

Keyword(s):

Abstract:

©

The Theory of Deadlock Avoidance via Discrete Control

Yin Wang, Stephane Lafortune, Terence Kelly, Manjunath Kudlur, Scott Mahlke

HP Laboratories
HPL-2009-202

deadlock avoidance, discrete control theory, multithreaded software, concurrent programming

Deadlock in multithreaded programs is an increasingly important problem as ubiquitous multicore
architectures force parallelization upon an ever wider range of software. This paper presents a theoretical
foundation for dynamic deadlock avoidance in concurrent programs that employ conventional mutual
exclusion and synchronization primitives (e.g., multithreaded C/Pthreads programs). Beginning with
control flow graphs extracted from program source code, we construct a formal model of the program and
then apply Discrete Control Theory to automatically synthesize deadlock-avoidance control logic that is
implemented by program instrumentation. At run time, the control logic avoids deadlocks by postponing
lock acquisitions. Discrete Control Theory guarantees that the program instrumented with our synthesized
control logic cannot deadlock. Our method furthermore guarantees that the control logic is maximally
permissive: it postpones lock acquisitions only when necessary to prevent deadlocks, and therefore permits
maximal runtime concurrency. Our prototype for C/Pthreads scales to real software including Apache,
OpenLDAP, and two kinds of benchmarks, automatically avoiding both injected and naturally occurring
deadlocks while imposing modest runtime overheads.

External Posting Date: August 21, 2009 [Fulltext] Approved for External Publication
Internal Posting Date: August 21, 2009 [Fulltext]

Published in Principles of Programming Languages, Savannah, Georgia, Jan 2009.

Copyright Principles of Programming Languages, 2009.

The Theory of Deadlock Avoidance via Discrete Control ∗

Yin Wang Stéphane Lafortune
University of Michigan

{yinw,stephane}@eecs.umich.edu

Terence Kelly
Hewlett-Packard Labs

terence.p.kelly@hp.com

Manjunath Kudlur Scott Mahlke
University of Michigan

{kvman,mahlke}@umich.edu

Abstract
Deadlock in multithreaded programs is an increasingly important
problem as ubiquitous multicore architectures force parallelization
upon an ever wider range of software. This paper presents a the-
oretical foundation for dynamic deadlock avoidance in concurrent
programs that employ conventional mutual exclusion and synchro-
nization primitives (e.g., multithreaded C/Pthreads programs). Be-
ginning with control flow graphs extracted from program source
code, we construct a formal model of the program and then ap-
ply Discrete Control Theory to automatically synthesize deadlock-
avoidance control logic that is implemented by program instrumen-
tation. At run time, the control logic avoids deadlocks by postpon-
ing lock acquisitions. Discrete Control Theory guarantees that the
program instrumented with our synthesized control logic cannot
deadlock. Our method furthermore guarantees that the control logic
is maximally permissive: it postpones lock acquisitions only when
necessary to prevent deadlocks, and therefore permits maximal run-
time concurrency. Our prototype for C/Pthreads scales to real soft-
ware including Apache, OpenLDAP, and two kinds of benchmarks,
automatically avoiding both injected and naturally occurring dead-
locks while imposing modest runtime overheads.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Concurrent program-
ming structures

General Terms Algorithms, Languages, Theory, Verification

Keywords Dynamic Deadlock Avoidance, Discrete Control The-
ory, Concurrent Programming, Parallel Programming, Multithreaded
Programming, Multicore Processors

1. Introduction
The multicore revolution in computer hardware is precipitating a
crisis in computer software by compelling performance-conscious
developers to parallelize an ever wider range of applications, typ-
ically via multithreading. Multithreading is fundamentally more
difficult than serial programming because reasoning about concur-
rent or interleaved execution is difficult for human programmers,

∗ The research of Wang, Kudlur, Lafortune, and Mahlke is supported in part
by NSF grants ECCS-0624821, CCF-0819882, and CNS-0615261, and by
an HP Labs Open Innovation award.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’09, January 18–24, 2009, Savannah, Georgia, USA.
Copyright c© 2009 ACM 978-1-60558-379-2/09/01. . . $5.00

and unforeseen execution sequences can include data races. Pro-
grammers can prevent races by protecting shared data with mu-
tual exclusion locks, but misuse of mutexes can cause deadlock.
This creates yet another cognitive burden for programmers: Lock-
based software modules are not composable, and deadlock free-
dom is a global program property that is difficult to reason about
and enforce. These considerations motivate recent interest in mutex
alternatives such as atomic sections, which guarantee atomic and
isolated execution and which may be implemented using transac-
tional memory (Larus and Rajwar 2007) or conventional locks (Mc-
Closkey et al. 2006). Major attractions of atomic sections include
deadlock-freedom and composability.

This paper considers a different approach to restoring the com-
posability that locks destroy and relieving the programmer of the
obligation to reason about global deadlock freedom. We show how
to automatically eliminate deadlocks in conventional lock-based
multithreaded programs. Our strategy is to avoid deadlock through
a combination of offline static analysis and runtime execution con-
trol: We first generate the control flow graph of a program, then
enhance it and translate it into a formal model that captures salient
features of possible program behaviors. Next, we employ analy-
ses from Discrete Control Theory to identify potential deadlocks
in the model. Finally, we use other Discrete Control Theory tech-
niques to synthesize feedback control logic that provably avoids
these deadlocks at runtime. The control logic is implemented by
program instrumentation and lock function wrappers that postpone
lock acquisitions as necessary to avoid deadlocks.

Discrete Control Theory (DCT) is a branch of control theory
that considers systems with discrete state spaces and event driven
dynamics (Cassandras and Lafortune 2007). The analysis and con-
trol synthesis techniques of DCT are model-based; finite automata
and Petri nets are the two most popular modeling formalisms. Petri
nets date back to the 1960’s (Petri 1962) and are widely used to
model nondeterministic concurrent systems. DCT originated with
the seminal work of (Ramadge and Wonham 1987) on supervisory
control of systems modeled by finite automata. A large body of
theory has also been developed for controlling systems modeled
by Petri nets (Holloway et al. 1997; Reveliotis 2005; Iordache and
Antsaklis 2006). While classical control theory, which considers
systems modeled by differential or difference equations, has been
successfully applied to computer systems (Hellerstein et al. 2004),
the application of DCT to computer systems problems is relatively
recent (Wang et al. 2007). Generally speaking, classical control the-
ory is better suited to problems where the specifications are quan-
titative in nature (e.g., throughput, delay, etc.). DCT is appropriate
for problems with qualitative specifications, e.g., avoidance of un-
desirable system states; such specifications cannot be handled by
classical control methods. The overall feedback control paradigm,
however, is the same in DCT as in classical control: feedback con-
trol logic is automatically designed such that the closed-loop sys-
tem, i.e., the original given system under the control of the feedback
control logic, satisfies the given specifications.

252

instrumented executableC program

control
flow graph

Petri net
control
logic

logic
synthesis

control
control
logic observe

control

control
logic observe

control

control
logic observe

control

translation

compile

in
st

ru
m

en
ta

tio
n

compile

onlineoffline

source code

Figure 1. Program control architecture.

Our work uses the Petri net modeling formalism because Petri
nets allow for a compact representation of system dynamics that
avoids explicit state enumeration. Petri nets can furthermore con-
veniently express the nondeterminism and concurrency of multi-
threaded programs. Most importantly, DCT control logic synthesis
techniques for Petri nets are well suited to the problem of deadlock
avoidance and these techniques facilitate concurrent control imple-
mentations that do not create global performance bottlenecks. Our
Petri net models of multithreaded programs have special properties
that allow us to customize a known control method for Petri nets
to our special subclass to achieve deadlock freedom and maximally
permissive control. In the context of our problem, maximal permis-
siveness means that the control logic we synthesize postpones lock
acquisitions only when necessary to avert deadlock in a worst-case
future of the program’s execution. With proper program modeling
and control specification, maximal permissiveness maximizes run-
time concurrency, subject to the deadlock-freedom requirement.

The main contribution of this paper is a detailed description of
our customized control synthesis algorithm for Petri nets that model
multithreaded programs. We also formally characterize the proper-
ties of programs to which our method has been applied, specifically,
deadlock freedom and maximal permissiveness, all ensured by our
methodology. For completeness, we briefly summarize our proto-
type implementation and experimental results involving randomly
generated programs and real software; full details are available in
a preliminary publication (Wang et al. 2008b) and a separate pa-
per devoted to the prototype implementation and empirical evalua-
tion (Wang et al. 2008a).

