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On the rate distortion function of Bernoulli Gaussian sequences

Cheng Chang

Abstract

In this paper, we study the rate distortion function of the i.i.d sequence of multiplications of a Begn@aiiiom
variable and a gaussian random variabléV (0, 1). We use a new technique in the derivation of the lower bound in
which we establish the duality between channel coding and lossy source coding in the strong sense. We improve the
lower bound on the rate distortion function over the best known lower bourmll‘h%% if distortion D is small.
This has some interesting implications on sparse signals whésesmall since the known gap between the lower
and upper bound i$7(p). This improvement in the lower bound 1shows that the lower and upper bounds are almost
plogy -

A —

identical for sparse signals with small distortion becaliﬁg
p—

|. BERNOULLI-GAUSSIAN MODEL AND SOME OBVIOUS BOUNDS ON ITS RATE DISTORTION FUNCTIONS
Notations: in this paper we use, y, v for random variables and, y, u for the realization of the random

variables or constants. We denote By(A) the probability of eventd under measure. We use bit andog, in
this paper.

Consider a sequence of signalg xs, ....x,,, wherex;’s are zero most of the time. When is non-zero, it is
an arbitrary real number. In the signal processing literature, the sigfials called sparse if most of them are
zero. In their seminal work on compressive sensing [4] and [7], €Eandlao and Donoho show that, to exactly
reconstruct the sparse signals, only a fraction ofn measurements are needed. Furthermore, the reconstruction can
be done by a linear programming based efficient algorithm. In the compressed sensing literature, the non-zero part
of the sparse signals are arbitrary real numbers without any statistical distribution assigned to them. Furthermore
the compressed sensing system tries to recover the sighialesslessly without distortion of the reconstructed
signals. These assumptions are not completely valid if the source statistics are known to the coding system, more
importantly, if the goal of the sensing system is only to recover the data within a certain distortion. In the recent
work by Fletcher etc. [9], [8], [10], the . What is lacking in the previous study of this problem is a systematic
study of the information theoretic bounds on the rate distortion functions of the sources. In this paper, we give both
lower and upper bounds on the rate distortion functions.

A. Bernoulli-Gaussian random variabE(p, 02)

The information theoretic model of the “sparse gaussian” signals is captured in the following what we call a
Bernoulli-Gaussian random variable.

Definition 1: A random variablex is Bernoulli-Gaussian, denoted (p,o?), if x = b x s, wheres is a
Gaussian random variable with mearand variancer?, s ~ N(0,02), and b is a Bernoullip random variable,
Pr(b=0)=1-pandPr(b=1)=p, p€[0,1].

This random variable is a mixture of a continuous random variable and a discrete random variable. This adds to
the difficulties to study the rate distortion functions of this random variable. The main result of this paper is a lower
bound and an upper bound on the rate distortion functions of a sequence of independent random variables with
distributionZ(p, o2). It will be clear soon in Proposition 1 that we only need to study the rate distortion functions
for s ~ N(0,1), i.e. the rate distortion functions fd€(p,1). First, we review the definition of rate distortion
functions in both the average distortion and strong distortion sense.

B. Review of the rate distortion theory

In the standard setup of rate distortion theory, the encoder majpdl. random variables™ € X", x ~ py, into
nR bits and then the decoder reconstruct the original signal within a certain distortion. The encoder and decoder
are denoted by,, andg,, respectively:

fo: X" = {0, 13" and g, : {0,1}"F — &™,
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and the distortion is defined agz", ") = L 3 d(;, &;).
i=1
Definition 2: Rate distortion function ([5], pg. 341): the rate distortion functi®(D) is the infinimum of rates
R, such thatR, D) is in the rate distortion region of the source for a give distortionWhere the rate distortion
region is the closure of achievable rate distortion paisD) defined as follows(R, D) is said to be achievable
in the expected distortion sense if there exists a sequen(®'6f ) rate codes f,, g.), such that

Tim B (d(x", gn(fa(x")))) < D ()
The strong sense of rate distortion function is defined similarly with the following criteria for the codes: for all
0>0
lim Pr(d(x", ga(fa(x")) = D +6) =0 @

n—oo

(wi — 32‘02

It turns out that the rate distortions function for both tlhe1 average distortion and the strong distortion are the same
for discrete random variables Chapter 13.6 [5]. We can generalize this result easily to continuous random variables
whose variance is finite and the probability density function satisfies the usual regularity conditions. The proof
can be carried out by quantizing the probability density function and then by using the proof for discrete random
variables in [5]. A somewhat detailed sketch of how this works is in Appendix A.

