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Abstract:

Deadlock is an increasingly pressing concern as the multicore revolution forces parallel programming upon
the average programmer. Existing approaches to deadl ock impose onerous burdens on devel opers, entail
high runtime performance overheads, or offer no help for unmodified legacy code. Gadara automates
dynamic deadlock avoidance for conventional multithreaded programs. It employs whole-program static
analysisto model programs, and Discrete Control Theory to synthesize lightweight, decentralized, highly
concurrent logic that controls them at runtime. Gadarais safe, and can be applied to legacy code with
modest programmer effort. Gadara is efficient because it performs expensive deadlock-avoidance
computations offline rather than online. We have implemented Gadara for C/Pthreads programs. In
benchmark tests, Gadara successfully avoids injected deadlock faults, imposes negligible to modest
performance overheads (at most 18%), and outperforms a software transactional memory system. Tests on
areal application show that Gadara identifies and avoids both previously known and unknown deadlocks
while adding performance overheads ranging from negligible to 10%.

External Posting Date: August 21, 2009 [Fulltext] Approved for External Publication (éa
Internal Posting Date: August 21, 2009 [Fulltext]

Published in Operating Systems Design & Implementation (OSDI), Dec 2008.

© Copyright Operating Systems Design & Implementation (OSDI), 2008.



Gadara: Dynamic Deadlock Avoidance for Multithreaded Progams

Yin Wang'? Terence Kelly Manjunath Kudlut  Stéphane Lafortunle Scott Mahlket
IEECS Department, University of Michigan 2Hewlett-Packard Laboratories

Abstract Our work addresses circular-mutex-wait deadlocks in

conventional shared-memory multithreaded programs.

leadIOCk 'Slatn mt;reasmgly p”relssmg concern as th%\lthough alternative paradigms such as transactional
mufticore revolution Torces paraliel programming upon memory and lock-free data structures attract increas-

fhekqverage programrtr;er(.j Emstmg apf)roaches tto.;jr?_a(é‘ﬁg attention, mutexes will remain important in practice
OCK IMPOSE ONEToUs burdens on developers, entall N9, - 1 foreseeable future. One reason is that mutexes

runtime performance overheads, or offer no help forare sometimes preferable, e.g., in terms of performance,

unmodified legacy code. Gadara automates OlynamlEompatibility with 1/0, or maturity of implementations.

deadlock avoidance for conventional mult_lthreaded_ P'O°Another reason is sheer inertia: Enormous investments,
grams. It employs whole-program static analysis to

. unlikely to be abandoned soon, reside in existing lock-
modelprograms, and Discrete Control Theory to synthe-based programs and the developers who write them.
size lightweight, decentralized, highly concurrent logic

that controlsthem at runtime. Gadara is safe, and can Decades of study have yielded several approaches

be applied to legacy code with modest programmer eflO deao!lock,_ but none is a panacea. Static de_:adl_ock
fort. Gadara is efficient because it performs expensivé)re\{entlon via ;trlct_glqbal lock-acquisition orderlng IS
deadlock-avoidance computatiosf§iine rather than on- straightforward in principle but can be remarkably diffi-

line. We have implemented Gadara for C/Pthreads pro(_:uIt to apply in practice. Static deadlock detection via

grams. In benchmark tests, Gadara successfully avoidyrogram analysis has made impressive strides in recent

injected deadlock faults, imposes negligible to modes? "> [9,11], but spurious warnings can be numerous and
performance overheads (at most 18%), and outperform@e C_OSt O_f manually r_epawmgenumedea_dlock bugs

a software transactional memory system. Tests on a reffmans high. Dynamic deadlock detectlon may iden-
application show that Gadara identifies and avoids botﬁ'fy_ the pr_oblem too late, when recovery is awkward
previously known and unknown deadlocks while addingor impossible; automated rollback and re-execution can

performance overheads ranging from negligible to 10%.help [37], but irrevpcable actions such as I/Q can pre-
clude rollback. Variants of the Banker's Algorithm pro-

vide dynamic deadlock avoidance, but require more re-
1 Introduction source demand information than is often available and

involve expensive runtime calculations.
Deadlock remains a perennial scourge of parallel pro- Fear of deadlock distorts software development and
gramming, and hardware technology trends threaten tdiverts energy from more profitable pursuits, e.g., by in-
increase its prevalence: The dawning multicore eraimidating programmers into adopting cautious coarse-
brings more cores, but not faster cores, in each new pragrained locking when multicore performance demands
cessor generation. Performance-conscious developers déadlock-prone fine-grained locking. Deadlock in lock-
all skill levels must therefore parallelize software, andbased programs is difficult to reason about because locks
deadlock afflicts even expert code. Furthermore, parallehre not composable: Deadlock-free lock-based soft-
hardware often exposes latent deadlocks in legacy mulare components may interact to deadlock a larger pro-
tithreaded software that ran successfully on uniprocesgram [43]. Deadlock-freedom isglobal program prop-
sors. For these reasons, the “deadly embrace” threatersty that is difficult to reason about and difficult to co-
to ensnare an ever wider range of programs, programerdinate across independently developed software mod-
mers, and users as the multicore era unfolds. ules. Non-composability therefore undermines the cor-



nerstones of programmer productivity, software modu- offine " online
larity and divide-and-conquer problem decomposition. S program TP | Instiumented executable
Finally, insidious corner-case deadlocks may lurk even
within single modules developed by individual expert

programmers [9]; such bugs can be difficult to detect @@

compile

instrumentation

.. . . S flowg logic observe
and repairing them is a costly, manual, time-consuming, [, ansation  control B .
and error-prone chore. In addition to preserving the value ! sylnotﬁg:sis oy sbeon
. etri net c , LT _____0obsenve
of legacy code, a good solution to the deadlock problemQ

will improve new code by allowing requirements rather
than fear to dictate locking strategy, and by allowing pro-
grammers to focus on modular common-case logic rather
than fragile global properties and obscure corner cases.bugs_ It issafeand cannot cause a correct program to
~ This paper presents Gadara, our approach to automaganave incorrectly. It performs control-synthesis com-
ically enabling multithreaded programs to dynamically putationsoffline, greatly reducing the overhead of on-
avoid circular-mutex-wait deadlocks. It proceeds in four|ine control.  While it does impose performance over-
phases: 1) compiler techniques extract a formalbel  hea4s it does not introduce a compulsory global perfor-
from program source code; 2) Discrete Control Theorymancebottleneck(e.g., a mandatory “big global lock”
methods automatically synthesigentrol logicthat dy-  or analogous serialization); its control logic is deceitra
namically avoids deadlocks in the model;iBtrumen- ;a4 fine-grained, and highly concurrent. It works with
tatlon embeds the control logic in the program where it legacy programs and also with existipgpgrammersre-
monitors and controls relevant aspects of program exegyiring no retraining or conceptual reorientation. It nei-
cution; 4) run-time control logic compels the program {0 ther forbids nor discourages unrestricted I/O. Finally, it
behave like thecontrolled model, thereby dynamically gjieves programmers of the burden of global reasoning
avoiding deadlocks. (Gadara is the Biblical place wheregp ot composability and corner-case deadlock faults.