The remainder of this paper is organized as follows: Section 2
presents an overview of our approach and its characteristics. Sec-
tion 3 presents our main results on the automatic synthesis of con-
trol logic for deadlock avoidance, and Section 4 describes several
extensions. Sections 5 and 6 summarize our prototype implementa-
tion and experimental evaluations of its correctness, performance,
and usability. Section 7 surveys related work, and Section 8 con-
cludes.

2. Overview
Figure 1 illustrates the architecture of our approach, which pro-
ceeds in the following high-level steps:

1. Extract per-function Control Flow Graphs (CFGs) from pro-
gram source code. We enhance the CFGs to facilitate deadlock
analysis by including information about lock variable declara-
tion and access, and lock-related functions and their parameters.

2. Translate the enhanced CFGs into a Petri net model of the whole
program. The model includes locking and synchronization op-
erations and captures realistic patterns such as dynamic lock
selection through pointers. The model is constructed in such a
way that deadlocks in the original program correspond to struc-
tural features in the Petri net.

3. Synthesize control logic for deadlock avoidance. Based on the
special properties of our Petri net subclass, we customize a
known Petri net control synthesis algorithm for this step. The
output of this step is the original Petri net model augmented
with additional features that guarantee deadlock avoidance in
the original program.

4. Instrument the program to incorporate the control logic. This in-
strumentation ensures that the real program’s runtime behavior
conforms to that of the augmented model that was generated in
the previous step, thus ensuring that the program cannot dead-
lock. Instrumentation includes code to update control state and
wrappers for lock acquisition functions; the latter avoid dead-
locks by postponing lock acquisitions at runtime.

Our approach decomposes the overall deadlock avoidance prob-
lem into pieces that play to the respective strengths of existing
compiler and Discrete Control techniques. Step 1 leverages stan-
dard compiler techniques, and Step 2 exploits powerful DCT results
that equate behavioral features of discrete-event dynamical systems
(e.g., deadlock) with structural features of Petri net models of such
systems. These correspondences are crucial to the computational
efficiency of our analyses. The control logic synthesis algorithm
we use in Step 3 is called Supervision Based on Place Invariants
(SBPI) and is the subject of a large body of theory (Iordache and
Antsaklis 2006). To avoid deadlocks, SBPI augments the original
Petri net model with features that constrain its dynamic behavior.
The instrumentation of Step 4 can embed these features, which im-
plement deadlock-avoidance control, into the original program us-
ing primitives supplied by standard concurrent programming pack-
ages (e.g., the mutexes and condition variables provided by the
POSIX threads library). The control logic embedded in Step 4 is
furthermore highly concurrent because it is decentralized through-
out the program; it is not protected by a “big global lock” and there-
fore does not introduce a global performance bottleneck.

Our approach brings numerous benefits. As shown in the re-
mainder of this paper, it eliminates deadlocks from the given pro-
gram without introducing new deadlocks or global performance
bottlenecks. It “does no harm,” except perhaps to performance, be-
cause it intervenes in program execution only by temporarily post-
poning lock acquisitions; it neither adds new behaviors nor disables
functionality present in the original program. (If deadlock avoid-
ance is impossible for a given program, our method issues a warn-
ing explaining the problem and terminates in Step 3.)

Discrete Control Theory provides a unified formal framework
for reasoning about a wide range of program behaviors (branching,
looping, thread forks/joins) and synchronization primitives (mu-
texes, reader-writer locks, condition variables) that might otherwise
require special-case treatment. Because DCT is model-based, the
modeling of Step 2 is a key step in our methodology. Once model-
ing is done properly, the properties of the solution follow directly
from results in DCT. The DCT control synthesis techniques that we
employ guarantee maximally permissive control with respect to the
program model, i.e., the control logic postpones lock acquisitions
only when provably necessary to avoid deadlock. This property im-
plies that, given a good program model, our approach permits max-
imum concurrency at run time.

The most computationally expensive operations in our approach
are performed offline (Step 3), which greatly reduces the runtime
overhead of control decisions. In essence, DCT control logic syn-
thesis performs a deep whole-program analysis and compactly en-
codes “prepackaged decisions” that allow the runtime control logic
to adjudicate lock acquisition requests quickly, while taking into
account both current program state and worst-case future execution
possibilities. The net result is low runtime performance overhead.

253

Like the atomic-sections paradigm that is the subject of much
recent research, our approach ensures that independently developed
software modules compose correctly without deadlocks. However
our methods are compatible with existing code, programmers, li-
braries, tools, language implementations, and conventional lock-
based programming paradigms. The latter is particularly important
because lock-based code currently achieves substantially better per-
formance than equivalent atomic-sections-based code in some sit-
uations. For example, Section 6 shows that lock-based code can
exploit available physical resources more fully than atomic-based
equivalents if critical regions contain I/O.

Our approach assumes full responsibility for deadlock in pro-
grams that it deems controllable, i.e., programs that admit dead-
lock avoidance control policies. However, there can be a perfor-
mance tradeoff. Our approach allows a programmer to focus on
common-case program logic and write straightforward code with-
out fear of deadlock, but it remains the programmer’s responsibility
to use locks in a way that makes good performance possible.

3. Control Synthesis: Main Results
This section presents our main results on control logic synthesis.
Throughout this section we illustrate our method using the dining
philosophers program shown in Figure 2, where the main thread
creates two philosopher threads that each grab two forks in a differ-
ent order. The program deadlocks if each philosopher has grabbed
one fork and is waiting for the other.

void * philosopher(void * arg) {
if (RAND_MAX/2 > random()) { /* grab A first */

pthread_mutex_lock(&forkA);
pthread_mutex_lock(&forkB);

}
else { /* grab B first */

pthread_mutex_lock(&forkB);
pthread_mutex_lock(&forkA);

}
eat();
pthread_mutex_unlock(&forkA);
pthread_mutex_unlock(&forkB);

}

int main(int argc, char *argv[]) {
pthread_create(&p1, NULL, philosopher, NULL);
pthread_create(&p2, NULL, philosopher, NULL);

}

Figure 2. Dining philosophers program with two philosophers

3.1 Petri Net Preliminaries

For the sake of completeness, we present a brief primer on Petri
nets; see (Murata 1989) for a detailed discussion. Petri nets are bi-
partite directed graphs with two types of nodes: circles represent
places and solid bars represent transitions. Tokens in places are
shown as dots. The marking (state) of the Petri net is the number
of tokens in each place. Transitions model events in the system that
change the marking. Figure 3 shows how to model common pat-
terns of program control flow using Petri nets. The arcs connect-
ing places to a given transition represent the pre-conditions that are
necessary for the event associated with that transition to occur. The
arcs connecting places from a given transition represent the out-
come of the event. For instance, transition t1 in Figure 3(a) can
occur only if its input place p1 contains at least one token; in this
case, we say that t1 is enabled. Similarly, t2 is enabled in this sim-
ple Petri net that models an if/else branch in a program. If transi-
tion t1 occurs (or fires in Petri net terminology), then it “consumes”

(a) branch (b) loop (c) fork/join (d) lock/unlock

Figure 3. Basic Petri net models

one token from p1, and “produces” one token in its output place p2.
In general, the firing of a transition consumes tokens from each of
its input places and produces tokens in each of its output places; the
token count need not remain constant. Petri nets may model loops,
as in Figure 3(b), where the firing of t3 initiates another iteration
of the loop. If two or more transitions are both enabled such that
exactly one may fire, as with t1 and t2 in Figure 3(a), the Petri net
does not specify which will fire, nor when a firing will occur. Petri
nets are therefore well suited to modeling nondeterminism due to
branching and processor scheduling in multithreaded programs.

Concurrency is also easily modeled in Petri nets. For example,
in Figure 3(c), one can think of transition t1 as the thread create
operation and t2 as the thread join operation. Firing t1 generates
two tokens representing the original and the child thread, in places
p2 and p3, respectively. After t2, the child thread joins the original
thread in place p4. In Figure 3(d), place L models a mutex lock,
while t1 and t2 model lock acquisition and release operations,
respectively. The token inside L represents the lock, whereas the
token in p1 represents the thread. After t1 fires, a single token
occupies p2 and L is empty, meaning that the lock is not available
and t1 is disabled. If a new thread arrives at p1 (via an arc not
shown in Figure 3(d)), it cannot proceed. Firing t2 returns a token
to L, which means that the lock is again available.

Formally, we have the following definition.

Definition 1. A Petri net N = (P, T, A,W, M0) is a bipartite
graph, where P = {p1, p2, ..., pn} is the set of places, T =
{t1, t2, ..., tm} is the set of transitions, A ⊆ (P × T) ∪ (T × P)
is the set of arcs, W : A → {0, 1, 2, ...} is the arc weight function,
and for each p ∈ P , M0(p) is the initial number of tokens in place
p.

