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ABSTRACT
Most enterprise data is distributed in multiple relational
databases with expert-designed schema. Application of single-
table data mining techniques to distributed relational data
not only incurs a computational penalty for converting to a
”flat” form (mega-join), even the human-specified semantic
information present in the relations/schema is lost. Purely
relational classification algorithms on the other hand, do
consider detailed relationships between attributes. How-
ever, these techniques either require computationally inten-
sive transformations or multiple analysis of fused datasets,
which becomes infeasible in practical scenarios. Classifica-
tion being one of the most popular predictive data mining
tasks, we need practical algorithms that can be directly ap-
plied on existing databases.

We present such a practical two-phase classification algo-
rithm for relational databases with a semantic divide and
conquer approach. We propose and prove a recursive, pre-
diction aggregation technique over heterogeneous classifiers
applied on individual tables. Our approach also attempts to
effectively leverage the semantic knowledge of the applica-
tion that is hidden in the database schema using the Join
Graph of an application. To automate the classification pro-
cess, RDF (the core Semantic Web data model) is used for
problem specification. A preliminary evaluation over TPCH
and UCI benchmarks shows reduced training time in au-
tomated practical scenarios, without any loss of prediction
accuracy. In fact, we show improved accuracy due to ap-
plication of heterogeneous classifiers on individual tables by
comparing it to other state-of-art techniques.

Categories and Subject Descriptors
I.5.2 [Pattern Recognition]: Design Methodology; H.2.8
[Database Application]: Miscellaneous

∗This work is based on her work done at IISc.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD ”09 Paris
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Keywords
Relational databases, Classification, Data Mining, RDF

1. INTRODUCTION
Most data in real enterprises exists in multiple relational

databases each with well-designed schema. Use of sepa-
rate database tables to group related data attributes with
foreign-keys capturing semantic relationship between the ta-
bles is a recommended database design approach. Proven
methods of database normalization [23] to minimize redun-
dancy due to repeated attribute values while optimizing
query response times are commonly used. While this is
the scene of real enterprise application data, most classi-
cal classification algorithms assume that all the attributes
are available in a single table, a ŞflatŤ data representation.

Application of single-table data mining techniques to dis-
tributed relational data not only incurs a computational
penalty for converting to a ”flat” form (mega-join), even the
human-specified semantic information present in the rela-
tions/schema is lost. Relational classification algorithms on
the other hand, do consider detailed relationships between
attributes. However, use of inductive logic programming
[18,19,20] or probabilistic relational models [21,26] based
techniques, make these algorithms computationally expen-
sive for complex databases as they need multiple database
scans for repeated selection of best predicates and corre-
sponding cross validation [20]. Further, many of these tech-
niques cannot be directly applied on the relational tables,
as they require propositionalization. We therefore need ac-
curate classification algorithms that can work directly on
relational data distributed across multiple database tables
with well-designed schema.

A simple classifier based on Naive Bayes condition is known
[22] to perform well on real single table data. However, when
applied in a multi-relational setting, its accuracy suffers from
the altered statistical information of individual attributes
(priors for example) during the mega-join[1]. Of course, the
basic assumption in these techniques is that all attributes
in the relational tables are independent, which is rarely the
case in real databases. One of the key benefits of designing
multiple relational tables for an application (using E-R di-
agrams) is grouping of related attributes. A good classifier
should therefore leverage this inherent relationship among
attributes or the hidden semantics in the schema design.

We propose a novel, two-level, classification algorithm for
relational databases that utilizes this hidden application knowl-
edge from the database design. Using our approach, any
classification algorithm can be employed on individual ta-



bles in the first level and these individual posteriors are com-
bined at the second level to get the aggregated predictions.
We propose and prove a recursive prediction-aggregation
technique for combining individual posteriors at this sec-
ond level. We believe that our scalable, heterogeneous clas-
sification algorithm is more suitable for real life applica-
tions since it directly works on existing databases and also
assumes inter-table attribute independence. In fact, our
approach supports use of different classifiers for different
individual tables as well. With this, we show an order
of magnitude improvement in training time on relational
databases (TPCH benchmark) without reducing the classi-
fication accuracy (UCI benchmarks).. For the implementa-
tion of this algorithm, we use the core Semantic Web data
model, RDF (Resource Description Framework) to enable
semi-automatic application of the classification algorithm on
existing relational databases.

