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1 A New Tool for Changing Times

This paper argues thatDiscrete Control Theory(DCT)
provides a useful formal foundation for failure avoidance
and diagnosis in a wide variety of computing systems.
Our experience applying DCT to several difficult sys-
tems problems during the past three years convinces us
that this powerful, general, mature, and rigorous body of
theory belongs in the standard dependability toolbox. It
is particularly valuable in new contexts thrust upon us by
recent technology trends, including sensor networks and
the multicore revolution.

So why have you (probably) never heard of it? DCT is
a relatively recent development, dating back to seminal
work in the late 1980s [13]. The DCT research commu-
nity is relatively small, publishes in control theory jour-
nals, and gravitates toward manufacturing and industrial
control applications. Computer scientists and DCT spe-
cialists seldom seek each other out, even when they work
in the same buildings. When the two tribes meet they
speak different dialects, even when discussing the same
problem. Our own work began as an accidental collision
of chocolate with peanut butter: One of us (Wang), an
intern on a project with no specific DCT mandate, re-
peatedly insisted to his mentor (Kelly), “there’s a better
way to do it!”

At a high level, DCT resembles classical control:
Starting with a model of the “plant” to be controlled and
a specification of behaviors to be avoided, DCT automat-
ically synthesizes a controller such that the closed-loop
system (plant + controller) cannot misbehave. Whereas
classical control considers continuous state spaces and
differential-equation dynamics, DCT addresses discrete
state spaces and event-driven dynamics; it is therefore
well suited to enforcingqualitative control objectives
such as failure avoidance. DCT also includesdiagnos-
tic techniques that infer unobservable events from indi-
rect evidence, and DCT can explicitly accommodate fail-
ures in the runtime controller’s sensors and actuators. Fi-
nally, core DCT techniques admitdistributedgeneraliza-
tions that allow federations of local modules to achieve
the same objectives as a centralized controller/diagnoser
with minimal communication.

DCT has many attractions for CS dependability re-
searchers. It is not an abstruse technology accessible

only to an elite priesthood. Its foundations involve for-
mal languages, automata, and other elements familiar to
CS undergrads; useful control synthesizer implementa-
tions can be compact, elegant, and intelligible to new-
comers. Like parser generators, DCT operates upon
declarative specifications that raise the level of abstrac-
tion and can dramatically simplify what had been the
hard part of a problem. Like compiler optimizations,
DCT can admit friendly interfaces that expose benefits
to users without imposing burdens on them. By au-
tomatically compiling high-level policies into low-level
imperatives, DCT can improve dependability by work-
ing across system layers while preserving layer bound-
aries. DCT shifts most of the computational burden of
online diagnosis and control to offline pre-computations,
thereby dramatically reducing the runtime overhead of
analysis and decision-making.

We believe that the time has come for the systems
dependability community to include DCT in its toolkit.
Two seemingly unrelated technology trends, the rise of
multicore processors and of sensor networks, strengthen
our conviction because both contexts are prone to fail-
ures that DCT can alleviate. Multicore hardware requires
parallel software for performance, and thus imposes the
notorious pitfalls of concurrent programming upon vast
numbers of ill-prepared developers. Sensor networks
combine two of the most formidable programming chal-
lenges, distributed computing and severe resource con-
straints. We will demonstrate that DCT can solve thorny
problems in the former context and holds great promise
for the latter.

We begin by reviewing the concepts and capabilities
of DCT in Section 2. Section 3 then describes our ex-
periences applying DCT to dynamic failure avoidance
in two very different concurrent programming environ-
ments. We consider DCT-based diagnosis in sensor net-
works in Section 4 and conclude in Section 5.

2 Discrete Control Theory

DCT has matured rapidly in the two decades since its
inception. Comprehensive graduate-level texts summa-
rize the most important results [1]. This section briefly
reviews two categories of DCT techniques most relevant
to systems dependability:controlmethods that can avoid



failures, anddiagnosticmethods that can infer failures
(and other events of interest) from indirect evidence.