The notation •p denotes the set of input transitions of place
p: •p = {t|(t, p) ∈ A}. Similarly, p• denotes the set of out-
put transitions of p. The sets of input and output places of a tran-
sition t are similarly defined by •t and t•. For example in Fig-
ure 3(a), •p1 = ∅, p1• = {t1, t2}, and •t1 = {p1}. This nota-
tion is extended to sets of places or transitions in a natural way.
A transition t in a Petri net is enabled if every input place p in
•t has at least W (p, t) tokens in it. When an enabled transition
t fires, it removes W (p, t) tokens from every input place p of t,
and adds W (t, p) tokens to every output place p in t•. By conven-
tion, W (p, t) = 0 when there is no arc from place p to transition
t. Throughout this section, our models of multithreaded programs
have unit arc weights, i.e., W (a) = 1,∀a ∈ A. Such Petri nets are
called ordinary in the literature.

We build the incidence matrix D of a Petri net as follows:
D ∈ Z

n×m where Dij = W (tj, pi) − W (pi, tj) represents the
net change in the number of tokens in place pi when transition tj

fires. If the net has no self-loop, i.e., at least one of W (pi, tj) or
W (tj, pi) is equal to zero, then: (i) a negative Dij means there is

254

an arc of weight −Dij from pi to tj ; and (ii) a positive Dij means
there is an arc of weight Dij from tj to pi. The incidence matrix of
the Petri net in Figure 3(a) is

t1 t2

D =
p1

p2

p3

2
4
−1 −1
1 0
0 1

3
5

The marking (i.e., state) of a Petri net, which records the number
of tokens in each place, is represented as a column vector M of
dimension n × 1 with non-negative integer entries, given a fixed
order for the set of places: M =

ˆ
M(p1) · · ·M(pn)

˜T
, where T

denotes transpose. As defined above, M0 is the initial marking. For
example, the marking of the Petri net in Figure 3(a) is

ˆ
1 0 0

˜T
;

this is the number of tokens in the three places ordered as: p1, p2,
p3. If t1 fires, the marking becomes

ˆ
0 1 0

˜T
.

The reachable state space of a Petri net is the set of all markings
reachable by transition firing sequences starting from M0. This
state space may be infinite if one or more places may contain an
unbounded number of tokens. Fortunately we need not consider
the reachable state space because we employ techniques from DCT
that operate directly upon the relatively compact Petri net rather
than its potentially vast state space.

3.2 Modeling Multithreaded Programs

Our modeling methodology begins with the set of per-function
CFGs extracted from the target C program. We augment these
CFGs such that in addition to basic blocks and flow information,
lock variables and lock functions are also included. Each (aug-
mented) CFG is a directed graph. To obtain a Petri net we first
create a place for each node (basic block) of this graph. For each
arc connecting two nodes in the graph, we create a transition and
two arcs in the Petri net: one from the place corresponding to the
originating node to the transition, and one from the transition to the
place corresponding to the destination node. Overall, a basic block-
transition-basic block chain in the CFG is converted into a place-
arc-transition-arc-place chain in the corresponding model; see for
example Figures 3(a) and 3(b).

The execution of a thread is modeled as a token flowing through
the Petri net. In order to model lock acquisition/release functions
appropriately, we split a basic block that contains multiple lock
functions into a sequence of blocks such that each block has at
most one lock function associated with it. Therefore, after model
translation, each lock operation is represented by a single transition
in the Petri net. Similarly, a basic block containing multiple user-
defined functions is split such that each function call is represented
by one place in the Petri net. With this split, we can substitute the
function call place with the Petri net model of the called function.
A new copy of the called function’s Petri net is substituted at each
distinct call site. In other words, we build inlined Petri net models.

Functions that do not invoke lock operations need not be con-
sidered in the modeling phase. We further prune fractions of the
inlined Petri net model that are irrelevant to deadlock analysis. Fi-
nally, if the program uses different sets of locks in different mod-
ules, we decompose the Petri net and apply the control synthesis
algorithm to each subnet separately. These simple preprocessing
techniques are highly effective in shrinking real program models to
a manageable size. Additional details are available in (Wang et al.
2008b).

If recursions occur in the pruned Petri net, we handle them
in a similar way as we model program loops. Each recursion is
substituted by exactly one copy of every function involved in the
recursion. Subsequent recursive calls inside these functions are
linked back to themselves. Control synthesis treats these recursion

(a) CFG (b) Translated Petri Net

Figure 4. Modeling the Dining Philosopher Example

loops as normal loops. Online instrumentation, however, must track
recursive calls and know when the program leaves the recursion by
augmenting parameters of functions involved in the recursion.

Modeling multithreaded synchronization primitives using Petri
nets has been studied previously in the literature; see (Kavi et al.
2002). We apply these known techniques to model locking primi-
tives. For example, thread creation and join are modeled as illus-
trated in Figure 3(c). To model mutex locks, we add a new place
for each lock, called a lock place, with one initial token to repre-
sent lock availability. If a transition represents a lock acquisition
call, we add arcs from the lock place to the transition. If a transi-
tion represents a lock release call, we add arcs from the transition
to the lock place; see Figure 3(d).

With these modeling techniques, we are able to build a complete
Petri net model of a given concurrent program. Figure 4(a) is
the control flow graph of function philosopher in the example
in Figure 2. There are four basic blocks, representing start, if
branch, else branch and the rest of the function. Figure 4(b) is the
translated Petri net model of the CFG. The structure is similar to the
CFG, with lock places added. Basic blocks containing multiple lock
functions are split into sequences of places and transitions such that
each lock function is represented by a single transition in the net,
as annotated.

3.3 Controlling Petri Nets by Place Invariants

The purpose of control logic synthesis for Petri nets is to avoid “un-
desirable” or “illegal” markings. Appropriate formal specifications
that characterize these undesirable markings are needed. A com-
mon form of specification is the linear inequality

lT M ≥ b (1)

where l is a weight (column) vector, M is the marking, and b is a
scalar; b and the entries of l are integers. Equation (1) states that
the weighted sum of the number of tokens in each place should be
greater than or equal to a constant. We will show in Section 3.4 how
to attack deadlock avoidance using such specifications.

Markings violating the linear inequality in Equation (1) must
be avoided by control as they are illegal; all other markings are
permitted. It turns out that this condition can be achieved by adding
a new control place to the net with arcs connecting to transitions in
the net. The control place blocks (disables) its output transitions

255

when it has an insufficient token count. This method is formally
stated as follows.

Theorem 1. (Iordache and Antsaklis 2006) If a Petri net N =
(P, T, A, W, M0) with incidence matrix D satisfies

b − lT M0 ≤ 0 (2)

then we can add a control place c that enforces Equation (1). Let
Dc : T → Z denote the weight vector of arcs connecting c with the
transitions in the net; Dc is obtained by

Dc = lT D (3)

The initial number of tokens in c is

M0(c) = lT M0 − b ≥ 0 (4)

The control place enforces maximally permissive control logic, i.e.,
the only reachable markings of the original net N that it avoids are
those violating Equation (1).

The above control technique is called Supervision Based on
Place Invariants (SBPI). It maintains the condition in Equation (1)
by building a place invariant with the newly added control place.
The place invariant guarantees that for any marking M in N ’s
set of reachable markings, lT M − M(c) = b, where M(c) is
the number of tokens in the control place c. Since M(c) is non-
negative, the inequality in Equation (1) is satisfied. Equation (2)
states that Equation (1) must be satisfied for M0, otherwise there is
no solution.

Equation (3) shows that SBPI operates on the net structure (in-
cidence matrix) directly without the need to enumerate or explore
the set of reachable markings of the net; this greatly reduces the
complexity of the analysis. Equally importantly, SBPI guarantees
that the controlled Petri net is maximally permissive, i.e., a transi-
tion is not disabled (by lack of tokens in control place c) unless its
firing leads to a marking where the linear inequality is violated (Ior-
dache and Antsaklis 2006). In other words, it enforces “just enough
control” to avoid all illegal markings. SBPI is the basis for our
deadlock avoidance control synthesis algorithm. Specifically, SBPI
eliminates potential deadlocks that we discover via siphon analysis.

3.4 Deadlocks and Petri Net Siphons

To achieve the objective of deadlock avoidance in a concurrent
program using SBPI, we need to express deadlock freedom using
linear inequality specifications. This is done by means of siphon
analysis.

Definition 2. A siphon is a set S of places such that •S ⊆ S•.

Intuitively, since the input transition set is a subset of the output
transition set, if a siphon S becomes empty, every output transition
in S• is disabled and therefore no input transition can fire. As
a result, the set of places S will remain empty forever and the
transitions in S• will never fire again. For example, the set of
places {A, B, p6, p7}, marked by crosses in Figure 5, is a siphon. It
becomes empty when each philosopher acquires one fork and waits
for another. In this situation, no place in the siphon ever gains any
token; indeed, we have a deadlock.