a miraculous cure liberated a possessed man by banish-We have implemented Gadara for C/Pthreads pro-
ing en masse a legion of demons.) o grams. Our experiments show that Gadara enables
Gadara intelligently postpones lock acquisition at-geadlock-prone software to avoid deadlock at runtime.
tempts when necessary to ensure that deadlock cann@fadara furthermore imposes only modest performance
occur in a worst-case future. Sometimes the net effechverheads, which compare favorably with those of a
is to alter the scheduling of threads onto locks; in otherggftware transactional memory system. This paper de-
cases, a thread requesting a lock must wait to acquire ¥cribes the Gadara methodology and our prototype im-
even though the lock is availablé&sadara may thereby plementation and presents experiments on benchmark
impair performance by limiting concurrency; program software and on a real application, the OpenLDAP di-
instrumentation is another potential performance overrectory server. Additional technical details on the Dis-
head. Gad_ara strives to meddle as little as_possmle whilgrete Control Theory techniques underlying Gadara and
guaranteelng deadl_ock avmdance,_and Discrete Contr@xperiments on randomly generated programs are avail-

Theory provides a rigorous foundation that helps Gadargp|e in [46].

avoid unnecessary instrumentation and concurrency re- The remainder of this paper is organized as follows:

duction. In practice, we find that the runtime perfor- gection 2 provides an overview of our approach and Sec-
mance overhead of Gadara is typically negligible and alyjon 3 introduces elements of Discrete Control Theory

ways modest—at most 18% in all of our experiments.centra| to Gadara. Section 4 describes how we extract
The computational overhead of Gadara’s offline phasegitaple models from program source code, Section 5 ex-
(modeling, control logic synthesis, and |nstrumentat|0n)p|ains how Gadara synthesizes control logic from such

is similarly tolerable—no worse than the time required ,o4els. and Section 6 describes Gadara’s program in-
to build a program from source. Programmers may Sesiymentation and run-time control. Section 7 presents

lectively override Gadara by disabling the avoidance ofgr experimental results. Section 8 surveys related work,
some potential deadlocks but not others, e.g., to Improve 4 section 9 concludes.

performance in cases where they deem deadlocks highly
improbable.

Gadara offers numerous benefits. It dynamically2 Overview of Approach
avoids both deterministic/repeatable and also nondeter-
ministic deadlocks. It guarantees tladitcircular-mutex-  Figure 1 shows the architecture of Gadara. The of-
wait deadlocks are eliminated from a program, and doedline calculations depicted on the left involve three steps.
not introduce new deadlocks or other liveness/progreskirst, Gadara automatically constructs a formal model

Figure 1: Gadara Architecture.



from a whole-program Control Flow Graph (CFG) ob- most real-world programdo admit useful static analy-
tained at compile time. This step involves enhancing thesis. Gadara builds a program model for which synthesiz-
standard CFG construction procedure and translating thimg deadlock-avoidance control logic is decidable. The
enhanced graph into a formal model suitable for Discretenodel is conservative in the sense that it causes control
Control Theory (DCT) analysis and control logic synthe- intervention when static analysis cannot prove that inter-
sis. Second, Gadara synthesizes feedback control logiention is unnecessary. The net effect is that superfluous
from the model by using DCT techniques. We improvecontrol logic sometimes harms performance through in-
the computational efficiency of standard DCT algorithmsstrumentation overhead and concurrency reduction.
by supplementing them with special-purpose strategies A second source of conservatism ansq@
that expl0|t the structure of the model. Third, the Synthe-fr()m a limitation in our current proto- | ock( L)
sized feedback control logic guides source code instrutype: Gadara’s offline phases empha- -
mentation. The key objective of this step is to minimize size control flow, performing only lim-'f (X)
the online overhead of updating control-related state angted data-flow analyses: in this respect, unl ock(L)
implementing the control actions. Finally, online exe- Gadara resembles many existing static analysis tools.
cution of the instrumented program proceeds accordinghe code above illustrates the “false paths” problem [9].
to the familiar observation-action paradigm of feedbackGadara does not currently know that the two conditional
control. In our problem, control logic delays lock acqui- branches share identical outcomes ifs not modified
sitions to ensure deadlock-free execution of the originabetween them, and therefore mistakenly concludes that
program. this code might acquire the lock but not release it. In
An important goal of Gadara’s control synthesis phasehe context of a larger program, false paths might cause
is a property called “maximally permissive control” Gadarato insert superfluous control logic that may need-
(MPC). In the present context, MPC means that the conlessly reduce run-time concurrency.

trol logic will postpone a lock acquisition only if the pro-  As with many existing program checkers, imperfect
gram model indicates that deadlock might occur in thedata flow analysis may cause unaided Gadara to iden-
future execution of the program if the lock were grantedtify large numbers of spurious potential deadlocks. We
immediately. In other words, control strives to avoid therefore introduce a novel style of programmer-supplied
inhibiting concurrency more than necessary to guaranannotation that allows Gadara to eliminate many such
tee deadlock avoidance. (One could of course ensur€alse positives.” A first pass of Gadara directs the pro-
deadlock-freedom in many programs by serializing allgrammer to problematic functions associated with large
threads, but that would defeat the purpose of parallelizanumbers of suspected potential deadlocks. The program-
tion.) We are able to make formal statements about MPGner may then annotate these functions to aid a second
because Gadara employs a model-based approach apdss of Gadara, which typically identifies far fewer po-
uses DCT algorithms that guarantee MPC. tential deadlocks by exploiting the annotations. In prac-
Numerous challenges arise in the application oftice, it is not difficult to annotate real programs correctly
Gadara to real-world programs. We must enhance thand comprehensively. The number of functions that re-
standard CFG to obtain a formal model that more accuquire inspection after the first pass is typically small
rately captures program behavior; pointer analysis ané@nd it is straightforward for the programmer to annotate
related difficulties loom large in this area. Imperfec- them appropriately. Omitted annotations can reduce per-
tions in the formal model can complicate the problem offormance and incorrect annotations can prevent Gadara
achieving MPC during the control synthesis phase. Infrom avoiding deadlocks already present in the program,
strumentation must be tolerably lightweight to minimize but neither compromise safety or correctness. Similarly,
runtime overhead. Subsequent sections discuss in detailegal pointer casts involving wrapper structures con-
how we address these challenges. taining mutexes can confuse Gadara and void the guar-
Gadara’s limitations fall into two categories: those thatantee of deadlock-freedom.

are inherent in the problem domain, and those that are Gadara’s model-based approach entails both benefits
artifacts of our current prototype. A trivial example of and challenges. Gadara requires that all locking and syn-
the former is that Gadara cannot avoid inevitable deadehronization be included in its program model; Gadara
locks, e.g., due to repeatedly locking a nonrecursive murecognizes standard Pthreads functions but, e.g., home-
tex; Gadara issues warnings about such deadlocks. Armrew synchronization primitives must be annotated. To
other limitation inherent to the domain involves the unde-be fully effective, Gadara must analyze and potentially
cidability of general static analysis [22]. It is well known instrument a whole program. Whole-program analy-
that no method exists for statically determinimigh cer-  sis can be performed incrementally (e.g., models of li-
tainty any non-trivial dynamic/behavioral property of a brary code can accompany libraries to facilitate analy-
program, including deadlock susceptibility. However, sis of client programs), but instrumenting binary-only li-



braries with control logic would be more difficult. On a controller that provably achieves given specifications,
the positive side, a strength of a model-based approacas opposed to verifying that a given controller (possibly
is that modeling tends to improve with time. For exam-obtained in an ad hoc or heuristic manner) satisfies the
ple, enhanced data-flow analysis can improve Gadara'specifications. DCT control is correct by construction,
models and thereby reduce its runtime overhead. Furebviating the need for a separate verification step.
thermore, Gadara’s modeling framework facilitates ex- Wallace et al. [45] proposed the use of DCT in IT
tensions. Petri nets model language features and librargutomation for scheduling actions in workflow manage-
functions handled by our current Gadara prototype (callsnent. We proposed a failure-avoidance system for work-
through function pointers, gotos, libpthread functions)flows using DCT [47]. However, these prior efforts
and also extensionsétj np()/1ongj np(), IPC).  assume severely restricted programming paradigms.
Some phenomena may be difficult to handle well in ourGadara moves beyond these limitations and handles mul-
framework, e.g., lock acquisitions in signal handlers, buttithreaded C programs. DCT has not previously been
most real-world programming practices can be accomapplied in computer systems for deadlock avoidance in
modated naturally and conveniently. general-purpose software. The finite-automata models of
With a modicum of programmer assistance in the formour previous work [47] were adequate since the control
of annotations, Gadara’s run-time performance overheaglow state spaces of workflows are typically quite small.
ranges from negligible to modest. Section 7 presents exin the present context, however, automata models do not
perimental results that quantify these overheads. Beforgcale sufficiently for the large C programs that Gadara
explaining the details of Gadara’s phases, we review eletargets. Gadara therefore employs Petri net models.