The structure of this document is as follows. Section 2 de-
tails earlier work on classification of relational databases and
related techniques. Section 3 states the pragmatic problem
being solved and section 4 describes our proposed solution.
We provide an induction-based proof for our modified Naive
Bayes approach in section 5. Section 6 details the implemen-
tation and results we have on TPCH and UCI benchmarks.
We conclude in section 7.

2. RELATED WORK
Peter Flach and Nicholas Lachiche in [5] provide a simple

tutorial style introduction to Naive Bayesian classification
of structured data. They describe three representations of
structured data: (a) datalog style with data described using
individuals, properties and structural predicates, (b) term-
based representation with tuples and data functors and (c)
relational representation with E-R diagrams. They propose
two algorithms that extend Naive Bayes to handle the first
two types of representations in the language space and indi-
vidual space. Our algorithm handles the second case where
structured data is represented using E-R diagrams for in-
stance.

Cross-Mine [2] works directly on relational databases. It
uses tuple-id propagation to virtually associate tuple-ids of
the target relation to the tuple-ids of the non-target rela-
tion. They use a meta-learner over classifiers on individ-
ual tables which is very time consuming. We later com-
pare our algorithm with theirs to show better performance
of our heterogeneous classifier. Statistical relational learn-
ing models, specifically probabilistic relational models, have
also been used in relational setting by extending Bayesian
networks, but again require lot of operations on the fused
dataset, which we believe is not practical. Other mecha-
nisms for meta learning based on boosting [16], bagging [15]
and stacking [17] require construction of different hypothe-
ses from subsets of learning instances which do not scale on
practical databases. Use of Naive Bayes assumption across
transformational views of relational databases in our solu-
tion, removes the need for any computation on the fused
dataset.

Current approaches that use Naive Bayes approach [4,5]
employ a two step algorithm, wherein the first step ex-
tracts the relevant first-order features or rules using ILP
and the second step computes the final probability using
Naive-Bayes rule using extracted features. Graph-NB [1]
is another modified Naive Bayes algorithm for classifying

relational datasets that works directly on databases. How-
ever, their approach assumes mutual independence of all at-
tributes in the dataset and also requires the probability of
table linkages, which makes it somewhat impractical to ap-
ply on real databases. Further, they do not have any proofs
of correctness or even a practical algorithm or results in
that direction. They use a Semantic Relationship Graph to
represent relationships between tables and propose an algo-
rithm to prune this graph if found complex. This graph is
at a broad level similar to our concept of a Join Graph that
specifies the knowledge about an application. However, they
use the graph only for feature elimination.

There have been many practical approaches to associa-
tive rule mining over relational database systems. A tech-
nique of associative classification [29,30] where association
rules are generated over databases and analyzed for clas-
sification, have been proposed. However such techniques
typically work well for datasets with nominal attributes and
also require analysis on fused dataset.

Multi-view learning techniques have been applied to solve
information extraction [12] and text classification [13] prob-
lems by creating views to represent set of disjoint feature
sets of a specific entity. Hongyu Guo, et al [3] propose use
of multi-view methods and formulate concept learning in
multi-relational databases. While, use of SQL views to cap-
ture the dataset for first level classification is somewhat sim-
ilar to ours, they use additional aggregation based features
(COUNT, SUM, AVG) to summarize properties of a set of
related objects. Our solution based on the proof provided
in section 5 requires only prior probabilities (just COUNT)
on the fused dataset.

More complex algorithms to efficiently classify relational
data have been tried as well. R Alfred, et al [10] use a ge-
netic semi-supervised clustering algorithm to aggregate data
in multiple tables. In [24], Neville and Jensen describe an
iterative classification procedure that exploits specified rela-
tionships in relational data for getting greater classification
accuracy with a simple Bayesian classifier that dynamically
updates the attributes of some objects as high confidence
inferences are made about related objects. Taskar, et al,
present a new approach [11] of using a single probabilistic
model for the entire database that captures interactions be-
tween instances in the domain.

3. THE PRACTICAL PROBLEM
We would like to come up with an efficient and practical

solution for classifying enterprise data in relational databases.
First of all, the algorithm should be scalable in the size of
the database tables as well as the number of such tables.
It should work directly out of existing databases since it
is not feasible (from both time and space perspective) to
transform data even in individual tables to different forms
of representation. It should be able to work without requir-
ing collation or replication of data from all tables. Since
there may be different authorization controls for different
databases tables, the algorithm should be modular with an
ability to execute different parts of the algorithm by differ-
ent users/stages. Further, the algorithm should effectively
leverage the semantic grouping that is implicit in the design
of the RDBMS. Since, it is typical to have related attributes
grouped within tables, no specific assumptions on the inde-
pendence of the attributes or any specific probability dis-
tribution should be made for attributes of a single table.