Our Petri net models have special properties that allow us to
identify deadlocks in the original program by identifying siphons
in the corresponding Petri net model. Recall from Section 3.1 that
our Petri nets are ordinary (all arcs have unit weight). Let NG

denote the Petri net model of a concurrent program. Let the part
of NG that corresponds to the control flow graph be denoted by
NCF G; in other words, lock places are excluded in NCF G. By
construction, all the transitions in NCF G have exactly one input
place and exactly one output place. Clearly, the only siphon in
NCF G is the entire set of places, which cannot become empty

during the execution of the program. Therefore, any siphon in NG

must include lock places. We build from the following known result
in the literature.

Theorem 2. (Reisig 1985) A totally deadlocked ordinary Petri net
contains at least one empty siphon.

In this theorem, “total deadlock” refers to a Petri net state in
which no transition is enabled. In our analysis, we are interested
in circular-mutex-wait deadlocks, not total deadlocks. However, in
our class of Petri net models, the presence of a circular-mutex-wait
deadlock implies that NG contains an empty siphon. To see this,
consider a Petri net state that models a program with a circular-
mutex-wait deadlock. Consider only the subnet involved in the
circular-mutex-wait deadlock, and only the tokens representing
the deadlocked threads. This subnet has no enabled transition.
According to Theorem 2, it contains at least one empty siphon. This
siphon is also empty in the original Petri net state.

Consider next the reverse implication of Theorem 2: what if
the net contains an empty siphon in some reachable marking? An
empty siphon cannot gain any token back and therefore the cor-
responding transitions are permanently disabled. Since an empty
siphon in our Petri net model must include lock places, these lock
places remain empty as well, meaning that the threads holding these
locks will never release them. This could be due to a thread that
simply acquires a lock and never releases it. We handle the pre-
ceding scenario separately in our control logic synthesis. For the
purpose of the present analysis, we assume that threads eventually
release all the locks that they acquire. Under this assumption, empty
siphons that include lock places correspond to circular-mutex-wait
deadlocks. Combining this result with Theorem 2, we have the fol-
lowing important result:

Theorem 3. The problem of deadlock avoidance in a concurrent
program is equivalent to the problem of avoidance of empty siphons
in its ordinary Petri net model NG.

Theorem 3 establishes a relationship between deadlock, which
is a behavioral property, and siphons, which are structural features.
The latter can be identified directly from the incidence matrix
without exploring the set of reachable markings (Boer and Murata
1994).

In some cases, a siphon cannot become empty in any reachable
marking. For example, places L and p2 in Figure 3(d) form a
siphon. Once empty, they remain empty forever. But with an initial
token in L, these two places will never become empty. In fact, a
token will always occupy one of the two places in any reachable
marking. When synthesizing deadlock avoidance control logic, it
is important to distinguish siphons that may become empty from
those that cannot. Control need only be synthesized to address the
former; the latter may safely be ignored.

3.5 Control Logic Synthesis for Deadlock Avoidance

Given Theorem 3, our objective is to control the Petri net model
of a concurrent program in a manner that guarantees that none of
its siphons ever becomes empty. For this purpose, it is sufficient
to consider only minimal siphons, i.e., those siphons that do not
contain other siphons. This goal is translated into specifications of
the form in Equation (1) as follows: The sum of the number of to-
kens in each minimal siphon is never less than one in any reachable
marking. SBPI adds a control place to the net that maintains Equa-
tion (1) for each minimal siphon. For example, consider again the
Petri net in Figure 5 (without the place and arcs that are dashed); to
prevent the minimal siphon {A, B, p6, p7} in this net from being
emptied, we define

lT =
ˆ
0 0 0 0 0 1 1 1 1

˜
, b = 1 (5)

256

Figure 5. Controlled Dining Philosophers Example

where the order of the places for vectors M and l is: p1, . . . p7, A, B.
In this case, Equation (1) means that the total number of tokens in
places p6, p7, A, and B should not be less than 1. The incidence
matrix of the net in Figure 5 is (with transitions ordered according
to their subscripts):

D =

2
66666666664

−1 −1 0 0 0 0 0 0
1 0 −1 0 0 0 0 0
0 1 0 −1 0 0 0 0
0 0 1 0 −1 0 0 0
0 0 0 1 0 −1 0 0
0 0 0 0 1 1 −1 0
0 0 0 0 0 0 1 −1
0 0 −1 0 0 −1 0 1
0 0 0 −1 −1 0 1 0

3
77777777775

(6)

Applying Equations (3 and 4), we have

Dc =
ˆ
0 0 −1 −1 0 0 1 0

˜
, M0(c) = 1 (7)

which means that the control place has output arcs to transitions
t3 and t4, and an input arc from transition t7; all these arcs have
weight one. The control place has one initial token. This control
place and its associated arcs are shown with dashed lines in Fig-
ure 5. The Petri net including the control place is called the aug-
mented net. From Theorem 1, we know that the place invariant
lT M − M(c) = 1 always holds for any reachable marking M ,
and therefore the siphon is never empty.

It would be wrong to conclude from this simple example that
our approach simply “coarsens locking” or “adds meta-locks.” This
is a reasonable interpretation of the control place in Figure 5, but
in general the control logic that our procedure synthesizes admits
no such simple characterization, as we shall see when we consider
how our approach handles real-world deadlock bugs in Apache and
OpenLDAP.

A difficulty that arises in the preceding methodology is that
the newly added control places (one per minimal siphon in the
net) could introduce new siphons in the augmented net. Intuitively,
SBPI avoids deadlocks at the last lock acquisition step, i.e., the
lock acquisition that completes the circular wait. Sometimes this is
too late. While the control place blocks the transition immediately
leading to the deadlock, there may be no other transition the pro-
gram can take. This is a deadlock introduced by the control place.
Fortunately, this deadlock implies the existence of a new siphon in
the augmented Petri net that includes the control place. Therefore,

Input Petri net NG that models the program

Output Augmented NG with control places added

Step 1 Let R be the set of places representing mutex locks

Step 2 Find all minimal siphons in NG that include at least one
place in R and can become empty; if no siphon found, goto
End

Step 3 Add a control place for every siphon found in Step 2

Step 4 Remove redundant control places added in Step 3; let R be
the set of control places remaining; goto Step 2

End Output NG with all control places added

Figure 6. Control Synthesis Algorithm

we can apply SBPI again and iterate until both the deadlocks in
the original program and deadlocks introduced by control logic are
avoided. The iterative procedure is defined in Figure 6. Step 4 refers
to “redundant” control places. Those are control places that achieve
redundant control objectives as compared with control places added
in earlier iterations. Details on how we check whether a siphon can
become empty and how we remove redundant control places are
described in (Wang et al. 2008b).

Combining the results of Sections 3.3 and 3.4 with the proce-
dure in Figure 6, we have the following corollary:

Corollary 4. After the iterative procedure of Figure 6, we know
that the augmented Petri net with control places has no reachable
empty siphon. If the arcs connecting the added control places to
the transitions of the original net all have unit weight, then by The-
orem 3 we conclude that the augmented net models the deadlock-
free execution of the original multithreaded program. Moreover, by
Theorem 1, the behavior of the augmented net is the maximally-
permissive deadlock-free sub-behavior of the original net.

If a newly added control place has a non-unit-weight arc to a
transition of the original net, then deadlock in the multithreaded
program does not necessarily imply an empty siphon in the net as
Theorem 2 is not directly applicable. Theorem 2 can be general-
ized to the case of non-unit arc weights; in this case liveness is not
entirely characterized by empty siphons, but rather by the notion
of “deadly marked siphons” from (Reveliotis 2005). In this case,
further behavioral analysis of the siphons is necessary; details are
omitted here. In practice, in our experiments so far with the spe-
cial Petri net subclass modeling multithreaded programs, our iter-
ative SBPI algorithm has converged quickly without introducing
non-unit arc weights. This has been observed on both randomly
generated programs and real-world software including Apache and
OpenLDAP.

3.6 Control Logic Implementation

The output of the control logic synthesis algorithm is an augmented
version of the input Petri net, to which have been added control
places with incoming and outgoing arcs to transitions in the original
Petri net. An outgoing arc from a control place will effectively
delay the target transition until a token is available in the control
place; the token is consumed when the transition fires. An incoming
arc from a transition to a control place replenishes the control
place with a token when the transition fires. Outgoing arcs from
control places always link to lock acquisition calls, which are
the transitions that the runtime control logic controls. Incoming
arcs originate at transitions corresponding to lock release calls or
branches, which are the transitions the control logic must observe.