A good lossy coding system in the strong sense is metessarilygood in the expected distortion sense.
Considering the following examxple, a good lossy coder can miss the distortion constraint for alsulis@®™ with

asymptotically0 measure,lim Pr(Y,) = 0. However the good lossy coder carentionally make the distortion
on Y,, no smaller than-22—, hence the expected distortion is at le@st.

where, in this paper, the distortion functidiiz™, ") =

1
n

INgE

However it is easy tgrgéé) that given a good lossy coding system in the strong sense, we can easily make it also
good in the expected sense if the mean and varianceas€ finite. We sketch the proof in Appendix B. So from
now on, when we say a lossy coding system is good in the strong sense, that implies that the system is also good
in the expected distortion sense.

The following lemma characterizes the rate distortion functititD).
Lemma 1:Rate distortion theorem [12]:

R(D) = I(x;%). ©)

Corollary 1: Rate distortion theorem for Gaussian random variables [2]: for random vastabléV (0, 02), the
rate distortion function is:

2
%10g2%, 0<D<o?,
0, D > o2
It is also shown that with the same variance and squared distortion measure, Gaussian random variables requires

the most bits to be described. Both lower and upper bounds are given in Exercise 8 on Pg. 370 [5]. The proof can
be found in [2].

R(D,N(0,0%)) = { 4)

Corollary 2: Rate distortion bounds for continuous random variables under square distortion measure (Exercise
8 on pg. 372 [5]): the rate distortion functidi(D) can be bounded as:

h(x) — glog(%re) <R(D) < max{% log %,O} (5)

The lower bound in Corollary 2 is known as the Shannon lower bound in the literature [5].



C. Rate distortion function foE(p, o)

The main goal of this paper is to derive an upper and a lower bound on the rate distortion fuRcEBOof
the Bernoulli-Gaussian random varialdép, o2). We denote this quantity bR(D, Z(p, 02)). We summarize some
obvious properties of2(D, Z(p, o?)) in the following four propositions. The proof is in Appendix C.

First we explain why we only need to study(D,Z(p,1)). We write R(D,Z(p,1)) as R(D, p) in the rest of
the paper and investigate(D, p).

Proposition 1: R(D, E(p,0?)) = R(Z,Z(p, 1))

From this point on, we only investigat®(D, =(p, 1)), simply written asR(D, p). Now we give three obvious
bounds on the rate distortion functidg®(D, p).

Proposition 2: Upper bound 1 orR(D, p):
D
R(D,p) < H(p) + pR(;, N(0,1)) = H(p) + pR(D, N(0,p)) (6)

where R(D, N(0, 1)) is the Gaussian rate distortion function 810, 1), defined in Corollary 1.
Proposition 3: Upper bound 2 orR(D, p):
R(D,p) < R(D,N(0,p)) @)
Proposition 4: A lower bound onR(D, p):

R(D.p) > pR(%N(a 1)) = pR(D, N(0, p)) ®)

We give a conceptually clear explanation of these three bounds. In Proposition 2, we construct a very simple
coding system that first losslessly describe the locations of the non-zero elemerits~o=(p, 1), then lossily
describe the value of these non-zero elements using a Gaussian lossy coder. In Proposition 3, we prove it by using
the well known fact that for continuous random variables, with the same variance and distortion measure, Gaussian
sequences require the highest rate. The difficulty isHtaf 1) is not a continuous random variable. We approximate
it by a sequence of continuous random variables whose rate distortion functions converge toZat10f In
the proof of 4, we reduce a Bernoulli-Gaussian sequence to a Gaussian sequence by letting the decoder know the
non-zero locations for free and deriedower bound ofR(D, p) from the Gaussian rate distortion function.

The more rigorous proofs of these bounds are in Appendix C. It is non trivial to bound the rate distortion
function of one random variable by the rate distortion function of another random variapleTo show that
R(D,x) < R(D,y), the technique we use in the proofs for the above four propositionscisrisiructa good lossy
coding system foi from a good lossy coding system fgrunder the same rate-distortion constraihiand D.

Among the three bounds described in Proposition 2, 3 and 4, we find the lower bound the most unsatisfactory.
Shannon lower bound [5] does not apply to the Bernoulli-Gaussian raft{pm) variables because the differential
entropy ofZ(p, 1) is negative infinity. This paper is focused on deriving a more information-theoretically interesting
lower bound onR(D, p). In the next several sections, we investigate the lower bound problem. As a simple corollary
of this new lower bound, we give a close form lower bound on the rate distortion function in VII that improves
the previous known result bylog, % in the high resolution regime% < 1).