Figure 1: Example Relational Database

Finally, from a practical usage perspective, the implementa-
tion should require minimum manual intervention to apply
the solution on existing databases.

Consider a sample application containing three database
tables Researcher, Unit, and Journal shown in Figure 1. The
classification under interest is that of predicting the readi-
ness of the researcher for a promotion. Researcher E5 is an
example test case whose status needs to be determined by
the classification algorithm. One approach is to just fuse all
the tables with a mega join and to create the fused Table 4.
Now a conventional classification algorithm can be applied
over this to determine the class label of the test case (row
E5). However, as described earlier, this approach is not fea-
sible in real enterprises due to scalability, time and security
reasons. We therefore need to determine the class label of
researcher E5 directly using multiple database tables which
include relevant data for classification.

In a well designed database, this class label or the at-
tribute of interest (called target attribute) will be just in
one of the tables of the database (here table 1). The dotted
column in tables 2 and 3 shows the propagated class la-
bel during data preparation (described in section 4.1). The

classification problem now is to use these individual tables
with propagated class labels as the training set and derive
the class labels for the test dataset (basically fill the records
with missing attribute value).

4. PROPOSED SOLUTION
We propose a two-phase classification algorithm for re-

lational databases with a semantic divide and conquer ap-
proach. We use a new way of combining probabilistic pre-
dictions from first level classification on individual tables.
The aggregation mechanism is recursive over a graph show-
ing table dependencies (formally defined later) and is in-
ductively derived from Naive Bayes rule as detailed in the
proof (section 5). We believe that the proposed approach is
more realistic for typical enterprise applications than pure
Naive Bayesian approach as it assumes attribute indepen-
dence only across tables, and not among attributes within
individual tables. Further, any stochastic classification algo-
rithm can be independently employed on individual tables
(based on the nature of the attributes within each table)
in our approach, enabling modular heterogeneous classifica-
tion.

Expert database designers typically group sets of related
attributes of an entity into separate database tables. At-
tributes in different tables are usually independent and when
not so, the relationships between the tables are explicitly
specified with the use of foreign keys. While this division is
mainly used to reduce duplicate entries (schema normaliza-
tion) and improve query performance, the relational schema
does give an important hint on the semantics of the database
application. We use this implicit knowledge of attribute de-
pendencies to generate appropriate views of the database
tables for table-level classification in the first phase of our
algorithm.

In the second level of classification, we compute the aggre-
gated likelihood for a particular class by collating the class
priors and posteriors obtained from the different table-level
classifiers. The collated likelihood ratio at every table is just
based on its own records and records from its immediately
related tables (those that can be joined with it directly).
Operations on collated data is completely avoided.

We present further details of the above solution in the rest
of this section.

4.1 Preparing the Data
As mentioned earlier, data used by a typical enterprise

application consists of multiple database tables and in a well
designed database, the class label or the attribute of interest
(called target attribute) will be in one of these tables (called
the target table). So, the first task of data preparation is
to automatically propagate this attribute to the rest of the
tables. In the sample application, the attribute status is
the target attribute and table Researcher is the target table.
The columns containing the propagated attribute for tables
2 and 3 are shown with dotted border in Figure 1.

Since database design hugely impacts the enterprise ap-
plication performance, lot of care is taken at the design of
the database schema itself to group semantically related at-
tributes into one table and explicitly specifying the rela-
tionships across tables (through E-R diagrams). We exploit
this expert knowledge to enhance classification accuracy as
well as its speed. Each table has a primary key, a unique
attribute within the table that can be used as a record iden-
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Figure 2: The Join Graph for the example

tifier. If a table needs to refer to a related attribute, it uses
the primary key of another table as an additional column or
attribute, called as a foreign key. We use the concept of a
Join Graph to represent this semantic dependency between
database tables.

DEFINITION:
¯

A Join Graph is an undirected, labeled
graph (V, E, W), where V is a set of vertices, one vertex per
table in the database, E is a set of labeled edges. An edge
(Vi, Vj) with label < li, lj >∈W exists if Table Vi can be di-
rectly joined with Table Vj using a JOIN clause Ti.li = Tj .lj
. W is a set of attribute label pairs, each of which links two
tables through one of the following

• Primary-key to foreign-key relationship

• Foreign-key to primary-key relationship

• Expert-specified explicit attribute relationship

The Join Graph corresponding to the example tables in Fig-
ure 1 is shown in Figure 2. Join Graph will be the primary
source of information about the semantics of the enterprise
application. It will be used in our solution for both auto-
matic class label propagation as well as directing the differ-
ent phases of our classification algorithm.

