes of 1 and 2 can be easily supported for all topolo-
gies, and a path-set size of 3 can be supported for a ma-
jority of them.

Column 3 of Table 4 shows the number of VLANS re-
quired based on the parallel algorithm described in Sec-
tion 5.4 (Algorithm 3). For cases where this required
4000 or VLANSs, we also ran Algorithm 4, to merge the
VLANS of different destinations. The results, shown in
column 4, show reductions of 37%, 22%, and 53% for
the T3, TS, and T6 topologies respectively (for P.S = 3).
For the TS5 topology, we further observe that, within the
limit of 4096 VLANSs, we could lay out 94% of the paths
considered.

For the FIB-pinning approach (Sec. 5.7), Table 4
shows the number of VLANs and the number of FIB
entries needed to implement each of the cases. Since

VLAN numbers can be re-used across destinations, the
number of VLANS required in this case is the maximum
number of VLANs required for any one edge switch.
Hence, we can implement all cases considered with a
small number of VLANSs.

However, the number of FIB entries required is pro-
portional to the product of the number of end-host
and the number of VLANS in a topology, and Table 4
shows that this number can become quite large. Typical
switches support 16K FIB entries in fast SRAM and up
to 128K entries in off-chip DRAMs. These limits imply
that, with FIB pinning, we can set up a shortest path in
all topologies T1-T6, and up to two paths in topologies
with a few tens of thousands of end hosts.

8.3 Effectiveness

We use the term “effectiveness” to refer to the ability
to support the maximum possible throughput for a given
physical topology. We ran simulations to study this met-
ric.

We used the following traffic model: To simulate N
simultaneous flows, we uniformly randomly choose N
source-destination pairs. For each flow, we assume that
the sender has an infinite amount of data to send to the
destination, and that it sends data at the rate of at most
one data unit per unit time. Each link in our topology
can transmit at most one unit of data per unit time. We
assume that the bandwidth of a link is fairly distributed
among all flows through that link. This means that each
flow going over a link with m flows can transmit at 1/m
rate, limited of course by the link at which it encounters
the largest m.

We compute the aggregate throughput of all flows,
measured in the number of units of data per unit time,
for different numbers of flows. For each of these simula-
tion experiments, we performed 10 trials and computed
the average across those trials. For SPAIN with path-set
sizes greater than 1, we simulate the case in which the
source node chooses one of the paths randomly.

Table 4: Feasibility results

Basic SPAIN FIB Pinning
Topology PS #V #V’ #V #FIB
Pe)
1 31 1 2050
T1 2 130 5 8150
3 198 8 12600
1 181 1 14750
T2 2 || 1101 9 69650
3| 2272 18 148k
1 322 1 18750
T3 2 || 2362 11 98900
31| 5022 3153 27 221k
(100%)
1 189 1 20550
T4 2 || 1020 8 92550
3 || 1895 14 169k
1 737 1 81000
T5 2 || 3906 8 302k
3 || 6900 5361 15 527k
(94%)
1 310 1 | 126600
T6 2 || 2370 11 858k
3 || 4696 2188 23 1722k
(100%)
FT(4) 4 4 4 64
FT(8) 16 16 16 2048
FT(16) 64 64 64 64K
FT(48) 576 576 576 16M

PS is the size of path set. #V corresponds to the number of VLANSs
required as computed by the parallel Algorithm 3. #V’ corresponds to
the number of VLANS required after we have run Algorithm 4, and P,
is the percentage of the path set that is covered by limiting the number
VLANS to at most 4096. #FIB represents the number of FIB entries
that that FIB pinning would require to realize the corresponding path-

set size.

For the fat-tree topologies, the throughput results are
straightforward, and are shown in Table 2 (for 10 million
flows), and in Fig. 9. These results can be calculated by
straightforward means, but we also confirmed our calcu-
lations via simulations.

For the arbitrary topologies (T1-T6), we had to simu-
late. Our simulation framework runs on a Java VM, on a
server with 4 CPU cores and 16GB of RAM; this allows
us to simulate up to 10 million flows. For topologies T1-
T4 and T6, that was enough to saturate the entire net-
work. For T5, however, we could not fully saturate the
network with this simulation configuration.

In Figure 10, we plot, for each topology T1-T6, the
aggregate throughput At a first look, these results are
perplexing; somehow, having more paths between node
pairs results in decreased aggregate throughput. Upon
further analysis, we noted that at a high number of flows,

20

the network becomes overloaded, with several flows be-
tween every source-destination pair. A flow from a
source to a destination that takes a non-shortest path dis-
rupts more flows than a flow that takes the shortest path,
as the non-shortest path (by definition) traverses more
links than the shortest path.