[I. AN IMPROVED LOWER BOUND ONR(D, p)

First, we reiterate the definition of a strong lossy source coding system for a Bernoulli-Gaussian sequence
x™ ~ Z(0,1) wherex = b x s and b is a Bernoullip random variable whiles ~ N(0,1) is a Gaussian random
variable. A(R, D) encoder-decoder sequenfg g,, does the following,

fa it R" = {0,1}"%, fo(a")=a™® and g,:{0,1}"F = R", g,(a"") =2"

from the definition of the rate distortion function in strong sense defined in (2), we have fr:alb:

X

Pr(d(x™,x") > D+ 6;) = Pr (d(x", gn(fn(x™))) > D+ 1) =e,(61) and lim e,(d1) = 0. 9

n—oo



Recall that we can have a good lossy coder in both the strong sense and the expected distortion sense
according to the discussions in Appendix B. So we assume the good coding system héreg,, is good in
both senses.

So let Ey (d(x™,x™)) = Ex (d(x", gn(fr(x™)))) = D + <5, then lim ¢, = 0. (20)

Notice thatx™ = b™ x s™, where the multiplicationx here is done entry by entry, so thattf = 0, the value
of s; does not have any impact off. The output of the encodef;, is a random variable that is a function of the
sequence”, we write the output ag"? = £, (x™). our investigation of the rate distortion function relies on the
properties of the encoder outpait’.

b ~() ~| Encoderf, Decoderg, —— X"

Fig. 1. A lossy source coding system for Bernoulli-Gaussian sequefhce b™ x s™

In Proposition 4, the lower bound is derived by letting a genie tell the decoder the non-zero positions of the
Bernoulli-Gaussian sequence, i.e. thie part of x™ = b™ x s™, and the rate is only counted for the lossy source
coding of the non-zero Gaussian subsequenit®), wherel(b") is the number ofi’s in sequence” ands; = s,
if b,=1,i=1,2,...,1(b™). To tighten the lower bound in Proposition 4, we need to drop the genie who let the
decoder know the entirety af”. In the following several sections, we attempt to tighten up the lower bound by
investigating the information abouf’ that has tobe transmitted to the decoder.

First we summarize our main result in the following theorem.

Theorem 1:Main theorem: a new lower bound on the rate distortion funcfititD, p) for Bernoulli-Gaussian
random variabl&(p, 1) under distortion constrainb.

R(D,p) > pR(D,N(0,p)) + R

where k= AT {U>L r€l0,1 H;l;]mTl(L U, <D ML, U,r)} (11)

Pr U Pr( U
(px Pr(|s| > U) + 1) DSz Ip)  if S > p

pxPr(|s|>U)
0 If pXxPr(|s|>U)+r <p

whereh(L,U,r) = {

s ~ N(0,1) is a Gaussian random variable.

Proof: The theorem is a corollary of the Lemma 2, 3, 4 and 5:
](anR;sn|bn) + I(anR; bn)

R(D,p) > - (12)
> pR(D— (1 = p) B = 0], N (0.p) + L&) a9
> pR(D - (1-p)E[X*[b=0],N(0,p)) + R (14)
> pR(D,N(0,p))+ R (15)

(12) is proved in Lemma 2. (13) is proved in Lemma 3. (14) is proved in Lemma 4 aRd$defined in (11).
(15) follows that rate distortion function for Gaussian random variaBlegB, N (0, p)) is monotonically decreasing
with D. |

There are four parts in our investigation. First in Section 1ll, we lower bound the number of Bitsy the
sum of two mutual information terms. The first one is the conditional mutual information between the output
of the encodern™? and the Gaussian sequense given the Bernoulli sequence”: I(a"*;s"|b"). The second



is the mutual information between the output of the encad€f and the Bernoulli sequence®: I(a"%; b").

Then in Section IV we lower bound(a™*; s*|b") by using a simple argument similar to that in Proposition 4. In
Section V, we lower bound(a"%; b™) by the capacity of théossy coding channglvhile the capacity of the channel

is unspecified. In Section VI, we giwveelower bound of the channel capacity by using a random coding argument.
Finally in Theorem 1, we combine these bounds together to give a lower bound on the rate distortion function
R(D, p) for the Bernoulli-Gaussian random sequefgg, 1) under distortion constrainD. The investigation spans

the next four sections in this paper.

[1l. FIRST STER LOWER BOUNDINGnR BY THE SUM OF TWO MUTUAL INFORMATION
I(a™®; b™) + I(a"f; s |b")
First we have the following simple lemma that tells us that the rate is lower bounded by the sum of two mutual
information termsl (a"%; b") + I(a"%;s") wherea™? is the output of the lossy encoder antl ands™ are the
Bernoulli sequence and the Gaussian sequence that generate the Bernoulli-Gdussia(p, 1).

