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Abstract

In this paper, we present a unified approach for the problem of learning
color transforms, applications of which include shadow removal, object
recoloring, and scene relighting. The detection of source and target regions
is performed using a Bayesian classifier. Given these regions, the learned
transform alters the color properties of the target region so as to closely
resemble those of the source region. The proposed probabilistic formulation
leads to a linear program (similar to the classic Transportation Problem),
which computes the desired transformation between the target and source
distributions. This formulation allows the target region to acquire the
properties of the source region, while at the same time retaining its own
look and feel. Promising results are shown for a variety of applications.

1 Introduction

Recent years have witnessed great advances in digital photography, and with
them the increasing accessibility of various image editing and manipulation
tools. However, most of these tools, such as Photoshop, still require a skilled op-
erator and are far from being automatic. In this paper, we propose a technique
for learning a color transform between two objects within an image, or between
two images. In our approach, source and target regions are specified, either au-
tomatically or semi-automatically, and the color properties of the target region
are transformed so as to closely resemble those of the source region. We develop
a unified scheme for these tasks based on the computation of a flow between
target and source distributions. The algorithm is quite effective, and we show
results on three applications: shadow removal, recoloring, and relighting.

Before delving more deeply into details, we begin with a short review of prior
work.

1.1 Prior Work

Many shadow detection and removal methods are based on the intrinsic image
separation approach, wherein a single image is decomposed into its reflectance
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and illumination components (e.g., [Wei01, TFA05]). In the algorithms employ-
ing the retinex theory [LM71], this separation is based solely on the assumption
that large and sharp changes in lightness stem from the reflectance change,
while small and slowly changing gradients are mainly due to the illumination
changes. For example, in [ODC] the authors use the bilateral filter to separate
small features, such as textures, from large features, such as strong edges. The
approach requires various user inputs including the typical texture size.

In a different direction, a series of papers by Finlayson et al. ([FHD02,
FHLD06], and references therein) exploits an approach based on a physical
model, including Planckian light and Lambertian reflectance. The authors make
the following simplifying assumptions: (i) the illumination is constant in the
shadows region, (ii) the shadows have sharp edges, and (iii) the reflectance does
not change across the shadow boundaries. These assumptions are valid only in
very specific settings.

Another set of techniques is based on the matting approach, where an ob-
served image is modeled as a linear combination of fully lit and fully shadowed
counterparts [CGC+03]. Further development of the matting approach is pre-
sented in [SL08], where the authors propose a shadow formation model in which
the lit intensity at a given pixel is an affine function of the shadowed intensity.
The illuminated pixel color is recovered by estimating four parameters of the
affine model, based only on the mean colors of the pixels in the lit and shadowed
regions, and on standard deviations of their corresponding luminances.

Recoloring methods have developed separately from those dealing with shadow
removal. Many recoloring papers focus on the problem of transferring color to
gray scale images, and vice versa (e.g., [WAM02]). In [XMK06], the authors pro-
pose a recoloring method that is based on alpha matting and compositing, and
a color transformation algorithm. The transformation function is postulated
to be single-valued and monotonically increasing in the destination pixel inten-
sity domain. The authors estimate the cumulative distribution function (cdf)
of the destination region in an image as simply a scaled version of the cdf of
the source region. Finally, the compositing operation is implemented using the
alpha matte equation. In [LLW04], the authors propose a natural colorization
approach which is based on the assumption that pixels having similar intensities
should have similar color. In this paper, the input image (or sequence) is gray
scale and the output image is a colored image. In [GH03], the authors present
a method for recoloring a destination image according to the color scheme from
the source image. The image is first segmented into groups of pixels with sim-
ilar color; then, the color palette for an image is constructed by choosing most
typical colors from the above segments. Color transfer is computed by matching
the segment areas between the source and destination segments, and finding the
closest Euclidean distance match between pairs of colors from the source and
destination segments. In [RAGS01], the authors apply a linear transformation
that scales the mean and the variance of the target area according to the ones
from the source area. In [TJT05], the authors use the approach in [RAGS01]
along with a simple segmentation technique to perform recoloring operations.

Somewhat related work in [PGB03] describes a generic interpolation machin-
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ery based on solving Poisson equations. This approach belongs to the gradient
domain methods. The authors present various editing applications such as ob-
ject importation from one region (or an image) to another, seamless cloning of
textures, and others.