DCT control methods require two inputs: a system
model and a behavioral specification. The two most pop-
ular DCT modeling formalisms are finite automata and
Petri nets [11]. The former are fully general in terms
of both their expressiveness and the control objectives
that DCT can achieve, but can be excessively large for
systems of interest. Petri nets can be more structured
and therefore more compact than finite automata, but ef-
ficient DCT algorithms that operate directly upon Petri
nets without explicitly enumerating their state spaces
achieve less general control objectives. Models may des-
ignate state transitions as controllable or uncontrollable,
and also as observable or unobservable at runtime. Be-
havioral specifications for finite automata models simply
consist of states to be avoided. Specifications for Petri
net models are typically linear-arithmetic constraints on
their markings (states).

Modeling and behavioral specification need not be a
burden on users. In our concurrent programming work,
for example, we extract models automatically from pro-
gram source code. In cases where automatic model-
ing is not possible, models simply formalize the human
designer’s understanding of system dynamics. Behav-
ioral specifications can often be expressed as straightfor-
ward predicates on states. For the deadlock avoidance
problems in our research, users need not supply an ex-
plicit specification; deadlock states are identified auto-
matically.

DCT control synthesis outputsaugmentedversions of
the system model inputs. For automata models, the aug-
mented output is a labeling ofunsafestates in the origi-
nal model. To enter such a state is to tempt fate, because
a worst-case sequence of uncontrollable state transitions
could lead either to failure or to a state from which suc-
cessful termination is unreachable. Control logic boils
down to disabling controllable transitions into unsafe
states. For Petri net models, the output is a larger Petri
net to which control logic elements have been added. The
dynamics of the new Petri net are such that states violat-
ing the behavioral specification are no longer reachable.
Control synthesis fails with an error message if is im-
possible to control the given system to enforce the given
behavioral specification; this can occur due to uncontrol-
lable or unobservable state transitions. Implementations
of DCT control logic synthesis can be remarkably simple
and elegant. For automata models, control synthesis can
involve repeated application of graph search algorithms;
for Petri net models, control synthesis can involve ele-
mentary linear algebra.

Online control enforces the control policy computed
during control synthesis: For automata models, online
control simply refrains from entering unsafe states of

the augmented automaton. For Petri net models, control
constrains execution to conform to the augmented model
generated by control synthesis. In both cases, the stan-
dard observation-action paradigm of feedback control is
at work. DCT control synthesis for both automata and
Petri net models can achieve the important property of
maximal permissiveness, which means that runtime con-
trol intervenes only when provably necessary to prevent
failure in a worst-case future execution.

Diagnostic techniques in DCT allow the runtime in-
ference of unobservable events from indirect evidence.
These techniques can be used to identify failures or any
other phenomena of interest that cannot be directly ob-
served but that have observable consequences. DCT can
explicitly accommodate the possibility of sensor and/or
actuator failure by including these possibilities in the sys-
tem model; transitions to sensor/actuator failure states
would typically be modeled as both uncontrollable and
unobservable events. Diagnostic techniques can infer
such failures using properly synthesized diagnoser au-
tomata or Petri nets, and DCT control synthesis can gen-
erate control logic that continues to ensure correct exe-
cution even in their presence.

So far we have discussed centralized DCT techniques,
which assume that runtime control logic is unified in the
sense that it observes all observable transitions and con-
trols all controllable transitions. Distributed generaliza-
tions of core DCT techniques address situations where
control and/or diagnostic logic must be distributed across
modules with access to different subsets of observable
and controllable transitions. The modules may commu-
nicate with one another, and could trivially emulate a
centralized solution. DCT, however, allows us to min-
imize inter-module communication subject to the con-
straint that the ensemble of local modules must collec-
tively achieve the stated control or diagnostic goals as
effectively as a centralized controller/diagnoser would.

In summary, DCT techniques have many attractive
properties for systems dependability problems. Behav-
ioral specifications are declarative, allowing the system
designer to saywhat she wants rather thanhow to get
it. Computationally burdensome control logic synthesis
occurs offline, and online control logic is lean and fast.
DCT control logic synthesizers can be remarkably sim-
ple and elegant. The final closed-loop system obtained
by applying DCT to an uncontrolled system is guaran-
teed to be correct by construction; no separate verifica-
tion phase is needed.