Lemma 2:For a lossy coding system shown in Figure 1, the rate of the lossy source coding system can be lower
bounded as follows:

nR > I(anR; bn) 4 I(anR;S”|bn)

Proof: The output of the encode’ € {0,1}"%, so the entropy of the random variable is upper bounded by

H(a"?) <nR (16)
Notice thata™” is a a function ofx™, i.e. a function ofs™ and b", so
H(a"F) = H(a"®) — H(a"E|s", b") (17)

Combining (16) and (17), and notice theit L s™, we have:

nR > H(a"®)— H(a""[s",b")
= I(a"%s", b")
= I(@" B ") + I(a"F;s"|b") (18)
where (18) is true by the chain rule for mutual information [5]. |

IV. LOWER BOUNDINGI(a"%®;s"|b"), PROPOSITION4 REVISITED

In this section we lower bound the conditional mutual information tdiai*?; s"|b") in the lower bound of
nR (18). From Proposition 4, we know that letting a genie tell the non-zero locationd &b the decoder, the
coding system still needs at leagtR(D, N (0, p)) bits to describe the values of the non-zero entries"ofIn the
proof of Proposition 4, like the proofs for other propositions in Section I-A, we use the lossy source coding system
for the Bernoulli-Gaussian sequences to construct a lossy source coding system for a random sequence with known
rate distortion functions.

The proof here, however is trickier in the sense that we are not bounding the rate distortion fuRidiop),
instead we only bound the conditional mutual informatiga™#; s”|b™) which is part of the rate. Hence we cannot
constructa lossy coder for sequence with known rate distortion using the lossy coder for the Bernoulli-Gaussian
sequence. Instead, we use the classical technique in [5].

Lemma 3:Lower bound onl(a"%#;s"|b")

1(a™;s"|b") > npR(D — (1 — p) E[*|b = 0], N(0, p)). (19)
where
Eb=0 = %XL:E[&?I@ =0]
=1
-2 (Z Pr(b" =b") > (B[3[b" = b"’]>> (20)
bn i:b;=0



Proof: The proof is similar to the lower bound proof for Gaussian rate distortion function on Page 345 [5].
First, notice that the estimate® = g,,(a"¥) is a function ofa”. And thea"® = f,,(x") = f,,(b" x s™). Hence we
have the following Markov Chain:

b" x s — anft — i (21)
From the data processmg theorem [5], we know th@t*?; s"|b™) > I(x™;s"|b™). For a binary sequendg’ c
{0,1}™, let 1(b™) = Z b; be the number ol’s in b". b; € {0,1}, so if b; = 0 thenx™ ands; are independent

because in that case = b; x s; = 0 ands™ is i.i.d andx™ is a deterministic function ok™. Write iy, ..., i1 (n)
the non-zero positions df*, and letZ(b") = {i1, ..., i)}, then

(X" 8™ [b" = b™) = I(X";Siys ey Siyymy [B" = 0") = L(X™5 50y iy yny )- (22)
Define thee,-strong typical sef3”’ for binary sequences:
1™
B £ {b" € {0,1}" : \% —pl <e}

From the AEP [5], letPr(b™ ¢ Bl ) = v,:

lim v, =0 (23)
Now we have:
I(anR;Sn|bn) > (wn n|bn)
> Pr(b" =b")I(K";s" b = b") (24)
bref{0,1}n
= > Pr(b"=b")I(x";s"|b" =1b") (25)
b”eBn
= ) Pr(b" =b")I(X";5i,, ., Siypn, [ B = D") (26)
b"eB"
= ) Pr(b" =0") (H(siy, iy [B" = ") = H(siy iy [X", B = 1"))
breBr
L(b") 10"
> > Pr(b"=0b") | > H(s;) - H(s;,|x™, b" = b") (27)
bneBr j=1 j=1

= Z Pr(b” = bn) Z H(Sij) _ H(Sij _ )qu|5<n7 P — bn)

b"EB?l j=1 j=1
1(bn) 1([)71,)

> > Pr(b"=1b") H(s;))— > H(s;, — %, |b" =b") (28)
b"EB?l j=1 j=1

(24) follows the definition of conditional mutual information, (25) is true because mutual information is non-negative
and (26) follows (22). (27) is true becaus® is i.i.d and independent df”. The rest are obvious; ~ N(0, 1),

S0 H(s;) = £ log(2me). According Theorem 9.6.5 in [5], Gaussian random variables maximize the entropy over all
distributions with thes ame covariance, so:

H(s;, — %,|b" = b") < H(N(0, E[(s;; — %,)*|b" = b"]) = %log(QﬂeE[(sij — %;,)%b" = b"]).