A lock acquisition transition that needs to be controlled has
one or more incoming arcs from control places, as illustrated in

257

(a) Transition to be controlled

(b) Transition to be observed

Figure 7. The control logic implementation problem

Figure 7(a), where L is the “real” lock in the program that has to
be acquired, and C1, C2, ...Cn are control places that link to the
transition. A transition that needs to be observed has one or more
outgoing arcs to control places, as illustrated in Figure 7(b). For the
sake of generality, Figures 7(a) and 7(b) show several control places
connected to a given transition. In practice, the number of control
places connected to a transition is very small, typically only one.

As Figure 7 suggests, control places resemble lock places, and
therefore can be implemented with primitives supplied by standard
multithreading libraries, e.g., libpthread.

Controlled Transitions For a lock acquisition transition that
needs to be controlled, the control logic must check the token avail-
ability of all input places to that transition. These include the lock
place in the original net model as well as all the control places
that were added by the procedure in Figure 6, as depicted in Fig-
ure 7(a). We replace the native lock-acquisition function with our
wrapper to implement the required test for these transitions. The
wrapper internally uses two-phase locking with global ordering on
the set of control places to obtain the necessary tokens. If a control
place does not have enough tokens, the wrapper returns all tokens
it has obtained from other control places, and waits on a condition
variable that implements this control place; this effectively delays
the calling thread. Once the token becomes available, the wrapper
starts over again to acquire tokens from all control places.

Observed Transitions For a transition that needs to be ob-
served, i.e., with outgoing arcs to control places as shown in Fig-
ure 7(b), we insert a control logic update function that increases the
token count and signals the condition variables of the correspond-
ing control places.

Figure 8 is the lock wrapper implementation for Figure 7(a)
using the Pthread library. Each control place Ci is implemented
as a three-tuple {n[i], l[i], c[i]}, where n[i] is an integer
representing the number of tokens in Ci, l[i] is the mutex lock
protecting n[i], and c[i] is the condition variable used when a
thread is waiting for token in the control place.

The following theorem establishes that the above-described im-
plementation of control places does not introduce livelock into the
instrumentation: Two or more threads cannot become permanently
“stuck” executing the outer loop in the wrapper function code of
Figure 8.

Theorem 5. With the implementation of Figure 8 and global order-
ing of l[i], if a set of threads competes for tokens in control places,
at least one thread will acquire all required tokens from the control
places and succeed in firing the corresponding transition.

start:
pthread_mutex_lock(&L); /* acquire real lock */
for (i=1; i<=n; i++) {
pthread_mutex_lock(&l[i])); /* check Ci */
if (0 < t[i]) { /* has token in Ci */

n[i]--; /* take one token */
pthread_mutex_unlock(&l[i]));

}
else { /* no token in Ci */

pthread_mutex_unlock(&L); /* release real lock */
for (j=i-1; j>=1; j--) { /* replenish all tokens */
pthread_mutex_lock(&l[j]);
n[j]++;
pthread_cond_signal(&c[j]);
pthread_mutex_unlock(&l[j]);

}
pthread_cond_wait(&c[i], &l[i]); /* wait on Ci */
pthread_mutex_unlock(&l[i]));
goto start; /* start over once signaled */

}
}

Figure 8. Lock wrapper implementation for the example of Fig-
ure 7(a). A control place Ci is associated with integer n[i] repre-
senting the number of tokens in it; lock l[i] and condition variable
c[i] protect n[i]. These are global variables in the control logic
implementation.

Proof. Assume TD = {T1, T2, ...Tu} is the set of threads compet-
ing for tokens in the set of control places CP = {C1, C2, ...Cv}.
Without loss of generality, let us also assume every thread in TD
is at the “start” label of the lock wrapper in Figure 8, i.e., no thread
has consumed any token in CP yet, and every other thread is ei-
ther sleeping or waiting on some (real) lock. Then CP must have
enough tokens for at least one thread in TD to go through. Oth-
erwise all threads are permanently waiting and this is a deadlock,
which is provably avoided by our control synthesis algorithm.

Assume CP has enough tokens for T1 to get through. If T1

failed to get a token from a control place, say C1, some other
thread in TD, say T2, must have acquired the token in C1 before
T1 attempted to acquire it. If T2 failed to get the token in a control
place, say C2, there are two cases: (1) C2 does not have any tokens
at all to start with or (2) some other thread in TD has temporarily
acquired it first. In the first case, T2 will sleep and not compete
with threads in TD anymore. Furthermore, T2 will release the
token to C1 and wake up T1 before it goes into sleep. Then we
can repeat the analysis for T1 all over again. In the second case,
the token in C2 cannot be temporarily acquired by T1 because of
the assumed global ordering on control places. Assuming T3 has
temporarily acquired the token in C2, we could follow the same
analysis performed on T2. Eventually, either some thread in TD
gets all tokens needed or every thread other than T1 goes to sleep, in
which case T1 will be awakened and obtain all tokens needed.

As shown in Figure 8, our current controller implementation
does not address the scheduling of threads onto locks; underly-
ing infrastructure (threading library and OS) is responsible for this.
Whether our control logic introduces scheduling issues (e.g., prior-
ity inversion, starvation) depends on the semantics provided by the
underlying infrastructure.

4. Control Synthesis: Extensions
Section 3 presented the main results of our deadlock avoidance
methodology for concurrent programs. This section discusses ex-
tensions to the basic method and additional topics relevant to our
problem domain.

258

Figure 9. Reader-Writer Lock

4.1 Model Extensions

Our control synthesis algorithm is not limited to circular-mutex-
wait deadlocks. Rather, it depends on what is included in the Petri
net model of the program. With the rich representation capabili-
ties of Petri net models, it is relatively easy to model other mul-
tithreaded synchronization primitives and thereby to automatically
address deadlocks involving them. We discuss a few examples.

Semaphores A semaphore is essentially a lock with multi-
ple instances that can be “acquired/released” by different threads
repeatedly through down/up operations. Therefore, semaphores
share the same model as locks except that the initial number of
tokens in a semaphore place may exceed one.

Reader-Writer Locks Modeling reader-writer locks is illus-
trated in Figure 9. The initial number of tokens in the lock place
represents the maximum number of readers allowed. A reader can
acquire the lock as long as at least one token is available, while
a writer must acquire all of the tokens. When the maximum num-
ber of readers is not specified by the program, we can use a suffi-
ciently large initial number of tokens, e.g., greater than the num-
ber of threads allowed. Note that the right-hand arcs in Figure 9
both have weight n. Theorem 2 presented earlier requires unit arc
weights as an assumption. As was mentioned in Section 3.5, Theo-
rem 2 can be generalized to the case of non-unit arc weights. This
complicates the procedure of generating the control logic for dead-
lock avoidance and is not discussed in this paper.

Condition Variables Condition variable models include a
place that models the signal variable and transitions that model
wait, signal, and broadcast calls. We use a separate place,
with no initial token, to represent each signal. The place gains
tokens with signal/broadcast transitions and loses tokens with
wait transitions. In addition to the input arc from the signal place,
the wait transition must represent the fact that the mutex lock is
released during wait and reacquired once the signal is available. In
addition, a complete model should also include signal loss (when
the thread to be awakened is not waiting on the condition variable);
see (Kavi et al. 2002) for further discussion.

Condition variables are another major source of deadlocks in
multithreaded programs, and it is very difficult to reason about
them. However, once condition variables are included in our Petri
net models, condition-variable deadlocks can be identified through
siphon analysis in the same manner as mutex deadlocks are found.

Figure 10 shows a condition variable deadlock from the Apache
bug database (Apache). This deadlock is introduced by a mutex
together with condition variables. The listener thread waits on a
condition variable while holding the timeout mutex. The worker
thread acquires then releases timeout, then signals the listener.
If the listener thread is already waiting before the worker thread
acquires timeout, the signal is never sent and the two threads
deadlock in the calls indicated by comments.

Figure 11 is the Petri net model of the code in Figure 10. For
simplicity we show only basic signal operations. Details like the
release and reacquisition of locks with the wait call are not shown.
Places marked by crosses form the siphon corresponding to the

listener_thread(...) {
...
apr_thread_mutex_lock(timeout_mutex);
...
rv = apr_thread_mutex_lock(queue_info->idlers_mutex);
...
rv = apr_thread_cond_wait(queue_info->wait_for_idler,

queue_info->idlers_mutex); /**/
...
rv = apr_thread_mutex_unlock(queue_info->idlers_mutex);
...
apr_thread_mutex_unlock(timeout_mutex);
...

}

worker_thread(...) {
...
apr_thread_mutex_lock(timeout_mutex); /**/
...
apr_thread_mutex_unlock(timeout_mutex);
...
rv = apr_thread_mutex_lock(queue_info->idlers_mutex);
...
rv = apr_thread_cond_signal(queue_info->wait_for_idler);
...
rv = apr_thread_mutex_unlock(queue_info->idlers_mutex);
...