We use standard database views in order to propagate
the class labels from target table to the other tables. The
pre-processing phase automatically generates the CREATE
VIEW statements using the information provided in the Join
Graph. For example, we create an extended Unit table using

CREATE VIEW Unit_ext FROM Unit, Researcher

SELECT UNo, rank, size, status

WHERE Researcher.UNo = Unit.UNo

As may be obvious from Figure 1, the extended table con-
sists of all the relevant attributes of the original table and
an additional new attribute with propagated values of the
target attribute. An obvious advantage of using database
views to do the class label propagation is the liveness of the
transformation. If the original databases are updated, the
views also get correspondingly updated by definition. Even
1-to-many and many-to-1 relationships are automatically
handled with appropriately duplicated rows in the views.
This makes it more convenient for practical scenarios. Ad-
ditionally, if there are any authorization restrictions on some
databases, the same authorization will be extended to the
views as well, and the first-level classification on this live
view can be performed by the authorized user.

Real databases may have more complicated Join Graphs
and require a simple breadth-first traversal of the Join Graph

(starting from the target table) to remove edges causing cy-
cles. A topological sort of the nodes of the resultant Jon
Graph will determine a valid order for class label propa-
gation. The class label propagation starts from the target
table and proceeds outwards until either a leaf node (table)
or an already extended table is reached.

To enable further automation of the classification algo-
rithm, we use Resource Description Framework (RDF) to
represent the relationship between the tables and specify
the Join Graph to be used for the application. RDF is the
core data model prescribed by semantic web [27]. RDF gives
a simple way of representing the Join Graph through triples
representing edges, and reification used to associate a label
to the edge. Please note that we only represent metadata
using this model, the dataset as such is not transformed to
tuple form.

Further, as our intension is to use expert knowledge to im-
prove classification accuracy, a database administrator can
give additional directives on the visualized RDF file to in-
clude hidden data semantics to enhance the Join Graph. For
example, ”Employee-Id” in Table E is same as ”EmpId” in
Table F. It can also be used to specify the extent of depen-
dency among the relational tables or data attributes. Such
information enables informed pruning of the Join Graph be-
fore class label propagation. The expert can further use the
inference mechanism supported over RDFS to transfer a di-
rective specified on one table to other similar tables by just
specifying them as subclasses of the former [28]. We be-
lieve this facility would reduce the effort needed to capture
expertŠs knowledge and semantics of the database design.
Another directive that we have used in our implementation
is to specify only a subset of relevant attributes for the classi-
fication tasks. This is described in the context of the TPCH
benchmark in section 6. While RDF does provide some nice
advantages when used to represent the database metadata,
our solution does not really depend upon the use of that
model for correctness or accuracy. Any other means of spec-
ifying the Join Graph for the application can also be used.

4.2 Notations and Assumptions
Below are some symbolic notations we use in the rest of

this section.

• The Dataset, X contains N database tables, Xi, i =
1, ...N

• Ti is a transformed database view of Xi and includes
the (possibly propagated) class label attribute.

• The configuration of a classification application is rep-
resented with a Join Graph, a labeled directed graph.
The vertex set contains, N vertices, each table corre-
sponding to a vertex.

• Hi a classifier for table Ti appropriately chosen based
on the characteristics of the table data.

• Di is the number of dependent database tables of Ti as
per the Join Graph, i.e., Di = {Tj : edge < Ti, Tj >∈
E}

• The target attribute takes K distinct class labels, Ck, k =
1, ...K

• PCk represents the prior probability for class label Ck

over the aggregated/fused dataset. This can be got



by a single SQL query on a mega-view over original
database tables. Alternatively, for cases where such
a query is not feasible, either due to complex inter-
linkages or privacy reasons, one can make an informed
subjective guess based on the application under con-
sideration.

• P i
Ck

represents the class priors obtained from a single
transformed table, Ti.

• P (Ck|Ti) is the posterior probability of class label Ck

just based on the data attributes of Ti got by using
classifier Hi.