Now (28) becomes:



1(6™)
1 1
nR. n|nn n __in L N2/
I(a™;s"p") > E Pr(b™ =b") (jl 510g(27re) - jgl Qlog(QweE[(S,j Xi;)7|b™ =b ]))

1(bn)

LS ST e =) (Bl — %, 15" = )

breBy j=1

l(b’n)

Pr(b™ =0"
- T35 f(gm) ) log(E[(si, — %i,)*|b" = b"]) | x
brebBy g=L S N Pr(br = bn)

bneBp j=1

1(6™)
( S > prpr = b"))

breBr j=1

1(bn)
1 Pr(b" = b") " otn um
—plos| D> — (Bl(s;, = %,)°|6" = ")) |

b”EBg’i j=1 Z Z Pr(bn — bn)
b"EB?1 Jj=1

1(b™)
( SN Pr(bt = b")) (29)

breBr j=1

Y

(29) follows the fact that-log(-) is convex|J. We bound the two terms as follows, first:

1(b™)
( > ZPr(b”b”)) = ( > 1(b")Pr(b"b"))

bn GB:"l Jj=1 bneB:L]
> Z n(p —e) Pr(b™ = 0")
bneBn,
> n(p—e)(l—vn) (30)

Before bounding the other term, we have the following observation:



1(b™)
SN (b = 0" (B(si, — %i,)?[b" = b"]))
breBy j=1
1(b™)
— ST Pr(bt = 0" (Bl(x;, — %i,)2[b" = b"]))
breBr j=1
1(6™)
< D0 D Pr(er =v)(El(x, — %,)% (b = b"]))
bn j=1
< n(D+g,)— (Z > Pr(b" =b")(E[(xi — %)°[b" :b"])) (31)

b i@ Z(b™)

< n(D+e)- (Z S Pr(b" = ")(E [”"b”—b"]))

b igZ(b™)
= n(D+¢,) — nE[x*|b=0] (32)

whereZ(b") = {i1,...,i14n)} andg, — 0 asn goes to infinity, (31) follows the fact thaf,, g,, is good in the
expected distortion sense as well (10). So the first term in (29) can be lower bounded as follows, combining (30)
and (32):

1(b™)

(b = p" - >A<2 =
gt | Y (B, -, Pl =) | = o (BRI (o
breBy, j=1 n — pn !
bnEZBSI ng Pr(b ")

first notice that we are lower bounding a conditional mutual informafitet*; s|b™) which is non-negative,
so we assume the first term being positive or else we lower bound the conditional mutual informatipsdoy
substituting (30) and (33) into (29), we have:

I(anR; s"Ib™) > n(p—e)(l —v,) max{0,log ((D — (1(10_;)62[()%12&32)0] n Cn)>} (34)

Notice thate; is an arbitrary positive real number, and beth and¢, goes to zero as goes to infinity, so we
just showed that

I(a"%;s"|b") > np x max{0,log <D —a —p)pE[5<2|b — 0]>} =npR(D — (1 — p)E[%*|b= 0], N(0,p))
The lemma is proved. O
As a trivial corollary of Lemma 2 and Lemma 3, we have:

nR > I1(a"%b") + I(a";s"[b") = npR(D — (1 — p)E[x*|b = 0], N(0,p)) = npR(D, N(0,p))

This also proves Proposition 4.



V. LOWER BOUNDINGI(a”R, bn) BY THE RANDOMIZED CHANNEL CAPACITY OF A LOSSY COMPRESSOR

In this section we give a lower bound on the mutual informati¢ai*?; b™) from a channel capacity perspective.
This is partly inspired by the seminal work in [1]. First we have another look at the whole lossy coding system
in Figure 1, we single out the binary randomné$ssand make the rest of the system a “lossy coding channel” as
shown in Figure 2. The channel input is a binary sequéfice {0,1}", and the channel output ig'? € {0, 1}"%.
What the channel does is to first multipgh} by a Gaussian random sequenéeand then send it to a good lossy
encoderf,. The output is the output of the lossy coding encofier

Notice that this is not a standard communication channel. It is in some sense a arbitrarily varying channel. The
constraint on the channel is such that the lossy coder fpaiy,, is good in both the strong and expected distortion
sense.The goal in this section is to lower bound the mutual information I(a"#, b™) by the number bits
(channel capacity) that can be reliably communicated across the channel in average over a randomized
codebook.

More interestingly, the input sequengg obeys the statistics of a Bernoulli process with non-zero probalpility
So it will be soon obvious that we need to investigate the channel capacity for the randomized codebooks where
each code word is chosen according to its probability under i.i.d Bernaulli-

br ———(X)——| Encoderf, Decoderg, — X"

Fig. 2. A “lossy coding” channel derived from the lossy coding system for Bernoulli-Gaussian seqered™ x s™,

As shown in Figure 3, we have a channel coding problem. A messaga random variable uniformly distributed
on {1,2,...,2"%}. The constraint on the channel encodey is that the code word" is chosen for message
with probability

P (1 = )1

where1(b™) is the number ofl’s in sequencé”, this will be explained in details in Definition 3. The constraint
on thelossy coding channdbk such that the estimate of the Bernoulli Gaussian random sequé&neeb™ x s”,
through the lossy coding systefy, g,,: X™ is within a distortionD + §; of the true sequence™ with probability 1
for all §; > 0 asymptotically. Before giving the lemma on the lower bound of the mutual informdtigh’; b"),

9

we give the following definition of randomized channel capacity for the lossy source channel.