These simulation results suggest several possible im-
provements to SPAIN:

e Since the use of short paths helps overall net-
work performance, an end host should prefer to use
shorter paths over longer ones. The path lengths are
known as a result of the algorithms that compute
them, and this information could easily be provided
to the end hosts, at the cost of slightly larger tables.

o The results for larger path-set sizes show that, at
lower numbers of flows, they provide better over-
all network performance than smaller path-set sizes.
An online global controller could exploit this infor-
mation to help improve load balance.

However, we are not sure if these observations would ap-
ply to typical data-center topologies.

Table 5 summarizes the throughput results for 10 mil-
lion flows. For topologies T1-T6, we observe at least
67% improvement (T4, PS = 3), and up to 10X im-
provement (TS5, P.S = 1). Our experiments with 10 mil-
lion flows saturated the Spanning Tree links in case of
topology T5 (see Figure 10, topology T5), but did not
saturate the SPAIN cases.

Fat-tree topologies provide full bisection bandwidth
by means of tremendous redundancy, so in these net-
works we see as many simultaneous full-speed flows as
the number of end hosts. Spanning tree cannot leverage
that redundancy, so, as expected, our results show up to
24X improvement with SPAIN on fat-tree topologies.

9 Linux end-host implementation
We considered three possible approaches to the end-
host implementation for SPAIN in Linux:

e A custom kernel module.

o The “off-the-shelf” OpenFlow [25] kernel module
(section 9.1).

e A user-mode-only implementation, with no kernel
changes, based on the widely-available 802.1Q and
bonding-driver Linux modules; this lacks chirping
and fault-tolerance support (section 9.2).

A custom kernel module for SPAIN would probably be
relatively easy to write, would support the fault-tolerance
and chirping aspects of SPAIN that the other two ver-
sions do not, and would use less CPU and RAM, but this
is future work.

9.1 Approach 1: OpenFlow kernel module
Our implementation of the SPAIN prototype uses
the OpenFlow kernel module, which was chosen for

18

21

140

PS=4 PS=16 —
16 120 STP ——
5 4t =]
a 2 100
5 12} 5
3 3
= 10t £ 80 |
= =
Q L Q
gz 8 g 60
j=2} j=2}
L 6 L
3 2 40 +
< 4t <
2| 20 |
0 1 1 1 0 1 1 1 1
1 10 100 1000 1000(1 10 100 1000 10000 10000
Number of Flows Number of Flows
FatTree(4) FatTree(8)
1200 T 30000 T T
PS=64 —— PS=576 —+—
STP —s— STP ——
1000 25000
5 5
£ £
> 800 > 20000
=] =]
o o
< <
= 600 = 15000 -
2 2
© o
j=2} j=2}
Qo 400 + o 10000
[=2} [=2}
j=2} j=23
< <
200 + g 5000
0 W . .) I
1 10 100 1000 10000 100000 1le+Ot 1 10 100 1000 10000 100000 1le+06 1le+0

Number of Flows

FatTree(16)

Figure 9: Aggregate throughput vs. number of flows:

expediency, as it readily supports VLAN encapsula-
tion/decapsulation. The OpenFlow protocol itself is not
used in the network.

This approach does not support the failure-detection
mechanisms described in Sec. 6.6. It also adds consider-
able CPU overhead (see Sec. 10.2).

We wrote a local, user-mode “OpenFlow controller”
to implement the SPAIN mechanisms by manipulating
the OpenFlow kernel module through its existing inter-
face. The kernel module, local controller, and associated
scripts amount to about 4MBytes that must be installed
on each host.

This implementation does not currently use the chirp-
ing mechanism, relying instead on a central repository
to provide the data found in the ES(m) and Vyeqcn(es)
maps.

SPAIN’s initialization script loads the kernel module,
configures SPAIN-specific MAC and IP addresses for the
openflow virtual network interface, and starts the local
controller process. The controller then contacts a central
controller to obtain the necessary maps. We also exploit
this central controller (repository) to provide weights for
choosing between VLANSs (to support traffic engineer-

Number of Flows

FatTree(48)

SPAIN and Spanning Tree on fat-tree topologies.

ing) and a map showing which links are in each VLAN;
the latter would be useful in conjunction with a link-
monitoring service that informs an end-host when a link
fails or recovers. In our current implementation, a host
only communicates with the repository at initialization
time

Our host controller communicates with the repository
using XML RPCs, over a separate control network pro-
vided by our testbed. (The control network is not strictly
necessary, but increases our ability to recover from fail-
ures that partition the data network.)

During normal operation, the OpenFlow module looks
up each outgoing packet in its flow table, to find the
VLAN tag to use for sending the packet. For the first
packet of flow initiated from this host, the resulting
lookup miss causes the user-mode controller to be in-
voked. The controller consults its tables to choose a
VLAN; when multiple VLANS are available, the choice
is random, biased by the weights provided by the central
controller. The local controller inserts the appropriate
rule in the flow table. If a new flow is initiated from an-
other host, we record the incoming packet’s VLAN tag,
and use that VLAN for sending packets on that flow.