ments of DCT crucial to Gadara’s operation. As illustrated to the right, Petri . | .
nets are bipartite directed graphg? b ZC?
3 Discrete Control Theory containing two types of nodes:
places shown as circles, anttan- Ar AZT

o C
U U,

computer systems problems [14]. However, this researckensin places are shown as dots,
appliedclassical controto time-driven systems modeled and the number of tokens in eac
with continuous variables evolving according to differ- place is the Petri net's state, or
ential or difference equations. Classical control cannotmarking Transitions model the () RO
modellogical properties (e.g., deadlock) in event-driven occurrence of events that change
systems. This is the realm of Discrete Control Theorythe marking.
which considersliscrete event dynamic systewith dis- Arcs connecting places to a transition represent pre-
crete state variables and event-driven dynamics. As irtonditions of the event associated with the transition. For
classical control, the paradigm of DCT is to synthesizeinstance, transitios; in our example can occur only if
a feedback controller for a dynamic system such that théts input placedk; andL each contain at least one token;
controlled system will satisfy given specifications. How- in this case, we say th#; is enabled Similarly, A; is
ever, the models and specifications that DCT addressemnabled, but all other transitions in the example are dis-
are completely different from those of classical control,abled. Here, one can think of places representing the
as are the modeling formalisms and controller synthesistatus of a lock: it is empty, the lock is not available; if
techniques. DCT is a mature and rigorous body of theL contains a token, the lock is available. Thus this Petri
ory developed since the mid-1980s. This section brieflynet models two threads, 1 and 2, that each require the
reviews the specific methods that Gadara employs; seleck. PlaceR; represents the request for acquiring the
Cassandras & Lafortune for a comprehensive graduatdeck for threadi, i = 1,2, with transitionA; represent-
level introduction to DCT [5]. ing the lock acquisition event. The two lock requests are
Finite-state automata and Petri nets [31] are two comin conflict: The lock can be granted to only one thread
mon modeling formalisms used in DCT, and they areat a time. If transitionA; fires it consumes one token
well suited for studying deadlock and other logical cor-from each input plac®; andL and deposits one token
rectness properties of discrete event dynamic systemsn its output plac€;, which models the critical region of
Given a model of a system in the form of an automa-thread 1. In general, the firing of a transition consumes
ton or a Petri net, DCT techniques can construct feedtokens from each of its input places and produces tokens
back controllers that will enforce logical specifications in each of its output places; the token count need not re-
such as avoidance of deadlock, illegal states, and illegahain constant. AfteA; fires, A, becomes disabled and
event sequences. DCT is different from (but complemenmust wait forU; to occur (lock release by thread 1) be-
tary to) model checking [6] and other formal analysis fore it becomes enabled again. Pldgaepresents that
methods: DCT emphasizes automatically synthesizinghreadi has finished.

Prior research has applied feedback control techniques t®tions shown as solid barsTo- ?



DCT control logic synthesis techniques for Petri netsgies for siphon analysis that exploit the special struc-
exploit the structure of Petri nets for computational effi- ture of our Petri net models and employ recent results
ciency, avoiding an enumeration of the state space (tha DCT [26]. These strategies accelerate convergence of
set of all markings reachable from a given initial mark- Gadara’s iterative algorithm while preserving the MPC
ing) [15]. This is a key advantage of Petri nets over au-property.
tomata, which by construction enumerate the entire state In summary, siphon analysis and SBPI augment the
space and thus do not scale to large systems. In a Peprogram’s Petri net model with control places that en-
net, state information is distributed and “encoded” as thecode feedback control logic; this process doesenu-
contents of the places. merate the reachable markings of the net. The control

Many of the techniques for analyzing the dynamiclogic is provably deadlock-free and maximally permis-
behavior of a Petri net employ linear algebraic manip-sive with respect to the program model. Program instru-
ulations of matrix representations [31]. In turn, thesementation ensures that the online behavior of the pro-
techniques underlie the control synthesis methodolog@gram corresponds to that of the control-augmented Petri
known as Supervision Based on Place Invariants (SBPI)net. Gadara control logic and corresponding instrumen-
see [19,30] and references therein. Gadara uses SBPI fttion are decentralized, fine-grained, and highly con-
control logic synthesis. In SBPI, the control synthesiscurrent. Gadara introduces no global runtime perfor-
problem is posed in terms of a set of linear inequalitiesmance bottleneck because there is no centralized allo-
on the marking of the Petri net. SBPI strategically addscator (“banker”) adjudicating lock-acquisition requests
control placesand tokens in these, to the Petri net. Thesenor is there any global lock-disposition database (“ac-
control places restrict the behavior of the net and guarancount ledger”) requiring serial modification.
tee that the given linear inequalities are satisfied at all
reachaple markings. Moreover, t_he control actions provy Modeling Programs
ably satisfy the MPC property with respect to the given

control specification. In our example Petri net, one couldye yse the open source compiler OpenIMPACT [35] to
interpret placel as a control place that ensures that thegonstruct an augmented control flow graph (CFG) for
sum of tokens irC; andC; never exceeds 1. Given this each function in the input program. Each basic block is
Petri net without placé and its adjacent arcs, and given 3ugmented with a list of lock variables that are acquired
the constraint that the total number of token<inand oy released) and the functions that are called within the
C, cannot exceed 1, SBPI would automatically &dds  pasic block.
arcs, and its initial token. In SBPI, the online control | ek functions We recognize standard Pthreads
logic is therefore “compiled” offline in the form of the ' fynctions and augment the basic blocks from which they
augmented Petri net (with control places). During on-are called. Recognized functions include the mutex, spin,
line execution, the markings of the control places dictateyng reader-writer lock/unlock functions and condition
control actions. SBPI terminates with an error message i{;ariable functions. Large scale software often uses wrap-
the system is fundamentally uncontrollable with respechyer functions for the primitive Pthread functions. It is
to the given specifications. For Gadara, an example of aReneficial to recognize these wrapper functions, which
uncontrollable program is one that repeatedly acquires @ppear higher up in the call tree where more information
nonrecursive mutex. is available about the lock involved (e.g., the structures
Gadara achieves deadlock avoidance by combininghat enclose it). We rely on programmer annotations to
SBPI withsiphonanalysis [4]. A siphon is a set of places recognize wrapper functions. The programmer annotates
that never regains a token if it becomes empty. If a Petrihe wrapper functions at the declaration site using pre-
net arrives at a marking with an empty siphon, no transiprocessor directives, along with the argument position
tion with an incoming arc from any of the siphon’s placesthat corresponds to the lock variable. Basic blocks that
can ever fire. We can therefore establish a straightforeg]| wrapper functions are marked as acquiring/releasing
ward correspondence between deadlocks in a prograimcks.
and empty siphons in its Petri net model. Lock variables Every lock function call site in
Gadara employs SBPI to ensure that siphons correa basic block is also augmented with the lock vari-
sponding to potential circular-mutex-wait deadlocks doable it acquires/releases. Wrapper lock functions typ-
not empty. The control places added by SBPI may creically take wrapper structuresas arguments, which ul-
ate new siphons, so Gadara ensures that newly creatdithately embed the lock variable of the primitive type
siphons will never become empty by repeated applicatiompt hr ead_nmut ex_t . The argument position used in the
of SBPI. Gadara thus resolves deadlocks introduced bgnnotation of a wrapper function automatically marks
its own control logicoffling, ensuring that no such dead- these wrapper structure types. We definbbek type
locks can occur at run time. We have developed strateas the type of the wrapper structure that encloses the