Definition 3: Randomized channel capacity for the lossy source channel is Writtéglaéset B, = {0,1}", let
C(n) be the codebook set of rate: C(n) = BfL"'R is the set product o2 many B,’s: B, x B, x ... x B, a

codebookC' € C(n), C' = (c1, 2, ...c4nr) is such that the codeword for messagem = 1,2, ..271 s thei'th
entry of C: ¢,,. From the definitiorz,,, € B,, for all n. We let C, be a random variable distributed Gitn), such

that a codebook’ = (cy, ¢z, ...cy.z) € C(n) is chosen as the codebook, i@, = C' with the following probability:
2nf?,

Pr(C,=C) = [] p'e (1 = p)tiem) (35)
m=1

INote: in this section we us& to denote the channel capacity of the lossy coding channel. This is not the rate of the lossy coding system
R.



Channel Cm :
m — — ~| Encoder : Decoderg, — X"
EncoderF,| ® X" J : .

X

| Lossy Coding Channel L, Channel
SR DecoderG

Fig. 3. A channel coding system for the “lossy coding” channel

the average error probability of the randomized coding with uniform distribGiet defined as:

-
epn(®) = 3 Pi(G=0) Q%R S Pr(m # i(a™(cm x 5")))
cep2"? m=1
= Y Pr(G =0C)(Pr(m# ma"")|C, = C)) (36)
cen2"ft
on R

where the error probability is over all codeboak&:) = B;  with distribution defined in (35) and all messages
m € {1,2,...,2"%} i.e. the random variable is uniformly distributed in (36). Notice that in Figure 3, a codebook
C'is chosen and known to both the encoder and the decoder. The output from the channel engo@ey) is c,,,
the output from the lossy encoder is a random sequénte,, x s") = a™*(c,, x s™), and the estimate of: is
m(a™(c,, x s™)) = Gp(a™ (e, x sM))).

The randomized channel capacity for the lossy coding system,, is Rp, if for all R < Rp, there exists a
channel decodefs,,, such that the average error goes to zera @oes to infinity:

lim e,,(R) =0, equivalently:R, = sup  {R}.

n—ee lim e, (R)=0
n— oo

The following lemma summarizes the main result in this section.

Lemma 4:Lower bounding the mutual informatioh(a™#, b™) by the randomized capacity: for ary> 0 the
mutual information is lower bounded by the minimum randomized lossy coding channel capacity:

1 - -
liminf —I(a"f;b") > R, = sup  {R} (37)
nTee n 7lllmoc ep.n(R)=0
Proof: : to show 37, from the definition of%p, we know that it is enough to show that for al, such that

lim e, (R) =0:

n—oo 1
liminf = (a"f; b") > R.
n—oo N
First we take a new perspective of the Bernoulli sequebitelnstead of lettingb™ be i.i.d generated from
the Bernoullip random process, we first generate two auxiliary random varialeand m and then theb™ is a
function of the two auxiliary random variables in a way such tbiatis an i.i.d Bernoullip sequence.
We first generate a codebook random variableaccording to the distribution described in (35), where the code
book C, = C = (cy, ..., ¢4uz) With the following probability:

27;1%

Pr(C, = C) = [[ p' (1 = p)ntlem).
m=1

10



Then we pick the message random variablaccording that is uniform of1, 2, ..., Q"E}. Finally we let the binary
sequenceb” be a function ofC, and m, such that forC, = C = (c1, ..., cy.z) @ndm = m, b" = ¢,,. It is easy to
see thatb™ chosen this way have the following distribution:

Pr(b" = b") = p' ") (1 — p)n 1",
So we have the following Markov Chain:
(Cpym) — b" — a% (38)
So from the data processing lemma and the chain rule for mutual information, we know that:

I(@a"%;p™) > I(a"%; C,,m)
= I(a"%;m|C) + I(a"F; C,)
I(a"; m|C,) (39)

v

where the last inequality follows that mutual information is always non-negative. Now the overall error probability
is, as defined in (36):

epn(R)= Y Pr(G =C)(Pr(m# ma"")|C, =C)) (40)
cenzrk
wherePr(C, = C)(Pr(m # m(a"f*)|C, = ©)) is the decoding error when the code baGkis chosen. Hence this
is a standard communication problem that we can use the technique detailed in Chapter 8.9 [5] to lower bound the

mutual informationl (a”f*; b™) by the rateR that a reliable communication is possible. Notice that if the codebook
C' is chosen, we have the following Markov Chain:

m*)bn‘}anR

— n, (41)

more specificallyp™ is a deterministic function ofr, /m is a deterministic function of*f. So we can apply Fano’s
inequality (Theorem 2.11.1 [5] for any fixed codeboGk

H(m|a"", C, = C) <1+ Pr(m# m(a"®)|C, = C)nR (42)

Now, from the standard information theoretic equalities:

nR = H(m)

H(m|C, =C)

= H(m[a"®,C, =)+ I1(a"®;m|C, = C)

< 14 Pr(m# m(a")|C, = C)nR + I(a"F; m|C, = O)

Multiply both sides byPr(C, = C') and sum over al' € B?L"R, we have:

nR < 1+ Y PrG,=C) (Pr(m £ m(a"®)|C, = C)nR + I(a"R; m|C, = C))
cep2™t
= 1+nRxepn(R)+ (@, m|C) (43)
Finally, substitute (39) into (43), we have:
I(@a"®;p™) > 1(a"®;m|C,) > nR — 1 — nR x e, ,(R)
So, if the randomized lossy coding capacity is abdd.e. nlin;o epvn(ﬁi) =0, then

1 -
liminf —I(a";b") > R

n—oo N

11



VI. RANDOMIZED CHANNEL CAPACITY OF A LOSSY COMPRESSORA LOWER BOUND

In the previous section, we showed the relation between the mutual inform&tgfi, b”) is lower bounded
by the randomized lossy coding capacity if the input codewords look like an i.i.d Berposdiguence. What was
missing in the previous section is a lower bound on the randomized capacity. In this section we study the capacity,
in particular the lower bound on the capacity. Notice that the encoder is using a randomized code book according
to the distribution in (35). We only need to design the deca@grin Figure 3. If we could show that for some
R, the average error probability, ., (R ) goes to zero as goes to infinity, then whatever thg is, it is a lower
bound on the randomized lossy coding capaﬂ;,y We give a lower bound oR As will be clear soon from our
derivation of the lower bound, this bound is not tight. However, this is our f|rst effort to derive a non-trivial lower
bound to the rate distortion functioR(D, p).

Lemma 5: A lower bound on the randomized lossy coding capacity:

Rp > R = max min h(L,U,r)}
L>0 U>L,re[0,1—p):T1(L,U,r)<D

pxPr(|s|>U) pxPr(|s|>U)
Whereh(L,U,’f’) _ { (p X Pf(|5| > U) + T)D(pXPr(|s\>U)+er) if pXxPr(|s|>U)+r = p (44)

xPr(|s|>U)
0 , if pZPr [s|>U)+r <
: : : v 1 2
s in (44) is GaussiaV(0,1) and T (L, U,r) = rL? + 2p/ (s — L)? e~ Zds
L AV 271'

Or equivalently, for all? < R, the decoding error defined in (36) for the randomized coding scheme converges

to zero asn goes to infinity:

lim ep,n(é) =0

n—0o0

Proof: we first describe the decodét,,. The codeboolC is chosen, i.eC, = C. As shown in Figure 3, if a

messagen is to be sent, wheren € {1,2, ..., 2"} with equal probability, the binary output to the channel encoder
F, is c,,. After the modulation of the Gaussian sequesteand the lossy source coding encodgr the channel
decoderG,, receivesa™®. The first step of7,, is to run the lossy source decodgyr and get the lossy estimate of
X" = ¢, x s, X" = g,(a™). The second step af,, is to estimatem from x™. We pick the code word with the
most entries’ absolute value above the positive real nuniber

m(a"R(c; x s™)) = m(x") = arg maxz 1(Jes(k)x)| > L) (45)
Yok=1

wherec; € {0,1}" is the codeword for messagdn the chosen codeboak andc;(k) € {0,1} is the k-th entry

of the codeword:;. Now we analyze the average error probability of the above coding system over all codebooks
according the the codebook distribution in (35) and the over all Gaussian segtiefide average error probability

is hence as shown in (36):

gnR
epn(R) = Y Pr(G=0) QiR > Pr(m # (0" (cm x s™)))
cenznf m=1
— Z Pr(C, = C) <§r(1 # m(a"F(c; x s”)))) (46)
cep2"?
= B £ (@B x sM)) (47)

where (46) follows the symmetry of the system.
We decompose (47) into four parts. We sketch the partitions then give a detailed analysis.

12



1) The atypical behavior of codewokd. The typicality is defined in the usual way [5] for finite discrete random
sequences. The concentration theorem is well established in the literature.