}

Figure 10. Apache deadlock, bug #42031.

Figure 11. Simplified Petri net model for the Apache deadlock,
bug #42031.

deadlock bug. The control place added guarantees that the siphon
will never empty. The control place prevents the listener thread
from acquiring the timeout mutex until the worker thread has
released it and is able to signal the listener. This control logic is
maximally permissive as it allows the listener thread to proceed
after the worker thread releases the timeout mutex.

4.2 Partial Controllability and Observability

So far, we have assumed that every transition in the Petri net is
controllable, i.e., it can be prevented from firing if we append a
control place to its set of input places. Therefore, if a transition has
an incoming arc from a control place after the control synthesis
procedure, the control logic effectively blocks that transition when

259

ldap_pvt_thread_rdwr_wlock(&bdb->bi_cache.c_rwlock);
/* LOCK(A) */
...
ldap_pvt_thread_mutex_lock(&bdb->bi_cache.lru_mutex);
/* LOCK(B) */
...
ldap_pvt_thread_rdwr_wunlock(&bdb->bi_cache.c_rwlock);
/* UNLOCK(A) */
...
if (bdb->bi_cache.c_cursize>bdb->bi_cache.c_maxsize) {

...
for (...) {
...
ldap_pvt_thread_rdwr_wlock(&bdb->bi_cache.c_rwlock);
/* LOCK(A) */
...
ldap_pvt_thread_rdwr_wunlock(&bdb->bi_cache.c_rwlock);
/* UNLOCK(A) */
...

}
}
...
ldap_pvt_thread_mutex_unlock(&bdb->bi_cache.lru_mutex);
/* UNLOCK(B) */

Figure 12. OpenLDAP deadlock, bug #3494.

the control place has an insufficient token count. In our problem,
however, not every transition is controllable. For example, transi-
tions representing if/else branches or loops are not controllable.
We cannot “force” the program to take one branch instead of the
other. In our application, the only controllable transitions are those
representing lock acquisitions.

Partial controllability refers to the situation where not every
transition in the net is controllable. When a control place added
by the control synthesis algorithm has outgoing arcs to an uncon-
trollable transition in the net, then the corresponding control logic
is not implementable. Synthesizing control logic for a partially con-
trollable net in general requires correctness-preserving linear con-
straint transformation (Iordache and Antsaklis 2006). The trans-
formed constraints guarantee that control places added by SBPI
have output arcs to controllable transitions only, while satisfying
the original linear inequality specifications. The synthesis of con-
trol logic under partial controllability is in general more conserva-
tive than under the case of full controllability. A version of maximal
permissiveness can still be achieved in this case, in the sense that
the control logic should not block any transition unless the execu-
tion of that transition can lead to an undesired state unavoidably,
i.e., through a sequence of uncontrollable transitions.

We illustrate the controllability issue with an actual OpenLDAP
bug (OpenLDAP) shown in Figure 12, where clarifying comments
are inserted. The deadlock may occur if thread 1 locks A and B,
then releases A. Before thread 1 reacquires A, thread 2 executes the
same code, which acquires A then B. Assuming full controllability,
the control logic would allow thread 2 to enter and acquire lock A,
then force thread 1 to jump out of the for loop if thread 2 acquires
A first. With partial controllability, the control logic immediately
forbids other threads from entering once thread 1 is executing the
code, even if lock A is available. If thread 1 branches over the body
of the if, or if it leaves the for loop, the control logic knows
that thread 1 cannot be involved in this deadlock bug and therefore
permits other threads to enter.

Another issue to consider in practice is that of partial observabil-
ity. A transition is not observable if we cannot observe its firing. If a
synthesized control place has incoming arcs from an unobservable
transition in the net, then the control logic is not implementable as
the control logic does not know when to replenish tokens in the

control place. In our application, one could in principle observe
every transition by proper instrumentation of the program. How-
ever, if source code modifications are not allowed, e.g., only bina-
ries are available, we can still control the program by the technique
of library interposition, by intercepting all lock acquisition/release
calls. In this case however, the evolution of the program is not fully
observable.

Synthesizing control logic for a partially observable Petri net
can also be solved by the technique of constraint transformation,
as described in (Iordache and Antsaklis 2006). Transformed linear
inequality constraints guarantee that control places added have in-
coming arcs from observable transitions only. The control logic is
in general more conservative than the one assuming full observ-
ability. In the example of Figure 12, if we can observe only lock
and unlock calls, the control logic must wait until the first thread
releases lru mutex at the end before allowing another thread to en-
ter this critical region, which effectively serializes the whole critical
region. Assuming full observability, as discussed above, the control
logic allows another thread to enter as soon as the first thread jumps
out of the for loop.

4.3 Current Limitations

Our current prototype implementation does not perform alias or
pointer analysis when building the Petri net model of a concurrent
program. We represent lock pointer variables by their type names,
i.e., the structure type that encloses the primitive lock variable. This
approximation is adopted by a few static analysis tools as well (En-
gler and Ashcraft 2003). It may lead to conservative control logic
but does not miss any deadlock unless the program violates type
safety conventions by illegal pointer casting. More sophisticated
pointer analysis methods, such as the one used in (Cherem et al.
2008), could be incorporated into our framework, thereby resulting
in more fine-grained control logic.

if (x)
lock(L)

...
if (x)

unlock(L)

Figure 13.

Another source of conservatism in our con-
trol synthesis phase is the lack of data flow in-
formation in our current prototype, which is also
shared with static analysis tools. Figure 13 il-
lustrates the “false paths” problem (Engler and
Ashcraft 2003). With only control flow infor-
mation, the control synthesis algorithm does not
know that the two conditional branches are paired up if x is not
modified in between, and therefore it mistakenly concludes that this
code might acquire the lock but not release it. The algorithm might
respond by adding unnecessary control logic. This example illus-
trates the fact that our control logic is maximally permissive with
respect to the program model, as formalized by Theorem 1. More
accurate program models, e.g., from data flow analysis, can result
in better control and improved performance by reducing instrumen-
tation overhead and by allowing more concurrency.

Some deadlocks are simply unavoidable. For example, a thread
may repeatedly lock a nonrecursive mutex. In the terminology of
DCT, such programs are uncontrollable, and SBPI responds to the
corresponding Petri net models by emitting negative coefficients
where positive ones are expected (e.g., for arc weights and mark-
ings). Our prototype implementation issues warnings for uncontrol-
lable deadlocks.

A different kind of uncontrollability problem can arise if our
control logic prevents concurrent execution of two program frag-
ments that must run concurrently in order for execution to proceed.
This can occur if one fragment enters a blocking call (e.g., a read
on a pipe) whose return is contingent upon the other fragment (e.g.,
a write to the same pipe). To address this problem, we must include
in our program model all blocking calls, including those whose re-
turn is triggered by phenomena not explicitly modeled. (Condition
variable signal/broadcast is modeled in our current prototype, but

260

blocking system calls are not.) It is then straightforward to iden-
tify cases where our control logic potentially precludes the return
of blocking calls and issue appropriate warnings. If our experience
with real software is any guide, such scenarios are rare in practice:
we have never observed deadlocks caused by a combination of con-
trol logic and, e.g., interprocess communication.

If a program does not merit one or another sort of uncontrolla-
bility warning, we guarantee correct execution; our method never
silently introduces deadlocks or disables program functionality.

In general, our overall approach is well suited to languages
that admit the static modeling, analyses, and control synthesis that
we require. Dynamic constructs do not preclude our approach but
may lead to conservatism, e.g., we handle function calls through
pointers by assuming that the callee may be any function with the
appropriate type signature. Annotations help clarify the ambiguity
caused by dynamic constructs. Our current C/Pthreads prototype
implementation does not model setjmp()/longjmp(), exception
handling, or signal handling.

5. Implementation
We briefly discuss in this section several issues regarding the im-
plementation of our methodology, which is the subject of a separate
paper (Wang et al. 2008a) devoted to our prototype and empirical
evaluation.

5.1 Control Flow Graph

We modified the open source compiler OpenIMPACT (OpenIm-
pact) to construct an augmented control flow graph (CFG) for each
function in the input program. Lock variables (globally declared,
locally declared, or dynamically allocated) are included in the CFG.
In addition, functions calls are listed in each basic block, together
with their argument name and type information. We recognize the
standard Pthread functions automatically. We use programmer an-
notations to recognize wrapper functions, if such functions are used
for the primitive Pthread functions. Basic blocks that contain these
wrapper functions are marked and will be handled appropriately
during the model translation phase.