primitive lock. Basic blocks are augmented with the detected for this scenario. In a real executiolN i the
names of the lock variables if the lock acquisition is di- maximum number of threads that will ever be spawned,
rectly through the ampersand on a lock variable (e.g.and deadlock can occur only when the number of con-
I ock( &M ). If a pointer to a lock type is passed to the current threads exceed§ then Gadara will conserva-
lock function at the acquisition site, then the basic blocktively add control logic to address the spurious deadlock;
is annotated with the lock type. the runtime cost of this superfluous control is typically

Translation to Petri nets Translating the CFG intoa a constant. We identify potential thread entry functions
Petri net follows the methodology described in Section 3in two ways: as statically resolvable pointers passed to
A detailed discussion of modeling Pthread functions carpt hr ead_cr eat e() , and as entry points in the global
be found in [21]. Here, we focus on practical issues refunction call graph; programmer annotations can elimi-
lated to modeling real-world programs. nate some of the latter.

We translate each function’s CFG into a Petri net in  Pruning the Petri net Real programs could result
which each transition has a single input place and a sinin a large Petri net, slowing offline control logic syn-
gle output place. Each basic block in the function is rep-thesis. However, logic unrelated to mutexes constitutes
resented by a place in the Petri net, and control transfeihe vast majority of real programs. We therefore per-
from one basic block to another is represented by a tranform a correctness-preserving performance optimization
sition. Function calls are modeled by substituting intofor the offline control logic synthesis phase by remov-
the call site a copy of the callee’s Petri net model, i.e.,ing such irrelevant areas of program logic from the Petri
our overall Petri net represents the program’s glabal net model. We prune the original Petri net to a much
lined CFG. smaller equivalent by removing functions that do not call

Recursion Recursive function calls are handled lock-related functions directly or indirectly, and then by
somewhat like loops when building the inlined CFG for further reducing the representations of the functions that
control synthesis. For each function in a recursion, we'emain. Function removal involves straightforward anal-
inline exactly one copy of its Petri net in the model. TheYsis of the global function call graph, but function re-
recursive call of the function is linked back to the Petri duction is a more elaborate procedure; see [46] for the
net representing the topmost invocation of the functiondetails. An important property of our pruning algorithm
in the call stack. Control synthesis need not distinguistS that it preserves the mapping from Petri net places to
these “Specia|" |Oops from normal |00pS. For Contro' in_ baSiC blOCkS in the Original program, Wh|Ch faci”tates the
strumentation, when there are control actions associate@nline control implementation.
with recursive functions, we need to correctly identify
entry and return from the recursive call. We augmentthes  Offline Control Logic Synthesis
function parameter to record the depth of the recursion.

Locks Each statically allocated lock is added to Gadara synthesizes maximally permissive control logic
the net as anutex placewith one initial token. In ad- using specialized versions of standard Discrete Control
dition, every unique lock type (i.e., wrapper structure Theory methods. This section explains the basics of our
type) has its own mutex place. An acquisition of a stat-procedures; several correctness-preserving optimizstio
ically allocated lock is modeled as an arc from its cor-speed up control logic synthesis, as described in [46].
responding mutex place to the transition corresponding As explained in Section 3, control logic synthesis in
to the lock acquisition. However, an acquisition throughGadara iteratively identifies siphons in a Petri net corre-
a lock pointer is conservatively approximated as an argponding to deadlocksin a real program and uses SBPI to
from the single place corresponding to the lock type toadd control places that ensure deadlock avoidance. SBPI
the corresponding transition. Note that this approxima-operates on R x T matrix representation of the Petri net
tion does not miss any deadlock bugs, but could lead tatructure, wher® andT, respectively, are the number of
conservative control. For example, a circular wait de-places and transitions in our pruned Petri net. The com-
tected by Gadara may not be a real deadlock since thputational cost of a single iteration of SBPII$PT?) us-
threads might be waiting on different lock instances ofing naive methods; Gadara’s methods are usually faster
the same lock type. Section 5 revisits spurious deadlocksecause they are specialized to sparse matrices, which
and shows how programmer annotations can help Gadatwe common in practice. In the worst case, the cost of
distinguish them. siphon detection is exponential in the number of distinct

Thread creation We model thread creation by lock types held by any thread at any instant; better worst-
marking the input places of functions spawned bycase performance is unlikely because MPC logic synthe-
pt hr ead_cr eat e() with an infinite number of to- sisis NP-hard even in our special class of Petri nets [38].
kens. This models the scenario in whighy number of  In practice, however, Gadara’s entire control logic syn-
threads could be running concurrently, and deadlock ighesis phase typically terminates after a single iteration



1 : L_rdw_w ock(&E.c_rw ock); [ * LOCK( A) */

For a real program like OpenLDAPI apd, it is more gadara wl ock_and._depl et e( &E. ¢_rwl ock,

than an order of magnitude faster than runnireke &ctriplace):
(seconds vs. minutes). 2 ...

Deadlock faults may involve distinct lock types, or i - L_mutex_| ock(&E. | ru_mt ex); [+ LOCK(B) +/
multiple instances of a single type. Gadara uses standagg . i_'_'r dwr _wunl ock( &E. ¢_rw ock) ; [« UNLK( A) */

SBPI control synthesis procedures to identify the for-6 : ...
mer and synthesize satisfactory control logic. Becaus€ : if (E c_cursize > E c_maxsize) {

Gadara’s modeling phase substitutes logbesfor lock 8 For (el ru

. . : = Ec_lrutail; elru;
instanceshowever, standard DC'_I' tech_nlques c_ietect but elru = el ;r—e\r,tj ?|++) {e "

cannot remedy deadlock faults involving multiple lock 10: o

instances of the same lock type. This is not a shortcom11: L_rdw _w ock(&E. c_rw ock);  /+LOCK(A)*/

ing of DCT, but rather a consequence of a modeling sim+2
plification forced upon us by the difficulty of data flow 74.
analysis, as discussed in Section 4. 15:  }
Deadlock potentials involving,y,i | ¢ ( L. gadara_repl eni sh(&ctrl pl ace);

lock instances all of the same type |ock(&a[i])); 17: }

can arise, e.g., in the code on the el se gadara_repl eni sh(&ctrl pl ace);
right. Gadara cannot determine which lock instances aré8:
acquired by this loop, nor the acquisition order. Gadara®

does, however, know that all acquired locks in am@y . ] .
are of the same lock type (call W. Gadara therefore Figure 2: O_penLDAP dead!ock,f‘)ug #3494 For clarity,
two long strings are abbreviatetd™and “E.