1.2 Paper Outline

The remainder of this paper is organized as follows. In Section 2, we outline the
problem of learning color transforms, and divide the problem into two stages:
detection and learning of the color transform. In Section 3, we propose algo-
rithms for both detection and learning of the color transform, with most of the
focus on the latter. In Section 4, we present results of applying the algorithm
to the problems of shadow removal, object recoloring, and relighting. Section 5
concludes.

2 The Problem

The problem we are interested is transfer of color properties from one object in
an image to another. More specifically, given some knowledge of the source and
target properties, we wish to accomplish two tasks:

1. Detection: Find the regions of the image which correspond to the source
and target properties. These regions constitute the source and target
objects, respectively.

2. Photometric Transform: Transform the color properties of the target
object to resemble those of the source object, in perceptually meaningful
way.

While we are interested in both detection and the color transform, the bulk of
our exposition will focus on the latter.

Before posing the problem in a more formal fashion, we discuss two applica-
tions of this framework. The first is shadow removal. In this problem, both the
source and the target come derive from the same material or object; however,
the source is lit, while the target is in shadow. The second application is object
recoloring. Here, the goal is to simply take a given object, and to transfer its
colors to a second object. Often the two objects are of the same type (such
as two cars), but this need not be the case. Both shadow removal and object
recoloring are desirable operations for many computer graphics applications, as
well as in the context of Photoshop-type software.

Let us now turn to a more formal statement of the problem. Let color
be denoted by the vector c ∈ C = Rd. The color c could be represented in
Lab space, RGB space, or any of many other possibilities. (In principle, the
techniques presented in this paper could also be applied to learning texture
transforms, where texture is represented, for example, as the output of a filter
bank.) Let the image domain be X ⊂ R2, so that an image is given by c : X → C.
Then our two goals may be restated as follows:
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1. Detection: Find two subsets of the image domain X , the source region
S and the target region T , with S ∩ T = ∅.

2. Photometric Transform: For each pixel x ∈ T , compute a mapping
c(x) → Φ(c(x)) such that the collection {Φ(c(x)) : x ∈ T } is in some
perceptual sense similar to the collection {c(x) : x ∈ S}.

3 The Algorithm

In this section, we present the algorithm for learning color transforms. Al-
though logic would dictate that we begin our exposition with the detection of
the source and target regions, we begin instead with a discussion of the color
transform algorithm, which allows the detected target region to be transformed
into something resembling the detected source region. This is done in order to
emphasize the color transform algorithm, which is the main contribution of the
paper. The basis for the algorithm is a version of the Transportation Problem
[Hit41, Rac85], which can be posed as a linear program; this optimization, com-
bined with an appropriate interpolation scheme, yields an effective technique for
computing color transforms. We then move on to a discussion of the Detection
Algorithm, including an examination of the form of user-input required.

3.1 The Color Transform

We begin with the main algorithmic contribution of this paper: the transfor-
mation of the color properties of the target region so that they closely resemble
those of the source region. To repeat our earlier formulation of this problem:
for each pixel x ∈ T , we wish to compute a mapping c(x) → Φ(c(x)) such
that the collection {Φ(c(x)) : x ∈ T } is in some sense similar to the collection
{c(x) : x ∈ S}. This is not a straightforward problem, as the two collections
may be quite different. For example, probability distributions over the source
and target pixels (i.e. over their colors) may have different numbers of modes,
different shapes, and so on.

Our solution to this problem is to use the classic Transportation Problem to
compute the transformation between the two distributions. In the Transporta-
tion Problem [Hit41, Rac85], the goal is to match supplies of certain quantities
with demands for these quantities, bearing in mind the absolute amounts of
both supplies and demands. This is computed via a flow between supplied
quantities and those demanded. In what follows, we make the analogy between
supplied quantities with the target region, and demanded quantities with the
source region. The flow thus computed by the solution to the Transportation
Problem is exactly what we are after: it allows us to transform target pixels
into source-like pixels.

Before turning to a more formal statement of the problem, it is of interest
to note that the Transportation Problem has been used in computer vision
applications before, most notably for the computation of the Earth Mover’s
Distance (EMD) [RTG00]. Indeed, a by-product of the EMD computation is
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the flow that will be useful to us; however, it is just that, a by-product, whose
use is to compute the EMD metric, and is not employed for any other purpose.
Note also that a few works have used somewhat related ideas [HZTA04], albeit
in the continuous setting and for different applications, such as registration.