22

=1 5 1
(=% Qo
=] =] 1
(=) (=2
> >
o o 1
< <
[[]
Q Q
© ®]
[=2) [=2]
L L
(=] [=2] 1
(=] (=]
< < 4
0 | —% T o bl a 1 1 1 1 oo 1 1 1 1
1 10 100 1000 10000 100000 1le+0t 1 10 100 1000 10000 100000 1e+06 1le+0O’
Number of Flows Number of Flows
Topology T1 Topology T2
1200 T T T T T T 500 T T T T T T
PS=1 —— PS=1 ——
PS=2 —— 450 tpg=p —.—
- 1000 rpg=3 < 400 [PS=3 ——
3 STP 2 STP
§ 800 | .§ 350
3 3 300}
= =
= 600 = 250 F
]]
ﬂg;’ 400 % 200r
> I 5 150 |
< <
200 | 100 +
50 |
0 .] " . . 0 ; . . .
1 10 100 1000 10000 100000 1e+06 1le+0 1 10 100 1000 10000 100000 1e+06 1le+O’
Number of Flows Number of Flows
Topology T3 Topology T4
8000 T T T T T T 1200 T T T T T T
PS=1 —— PS=1 ——
7000 |PS=2 —— PS=2 ——
- PS=3 —x— _ 1000 fpgog
é 6000 | sTP § sTP
=) = 800
3 5000 f 3
= <
= 4000 = 600
L L
© ©
? 3000 + E_c)n 200 |
(=2} (=2}
<C(7’ 2000 g’ 200
1000 | I
0 " . eE " " 0 ' N " "
1 10 100 1000 10000 100000 1e+06 1e+0 1 10 100 1000 10000 100000 1e+06 1le+0
Number of Flows Number of Flows
Topology T5 Topology T6

Figure 10: Aggregate throughput vs. number of flows: SPAIN and Spanning Tree on abitrary RocketFuel topologies.

ARP packets, and packets for non-SPAIN hosts, are
sent without VLAN tags; the switch will forward these
on the default VLAN.

Implementation glitches: While debugging our ex-
perimental evaluation, we realized that the dual-port
NICs in our server machines were stripping the VLAN
tags from incoming packets on one of their two ports.’
This defeats several of the mechanisms that SPAIN’s

5We believe we can update the NIC firmware to avoid this, but due
to the need for per-server manual updates using a DOS-based diagnos-
tic tool, have not yet done so on the 84 servers in our testbed.

end-host algorithms, including the chirping protocol.
(The same problem might arise when using a TCP Of-
fload Engine, and might be harder to solve.) As a tem-
porary workaround, we had to emulate the VLAN-based
mechanisms of SPAIN by directly updating the per-host
FIB entries in each switch. We have already mentioned
such “FIB-pinning” (Sec. 5.7 as an alternate way to im-
plement SPAIN’s basic multipathing mechanism, but it
potentially consumes more switch table resources.

Throughput (aggregate data per unit time Normalized w.r.t Spanning Tree
Topo. Spannine Tree SPAIN SPAIN
panning PS=I | PS=2 | PS=3 || PS=1 | PS=2 | PS=3
T1 30.45 68.97 55.04 51.54 226 | 181 1.69
T2 178.17 493.71 364.93 322.32 277 | 2.05 1.81
T3 318.77 || 1018.60 | 766.36 | 674.42 320 | 240 2.12
T4 185.45 463.56 | 349.42 | 310.55 250 | 1.88 1.67
T5 720.72 || 7232.69 | 6233.68 | 5762.97 || 10.04 | 8.65 8.00
T6 309.15 || 1136.33 | 930.85 843.54 3.68 | 3.01 2.73
l || Spanning Tree || PS = (p/2)? | PS = (p/2)?
FT4 8 16 2
FT8 32 128 4
FT16 128 1024 8
FT48 1152 27648 24

23

Table 5: Aggregate throughput for different topologies with up to 10 million flows (saturates all topologies except T5).

9.2 Approach 2: User-mode

We were also able to implement the basic functions
of SPAIN without any kernel changes at all, using two
Linux features available in all distributions: the 802.1Q
module that adds VLAN support, and the bonding driver
module, which “bonds” several interfaces into a single
virtual-Ethernet interface.

step 1: insert VLAN and bonding modules
modprobe 8021g
modprobe bonding
reads a SPAIN-specific config file

step 2: create per-VLAN virtual interfaces
for i in ‘cat spain.vlans’®
do

vconfig add ethO $i
done

step 3: bond all virtual interfaces into one
ifconfig bond0 $MY_TIPADDR netmask $MY_MASK
for i in ‘cat spain.vlans®

do
ifenslave bond0 eth0.$1i
done
step 4: adjust the routing table

eval ‘netstat -rn | \

awk —-f spainRoutesAdjust.awk®
AWK script generates the necessary
"route add" commands

Figure 11: SPAIN in Linux without kernel changes

Figure 11 is an approximate version of the configu-
ration script that implements SPAIN. The script, which
must run as root, starts by installing the necessary mod-
ules.