serializes the acquisition phasts locks of this type by
adding control logic that prevents more than one thread

from acquiring multiple locks of typ&\Vconcurrently,

e.g., no more than one thread at a time is permitted tdPoning this lock acquisitiongven if lock A is available
execute the code above. (e.g.,ifthread is at line 6). Ift branches over the body of

This approach guarantees deadlock avoidance, bl}pel f on line 7,.0r if it ex.ecu'Fes line 13, Gadara knows
may be deemed unnecessary by programmers: In pra{:hatt canqot be involved in this deqdlock bug anq there-
tice, most real deadlock bugs involve differentlocktypes,fore permits other threads to acquire the lock at line 1.
since it is relatively easy to ensure correct lock ordering We instrument the code as follows: we re-
within the same lock type. We have inspected numerplace the boldface lock-acquisition call on line 1
ous deadlock bugs in real code, including, e.g, examplesf the original code with a call to wrapper func-
from [9,27], and determined that nearly all involve mul- tion gadar a_wl ock_and_depl et e( ), which atom-
tiple lock types. The programmer may therefore choosdcally depletes the token in the control place that
to disable Gadara’s deadlock avoidance for deadlocks inGadara has added to address this deadlock and calls
volving a single lock type (all such deadlocks, or individ- the program’s original lock function.  Calls to
ual ones). gadar a_r epl eni sh() restore the token to the con-

The control logic that Gadara synthesizes is typicallytrol place when it is safe to do so, permitting other
far more subtle than in the simple example discussedhreads to pass the modified line 1. MPC guarantees
above. Most of the subtlety arises from three factorsthat these replenish calls are inserted as soon as possi-
complicated branching in real programs, the constrainple, while preserving deadlock-free control. The con-
that Gadara’s run-time control logic may intervene onlytrol place is implemented with a condition variable;
by postponing lock acquisitions, and the demand forthe depl et e function waits on this condition and the
MPC. We illustrate a more realistic example of deadlock-f €pl eni sh function signals it.
avoidance control logic using an actual OpenLDAP bug This example shows that Gadara’s control logic is
shown in Figure 2, to which we have added clarifying lightweight because it adds only a simple condition vari-
comments; Gadara instrumentation is shown in italics. able wait/signal to the code. It is alsecentralizecand

Correct lock acquisition order is alphabetical in the thereforehighly concurrentbecause it affects only code
notation of the comments. Deadlock occurs if onethat acquires or releases locks A and B; threads acquir-
thread reaches line 10 (holding lock B and requesting A)ng unrelated locks are completely unaffected by the con-
while another reaches line 2 (holding A, requesting B).trol logic that addresses this deadlock fault, and no cen-
Gadara'’s control logic addresses this fault as follows: Letral allocator or “banker” is involved. Gadara’s control
t denote the first thread to reach line 1. Gadara immedilogic is fine grained because it addresses this specific
ately forbids other threads from passing line 1 by post-fault with a dedicated control place; other potential dead-

L_rdw _wunl ock(&E. c_rw ock); /*UNLK(A)*/

L_mut ex_unl ock( &E. | ru_mnut ex) ; / * UNLK( B) */



locks are addressed with control places of their own. Fi6  Instrumentation and Control
nally, note that Gadara leaves the majority of the origi-

nal lock/unlock calls completely unaffected; these Ca"STh fth Loai hesis algorithm i
therefore incuzeroGadara overhead. e output of the control logic synthesis algorithm is an

augmented version of the input Petri net, to which con-
trol places with incoming and outgoing arcs to transi-
Annotations Like many state-of-the-art static analy- tions in the original Petri net have been added. An out-

sis tools, Gadara’s modeling and control logic synthesigyoing arc from a control place delays the target transition
phases do not analyze data flow. As noted in Section 2until a token is available in the control place; the token
false control flow paths lead directly to the detection ofjs consumed when the transition fires. An incoming arc
spurious deadlock potentials. Whereas a static analysiom a transition to a control place replenishes the con-
tool like RacerX [9] may strive to rank suspected dead-trol place with a token when the transition fires. Outgo-
lock bugs to aid the human analyst, Gadara is conservang arcs from control places always link to lock acquisi-
tive and therefore treatdl suspected deadlocks equally tion calls, which are the transitions that Gadara’s runtime
by synthesizing control logic to dynamically avoid them. control logiccontrols Incoming arcs originate at transi-
Gadara encourages the programmer to add annotatiofigns corresponding to lock release calls or branches that
that help rule out spurious deadlocks by showing wherehe control logic musbbserve
annotations are likely to be most helpful; annotations re-
duce runtime overhead by reducing instrumentation an(ilo
control.

Gadara’s runtime control consists of wrappers for
ck-acquisition functions, a control logic state update
function, and local variables inserted into the program
during instrumentation. The wrappers handle control ac-
We found that function-level annotations can greatlytions by postponing lock acquisitions; the update func-
reduce the false positive rate with modest programmetion observes selected runtime events and updates control
effort. Many false positives arise because Gadara bestate. Both the wrappers and the update function must
lieves that a lock type acquired within a function may or correlate program execution state with the corresponding
may not be held upon return; we call such functians  Petri net state. Because widined functions to create the
biguous Programmer annotations can tell Gadara thafPetri net, the runtime control logic requires more con-
a particular lock type islwaysor neverheld upon re-  text than just the currently executing basic block in the
turn from a particular function, thereby disambiguating function-level CFG. The extra information could be ob-
it. This is alocal property of the function and is typi- tained by inspecting the call stack, but we instead instru-
cally easy to reason about. In our experience, a persoment functions as necessary with additional parameters
with little or no knowledge of a large real program such that encode the required context. In practice, the control
as OpenLDAP can correctly annotate a function in a fewlogic usually needs only the innermost two or three func-
minutes. A first pass of Gadara uses a static variant ofions on the stack, and we add exactly as much instru-
lockset analysis [9, 39] to identify ambiguous functions, mentation as required to provide this. For real programs,
which are not numerous even in large programs. Afteronly a handful of functions require such instrumentation.
the programmer annotates these, Gadara’s second pas

. . o “As illustrated in Figure 2 and the accompanying dis-
exploits the annotations to reduce false positives.

cussion, we replace the native lock-acquisition functions
with our wrappers only in cases where the correspond-

We have identified two other;¢ (¢ 1= | ock(am) ing transitions in the Petri net are controlled, i.e., tran-
patterns, shown on the right, that return ERROR sitions with incoming arcs from a control place. The
frequently cause false positives,; ook ey : wrapper function depletes a token from the control place
that our annotations can elimi- and grants the lock to the thread. If the control place is
nate. In the first case, Gadar@,cy(estructptr->um: empty, it waits on a condition variable that implements
cannot tell that the error return. .. the control place, which effectively delays the calling
occurs only when the mutex ac? " #&(structptr): thread. For transitions with an outgoing arc to a con-

quisition fails. In the second case, a function acquires drol place, we insert a control update function that re-
mutex embedded within a dynamically allocated wrap-plenishes the token and signals the condition variable of
per structure and frees the latter before returning, withthe control place. In certain simple cases, control places
out bothering to unlock the enclosed mutex. In a varianttan be implemented with mutexes rather than condition
of the second pattern, the function aborts the entire provariables. In all cases, control is implemented with stan-
gram without unlocking the mutex. Annotations reassuredard Pthread functions. Gadara carefully orders the locks
Gadara that the enclosing function never returns holdingised in the implementation so that instrumentation itself
a live mutex. introduces no deadlocks or other liveness/progress bugs.