Let us begin by fixing notation. The labels for source and target objects will
be s and t respectively, and when speaking of an object defined for both, we will
use α ∈ {s, t}. We are given source and target probability distributions, which
are learned as part of the Detection Algorithm (see Section 3.2). As usual, there
are a variety of ways of representing distributions; we have chosen to use simple
histograms, as more sophisticated techniques provide little or no improvement
to the algorithm at the cost of increased complexity.1 We represent the source
and target distributions compactly as a list of histogram bins with non-zero
probability, i.e. {(c̄αi , p̄αi )}nαi=1, where c̄αi is a bin-center, p̄αi is the corresponding
probability mass for that bin, and nα is the number of such bins. Finally, for a
given color c, let [c]α be the bin in which it resides (where again α ∈ {s, t}).

Given the above notation, we can now turn to the problem of learning the
color transform, for which we use the Transportation Problem. Recall that
the Transportation Problem is formulated as follows[Hit41, Rac85]: let the flow
between the target and source distributions be given by fij , where the indices
i and j range over the (non-empty) bins of the target and source distributions,
respectively. That is, fij can be thought of as the part of target bin i which
is mapped to source bin j. Now, let the color distance between two colors2 be
given by D(c1, c2). As we shall see in the sequel, while this distance is sometimes
taken as the ordinary Euclidean distance, there are times when other choices
are more appropriate. In any case, taking the color distance as given for the
moment, we would like to solve the following optimization:

min
{fij}

nt∑
i=1

ns∑
j=1

fijD(c̄ti, c̄
s
j)

subject to
ns∑
j=1

fij = p̄ti i = 1, . . . , nt

nt∑
i=1

fij = p̄sj j = 1, . . . , ns

The goal of the objective function is to map the target colors c̄ti to corre-
sponding source colors c̄sj in such a way that the color distance between them
is as small as possible. However, we cannot reasonably expect that each bin of
the target distribution maps neatly to exactly one bin of the source distribu-
tion. Thus, we allow target bins to be spread over several source bins, subject

1This is partially due to the fact that the distributions tend to be relatively sparse. In cases
in which the distributions are somewhat more dense, it may be advantageous to represent
the distributions with a pared down version of the Kernel Density Estimate, for example
representing each KDE by its modes.

2In the work on the Earth Mover’s Distance, D is generally called the ground distance.
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to the two constraints of the original Transportation Problem, which ensure
“conservation of probability” for both the target and source distributions.

In fact, in our case requiring conservation of probability is too extreme3 as
it assumes that the source and target regions contain exactly the same amounts
of “comparable colors.” As a result, we modify the optimization as follows:

min
{fij}

nt∑
i=1

ns∑
j=1

fijD(c̄ti, c̄
s
j)

subject to p̄ti/η ≤
ns∑
j=1

fij ≤ ηp̄ti i = 1, . . . , nt

p̄sj/η ≤
nt∑
i=1

fij ≤ ηp̄sj j = 1, . . . , ns∑
i,j

fij = 1

where the final constraint, which was enforced implicitly in the original Trans-
portation Problem, is now made explicit. η ≥ 1 is a parameter which describes
the slackness of the conservation constraints; typically, we choose η ≈ 3.

Now, given the solution to the modified Transportation Problem, the prob-
lem of learning the color transform is effectively solved. In particular, if we
were interested only in mapping the bin centers c̄ti, we have the following color
transform rule:

c̄ti →
∑ns
j=1 fij c̄

s
j∑ns

j=1 fij
≡ Φ(c̄ti) (1)

That is, we use the flow to average over the source bin centers in the natural way,
and then normalize. Notice that

∑
j fij ≤ ηp̄ti � 1, so that the normalization

is crucial.
Note that the color transform Φ is defined only for the bin-centers c̄ti; how-

ever, we wish to transform not just the bin centers of the target distribution,
but all of the pixels in the target region T . To achieve this, the simplest option
is to map a pixel c(x) in T to its corresponding bin [c(x)]t, and then to use the
transformation rule in Equation (1) on the binned value. Predictably, however,
this leads to binning artifacts; two colors which are quite close may in fact lie
in different bins, and therefore be mapped to quite different values. Instead, we
use the transformation rule given in Equation (1) in combination with a simple
interpolation scheme.