3 Concurrent Programs: Avoiding Failure

Concurrency bugs have killed people [9], and they
threaten widespread mayhem as multicore hardware
compels ill-prepared developers to parallelize an ever
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wider range of software in pursuit of performance [16].
We have applied DCT to dynamic failure avoidance
in two very different concurrent programming environ-
ments. Our experiences highlight both the versatility of
DCT techniques and tradeoffs between their breadth of
applicability and benefits. This section summarizes our
work in this area; details are available in [17–20].

IT Automation Workflowprogramming languages—
restricted high-level scripting languages that emphasize
control flow rather than data manipulation and that sup-
port concurrency across hosts in data centers—are in-
creasingly popular for IT automation. Because they are
used for business-critical tasks, these workflows must be
dependable but must also accomplish their goals quickly.
The need for speed implies exploiting concurrency where
possible, but the dependability requirement recommends
caution. For example, concurrency bugs in disaster-
recovery workflows can exacerbate the crises that these
workflows were intended to solve.

Fortunately, the restricted nature of workflow pro-
gramming languages facilitates far more powerful static
analyses than are possible for general-purpose program-
ming languages. Static analysis, however, merely identi-
fies defects; repair remains manual, costly, error-prone,
and time-consuming. Manual maintenance program-
ming is also required even forcorrect workflows when
requirements change, which occurs frequently in mod-
ern data centers.

Our solution applies DCT to address both defects and
maintenance. We automatically extract a model of a
workflow from source code, then automatically synthe-
size a controller that dynamically avoids both standard
pre-defined failures (e.g., deadlocks) and alsoarbitrary
user-specified undesirable execution states. We were
able to achieve this level of generality by exploiting the
restricted nature of workflow programming languages:
We model workflows using finite automata that explicitly
represent the entire reachable state space of workflow ex-
ecution. Remarkably, the state spaces of real workflows
are precisely in the “sweet spot” for our approach: far too
large for human programmers to reason about, but small
enough for automata-based DCT control synthesis.

Our approach effectively “fixes” defective workflows
by dynamically avoiding deadlocks and user-specified
failures. Programmers can delegate to DCT responsibil-
ity for avoiding corner-case concurrency bugs, and con-
centrate on writing natural workflows instead of perfect
ones. Finally, if changed requirements are expressed as
DCT specifications, an automatically synthesized con-
troller can guarantee compliance, eliminating the need
for maintenance programming.

Extensive tests on real workflows bundled with a com-
mercial workflow product demonstrate that our approach
scales adequately in this domain. However a different ap-

proach is needed for general-purpose programs, whose
execution state spaces are too large for finite-automata
models.

Multithreaded Programming We next applied DCT
to dynamic deadlock avoidance in C/Pthreads programs.
As with workflows, we automatically extract a program
model from source code. However we model C programs
with Petri nets, which are more structured and therefore
far more compact than finite automata. Our modeling ap-
proach establishes a correspondence between deadlock
in a C program and structural features in the correspond-
ing Petri net model; static analysis can identify these fea-
tures. Our modeling and analyses are conservative: they
never overlook potential deadlocks but sometimes detect
them where none in fact exist. Succinct and convenient
programmer-supplied function annotations improve the
accuracy of our modeling, greatly reducing the number
of “false positives.” Remaining spurious deadlocks can
reduce performance by causing superfluous control logic
to be generated, but cannot cause safety or correctness
violations.

During offline control logic synthesis, we instruct a
DCT control synthesis algorithm to dynamically avoid
deadlocks in the model. The algorithm’s output is a
Petri net augmented with a small number of new fea-
tures that alter its dynamics in such a way as to guaran-
tee deadlock-free execution. Finally, we instrument the
original program with control logic that constrains it to
behave like the augmented model. At runtime this con-
trol logic dynamically avoids circular-mutex-wait dead-
locks by postponing lock acquisitions whenever neces-
sary to avert deadlock in a worst-case future execution
scenario. Deadlocks involving other primitives (e.g.,
condition variables) are handled analogously. Our ap-
proach provably guarantees the elimination of all dead-
locks in the original program without introducing new
deadlocks or livelocks and without adding, removing, or
altering functionality.