The net effect of instrumentation and control is to Subscribe operations atomically insert a client ID in a
compel the program’s runtime behavior to conform tochannel record and a channel ID in a client’s subscrip-
that of the controlled Petri net model. The control logic tion list, thus modifying both tables. Publish operations
intervenes in program execution only by postponing lockupdate the state of a channel and broadcast the result to
acquisition calls. Runtime performance penalties are duall of its subscribers. Snapshots first copy the requesting
to control state update overhead and concurrency reduclient’s list of subscriptions and then traverse the chan-
tion from postponing lock acquisitions. The former over- nel table, sending the client the current state of all chan-
head for a given lock-acquisition function call is propor- nels on the list. The server employs a fixed-size pool of
tional to the number of potential deadlocks associatedvorker threads (12 in all of our experiments) and ensures
with the call. In practice, we found control update over- consistent access to shared data via medium-grain lock-
head negligible compared to the performance penalty oing: one mutex per hash table bucket. An additional mu-
postponing lock acquisitions; MPC helps to mitigate thetex per network interface ensures atomicity of snapshot
latter. replies. A deadlock-free variant of the server acquires
locks in a fixed global order; it is straightforward to in-
ject deadlock faults by perturbing this order. We replaced
locks withat omi ¢ { } blocks to obtain a variant suit-

We conducted experiments to verify Gadara’s dynammable for the Intel C/C++ compiler's prototype STM ex-
deadlock avoidance capabilities, measure its perfortenSIon [18,33].

mance overheads, and compare it with an alternative We ran our benchmark tests
method of guaranteeing deadlock-free execution. Sedn the test environment depicted Server
tion 7.1 employs several variants of a benchmark appliat right. The server is an
cation in experiments that exercise Gadara’s ability toHP Compag dc7800 CMT with _ — - -
exorcise injected deadlock bugs, evaluate Gadara’s im8 GB RAM and a dual-core In St sl st [swich

pact on both throughput and response time, and compatel 2.66 GHz CPU running 64-cfient [client] [client] [client]
Gadara with a software transactional memory (STM) im-bit SMP Linux kernel 2.6.22.

plementation. Section 7.2 shows that Gadara automatour identical dc7800 USD clients with 1 GB RAM and
ically eliminates one known nondeterministic deadlockone 2.2 GHz dual-core Intel CPU each running 64-bit
bug and two previously unreported potential deadlocks ir6MP Linux kernels 2.6.23 are connected to separate net-
OpenLDAP, and measures Gadara’'s performance ovework interface cards on the server via dedicated Cisco
head on OpenLDAP. The benchmark deadlock fault in-10/100 Mbps Fast Ethernet switches.

volves common-case code, but the OpenLDAP bug in-
volves corner-case code. Section 7.3 briefly summarizes
our experience applying Gadara to a deadlock-free pro—
gram, Apache. Earlier experiments involving randomly
generated “dining philosophers” programs are reporte
in [46].

7 Experiments

Each client machine emulates 1024 clients. Each em-

ulated client first subscribes to 50 different randomly
selected channels, then each client machine issues ran-
om publish/snapshot requests, with request type, client

D, and channel ID selected with uniform probability;
each client machine issues a total of 250,000 requests.
The client emulator carefully checks replies for evi-
7.1 Benchmark dence of server-end races, e.g., publication output inter-

We implemented in C/Pthreads a simple client—servelle"j‘ve.d V_Vith snapshot repli_e_s (the Iatt.era_re supposed to be
publish-subscribe applicationpuBsuBg, to facilitate at.omlc), WE Saw no suspicious rephes In our tests.. The
fault-injection experiments and comparisons with STM.Cllent emulator generates open-arrival req.uests, which al
At a high level, the main logic of the server resem- lows us to control server load more readily [40], by us-

bles the “listener pattern” popularized by Miller [28] and {/T/g f:srizitLi'[eeetC;et’;istst?)flStf;jsfﬂ;iz'{l’?/;’ngngeea:’dtv:/?)plles.
Lee [25] to exemplify a simple, useful, and widespread

programming pattern that is remarkably troublesome uncond|t|ons in heavy-load tests, clients issue requests as
der concurrency. OUPUBSUB Server supports three op- rapidly as possible; light-load tests add inter-request de

erations: clients magubscribeto channelspublishdata lays to throttle request rates to within server capacity.

to a channel, and requessiaapshobf all of their current The table below presents mean server-to-client band-
subscriptions. widths under heavy load and mean response times under
The server maintains two data structures: a table ofight load measured at one of our four symmetric client
each client’s subscription lists, indexed by client ID, andmachines (results on the other client machines are sim-
a table of channel state and subscriber lists, indexed bijar). These results are qualitatively representative of a
channel ID. Both are implemented as open hash tablesvider range of experiments not reported in detail here.



puBsuB  HeavylLoad  LightLoad ter are used. If our goal is to exploit available phys-

variant  b/w (Mbit/s)  resp. time (ms) ical resources fully, we would currently choose locks
DL-free 94.25 10.83 over TM; Gadara removes a major risk associated with
Gadarized 76.88 10.52 this choice. The STM implementation that we used fur-
ST™ 47.15 66.70 thermore requires additional work from the programmer

The deadlock-free variant @uBsUB (DL-free) repre- beyond defining atomic sections, e.g., function annota-

sents best-case performance for any deadlock-prone (bHPnS; the total amount of programmer effort required to

race-free) variant. Under heavy load it saturates all four® | M-ify PUBSUBWas greater than that of using Gadara.

dedicated Fast Ethernet connections to all four client maMOreover, some of the extra work requires great care:

chines, and it serves requests in roughly 11 ms undef'cOrect STM function annotations can yielddefined
light load. behaylor [18], whereas_ omitted or incorrect Gadara an-
Due to the conservatism of Gadara’s mode"ng_notatlons have less serious consequences.
specifically, due to the absence of data flow analysis—
Gadara cannot distinguish the original deadlock-free7 2 OpenLDAP
PUBSUB from variants containing injected deadlock
faults, and Gadara treats both the same way (no anndpenLDAP is a popular open-source implementation
tations were added teuBsuUB, because they would not of the Lightweight Directory Access Protocol (LDAP).
have helped). The “Gadarized” row in the table thereforeThe OpenLDAP server prograns| apd, is a high-
represents performance in two scenarios: when Gadarerformance multithreaded network server. We applied
successfully avoids real deadlock bugs, and also whefadara tosl apd in version 2.2.20, which has a con-
it operates upon a deadlock-freeBsug In the latter ~ firmed deadlock bug [36]. The bug was fixed in 2.2.21
case Gadara can only harm performance. In our test®ut returned in 2.3.13 when new code was added.
the harm is moderate: an 18% reduction in throughput The sl apd program has 1,795 functions, of which
under heavy load, and essentially unchanged respong6 remain after pruning. Control flow graph generation
times under light load. and Gadara’s modeling phase took roughly as long as a
The STM results in the last row of the table seem baf-full build of the s| apd program; two passes of control
fling. The optimistic concurrency of TM seems well- logic synthesis each took far less time (a few seconds).
suited to thepuBsuB server's data structures and al-  Inaddition to standard Pthreads lock functions, we an-
gorithms [24]. PuBSUB-STM should match the perfor- notated six pairs of lock and unlock functions that op-
mance of the deadlock-free mutex variant under heavyrate upon file or database locks or call Pthreads lock
load, and should achieviaster response times under functions through pointers. OpenLDAP contains 41 lock
light load. The Gadarized variant should (hopefully) per-types, i.e., distinct types of wrapper structures that con-
form acceptably, but might reasonably be expected tdain locks. After model translation and reduction, the
trail the pack. model contains two separate Petri nets that may poten-
The root cause of the TM performance problem liestially deadlock, one with two lock types and the other
in the interaction between 1/0 and the semantics ofwith 15 lock types. The model contains separate Petri
atom c { } blocks. At best, it is very difficult for a nets because different modules of the program use dif-
TM system to permit concurrency among atomic sec-ferent subsets of locks. We apply Gadara to each sepa-
tions that perform I/O [41, 48]. The Intel STM pro- rate net independently, which reduces the computational
totype permits I/O within atomic blocks, but it marks complexity of control logic synthesis without changing
such blocks as “irrevocable” arstrializestheir execu- the resulting control logic. Gadara’s first pass com-
tion [18]. Like many modern server and client applica- pleted in a few seconds and reported 25 ambiguous func-
tions [3], PuBsuB performs I/O in critical sections (to tions (i.e., the set of locks held on return was ambigu-
ensure that snapshot replies are atomic), and this leads twmis). We manually inspected these functions and an-
serialization in the STM variant agfuBsuB. notated 21; ambiguities in the remaining four functions
TM is widely touted as more convenient for the pro- were genuine. A programmer not deeply familiar with
grammer, and less error-prone, than conventional muthe source code required a little over an hour to disam-
texes. Our experience is partly consistent with this viewbiguates| apd’s functions.
with several important qualifications. Defining atomic  Disambiguation allows Gadara’s second pass to con-
sections is indeed easier than managing locks. Our pestruct a more accurate model with fewer false execu-
formance results show, however, that this conveniencéon paths and fewer spurious deadlock potentials. The
can carry a price: Mutexes are a more nuanced lansecond-pass model afl apd contains four separate
guage for expressing 1/0O concurrency opportunities tharPetri nets that may deadlock, three with two lock types
atomic sections, and performance may suffer if the lat-and one with four. Each separate Petri net contains one
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Figure 3: Modify workload. Figure 4: Search workload. Figr Add/Del workload.