As discussed in Section 4.3, patterns like the one illustrated in
Figure 13 may lead to spurious deadlock detection. Since our con-
trol synthesis algorithm avoids all potential deadlocks, in large pro-
grams, numerous false control flow paths could result in very con-
servative control logic. Appropriate user annotation alleviates this
problem. We found that function level annotation is highly effec-
tive against false paths. The annotation marks whether a particular
lock type is always or never held upon return from a particular
function. We use a variant of lockset analysis (Savage et al. 1997)
to identify ambiguous functions automatically. In practice, the set
of ambiguous functions is very small and a programmer unfamiliar
with the source can annotate a function in a few minutes. For exam-
ple, the function enclosing the code in Figure 13 could be annotated
to indicate that lock L is never held after the function returns. Our
experience with real-world programs suggests that path-sensitive
data flow analysis tools could eliminate the need for most of the
annotations we added.

5.2 Model Translation

As explained in Section 3.2, we translate each function CFG into a
separate Petri net. Each place in the function Petri net corresponds
to a basic block in the function, and control transfer from one ba-
sic block to another is represented by a transition. Lock places link
lock acquisition/release transitions in these function Petri nets. All
of these model translations are straightforward, but with real-world
programs the difficulty lies in modeling common software prac-
tices that may obfuscate a program’s locking behavior, e.g., locks

accessed through pointers and primitive lock data types enclosed
in wrapper structures that are passed to lock/unlock function wrap-
pers.

With the lock name and type information in the augmented
CFGs, as discussed in the previous subsection, we are able to
identify whether the lock variable in a lock function argument
is a static reference to a lock instance or a dynamic choice of a
certain lock type. A lock type is defined as its wrapper structure
type, i.e., the type of the argument of the wrapper function. In the
case of chained pointers/references as the function argument, we
could either be conservative and consider only the type of the last
node (the default setting), or take the whole chain as the lock type.
In the latter case, a false negative is possible when two different
chains actually refer to the same lock in the end. False negatives
are unacceptable, so we prefer the former approach.

When a lock variable is a static reference, we model the lock
instance as a lock place and link it to the acquisition/release transi-
tions as discussed in Section 3.2. When a lock variable is a dynamic
choice through pointers, we approximate the model by using a lock
place to represent the lock type rather than the actual instance. All
dynamic references of this lock type share the same lock place, and
there is exactly one initial token in the place. If a lock is accessed
by both static address reference and pointers, we still approximate
the model using a lock place to represent the lock type. In our ex-
perience, such mixed references are rare in practice.

Since we model dynamically selected locks by their types, dif-
ferent instances of the same lock type could give false positives for
deadlock, and the end result would be impaired performance. In
real programs, however, most deadlocks reported in bug databases
and change logs involve cyclic wait on different lock types (Lu et al.
2008), i.e., locking hierarchy violations as in the OpenLDAP bug of
Figure 12. Cyclic wait on locks of the same type is uncommon. Our
model simplification matches this typical deadlock pattern well.

5.3 Offline Control Synthesis

The input to the offline control synthesis module is a set of Petri
nets that represents each function in the program. Since a deadlock
may cross function boundaries and involve different parts of the
program, we need to inline these Petri nets for control synthesis, as
described in Section 3.2. However, whole program inlining is not
practical for real programs because of the extensive use of function
pointers and recursions. We instead inline only functions related
to critical regions, i.e., functions that can be called by threads
holding locks. In other words, we collapse regions of the global
inlined Petri net that contain no lock-related operations because
they are irrelevant. With this correctness-preserving performance
optimization, the inlined call depth is typically no more than three.

5.4 Online Control

We have two implementations of the control logic for online con-
trol of the program: library interposition and program instrumen-
tation. Library interposition intercepts library calls, typically lock
acquisition/release functions, and postpones lock acquisition calls
whenever necessary. Library interposition does not modify pro-
gram source code, and therefore can work directly with binaries.
However, as explained in Section 4.2, the control synthesis algo-
rithm must account for the partial observability problem, which
possibly reduces concurrency because of the limited set of observ-
able transitions. Program instrumentation, on the other hand, inserts
control logic code into the program as needed, and therefore can in
principle observe the complete program execution state.

For both implementations, we must correlate program execution
state with corresponding Petri net state. The current execution
function and line number are not sufficient as one function might be
called at different locations and therefore result in different control

261

actions. We need the call stack to map the current program state to
transitions in the Petri net. Our library interposition approach walks
up the call stack from the intercepted library call and identifies
the current transition. With the program instrumentation approach,
for reasons of performance and portability, we instead instrument
functions as necessary with additional parameters that encode the
execution state.

6. Experiments
This section summarizes experimental evaluations of our prototype
implementation. Greatly expanded results on randomly generated
programs, the publish-subscribe benchmark, and OpenLDAP are
available in (Wang et al. 2008b,a).

Randomly Generated Programs Our first test involved ran-
domly generated programs reminiscent of the dining philosophers
problem. These programs repeatedly acquire or release a randomly
selected lock then sleep for a random interval; they deadlock read-
ily. After we apply our deadlock avoidance technique to them, how-
ever, they run indefinitely without deadlock. A comparison of our
customized control synthesis algorithm with a naı̈ve application of
standard SBPI shows that our approach offers scalability benefits in
terms of the off-line computational cost of control synthesis (Wang
et al. 2008b).

Publish-Subscribe Benchmark Our next test involved a
highly concurrent network server benchmark. We implemented a
simple multithreaded publish-subscribe server that can be compiled
in three ways: deadlock-free, deadlock-prone, and atomic-section.
The first employs fine-grained locks correctly and the second ac-
quires locks out of order. The third is compiled using the Intel pro-
totype software transactional memory compiler (Intel). The server
software must perform I/O within critical sections to satisfy an
application-level consistency requirement. It runs on a machine
with a dual-core CPU and four network cards connected to four
client emulators.

As expected, our deadlock avoidance technique automatically
eliminates deadlocks in the deadlock-prone variant. The main pur-
pose of the benchmark test is to evaluate performance rather than
correctness. From the clients, we measured throughput under heavy
load (server saturation) and transaction response times under light
load. Our first result is that our deadlock avoidance approach has
a negligible effect on light-load response times and reduces satu-
ration throughput by roughly 18% compared to the deadlock-free
variant. Our second result is that the atomic-sections version suf-
fers far worse performance overheads: it achieves only about half
of the heavy-load throughput of the dynamic-deadlock-avoidance
version and suffers a 6× increase in response times. This result ini-
tially surprised us until we determined that all I/O was serialized
in the atomic-sections version. This is not a shortcoming in the In-
tel compiler but rather a fundamental consequence of atomic sec-
tions: atomic sections containing I/O must be serialized lest covert
I/O channels violate isolation among them. Our results show that
locks sometimes permit better exploitation of available physical
resources than atomic sections. Our dynamic deadlock avoidance
technique preserves this benefit of locks while eliminating dead-
locks and restoring the composability that locks alone destroy.

OpenLDAP We next applied our method to OpenLDAP, a
popular open-source implementation of the Lightweight Directory
Access Protocol. We tested on OpenLDAP version 2.2.20, which
has a confirmed circular-mutex-wait deadlock bug (OpenLDAP).
The bug was fixed in 2.2.21 but returned in 2.3.13 when new code
was added. The whole program has 1,795 functions and 41 lock
types (i.e., distinct types of structures that contain locks). We an-
notated OpenLDAP’s internal wrapper lock functions and six other
pairs of lock/unlock functions that operate on file or database locks
or call OpenLDAP’s wrappers through pointers. Our implemen-

tation’s first pass took a few seconds and reported 25 ambiguous
functions (i.e., the set of locks held on exit was ambiguous). We
annotated 21 manually; this took slightly more than an hour. The
second pass reported four potential deadlocks: the known deadlock,
two previously unreported ones, and a false positive that is due to
limited data flow analysis. We disabled deadlock avoidance instru-
mentation for the latter and enabled it for the three real deadlocks;
control synthesis terminated in a few seconds, after a single iter-
ation. Performance tests involving three different synthetic work-
loads initially showed negligible performance overheads. We had
to modify the standard OpenLDAP server configuration substan-
tially in order to trigger adverse performance consequences for the
server instrumented with deadlock-avoidance control logic. Worst-
case overheads on client-measured throughput and response times
ranged from 3–10%, depending on the workload.

Apache We also applied our method to the most recent release
of Apache, version 2.2.8. This version of httpd contains 2,264
functions and twelve lock types. Our prototype’s first pass found
28 functions containing false-paths ambiguities, nearly all of which
involve error checking in lock/unlock functions (if the attempt to
acquire a lock fails, they return immediately). After we appropri-
ately annotate these functions, the second pass shows no circular-
mutex-wait deadlock. This finding is consistent with the Apache
bug database, which reports no such deadlocks in version 2.2.8.
When condition variables are included in the model, our analysis
identifies the known deadlock bug in Figure 10 and automatically
synthesizes the control logic depicted in Figure 11.