4.3 Proposed Algorithm
We now describe the overall algorithm for predicting the

class label of the test records using the transformed tables
got by class label propagation described in section 4.1. Al-
gorithm NBSplit-Train will be used for the training phase
of the database classification and Algorithm NBSplit-Test is
used for classifying the test samples.

4.3.1 Algorithm NBSplit-Train:
Input: Existing database, X = {Xi, i = 1, .., N}

Output: Classifiers Hi ; Class Priors P i
Ck

, PCk

Steps:

1. Read database schema of base tables in X and create
configuration RDF file which the application expert
can edit.

2. Read the modified RDF file and create the Join Graph
< V, E > for the application

3. Tr = Xr, where Xr ∈ V is the vertex corresponding
to the target table

4. Starting at vertex Xr, determine a valid edge order,
E′ ⊆ E with a breadth first search on the Join Graph.

5. For every edge, (Xp, Xq) ∈ E′ with label < lp, lq >:
Create Tq, an extended view of Xq, by joining Tables
Tp and Xq with clause Tp.lp = Xq.lq.

6. Compute priors from fusion table, PCk , k = 1, . . . K

7. Training: For each table view, Ti, i = 1, . . . N

• Compute priors, P i
Ck

, k = 1, . . . K

• Build classifier Hi from the training set Ti

Algorithm NBSplit-Train handles the preparation and train-
ing phase of the classification solution. The database schema
is directly got from reading the meta-data of the database.
As described earlier, we represent the relationship between
the tables and the Join Graph to be used for the application
using RDF. Any other means of specifying the Join Graph
for the application can also be used. In which case, steps 1
and 2 can be appropriately modified.

In step 3 and 4, we determine the right order to propa-
gate class labels using a breadth-first traversal over the Join
Graph. We now have a list of directed edges each containing
a label, which is a pair of attributes (can be set of pairs if
necessary). For the running example, the tuples would be
< UNo, UNo > on one edge and < ENo, Author > on the
other edge. These pairs actually determine the Śjoin clauseŠ
to create the extended view of the destination node detailed

in section 4.1. In the determined order, the class labels are
propagated to get a set of modified tables, Ti, i = 1, . . . N ,
each Ti having the target attribute in addition to the original
attributes of Xi. This is done in step 5.

Step 6 computes the class priors derived from the fusion
table as they are used in the final equation for aggregated
probability. However, as described in section section 4.2, one
could safely assume equal priors or use an informed guess
for simplicity and skip this step completely. Step 7 is the
training step for the first level classification. Any traditional
classification algorithm that can give a confidence measure
along with its prediction can be used for classifying the train-
ing sets. In fact, different classification algorithms can be
used for different tables based on the attribute distribution.
Even simple Naive Bayes classification at the first level can
be used if the attributes within a table though related, are
not correlated with respect to each other. A handle to the
set of classifiers built in this step, H = {Hi, i = 1, ..N} are
returned from this training phase. The class priors obtained
from the transformed tables are also computed through sta-
tistical analysis.

4.3.2 Algorithm NBSplit-Test:
Input: Database X, Classifiers Hi ; Class Priors P i

Ck
,

PCk , E′

Output: Predicted class label L for each test sample.
Steps:

1. Create a test view Qr of the target table, Xr to extract
the required test record

2. For every edge (Xp, Xq) ∈ E′ with label < lp, lq >:
Create Qq, a filtered view of Xq, using a JOIN of Qp

and Xq with join clause Qp.lp = Xq.lq

3. For each test record in table, Qi, i = 1..N
Compute table-level posterior probabilities, P (Ck|Ti)
for each class k = 1..K, using the corresponding earlier
trained classifier, Hi

4. Now traverse the Join Graph in depth first order to
determine a table order for aggregation, V ′.

5. For each node Xj ∈ V ′, recursively compute scaled
posterior using the following product over itself and
its dependent tables, Di

P (Ck|Tj) =
{PCk

∏
i P (Ck|Ti)}∏
i P i

Ck

6. Classify the test sample to belong to class L when the
target table is reached in the recursion. L is given by
the following equation:

L = argmaxk{
PCk

∏
i P (Ck|Ti)∏
i P i

Ck

}

The first step of Algorithm NBSplit-Test is to extract the
required test record into a database view, which is used to
extract the related attribute values of the test example in
step 2. Creation of these new sets of filtered views is re-
quired for two reasons. Firstly, this is an simple way to
handle one-to-many relations that may need to classify the
entities based on multiple relevant records of related tables.
Secondly, from a practical aspect, the traditional table-level
classifiers used on single tables would require the same sub-
set of attributes to be given in the test examples too Ű which
this step provides in a simplistic fashion.