Our approach can reduce performance, but exten-
sive experiments on benchmark programs and on open
source software including Apache, OpenLDAP, and
BIND show that our prototype implementation suc-
cessfully avoids both injected and naturally occurring
deadlocks while imposing very modest performance
overheads—typically negligible under realistic condi-
tions and never more than roughly 18% under pes-
simistic conditions. Comparisons between lock-based
and transactional-memory implementations of a perfor-
mance benchmark show that our approach outperforms a
commercial TM system by several measures and by large
margins.

Several crucial DCT advantages contribute to the low
overhead of our approach. Our control logic synthesis
procedure ensuresmaximally permissive control, which
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in our domain implies that, e.g., lock acquisitions are
postponed only when necessary to ensure that deadlocks
cannot subsequently occur. This property translates di-
rectly into maximal runtime concurrency. Just as impor-
tantly, DCT performs nearly all of the computation re-
quired to achieve deadlock avoidance duringofflinestatic
analysis and control logic synthesis. In essence, DCT al-
lows us to perform a deep whole-program static analy-
sis and compactly encode prepackaged context-sensitive
decisions, allowing runtime control to quickly adjudicate
lock acquisition requests based on current program state
and worst-case future execution possibilities. The run-
time checks required to ensure deadlock avoidance for
real software requireconstanttime. A final performance
advantage is that the control logic we embed in a pro-
gram is local, fine-grained, and highly concurrent. There
is no “big global lock” protecting controller state nor any
other global performance bottleneck.

In contrast to static analysis alone [5], our approach
automatically fixes potential deadlocks in addition to
identifying them. In contrast to recent proposals tody-
namicallydetect then dynamically avoidre-occurrences
of deadlocks[6, 12], our approach statically eliminates
all deadlocks in a single stroke, ensuring that they never
occur in production—not even once. The lightweight,
local, highly concurrent runtime checks of our approach
furthermore contrast with the global serial bottlenecks
and expensive safety checks required by online deadlock
detection.

4 Sensor Networks: Distributed Diagnosis

DCT provides a compelling methodology for diagnos-
ing failures in distributed systems with expensive inter-
node communication and in situations where the run-
time computational cost of control actions must be min-
imized [4, 15]. Wireless sensor networks are a good ex-
ample of such systems. In addition to using DCT as a
means for decentralized failure diagnosis in the network,
we believe that DCT can provide an effective network-
wide “macroprogramming” environment that allows one
to describe the network’s behavior at a global level.

Sensor networks are characterized by potentially many
nodes operating in a very resource-constrained setting,
in which computational power, memory availability, and
communication bandwidth are extremely limited. In
low-duty-cycle settings, it is infeasible to rely on cen-
tralized monitoring, making it especially difficult to di-
agnose failures. Common failure modes include soft-
ware hangs and reboots, deadlocks, memory leaks, loss
of radio connectivity, and energy exhaustion. Many fail-
ure modes lead to Byzantine behaviors, causing nodes to
flood the network with bogus packets or corrupting the
state of a routing protocol [2].

DCT is well-suited to addressing this challenge by
providing a rigorous approach to characterizing the state
of individual sensor nodes and the network as a whole,
addressing the limited observability of the state of the
system. DCT can also capture distributed cases in which
multiple diagnosers with different views of the overall
system state track event transitions and make indepen-
dent diagnostic decisions. Upon detection of an unde-
sirable state, the DCT controller can perform corrective
actions such as re-initializing the routing protocol or re-
booting a node. Hence, DCT can be used for both decen-
tralized failure detectionandmitigation.