7. Related Work
This section reviews prior research in Discrete Control Theory and
in atomic sections implemented with transactional memory and
with conventional locks. See (Wang et al. 2008a) for a detailed
review of four traditional approaches to deadlock (static detection,
static prevention, dynamic detection, and dynamic avoidance) and
two new proposals (“healing” and “immunity”).

Discrete Control Theory has matured rapidly since the seminal
work of (Ramadge and Wonham 1987). Comprehensive textbooks
facilitate graduate-level education in Discrete Control (Cassandras
and Lafortune 2007) as the research community expands the fron-
tier of DCT results. The prior work closest our own involves dead-
lock avoidance in manufacturing systems (Li et al. 2008), which
admit restricted models that facilitate analysis and control synthe-
sis; however such models are inappropriate for concurrent software.
Furthermore, much research in this area either fails to achieve max-
imal permissiveness or requires explicit exploration of the reach-
able state space. Our contributions are to leverage Discrete Con-
trol as a principled foundation for dynamic deadlock avoidance in
general-purpose software, and to achieve both scalability and max-
imal permissiveness.

Several recent approaches allow programmers to define atomic
sections that are guaranteed to execute atomically and in isolation.
Transactional Memory (TM) implements atomic sections by opti-
mistically permitting concurrency, detecting conflicts among con-
current atomic sections and resolving them by rolling back exe-
cution (Larus and Rajwar 2007). Rollback is not an option if ir-
revocable actions such as I/O occur within transactions, but such
transactions can be supported as long as they are serialized (Welc
et al. 2008). This is the approach taken in the Intel prototype TM
compiler (Intel). Unfortunately, such serialization can degrade per-
formance and can prevent software from fully exploiting available
physical resources (Wang et al. 2008a).

An alternative approach to implementing atomic sections uses
conventional locks rather than transactions and attempts to asso-
ciate locks with atomic sections in such a way as to maximize con-
currency (McCloskey et al. 2006; Isard and Birrell 2007; Emmi

262

et al. 2007; Cherem et al. 2008). In the simplest case, all locks
associated with an atomic section are acquired upon entry of the
section and released upon exit, which reduces concurrency. More
fine-grained locking strategies acquire locks lazily and/or release
locks eagerly; however, lazy acquisition immediately prior to ac-
cesses of protected variables can imply incorrect lock ordering and
thus deadlock.

In contrast to the paradigm of atomic sections, our approach
brings benefits to legacy lock-based code, imposes no performance
penalty on I/O within critical sections, and exploits detailed knowl-
edge of all possible whole-program behaviors to maximize concur-
rency. Locks provide a more nuanced language for expressing al-
lowable concurrency than existing implementations of atomic sec-
tions, and our approach preserves this benefit. At the same time, our
approach restores the composability that locks destroy and ensures
deadlock freedom, just as atomic sections do.

8. Conclusions
This paper has demonstrated that Discrete Control Theory pro-
vides a formal foundation for dynamic deadlock avoidance in mul-
tithreaded software. We construct program models with structural
features (siphons) corresponding to undesirable runtime behaviors
(deadlocks), and use DCT to synthesize runtime control logic that
provably avoids the latter by constraining the former. Our approach
effectively eliminates deadlocks from the original program with-
out silently introducing new deadlocks or global performance bot-
tlenecks. The control logic that we synthesize is maximally per-
missive, ensuring that runtime concurrency is maximized. Our ap-
proach furthermore reduces runtime overheads by performing the
most computationally expensive steps (siphon analysis and SBPI)
offline, which minimizes the online costs associated with our con-
trol logic. In essence, DCT control logic synthesis performs a deep
whole-program analysis that compactly encodes context-specific
foresight, allowing the runtime control logic to adjudicate lock
acquisition requests quickly, based on current program state and
worst-case future execution possibilities.

Extensive experiments with a C/Pthreads prototype confirm that
our approach scales to real software, eliminates both naturally oc-
curring and injected deadlock faults, and adds negligible to modest
performance overhead. Like atomic sections, our approach restores
composability and thereby reinstates the cornerstones of program-
mer productivity, divide-and-conquer problem decomposition and
software modularity. Unlike atomic sections, our approach is back-
ward compatible with legacy code and programmers. Because it
neither forbids nor penalizes arbitrary I/O in critical sections, it
sometimes enables software to exploit available physical resources
more fully than atomic sections.

Acknowledgments
We thank Eric Anderson, Hans Boehm, Pramod Joisha, Hongwei
Liao, Spyros Reveliotis, and the anonymous reviewers for many
helpful comments.

References
Apache. Apache bug database, 2008. https://issues.apache.org/

bugzilla/index.cgi.

E. R. Boer and T. Murata. Generating basis siphons and traps of Petri nets
using the sign incidence matrix. IEEE Trans. on Circuits and Systems—I,
41(4):266–271, April 1994.

C. G. Cassandras and S. Lafortune. Introduction to Dsicrete Event Systems.
Springer, second edition, 2007.

S. Cherem, T. Chilimbi, and S. Gulwani. Inferring locks for atomic sections.
In PLDI, June 2008.

M. Emmi, J. S. Fischer, R. Jhala, and R. Majumdar. Lock allocation. In
POPL, 2007.

D. Engler and K. Ashcraft. RacerX: Effective, static detection of race
conditions and deadlocks. In SOSP, 2003.

J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury. Feedback Control
of Computing Systems. Wiley, 2004.

L. Holloway, B. Krogh, and A. Giua. A survey of Petri net methods for
controlled discrete event systems. Discrete Event Dynamic Systems:
Theory and Applications, 7(2):151–190, 1997.

Intel. Intel C++ STM Compiler, Prototype Edition, January 2008.

M. V. Iordache and P. J. Antsaklis. Supervisory Control of Concurrent
Systems: A Petri Net Structural Approach. Birkhäuser, 2006.

M. Isard and A. Birrell. Automatic mutual exclusion. In Proc. 11th
Workshop on Hot Topics in Operating Systems, May 2007.

K. M. Kavi, A. Moshtaghi, and D. Chen. Modeling multithreaded applica-
tions using Petri nets. International Journal of Parallel Programming,
30(5):353–371, October 2002.

J. Larus and R. Rajwar. Transactional Memory. Morgan & Claypool, 2007.

Z. Li, M. Zhou, and N. Wu. A survey and comparison of Petri net-
based deadlock prevention policies for flexible manufacturing systems.
IEEE Trans. on Systems, Man, and Cybernetics—Part C, 38(2):173–188,
March 2008.

S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes: a comprehen-
sive study on real world concurrency bug characteristics. In ASPLOS,
2008.

B. McCloskey, F. Zhou, D. Gay, and E. Brewer. Autolocker: Synchroniza-
tion inference for atomic sections. In POPL, 2006.

T. Murata. Petri nets: Properties, analysis and applications. Proceedings of
the IEEE, 77(4):541–580, April 1989.

OpenImpact. OpenIMPACT, 2008. http://www.gelato.uiuc.edu/.

OpenLDAP. OpenLDAP Issue Tracking System, 2008. http://www.
openldap.org/its/.

C. A. Petri. Kommunikation mit Automaten. PhD thesis, Bonn: Institut für
Instrumentelle Mathematik, Schriffen des IIM Nr.3, 1962.

P. J. Ramadge and W. M. Wonham. Supervisory control of a class of discrete
event processes. SIAM J. Control Optim., 25(1), 1987.

W. Reisig. Petri nets. In EATCS Monographs on Theoretical Computer
Science, volume 4. Springer-Verlag, Berlin, 1985.

S. A. Reveliotis. Real-Time Management of Resource Allocation Systems:
A Discrete-Event Systems Approach. Springer, New York, NY, 2005.

S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser:
A dynamic data race detector for multithreaded programs. ACM TOCS,
15(4):391–411, November 1997.

Y. Wang, T. Kelly, and S. Lafortune. Discrete control for safe execution of
IT automation workflows. In EuroSys, 2007.

Y. Wang, T. Kelly, M. Kudlur, S. Lafortune, and S. Mahlke. Gadara:
Dynamic deadlock avoidance for multithreaded programs. In OSDI,
2008a.

Y. Wang, T. Kelly, M. Kudlur, S. Mahlke, and S. Lafortune. The application
of supervisory control to deadlock avoidance in concurrent software. In
Workshop on Discrete Event Systems, May 2008b.

Adam Welc, Bratin Saha, and Ali-Reza Adl-Tabatabai. Irrevocable transac-
tions and their applications. In SPAA, June 2008.

263