The script then creates virtual interfaces for all
VLAN:S, using a list of VLANS extracted from the reach-
ability map that the host has previously downloaded from

the repository. Each such device adds the appropriate
VLAN tag to outgoing packets, and only receives pack-
ets with the appropriate VLAN tag. Although sec. 5.5
shows that we should not need many such virtual in-
terfaces, we found that the VLAN module is relatively
space-efficient, and adding the maximum 4096 virtual
interfaces would consume only SMB of RAM. We also
believe that the per-packet overheads are independent of
the number of VLANS configured.

The script then bonds all of the VLAN-specific virtual
interfaces into a single bond0 virtual interface.

Finally, we modify the routing table so that the routes
for SPAIN end hosts point to the bond0 interface.

Loading the bonding module causes it to read a con-
figuration file, which we use to approximate the ideal
SPAIN end-host behavior via these parameters:

e mode: setto balancetlb to load-balance outgo-
ing flows across all of the bonded VLANS.

e xmit_hash policy: specifies how flows are de-
fined; we use layer3+4 to define flows using the
standard TCP/UDP S5-tuple. The module’s hash
function is based on XOR, which means that for
many regular topologies, both directions of a flow
are hashed to the same VLAN; this reduces the need
for chirping and switch-learning floods.

Two more parameters, arp_ip_target and
arp-interval, help further reduce flooding by
allowing us to approximate a periodic chirp protocol.
However, setting these parameters correctly is somewhat
tricky, and we are still working on a robust method for
choosing their values.

Our user-mode implementation has several limita-
tions: (1) it assumes that all VLANSs reach all SPAIN
end hosts in the system, and (2) if a link on a VLAN goes
down, to ensure connectivity a control function must re-
move, from all hosts, the virtual interface corresponding

to that VLAN. Note that on a link failure, an ideal SPAIN
end-point implementation will still use that VLAN for
other destinations that remain reachable on that VLAN.

10 Experimental evaluation

In our experiments, we evaluate four aspects of
SPAIN: overheads added by the end-host software; how
SPAIN improves over a traditional spanning tree; sup-
port for incremental deployment; and tolerance of net-
work faults.

We do not compare SPAIN’s performance against
other proposed data-center network designs, such as
PortLand [27] or VL2 [18], because these require spe-
cific network topologies. SPAIN’s support for arbitrary
topology is an advantage: one can evaluate it on the
topology one has access to. (We plan to rebuild our
testbed network to support fat-tree topologies, but this
is hard to do at scale.)

10.1 Configuration and workloads

We conducted our evaluation on three racks in the
(larger) Open Cirrus testbed [12]. Each rack consisted
of of about 28 machines each. These machines have
quad-core 2GHz Intel Xeon CPUs, 8GB RAM and run
Ubuntu 9.04. Due to some servers with failed disks, we
were not able to use all 3 x 28 = 84 servers in our ex-
periments. Our experiments with the OpenFlow-based
SPAIN implementation used 80 servers, and those with
the user-mode SPAIN implementation used 82 servers.

Each server is connected to a 3500-series ProCurve
switch using a 1-GigE link, and these rack switches are
connected to a central 5406-series ProCurve switch via
10-GigE links.

The Open Cirrus cluster was originally wired using
a traditional two-tiered tree, with the core 5406 switch
(TS) connected to the 3500 switches (S1, S2, and S3) in
each logical rack. To demonstrate benefits of SPAIN,
we added 10-GigE cross-connects between the 3500
switches, so that each such switch is connected to another
switch in each physical rack. Fig. 12 shows the result-
ing wired topology, and Fig. 13 shows the four VLANs
computed by the SPAIN offline configuration algorithms.

In our tests, we used a “shuffle” workload (similar
to that used in [18]), an all-to-all memory-to-memory
bulk transfer among N participating hosts. This com-
munication pattern is used in several important applica-
tions, such as the shuffle phase between Map and Re-
duce phases of MapReduce, and in join operations in
large distributed databases. In our workload, each host
transfers S00MB to every other host using 5 simultane-
ous threads; the order in which hosts choose destinations
is randomized to avoid deterministic hot spots. With each
machine sending S00MB to all other machines, this ex-
periment transfers about 3.16TB to 3.32TB, depending
on the number of machines used.

24

~28 blades per
switch

Dashed lines represent the non-spanning-tree links that we added.

Figure 12: Wiring topology used in our experiments.