To wit, consider a pixel in T with color c (we drop the argument x to simplify
notation), with histogram bin [c]t. Now, given a bin i in the target distribution,

3For example, suppose that the source image is 50% light red and 50% dark red, and the
target image is 40% light blue and 60% dark blue; assume further that the light colors have
matching L values, as do the dark values, and that our color distance is simply the absolute
value of the difference in L. Then the full conservation of probability will require coloring
part (10%) of the dark blue section of the target image in light red, which is obviously not
desirable.
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then let Ni be the union of the bin itself, as well as the neighboring (non-empty)
bins within the histogram; for example, if the histogram is 2-dimensional, and
we use a standard 4-neighborhood, then Ni would contain at most 5 elements.
(In general, for a d-dimensional histogram, we use a 2d-neighborhood, so that
Ni contains at most 2d+ 1 elements.) For each bin i in the neighborhood of c,
i.e. in N[c]t , we compute a weight based on the distance D(c, c̄ti) between c and
the center of bin i, c̄ti. In particular, the weights are given by

wi(c) =
ξ(D(c, c̄ti))∑

j∈N[c]t
ξ(D(c, c̄tj))

where ξ satisfies ξ′(·) < 0 and ξ(0) = ∞; the latter property ensures that the
scheme is truly interpolatory, rather than an approximation scheme. We choose
ξ(d) = d−1, though other choices are possible. In this case, the final color
transform rule is given by

Φ(c) =
∑

i∈N[c]t

wi(c)Φ(c̄ti) (2)

3.2 Detection

In order to detect the source and target regions, we must have some prior
knowledge of both the source and target images. To begin with, let us assume
that we have probability densities over c for both the source and target, i.e.
ρs(c) = ρ(c|s) and ρt(c) = ρ(c|t). Let us further assume a uniform distribution
over the regions that are neither source nor target, i.e. ρn(c) = ρ(c|n) = θ,
where θ is a constant chosen so that ρn(c) integrates to 1. Now, the standard
Bayesian classifier will classify a value of c as belonging to the source if

ρ(s|c) > max{ρ(t|c), ρ(n|c)}

(Note that if there is equality, we are on the boundary of at least two classes.)
Now, from Bayes’ Rule we have that ρ(s|c) = ρ(c|s)P (s)/ρ(c), where P (s)

is the probability that a given pixel belongs to the source. Assuming, in the
absence of other knowledge, that P (s) = P (t) = P and P (n) = 1 − 2P , then
the Bayesian classifier becomes:

• Choose x ∈ S if ρs(c(x)) > max{ρt(c(x)), θ′}.

• Choose x ∈ T if ρt(c(x)) > max{ρs(c(x)), θ′}.

• Choose x as neither source nor target in all other cases.

where θ′ = (1− 2P )θ/P . It is clear, therefore, that given the source and target
densities ρs(c) and ρt(c), we have a simple classifier that depends only on the
choice of the single parameter θ′.

The next question, then, concerns the origin of the source and target den-
sities. In certain applications, it is possible that these densities are known a
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priori ; for example, one might use any of a number of schemes to learn the
color density of blue skies, grass, or skin (e.g., [WH00]). However, assuming
that this is not the case, we use two variants of a semi-automatic scheme. In
the simpler variant, used for recoloring or for shadow removal, the user simply
chooses two rectangles, one which surrounds source pixels and the other tar-
get pixels. Based on these rectangles, we then compute histograms for each
of the source and target in the relevant space – in our case, Lab color. (For
an explanation as to why histograms are used instead of more sophisticated
density estimates, please see Section 3.1.) Note that the histogram bin size in
some sense determines the extent to which we extrapolate from the information
conveyed by the pixels within the user-chosen rectangles.

The second variant of the semi-automatic scheme is more complex, and may
be used for shadow removal. In this case, the user chooses a single rectangle,
which encompasses both lit and shadowed pixels. The pixels, which are repre-
sented in Lab space, are then divided by performing a k-means clustering, with
k = 2, on the L-channel. Then, corresponding source and target distributions
are easily computed. This heuristic works very well in practice.

4 Applications

Figure 1: Recoloring example, wherein the source and target seeds are taken
from the same picture. Left: the original. Middle: the binary detection map
for the target region. Right: the recolored image.

As has already been noted, the framework that has been developed thus
far is a general one. In what follows, we show results from the application of
this framework to the specific problems of image recoloring and relighting, and
shadow removal.

4.1 Recoloring and Relighting

For the problem of recoloring or relighting, we seek a mapping from target to
source which aims to impose the color of the source upon the target. In order to
achieve this goal, we use Lab color, and define the color distance as the regular
L2 distance in Lab space:

D2((L1, a1, b1), (L2, a2, b2)) = (L1 − L2)2 + (a1 − a2)2 + (b1 − b2)2
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As noted in Section 3.2, we use the more straightforward form of user interaction
here, in which the user selects two small rectangles, one each from the source
and target regions.