In step 3, we compute the table-level posterior probabili-
ties by invoking the earlier trained classifiers (Hi) for each
table i, described in Algorithm NBSplit-Train. It may be
noted that in cases of one-to-many relationship, where mul-
tiple test examples will be passed on some individual tables
levels, a decision based on maximum votes may be employed.
Alternatively, we could assume independence of these rela-
tionships as well and compute the joint probability based
on all test cases as a product of posteriors on individual
test examples. The final decision is based on the class that
gets the highest computed aggregated posterior probability
at the root of the Join Graph. In particular, for two class
classification, that is
Decide C1 if

{PC1
∏

P (C1|Ti)}∏
P i

C1

≥ {PC2
∏

P (C2|Ti)}∏
P i

C2

5. A SIMPLE PROOF
We now give a simple proof for the following aggregation

equation that is recursively applied in steps 5 and 6 of the
algorithm NBSplit-Test.

L = argmaxk{
PCk

∏
i P (Ck|Ti)∏
i P i

Ck

} (1)

The proof is based on induction over depth of the Join
Graph. For simplicity, we assume binary classification. We
therefore, would like to prove the decision rule
Decide C1 if

{PC1

∏
P (C1|Ti)}∏
P i

C1

≥ {PC2

∏
P (C2|Ti)}∏
P i

C2

(2)

The basis condition is proved by reducing decision condition
(5.2) to Bayes Rule. It can be trivially seen that ,∏

1≤i≤r P i
Ck

= PCk for r = 1 and k = 1, 2

and∏
1≤i≤r P (Ck|Ti) = P (Ck|T ) for r = 1 and k = 1, 2

In effect, condition (5.2) reduces to Bayes condition:
Decide C1 if

{PC1 ∗ P (C1|T )}
PC1

≥ {PC2 ∗ P (C2|T )}
PC2

(3)

The above basis condition and decision rule holds when
depth of the Join Graph is 0. This occurs when the number
of nodes (tables) in the Join Graph (database) is just one or
even at the leaf node of the Join Graph.

Now consider an intermediate node, R in the Join Graph
with a node having r successors (we are looking at a table R
which can potentially join to r other tables) and with a depth
of d. Without loss of generality, figure 2 for our running
example could represent one such intermediate node R (table
Researcher) which is dependent on tables J (journals) and
U (Unit). Our induction is on the depth of the graph. So
by induction hypothesis, the decision rule holds for table
U and J along with their descendants since the depth of
both U and J is less than d. So, there exists a classifier Hu

that can classify a test sample distributed across U and its
descendants based on rule (5.2). This classification will give
the same decision as that given by fusing all attributes of
U and those of its descendants. Similar classifier exists for
table J and its descendants.

For proving the induction rule, we can therefore consider
tables U and J to be flat (fused) tables with all the attributes
of itself and its descendants. We start this part of the proof
by assuming that the attributes of R, U and J are all mutu-
ally independent so that we can apply Naive Bayesian rule
across the further fused tables R, U and J. Let us call this
hypothetical table as X. So, we get

P (X|C1) = P (r1|C1)P (r2|C1) . . . P (rr|C1)

P (u1|C1)P (u2|C1) . . . P (uu|C1)

P (j1|C1)P (j2|C1) . . . P (jj |C1) (4)

We now look at individual tables and apply Naive Bayesian
rule to get the posterior probabilities. Applying the NB rule
to table R, for example gives

P (C1|XR) =
P (XR|C1)P R

C1∑
i P (XR|Ci)P R

Ci

=
P (r1|C1)P (r2|C1) . . . P (rr|C1)P R

C1∑
i P (XR|Ci)P R

Ci

where XR represents the attributes of test sample coming
from R and P R

Ck
represents the prior of class k with just the

attributes of table R.