VLAN: V1 VLAN: V2
Y ecccccccaaaad ’
VLAN: V4

VLAN: V3

Figure 13: VLANSs used by SPAIN for our topology

10.2 End-host overheads

We measured end-host overheads of several con-
figurations, using ping (100 trials) to measure la-
tency, and NetPerf (10 seconds, 50 trials) to measure
both uni-directional and simultaneous bi-directional TCP
throughput between a pair of hosts.

Table 6: End-host overheads

ping TCP throughput
Configuration RTT (Mbit/sec)
(usec) | 1-way [2-way, [min,max]

Unmodified Linux 97 941 1463 [1108,1680]
1st pkt, cold start 1.1 ms

SPAIN/OpenFlow 113 939 | 1298 [1231, 1361]
Ist pkt, cold start 2-4ms

SPAIN/user-mode 98 939 | 1435[1196, 1719]
Ist pkt, cold start 5-8ms

ping results: mean of 100 warm-start trials;
throughput: mean, min, max of 50 trials

Table 6 shows the results. The OpenFlow-based im-
plementation of SPAIN somewhat increases RTT (espe-
cially for the first packet of a flow, which invokes the
user-level controller), but does not appreciably change
one-way TCP performance, which is near optimal.

However, the bidirectional throughput, even for un-
modified Linux is much less than twice the one-way
throughput, and shows a high variance; we are investi-
gating possible causes of this variance.

Using the OpenFlow-based SPAIN, we see approx-

imately 10% lower two-way throughput, and a dou-
bling of CPU utilization, compared to unmodified Linux.
However, our user-mode SPAIN implementation deliv-
ers TCP throughput essentially identical to that of un-
modified Linux. This suggests that using the OpenFlow
module for this purpose is unnecessarily inefficient; a
custom SPAIN kernel module would yield better two-
way throughput, and probably would almost eliminate
the cold-start RTT penalty.

10.3 SPAIN vs. spanning tree

Tables 7 and 8 show how SPAIN compares to span-
ning tree when running the shuffle workload on the Open
Cirrus testbed. SPAIN improves aggregate goodput by
28.5% with our user-mode implementation, and by 20%
with the OpenFlow-based implementation. At least in
the latter case, the improvement from SPAIN is clearly
limited by CPU overheads rather than network utiliza-
tion.

Table 7: Spanning-tree vs. OpenFlow-based SPAIN

Spanning | SPAIN/OpenFlow

Tree | 100% | 80%

Mean goodput/host (Mb/s) 480.87 | 576.67 599.63
Aggregate goodput (Gb/s) 38.41 46 47.76
Mean completion time/host 690 s 578 s 554s
Total shuffle time 717s 634 s 599 s

Results are means of 5 trials, 500 MBytes/trial, 80 hosts

Table 8: Spanning-tree vs. user-mode SPAIN

[[| Spanning Tree | SPAIN/u-mode |

Mean goodput/host (Mb/s) 469.30 604.80
Aggregate goodput (Gb/s) 38.42 49.38
Mean completion time/host 72492 s 564.38 s
Total shuffle time 768.47 s 617.66 s

Results are means of 10 trials, 500 MBytes/trial, 82 hosts

When we used the OpenFlow-based implementation,
we measured an aggregate goodput of 46 Gbps, which
is only 57.5% of the ideal goodput (80 Gbps) one would
expect. We believe this discrepancy is caused by several
limits:

1. The inability of our individual hosts to saturate their
1 Gbps links with bidirectional TCP traffic (see Ta-
ble 6). Even with unmodified Linux, for bidirec-
tional TCP tranfers we observe only 71% of the
ideal throughput (1463/2000 = 0.71). This would
imply, for our 80-node shuffle experiment using
spanning tree, an upper bound of 80 *x 0.71 = 56.8
Gbps. With the OpenFlow-based implementation of
SPAIN, for a single bidirectional TCP transfer we
observed 65% of the ideal goodput (1298,/2000 =

25

0.65), which implies a maximum aggregate good-
put, for the 80-node shuffle, of 80x0.65 = 52 Gbps.

2. The OpenFlow kernel module adds another over-
head, not visible in the single-connection tests of
Table 6. In our implementation, we install a wild-
card OpenFlow rule for each open connection to a
SPAIN peer. However, we later realized that the
OpenFlow module uses a linear search of the wild-
card rule table. The shuffle experiment leads to the
installation of a large number of wild-card rules (es-
pecially since they persist after TCP connections are
closed), and this appears to further reduces the mea-
sured aggregate goodput by 7.5%.

Table 7 shows a column for a configuration with
80% (64) of the nodes running SPAIN, and 20% us-
ing spanning tree. Note that these results are better
than either of the other two columns; this supports
our belief that the linear search limits performance
in the shuffle experiment.