Figure 1 shows an example of recoloring experiment wherein both the source
and target seeds are taken from the same picture. In this case our task was to
paint the left car that was originally red using the blue color of the right car.
Note that while the colors have been changed to match that of the right car,
the shading and highlights of the left car have been preserved, as in the original
image; see Figure 2. Figure 3 shows a relighting example wherein the source
and target seeds are taken from two different pictures. In particular, we wanted
to “embed” the blue sky from the left picture into the middle picture with gray
sky. The result is depicted in the right image. Here again, we preserved the sky
texture from the original lightness channel. Notice that in the above examples
our method yields a natural look and feel in the reconstructed images.

Figure 2: Detail from the recoloring example in Figure 1. Note the way in which
the shading and highlights are preserved.

Figure 3: Relighting example, wherein the source seed region comes from the
left image, and the target seed region is taken from the original (in the middle).
Right: the relit image.

4.2 Shadow Removal

For the problem of shadow removal, we seek a mapping from target (shadowed
pixels) to source (lit pixels) which aims to retain the chroma characteristics of
the target pixels, while at the same time inserting the lightness characteristics
of the source pixels. In order to achieve this goal, we use Lab color, and define
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the color distance as

D2((L1, a1, b1), (L2, a2, b2)) = (a1 − a2)2 + (b1 − b2)2

That is, the color distance depends only on chroma, and not on lightness. Recall
that the color distance is used only in computing the flow f , i.e. in matching
target pixels with source pixels; the transformation rule Φ itself (see Equation
(2)) operates on the target pixels, and hence inserts the desired lightness. As
noted in Section 3.2, we use the smarter form of user interaction here, in which
the user selects a single small rectangle which overlaps the shadowed and lit
regions; see Figure 4.

Figure 4: Shadow removal examples. Left column: the original images. Middle
column: the detection maps. Right column: reconstructed images with shadows
removed using the proposed approach.

Figure 4 depicts two examples of shadow removal. The left column shows
the original images. The middle column shows the detection maps. Here, white
areas correspond to the lit areas detected according to the source seed, while
gray areas correspond to the shadowed areas detected according to the target
seed. The color code in the detection map is as follows: the closer the color is to
white, the closer the pixel (from the color distance viewpoint) is to the source
cluster. The black areas do not belong to either the source or the target clusters,
and are therefore left unchanged in the reconstructed image. The right column
shows reconstructed images with shadows removed using the proposed approach.
Notice how the ’look and feel’ from the lit areas is accurately reproduced in the
shadowed areas.

Figure 5 depicts the source and target seed region clouds of points in Lab
space, from the grass shadow example (the upper left in Figure 4). Notice that
the location of the point clouds suggests that in order to preserve a natural look
in the reconstructed image, the color transform needs to adjust both lightness
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and chroma values in some non-trivial way. In areas with homogeneous color
the linear approach might be sufficient. However, in areas with large color
variations, simple approaches fail. To further prove this point, we compare
our method with the linear transformation method of [RAGS01], and with a
more sophisticated pyramid based method of [SL08]. The results are presented
in Figure 6. The images from left to right are: (1) the original; (2) a linear
transformation that scales the mean and the variance of the shadowed area
according to the ones from the lit area (as in [RAGS01]); (3) a pyramid-based
approach from [SL08]; (4) the proposed approach. Note that, although there
are artifacts at the boundary of the shadowed areas as a result of misdetection
(these are treated in [SL08] by a separate algorithm), our method yields the
most natural looking image.

Figure 5: The source and target seed region clouds of points in Lab space, taken
from the left picture in Figure 4. Blue dots correspond to the target, red dots
correspond to the source.

Figure 6: Comparison of the proposed method with competing approaches.
From left to right: (1) the original; (2) the linear transformation from [RAGS01];
(3) the pyramid method from [SL08]; (4) the proposed approach.

5 Conclusions and Future Directions

We have presented a novel approach for the problem of learning color trans-
forms. Given source and target regions, the proposed approach uses a modified
Transportation Problem formulation to learn the color properties of the source
region. Then, the color properties of the target region are transformed so as
to closely resemble those of the source region. The usefulness of the approach
is evidenced by promising results on several applications: object recoloring,
relighting, and shadow removal.
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Future work will concentrate on improving the detection stage, to move
toward a fully-automated technique. In addition, we will investigate the use of
the technique on more complex photometric feature spaces, by complementing
color with additional dimensions corresponding to a texture descriptor.
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