P (r1|C1)P (r2|C1) . . . P (rr|C1) =

P (C1|XR) ∗
∑

i P (XR|Ci)P
R
Ci

P R
C1

(5)

Similarly, when applied on tables U and J, we

P (u1|C1)P (u2|C1) . . . P (uu|C1) =

P (C1|XU ) ∗
∑

i P (XU |Ci)P
U
Ci

P U
C1

(6)

and

P (j1|C1)P (j2|C1) . . . P (jj |C1) =

P (C1|XJ) ∗
∑

i P (XJ |Ci)P
J
Ci

P J
C1

(7)

Substituting equations (5.5),(5.6),(5.7) in (5.4), we get
likelihood of C1 in integrated data to be

P (X|C1) =
P (C1|XR)

∑
i

(
P (XR|Ci)P

R
Ci

)
P R

C1

P (C1|XU )
∑

i

(
P (XU |Ci)P

U
Ci

)
P U

C1

P (C1|XJ)
∑

i

(
P (XJ |Ci)P

J
Ci

)
P J

C1

P (X|C1) =
P (C1|XR)P (C1|XU )P (C1|XJ)

P R
C1

P U
C1

P J
C1

∗Q

where

Q =
∑

i

(
P (XR|Ci)P

R
Ci

)∑
i

(
P (XU |Ci)P

U
Ci

)
∑

i

(
P (XJ |Ci)P

J
Ci

)



Now the decision rule for binary classification based on in-
tegrated data will be:
Decide C1 if P (C1|X) ≥ P (C2|X)
that is,

P (X|C1)PC1

P (X)
≥ P (X|C2)PC2

P (X)

⇒ P (X|C1)PC1 ≥ P (X|C2)PC2

From the earlier equations, we get
Decide C1 if

P (C1|XR)P (C1|XU )P (C1|XJ)PC1

P R
C1

P U
C1

P J
C1

≥ P (C2|XR)P (C2|XU )P (C2|XJ)PC2

P R
C2

P U
C2

P J
C2

Rewriting the above equation with general terminology,
we get
Decide C1 if

{PC1

∏
P (C1|Ti)}∏
P i

C1

≥ {PC2

∏
P (C2|Ti)}∏
P i

C2

which is same as equation (5.2). Hence, the proof.
Though we initially assumed mutual independence of all

attributes and considered Naive Bayes on individual tables,
since the final decision is just based on the posterior prob-
abilities from the individual tables, any other classifier that
provides a confidence measure of prediction may be used at
the local level. This means that we just need to assume
mutual independence of attributes across two tables, the at-
tributes within each base table may be related. This means
one is not restricted to use Naive Bayes classifier on indi-
vidual tables and can use any other classifier that gives a
confidence measure (probability) with its decision (such lo-
gistic regression) at local level as shown in next section.

6. IMPLEMENTATION AND RESULTS
We now state some preliminary empirical results obtained

after implementing the proposed algorithm for classifying
multi-relational dataset benchmarks. Our implementation is
in Java language and uses the Weka 3.5.7 Machine Learning
package for classification algorithms on individual database
tables. As mentioned earlier, the Join Graph for the databases
is represented using the RDF data model [27]. We use the
Jena Java library to manipulate and query the configuration
file describing the Join Graph. We store the databases on
PostgreSQL 8.2 on Windows XP machine.

We evaluated the classification algorithms on three types
of datasets. Firstly, on a popular DBMS benchmark used
to measure scalability and performance of database applica-
tions (TPCH). Secondly, a well-known single-table dataset
from UCI (Lung Cancer) to prove the correctness of the al-
gorithm and demonstrate the heterogeneity capabilities of
the algorithm. Thirdly, we use a multi-relational dataset
(the financial database from PKDD Cup 99) to compare
with prior relational classification techniques.

Figure 3: TPCH database

Num of records in Nation table : 99
Num of records in Customer table: 99
Num of records in Orders table: 98
Total No. records with relational data: 296
Total No. records in the fused tables: 165000
Number of training samples for NBSplit 296
Num of training samples in fused data 165000
Time for training with fused tables 772 msec
Time for training with relational tables 20 msec

Table 1: Training Time for TPCH dataset

6.1 TPCH benchmark
TPCH is a synthetic database simulating a real life data

source of Customer Relationship Management. We used
the CUSTOMER, ORDERS and NATION database tables
shown in Figure 3. The problem was to predict whether a
given customer was likely to buy an household item or not.
Our aim for using this benchmark was to show the practical
aspect of our solution. Firstly, use of RDF to specify the
subset of data attributes of interest was very useful here.
For example, the ORDERS table originally had 9 attributes
of which we found that only four attributes were meaningful
for the classification. Specifying this subset in RDF helped
in auto generation of the views. In fact, our solution is so
automated that just a change in the input RDF file (see Fig-
ure 4 for a sample) is sufficient to execute the classification
task on a completely new set of database tables (once on
researcher database and next on TPCH, for example).