Our experiments with the user-mode implementation
of SPAIN, which should avoid these two problems,
yielded an aggregate goodput of 49.38 Gbps, which is
60.22% of the ideal 82-node goodput of 82 Gbps. This is
about 10% less than one would expect based on the two-
node bidirectional TCP transfer measurement shown in
Table 6 (1435/2000 = 0.705 or 70.5%). We are not yet
sure what causes this discrepancy.

10.4 Incremental deployability

One of the key features of SPAIN is incremental de-
ployability. To demonstrate this, we randomly assigned
a fraction f of hosts as SPAIN nodes, and disabled
SPAIN on the remaining hosts. We measured the good-
put achieved with the shuffle experiment. To account for
variations in node placement, we ran N trials for each
fraction f, doing different random node assignments for
each trial We used N = 5 for experiments with the
OpenFlow-based implementation, and N = 10 for ex-
periments with the user-mode implementation.

In Fig. 14, with the user-mode implementation of
SPAIN, we show how several metrics (per-host good-
put, aggregate goodput, mean per-host completion time,
and total shuffle run-time) vary as we change the frac-
tion f of SPAIN vs. non-SPAIN nodes. The y-values for
each curve are normalized to the 0%-SPAIN results. The
curves flatten out at about f = 0.6, probably for the same
reason(s) that we see about 10% less aggregate goodput
than we expect for the f = 1.0 case.

Fig. 15 shows similar measurements made with the
OpenFlow-based implementation of SPAIN. Note that
the best-case performance is worse than that for the user-
mode implementation. Note also that the results for
f > 0.9 are depressed because of another overhead with

1.3 5
" 12
j
8 11
2 =l Mean goodput/host —+— |
3 1 Aggregate goodput —x— |
N Mean completion time —x—
E 09} Total shuffle time —=— |
S
Z osf 2

0.7 L . . .

0 0.2 0.4 0.6 0.8 1

Fraction of SPAIN hosts

Results are means over 10 trials

Figure 14: Incremental deployability (user-mode
SPAIN)
1.3
o L2t
e
8 11
% =T Mean goodput/host —+— |
3 18 Aggregate goodput —x— |
N Mean completion time —x—
g o9l &— Total shuffle time —5— i
S k
Z os}]
0.7 L L L L
0 0.2 0.4 0.6 0.8 1

Fraction of SPAIN hosts

Results are means over 5 trials

Figure 15: Incremental deployability (OpenFlow-based
SPAIN)

the OpenFlow module — we started getting misses in its
100-entry wildcard flow cache.

10.5 Fault tolerance

We implemented a simple fault detection and repair
module that runs at user-level, periodically (100 msec)
monitoring the performance of flows. It detects that a
VLAN has failed for a destination if the throughput drops
by more than 87.5% (equivalent to three halvings of the
congestion window), in which case it re-pins the flow to
an alternate VLAN.

To demonstrate fault-tolerance in SPAIN, we ran a
simple experiment. We used NetPerf to generate a 50-
second TCP flow, and measured its throughput every 100
msec. Fig. 16 shows a partial time-line. At 29.3 sec., we
removed a link that was in use by this connection. SPAIN
detects the failure and repairs the end-to-end path; the
TCP throughput returns to normal within 200-300 msec.

11 SPAIN and the broadcast vs.

problem
SPAIN does not eliminate the problem of broadcasts,
but we can exploit certain aspects of both the data-center
environment and our willingness to modify end-host im-
plementations.

scaling

26

@

g 1200 . T

S 1000 g, .is AN A A arAAA

£ 800F[

= 600

Qo

= 400 Throughput

3 200 - Fajlure event

E 0 L L L L

= 24 26 28 30 32 34

Time (in seconds)

Figure 16: Fault-tolerance experiment

The most common broadcast packets on an Ethernet
are ARP packets. There are other source of broadcasts
such as DHCP, NetBIOS, and Internet Printing Protocol,
but they are not common in data center networks and are
typically very small in volume compared to the data traf-
fic. Hence, focus here is only on ARP-related packets.

11.1 Review of ARP

The Address Resolution Protocol (ARP) is used by
IP hosts to determine the MAC address of another host
whose IP address is known. ARP relies on the broad-
casting capability of the underlying Ethernet [31]. An
end host X broadcasts an ARP request packet that in-
cludes the IP address that it is trying to resolve. Each
end host Y that receives an ARP request compares the IP
address in the ARP message against its own IP address.
If it matches, Y creates an ARP reply packet including
both the requested IP address and its MAC address, then
sends the reply packet to X as a unicast Ethernet packet.