siphon. It was easy to confirm manually that the knownformance is disk bound and because the deadlock faults
deadlock bug corresponds to one of these siphons. Of thithat Gadara addressed involve code paths that execute in-
remaining three siphons, one was clearly a false positivefrequently. We therefore took extraordinary measures to
it was a trivial variant of the false paths pattern in Sec-ensure thasl apd is not disk bound and that the faulty
tion 2 that spans two functions and that our current proto€ode of the known bug executes frequently: we used a
type does not weed out, even after disambiguation. Themall directory (100 entries), disabled database synchro-
last two siphons correspond to genuine deadlock faultsnization, and configuresll apd to serve replies from in-
We disabled Gadara control for the obvious false positivanemory data via thedi r t yr ead” directive. This con-
and allowed Gadara to address the three genuine faultiguration is highly atypical but is required to trigger any
The control synthesis algorithm terminated in a few sec-Gadara overhead at all for the OpenLDAP deadlock bug.
onds, after a single iteration. Figures 3, 4, and 5 present average response time
We first tested whether the Gadarizetiapd suc-  and throughput measurements for our three workloads.

cessfully avoids the known deadlock bug, which residedn terms of both performance metrics, Gadara imposes
among database cache functions that participate in insefverheads of 3-10% for the Modify and Add/delete
tion and eviction operations on tksd apd app”cation_ workloads; overhead is negllglble for the Search work-
level cache. The bug is nondeterministic and hard tdoad. The difference occurs because the Gadara in-
reproduce, but we were able to reliably trigger it after Strumentation and control logic are triggered only in
inserting foursched_yi el d() calls immediately be- functions that add and delete items from theapd

fore a thread requests an additional lock while holdingaPplication-level cache. Modify and Add/delete work-
a particular lock. We configuresll apd with a small  loads cause cache insertions and deletions, and there-
cache size to trigger frequent cache evictions. After theséore incur Gadara overhead. The Search workload, how-
changes, we were able to reproduce the deadlock bug r&ver, performs only cache lookups, and therefore avoids
liably within one minute or less with a workload con- Gadara overhead.

sisting of a mixture of add, delete and modify requests.

An otherwise-identical Gadarized version of the same

sl apd, however, successfully serves the same workload -3 Apache

indefinitely without deadlock or other difficulty. We applied Gadara to ApacHet t pd version 2.2.8

Our next experiments compare performance betweeRne program has 2,264 functions and 12 distinct lock
original and Gadarizes| apd variants (neither con- ynes The first pass of Gadara identifies 28 ambiguous
taining the sched.yi el d() calls inserted for our g nctions. Almost all ambiguities involve error check-
deadlock-avoidance test above). Our OpenLDAP clientgng in ock/unlock functions (if the attempt to acquire a
submit three different workloads tosd apd that con- |4ck fails, return immediately) so it was easy to disam-
tains a simulated “employee database” directory: searcjgyate these functions. After we appropriately annotate
workloads perform lookups on indexed fields of ran-ihem Gadara reports no circular-mutex-wait deadlock,
domly selected directory entries; modify workloads alter 5§ therefore Gadara inserts no control logic instrumen-
the contents of randomly selected entries by adding neWation. In Apache, most functions acquire at most one
field and deleting a field; and add/delete _workloads Créiock and release it before returning. This lock usage pat-
ate and remove randomly generated entries. We vary the,, s restrictive, but makes it relatively easy to write
ngmber of clients between 1 and 16, and we Iocat_e th@eadlock-free programs. Gadara’s analysibtof pd is
client emulators on the same servesa@pd to make it ¢onsjstent with the Apache bug database, which reports
easier to overload the latter. no circular-mutex-wait deadlocks in any 2.x version of

Preliminary tests showed that Gadara overhead is nedApache. Two reported deadlocks in the bug database in-
ligible whens!| apd is configured normally, because per- volve inter-process communication, not mutexes [27].



7.4 Discussion be awkward or impossible. Automated rollback and re-

execution can eliminate the burden on the programmer

Our experience shows_that (_Sadara hand_les large real pro;, 4 guarantee safety in a wider range of conditions [37],
grams, and we found it easier to Gadarize a benchmark; jrreyocable actions such as 110 may preclude roll-

than to migrat.e it to atomig sections. Experiments withy o Dynamic detection gfotentialdeadlocks (incon-
our prototype implementation show that Gadara SucceSgsent jock acquisition ordering) can complement static
fully avoids deadlocks in deadlock-prone programs W'thdeadlock detection [1, 2]

little or no adverse impact on performance. As illus-

trated by our OpenLDAP results, Gadara works particu- Dijkstra's "Banker's Algorlth_m dynamically avoids
- resourcedeadlocks by postponing requests, thereby con-
larly well for corner-case deadlock faults in infrequently

executed code; Gadara eliminates such faults with m0d§tra|n|ng a set of processes to a safe region from which

. it is possible for all processes to terminate [7]. Mu-
est programmer effort and with low performance over- :
. ex deadlocks call for different treatment than resource
head even under adverse conditions. Our benchmar . .
eadlocks because mutexes, unlike units of resources,

tests show that the performance overhead may be tqare not fungible. Habermann generalized the original

erable even when Gadara corrects deadlock faults i ) . .
common-case code paths. The historv of the OpenL DA anker's Algorithm to address both fungible and lock-
P ) y P like resources [13]. Holt discussed the possibility of star

bug furthermore shows that Gadara may be a reason-_ .. . ; .
. . vation in Habermann’s approach [16] and introduced a
able alternative to the straightforward approach of man-

ually fixing deadlock faults—the latter was done for the variant with faster online safety checks [17]. More re-