Current approaches to sensor network failure detection
tend to rely on centralized observation of the network
state. Systems such as Sympathy [14] and LiveNet [2]
collect periodic health reports from each node or detailed
traces of radio communication activity, and subject this
raw information to multiple levels of analysis at a central
base station to determine the cause of failure or perfor-
mance issues. For example, in Sympathy, each sensor
node reports metrics including neighbor tables, packet
transmission and reception counts, and uptimes back to
the centralized sink node. The sink uses a taxonomy of
common failure modes including node crash, reboot, dis-
connection, and routing path failures to determine the
root cause of a failure. Apart from the high overheads in-
volved in collecting these metrics centrally (especially in
cases where the network operates at a very low duty cy-
cle), this approach is incapable of detecting faults “deep
in the network” not observable at the sink node.

Building on the work in [4, 15], DCT could synthe-
size an automatic failure diagnoser that runs efficiently
on each sensor node, driven by local observations of
the sensor node’s state as well as information from its
one-hop neighbors, such as explicit state messages or
snooped traffic. The DCT model would consist of states
representing both normal and abnormal behavior. Ex-
amples of “normal” states include node liveness (such
as whether packets have been received from the node),
whether a node appears to be time synchronized with its
neighbors (based on comparison of each node’s idea of
the global clock), and whether the current routing path
appears to be loop-free.

If the DCT diagnoser evolves to an “abnormal” state,
the node can transmit a message indicating that it has de-
tected a failure locally or within its neighborhood, which
may be supported or refuted by observations at nearby
nodes. Upon confirmation of the failure more informa-
tion can be delivered to the sink. Of course, DCT can
also be used to control the evolution of each node’s state,
although in the case of sensor networks the most effective
intervention may be to reboot a node, given the assump-
tion of soft state and spatial redundancy made by most
sensor network applications. DCT can enable a prin-
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cipled failure-detection framework for sensor networks
that factors out important diagnosis functions common
to many applications.

Beyond failure detection within the sensor network it-
self, we envision that DCT could provide an effective
framework for macroprogrammingcomplex, network-
wide behaviors. Typical sensor network applica-
tions consist of event-driven state machines that evolve
through the collection of local sensor data and the recep-
tion of radio messages, which can be readily captured
with an automaton or Petri net representation. This ap-
proach could allow us to describe the state of the network
as a whole, rather than that of individual sensor nodes.
DCT can then be used to synthesize thenode-levelpro-
gram (control logic) directly from this high-level spec-
ification. This approach represents a radically different
way of thinking about sensor network programming and
might be used to produce more robust and efficient solu-
tions automatically.

As an example, consider a sensor network tasked to
detect structural faults in a building, bridge, or other
structure [3, 7]. In these systems, each node performs
periodic sampling of an accelerometer, producing a vi-
bration signature on each sampling interval. Combin-
ing these vibration signatures from nearby nodes permits
segments of the network to determine if the structural
response conforms to an expected envelope, or whether
the structure is experiencing a fault (crack, deformation,
etc.) or sudden shock (such as an earthquake).

In this case, the high-level logic for combining multi-
ple sensor observations into a single event report is rela-
tively straightforward, and can be described by a simple
state machine. However,implementingthis logic on sen-
sor nodes is currently fairly involved, requiring the use
of asynchronous data sampling interfaces, timers, low-
level radio communication interfaces, memory manage-
ment, and a multitude of knobs to optimize power con-
sumption [8]. Using DCT, the high-level operation of the
network can be captured, in this case fordetecting fail-
ures in the environmentobserved by the sensor network,
rather than within the sensor network itself. The resulting
state-transition diagram can be compiled down to an effi-
cient node-level program, for example, using an interme-
diate language such as Flask [10]. For a certain class of
sensor network applications we find the DCT approach
to program synthesis compelling and expect it will yield
new insights into automatic generation of node-local pro-
grams from global specifications.

5 Conclusion

We have argued that Discrete Control Theory holds great
promise for a wide variety of systems dependability
problems. Extensive experience applying DCT to con-

current programming and our ongoing work applying
DCT to sensor networks convinces us that DCT be-
longs in the toolbox of every systems dependability re-
searcher. Our experience has taught us that the most
vexing challenges confronting the dependability commu-
nity today—complexity, opacity, concurrency, resource
constraints, and large-scale decentralization—play to the
strengthsof Discrete Control Theory.
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