Secondly, we wanted to experiment with the amount of
overhead one can incur by performing the mega join of all
tables and applying simple Naive Bayes algorithm over the
fused dataset. For this, we chose a smaller TPCH dataset
with just 100 records in each table and computed the train-
ing time of the algorithm for both fused Naive Bayes and our
Split-NB algorithm. We used only Naive Bayes classifier on
individual tables here. Table 1 demonstrates the dramatic
improvement in the training time with the TPCH dataset.
As seen in the number of training samples and the training
time of the dataset, our approach scales over fused dataset
in orders of magnitude.

6.2 Lung-Cancer Dataset
We tested the correctness and accuracy of the classifica-



Figure 4: RDF File used for TPCH

tion results using a standard single-table dataset from UCI.
For this, we artificially loaded the 58 attributes of the Lung
Cancer dataset into 7 tables and executed the proposed al-
gorithm over this distributed data. For simplicity, we as-
sumed a Star schema. We compared the results of classifica-
tion in this scenario with those of the original fused dataset.
The predictions got by both these procedures were exactly
the same when we used Naive Bayes classifier at local level
(since the aggregation is also based on Naive Bayes condi-
tion). This demonstrates the correctness of our algorithm.
We further tested our algorithm with different but common
single-table classifiers, both over the fused data as well as
first-level classifiers in our algorithm. The results are shown
in the Radar graph shown in Figure 5. Though the accu-
racy results heavily depend upon the characteristics of the
dataset and the way we partition it into multiple tables, we
believe this exercise proves the effectiveness of our collation
algorithm for diverse table-level classifiers.

6.3 Financial Database
Lastly, we tested our solution on the financial database

from PKDD CUP 99, shown in Figure 6. Here, we tried
multiple common classifiers on individual tables and chose
the best classifier for every table. This chosen best classifier
per table was then used to create a heterogeneous classifier
which performed very well (only first level dependencies were
considered). We chose a voting scheme to handle the 1-many
relationships resulting in a single prediction for every loan-
id.

We then compared our results with that of Cross Mine [2]
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Figure 5: Accuracy for different 1-table classifiers

Figure 6: Financial Database

multi-relational classifier based on meta learners, we found
that our technique performs much better. We also found
that elimination of non-contributing tables results in much
better results as well - proving the benefit of using hidden se-
mantics of schema design (relevant feature sets are selected
automatically). Consistently across multiple classifiers, the
Transaction table was causing negative effects on the classi-
fication accuracy. Similarly, inclusion of Account and Order
tables increased the accuracy results, as opposed to using
just Loan table, showing the need for including other re-
lated tables for accurate prediction. Results are shown in
Table 2.

7. CONCLUSIONS
We proposed a scalable, two-phase classification algorithm

for classifying relational data. Our main premise is that
since most databases are well designed by experts, a lot of
semantics is already implicit in the database schema. Us-



Accuracy from Cross Mine Algorithm 85
Best accuracy from just Target Table (Loan) 77.5
NB-Split with Multi-layerPerceptron on all tables 92.5
NB-Split with Multi-layer Perceptron without trans 95
NB-Split with LibSVM on all 100
NB-Split with Heterogeneous Classifiers with all 90
NB-Split with Hetero Classifiers without trans 95

Table 2: Classification Accuracy for Financial DB

ing this semantic information, we proposed a new recur-
sive aggregation technique to collate heterogeneous classi-
fiers applied at individual tables. We have demonstrated
obvious improvement in classification training time for stan-
dard DBMS benchmark, TPCH. We proved that there is no
loss of accuracy due to our recursive aggregation and also
showed the benefits of our approach over prior efforts. As
shown, this procedure works even when different classifiers
are used on different tables at the first level.

We would like to extend this technique to include selection
of the right classifier at the table level, which is manual for
now. The generated Join Graph can be further pruned to im-
prove the classification time, by eliminating tables that may
not really contribute much to the overall classification task.
For this, we plan to associate an entropy metric with individ-
ual database tables and select the right subgraph from the
Join Graph that minimizes the information loss. We would
also like to explore other ways of utilizing the additional
hidden semantics in the data.

Our intension is to make classification of databases a real-
ity. We have therefore used existing database features such
as SQL views, meta-data from the database schema, gener-
ation of test data and use of expert-editable RDF file. Use
of RDF file for storing the configuration of the application
really helps in automating the classification task. Going for-
ward, we would like to test this algorithm on real enterprise
databases with complex relationships. In particular the do-
main of predicting the health of a server based on multiple
IT parameters [30] is one useful application we are address-
ing .
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