. cent generalizations of the Banker’s Algorithm address
sl apd deadlock we discuss, but the bug returned many :
. . — . “mutex deadlocks, and some can exploit (but do not pro-
versions later. The cost of running Gadara to eliminate . . . L
. : vide) models of program behavior of varying sophisti-

corner-case deadlocks in each new version may compare

: : cation [10, 12, 23, 29, 32, 49]. The Banker’s Algorithm
favorably with the cost of repeated manual repair. . . : ; : )
is sometimes used in real-time computing, but its use-

fulness in more general computing is limited because
8 Related Work it requires knowledge of a program’s dynamic resource
consumption that is difficult to specify, and because it

There are four basic approaches to dealing with deadnvolves expensive online safety checks. It has been ap-
lock in multithreaded programs that employ locks: staticPlied to manufacturing systems under assumptions and
prevention, static detection, dynamic detection, and dysystem models inappropriate for our domain [38, 44].
namic avoidance. Static deadlock prevention by acquir- Gadara differs from the Banker’s Algorithm in several
ing locks in a strict global order is straightforward but respects. First, it both generates and exploits models of
rarely easy. Experience has shown that it is cumbersomeeal programs with greater generality and fidelity. More
at best to define and enforce a global lock acquisition orimportantly, Gadara’s online computations are much
der in complex, modular, multi-layered software. Lock more efficient. In contrast to the Banker’s Algorithm’s
ordering can become untenable in software developed bgxpensive online safety checks, Discrete Control The-
independent teams separated in both time and geograry allows Gadara to perform most computatafiine,
phy. Indeed, corner-case lock-order bugs arise even igreatly reducing the complexity of online control. Fi-
individual modules written by a single expert program- nally, Banker-style schemes employ a central allocator
mer [9]. Our contribution is to perform systematic global whose “account ledger” must be modified whenever re-
reasoning in the control logic synthesis phase of Gadaragources/locks are allocated. In an implementation, such
relieving programmers of this burden. write updates may bénherently serial regardless of

Static detection uses program analysis techniques tthe concurrency control mechanisms that ensure consis-
identify potential deadlocks. Examples from the re-tent updates (conventional locks, lock-free/wait-free ap
search literature include the Extended Static Checkeproaches, or transactional memory). For example, in the
(ESC) [11] and RacerX [9]; commercial tools are alsoclassic single-resource Banker's Algorithm, updates to
available [42]. Adoption, however, is far from universal the “remaining units” variable are necessarily serial. As
because spurious bug reports are common for real-worlé consequence, performance suffers doubly: acquisitions
programs, and it can be difficult to separate the wheaare serialized, and each acquisition requires an expensive
from the chaff. Repair of real defects identified by staticsafety check. By contrast, Gadara’s control logic admits
analysis remains manual and therefore time-consumingfue concurrency because it is decentralized; there is no
error-prone, and costly. By contrast, Gadara automaticentral controller or global state, and lock acquisitions
cally repairs deadlocks. are not globally serialized.

Dynamic detection does not suffer from false posi- Nir-Buchbinder et al. describe a two-stage “exhibit-
tives, but by the time deadlock is detected, recovery mayng/healing” scheme that prevents previously observed



lock discipline violations from causing future dead-9 Conclusions

locks [34]. The “exhibiting” phase attempts to trig-

ger lock discipline violations during testing by altering To the best of our knowledge, Gadara is the first approach
lock acquisition timing. “Healing” then addresses theto circular-mutex-wait deadlock that does all of the fol-
potential deadlocks thus found by adding gate locks tdowing: Leverages deep whole-program knowledge of
ensure that the observed lock order violations cannoapplications; safely eliminates all circular-mutex-wait
cause deadlocks in subsequent executions. The produdeadlocks; places no major new burdens on program-
tion runtime system detects new lock discipline viola- mers; remains compatible with the installed base of com-
tions and also deadlocks caused by gates; it recovergilers, libraries, and runtime systems; imposes modest
from the latter by canceling the gate, and ensures thgberformance overheads on real programs serving realis-
similar gate-induced deadlocks cannot recur. As timeic workloads; and liberates programmers from fear of
goes on, programs progressively become deadlock-fregeadlock, empowering them to implement more ambi-
as both native and gate-induced deadlocks are healetlous locking strategies. In Gadara, compiler technol-
The runtime checks of the healing system require timeogy supplies deep whole-program analysis that yields a
linear in the number of locks currently held and re- global model of all possible program behaviors, includ-
guested; lower overhead is possible if deadlock detectioing corner-case deadlock faults likely to evade testing.
is disabled. Jula & Candea describe a deadlock “immudDiscrete Control Theory combines the strengths of of-
nization” scheme that dynamically detects specific deadfline analysis and control synthesis with online observa-
locks, records the contexts in which they occur, and dy+ion and control to dynamically avoid deadlocks in con-
namically attempts to avoid recurrences of the same coneurrent programs. Thanks to DCT, Gadara’s control logic
texts in subsequent executions [20]. This approach dyis lightweight, decentralized, fine-grained, and highly
namically performs lock-acquisition safety checks on anconcurrent. Gadara exploits the natural synergy between
allocation graph; the computational complexity of thesethe strengths of DCT and compiler technology to solve
checks is linear, polynomial, and exponential in variousone of the most formidable problems of concurrent pro-
problem size parameters. Like healing, immunizationgramming.

can introduce deadlocks into a program.

Gadara differs from healing and immunization in sev-
eral respects: Whereas these recent proposals perfor

centralized online safety checks involving graph traver-— o rasearch of Wang, Lafortune, and Mahlke is sup-

sals, Gadara’s control logic is much less expensive bef)orted in part by NSE grants ECCS-0624821, CCF-
cause DCT enables it to perform most computation—0819882 and CNS-0615261, and by an HP LaEJs Open
including the detection and remediation of aVOidance'Innovatio’n award. We thank Marcos Aguilera, Eric An-

induced deadlockseffline. Healing and immunity tell derson, Hans Boehm, Dhruva Chakrabarti F;eter Chen
the user what deadlocks have been addressed, but nBFamO(’j Joisha Xue,Liu Mark Miller Br,ian Noble ’
whethetr anythdiadlllo st dr:emliun. Byl_co_ntr?sé, (?adar%nd Michael Scott for encouragement, feedback, and
guarantees that all deadlocks are eliminated at comg,,, e suggestions. Ali-Reza Adl-Tabatabai answered
pile time, ensuring that they never occur in productlon.questions about the Intel STM prototype. We are grate-

Whereas the computational complexity of the safetyful to Kumar Goswami and Norm Jouppi for funding,

checks in healing and immunity depend on runtime CON%. | aura Falk and Krishnan Narayan for IT support, to

ditions, in G-a(.jgra t_he dynamic checks assc_)mgted Wltri’(elly Cormier and Cindy Watts for administrative and
a lock acquisition (i.e., the control places incident to logistical assistance, and to Shan Lu and Soyeon Park

a lock vaU'SIt'?rT trafnsmo;:) are tknova’natulzlally pr_o;j or sharing details concerning [27]. Finally we thank our
lgralinfmel':s rt?1a>t/ etre_lorec 00s€ on:arlulja yrepglr ”ea shepherd, Remzi Arpaci-Dusseau, and the anonymous
ock Taullls that ental’ excessive control 10gic and allow qgp| reyiewers for many helpful suggestions.

Gadara to address the deadlocks that require little con-
trol logic. Whereas healing’s guard locks essentially
coarsen a program’s locking, Gadara’s maximally per—ReferenCE‘S
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