Each end host caches, in a local ARP table, the
IP—MAC address bindings that it has resolved. It also
maintains a timestamp along with each binding denot-
ing the latest time at which it received a packet that in-
formed this binding. These bindings, if they were to per-
sist forever, could become stale — that is, fail to reflect
reality, due to host mobility, reassignment of an IP ad-
dress to a different host, or some fault-tolerance meth-
ods. Therefore, any ARP-table entry with a time stamp
older than arp-timeout is treated as stale and must be re-
freshed. Most Linux Kernels use a value of 30 seconds
for this timeout [1, 13]. If a packet needs to be sent to a
destination IP with stale ARP-table entry, the ARP spec-
ification [31] suggests (and many current operating sys-
tems implement) sending a unicast ARP request, since a
possible MAC address is already known. If that fails to
elicit a response, then the stale entry is removed and the
ARP request is re-transmitted as a broadcast.

An existing ARP-table timestamp for the entry for IP
address A is reset when the local host receives an ARP
request from A. This also suppresses the need to send
a broadcast ARP request in some cases — for example,
when host A initiates an IP flow to host B, A will first
broadcast an ARP request for B, but B will not need to
broadcast a request for A.

Therefore, ARP requests are not sent as broadcasts as

long as there is an entry in the ARP table for the corre-
sponding IP address.

11.2 Chirping can suppress ARP broadcasts

SPAIN’s chirping protocol (see Sec. 6) can suppress
additional ARP broadcasts by functioning analogously
to the Gratuitous ARP (GARP) mechanism, in which a
host broadcasts an ARP request for its own [P — MAC
binding. All hosts that receive this broadcast will update
their ARP-table entries for the IP address, and reset the
corresponding timestamps.

GARP was first designed to detect IP address con-
flicts [40]. It has also been used in supporting IP mo-
bility [28], and as the underlying mechanism for Virtual
IP, a scheme for load balancing and failing over across
server groups [13]. VM migration exploits this existing
mechanism to proactively update the forwarding table
entries in the switches, because the switches learn from
the GARP messages as if it were a regular ARP message.

Chirping functions analogously to GARP, but without
the need to send broadcasts; as shown in Algorithm 8, in-
coming (unicast) chirp packets carry sufficient informa-
tion to update the local ARP table entry for the remote
host.

11.3 Other techniques for reducing ARP
broadcasts

Although not part of SPAIN’s design per se, there are
other techniques that can reduce the ARP broadcast rate
in a data center.

For example, one can increase the ARP-table (cache)
size on server hosts to be large enough to hold the en-
tries for all other hosts in the network. For a 100,000-
node network this requires just a few Megabytes of ad-
ditional memory [13]; this is less than 1% of the 4-32
Gigabytes of memory provisioned in typical data center
machines.

12 Summary and conclusions

Our goal for SPAIN was to provide multipath forward-
ing using inexpensive, COTS Ethernet switches, over ar-
bitrary topologies, and support incremental deployment.
We have demonstrated, both in simulations and in ex-
periments, that SPAIN meets those goals. In particular,
SPAIN improves aggregate goodput over spanning-tree
by 28.5% on a testbed topology that would not support
most other scalable-Ethernet designs.

References
[1] ARP Cache Implementation in Linux Kernel
2.6.28.8. The exact line of source code shown at:

http://lxr.linux.no/linux+v2.6.28.8/
net/ipvé4/arp.c#L184.

[2] ARP Flooding Attack. http://www.trendmicro.
com/vinfo/secadvisories/default6.asp?
VNAME=ARP+Fl%ooding+Attack.

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

(22]

27

Campus network for high availability: Design guide.
Cisco Systems, http://tinyurl.com/d3e6d]j.
Enterprise campus 3.0 architecture: Overview and frame-

work. Cisco Systems, http://tinyurl.com/
4bwr33.

FocalPoint in Large-Scale Clos Switches.
White Paper, Fulcrum Microsystems. http:

//www.fulcrummicro.com/documents/
applications/clos.pdf.

IEEE P802.3ba 40Gb/s and 100Gb/s Ethernet Task
Force. http://www.ieee802.0rg/3/ba/
public/index.html.

IETF TRILL Working Group. http://www.ietf.
org/html.charters/trill-charter.html.
Woven Systems unveils 10G Ethernet switch. Network
World, http://tinyurl.com/ajtrib.

J. Ahn, N. Binkert, A. Davis, M. McLaren, and R. S.
Schreiber. HyperX: Topology, Routing, and Packaging
of Efficient Large-Scale Networks. In Proc. Supercom-
puting, Nov. 2009.

M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable,
commodity data center network architecture. In Proc.
SIGCOMM, pages 63-74, 2008.

M. Arregoces and M. Portolani. Data Center Fundamen-
tals. Cisco Press, 2003.

R. Campbell et al. Open Cirrus Cloud Computing
Testbed: Federated Data Centers for Open Source Sys-
tems and Services Research. In Proc. HotCloud, 2009.
Christian Benvenuti. Understanding Linux Network In-
ternals. O’Rielly Media Inc., Dec. 2005.

C. Clos. A Study of Non-Blocking Switching Networks.
Bell System Technical Journal, 32(2):406—424, 1953.

K. Elmeleegy and A. L. Cox. EtherProxy: Scaling Eth-
ernet By Suppressing Broadcast Traffic. In Proc. INFO-
COM, 2009.

A. Gonsalves. Interop: Broadcom Says 40 Gbps Ethernet
Coming Soon. Information Week, http://tinyurl.
com/cakarl.

A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel. The
Cost of a Cloud: Research Problems in Data Center Net-
works. SIGCOMM CCR, 2009.

A. Greenberg, N. Jain, S. Kandula, C. Kim, P. Labhiri,
D. A. Maltz, P. Patel, and S. Sengupta. VL2: A Scalable
and Flexible Data Center Network. In Proc. SIGCOMM,
Barcelona, 2009.

A. Greenberg, P. Lahiri, D. A. Maltz, P. Patel, and S. Sen-
gupta. Towards a Next Generation Data Center Ar-
chitecture: Scalability and Commoditization. In Proc.
PRESTO, pages 57-62, 2008.

C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian,
Y. Zhang, and S. Lu. BCube: A High Performance,
Server-centric Network Architecture for Modular Data
Centers. In Proc. SIGCOMM, Barcelona, 2009.

C. Guo, H. Wu, K. Tan, L. Shiy, Y. Zhang, and S. Luz.
DCell: A Scalable and Fault-Tolerant Network Structure
for Data Centers. In Proc. SIGCOMM, Aug. 2008.

C. Kim, M. Caesar, and J. Rexford. Floodless in SEAT-
TLE: A Scalable Ethernet Architecture for Large Enter-
prises. In Proc. SIGCOMM, pages 3—14, 2008.

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]
[34]

[35]

[36]

(37]

[38]

[39]

[40]

M. Ko, D. Eisenhauer, and R. Recio. A Case for Con-
vergence Enhanced Ethernet: Requirements and Applica-
tions. In Proc. IEEE ICC, 2008.

K.-S. Lui, W. C. Lee, and K. Nahrstedt. STAR: a transpar-
ent spanning tree bridge protocol with alternate routing.
SIGCOMM CCR, 32(3), 2002.

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner. Open-
Flow: enabling innovation in campus networks. SIG-
COMM CCR, 38(2):69-74, 2008.

A. Myers, T. S. E. Ng, and H. Zhang. Rethinking the
Service Model: Scaling Ethernet to a Million Nodes. In
Proc. HOTNETS-I11, 2004.

R. N. Mysore, A. Pamboris, N. Farrington, N. Huang,
P. Miri, S. Radhakrishnan, V. Subramanya, and A. Vah-
dat. PortLand: A Scalable Fault-Tolerant Layer 2 Data
Center Network Fabric. In Proc. SIGCOMM, 2009.

C. Perkins. IP Mobility Support. RFC 2002 Available at:
http://www.ietf.org/rfc/rfc2002.txt.

R. Perlman. An Algorithm for Distributed Computation
of a Spanning Tree in an Extended LAN. SIGCOMM
CCR, 15(4), 1985.

R. J. Perlman. Rbridges: Transparent Routing. In Proc.
INFOCOM, 2004.

D. C. Plummer. An Ethernet Address Resolution Proto-
col. RFC 826 Available at: http://www.ietf.org/
rfc/rfc826.txt.

T. L. Rodeheffer, C. A. Thekkath, and D. C. Anderson.
SmartBridge: A Scalable Bridge Architecture. In Proc.
SIGCOMM, 2000.

Sam Halabi. Metro Ethernet. Cisco Press, 2003.

M. Scott, A. Moore, and J. Crowcroft. Addressing the
Scalability of Ethernet with MOOSE. In Proc. DC CAVES
Workshop, Sept. 2009.

R. Seifert and J. Edwards. The All-New Switch Book: The
Complete Guide to LAN Switching Technology. Wiley,
2008.

S. Sharma, K. Gopalan, S. Nanda, and T. Chiueh.
Viking: a Multi-spanning-tree Ethernet Architecture for
Metropolitan Area and Cluster Networks. In Proc. IN-
FOCOM, 2004.

N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP
Topologies with Rocketfuel. In Proc. SIGCOMM, 2002.
A. Tavakoli, M. Casado, T. Koponen, and S. Shenker. Ap-
plying NOX to the Datacenter. In Proc. HotNets, 2009.
Tommy, R, Jensen and Bjarne Toft. Graph Coloring
Problems. Wiley InterScience, 1992.

W. Richard Stevens. TCP/IP Illustrated Volume 1: The
Protocols. Addison Wesley, Reading, MA, USA., 1994.

28