2) The atypical behavior o§'(¢1) while ¢, is typical, wheres!(<V) is the non-zero subsequencexdf = ¢; x s™
wheres; = s, ..., Si(¢,) = Sivier)r whereiy, ..., i) are the non-zero locations ef. The typicality for a
GaussianN (0, 1) sequence is defined in Appendix D. We prove the concentration result in Lemma 6.

3) The atypical behavior of the lossy source coding while botands;,, ..., s;, . , are typical. i.e. the distortion
of the Bernoulli-Gaussian sequende; x s™, x™) = d(x", X™) > D, the concentration of the typical behavior
of the lossy source coding is established in (9) for good lossy coders.

4) The probability that there exists a messagé¢hat has a higher score than messagecording to the decoding
rule in (45) while everything else (the codeword for message;, the subsequence,,....s;, . ,, and the
distortiond(c; x s™, x™) are typical. We bound this error by a union bound argument.

The first part is the atypicality of the codeword for messatjec;, the second part is the error probability for
a € B?, where
1(0™)
n

Bl 2 b e {0,1)": [~ —p| < o).

Under the codebook probabilitg,, all ¢;’s are binary sequences of lengthwith distribution such that for all
b € {0,1}™

Cp n n P
Pr(c; =b") = p*®) (1 —p)» 10" g =1,2,. 2" (48)
so we obviously have [5]:
CI‘
lim Pr(c; ¢ B") =0 (49)

The second partis the atypicality of the Gaussian subsequesice.... s;, . ,, whereiy, ..., i1, are the non-zero
locations ofc, while ¢; is typical, ¢; € B!"). The typical GaussiatV (0, 1) set is defined as follows, first we have
two definitions: for a real sequeneé and s.t.—oo < S < T < o0, thel-th moment of entries ir™ within interval
[S,T] is denoted by

Y l(S<s < T)st

l
(5, T) =
ko (,7) :

Then thee-typical set for GaussiatV (0, 1) is defined as:

! (g Tal 2
Ngn (S, T) — s e 2 ds
e

Se(n) = {s L max, {Ssu;) < e}}

We prove the concentration result in Lemma 6 in Appendix Dm Psr(s" ¢ Se(n)) = 0. ¢g and s™ are
independent, and & € B, thenl(cy) > p(n — ¢), so if n goes to infinity,1(c;) goes to infinity too, so

Cpys Cp,s
lim Pr(c; € B34 ) ¢ S.(1(c;))) < lim Pr (3% ¢ S.(1(c))|c; € BT)

n—oo n—00

- 0 (50)
where the first inequality follows that conditional probability is bigger than joint probability.

The third part is the atypical behavior of the lossy coding system. Following the definition of a good lossy
source coder in the strong sense in (9) and #fat ¢; x s™, we have, for allj; > 0
x Cp,s
lim Pr(d(x",x") > D+61) = lim Pr (d(c; xs",x")>D+6,)=0

n—oo n—oo
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This implies that:

Cp,s
lim Pr (c1 e B34 € S.(1(c)),d(c; x s",%") > D +51) =0 (51)

n— oo

The fourth part is when the code word,, the Gaussian subsequerﬁiécl), and the distortioni(c; x s™, x™)
are all typical, the decoding error for the channel decoder following the decoding rule in (45).

The output of the lossy source coding decodek’is= g,,(a"#(c; x s™)), from the decoding rule in (45), the
estimate of the message(a"?(c; x s"))) is not equal to the true messageif and only if there exists a message
m # 1, such that

> 1(Jem(k)in)| > L) = > 1(Jea(k)an)| > L) (52)

k=1 k=1

Notice that the codebooks are symmetric to the messages, i.e. over all the codebooks, the probability that the
estimation of the message = i is equal to the probability thatr = j for all 4,5 € {1,2,...,2"F} andi # 1,

j # 1. So we can union bound the decoding error probability of the event shown in (52) as follows:

5,Cp - 5,Cp n n

Pr(1#m(a™ (e xs™)) < 2% Pr (Z (lc2(k)2g| > L) Z (Jer (k)2 ZL)) (53)
k=1

where the probability is calculated over all possible codebooks over the meGsuamed the Gaussian sequences

s™. First, for a codeword;, and the lossy coding estimate @f x s™, 2", denote byu andv the number of entries

of the estimate?;, with absolute value above wherec; (k) is 1 and0 respectively:

u o= Y 1e(k)dr)| > L)
k=1

vo= Y 1(&)] > L ande; (k) = 0). (54)
k=1

With » and v fixed( here we fix the codeword,, the sequence™ and the estimaté™), we union bound the
probability of the following event that there exists a messagé 1, such that (52) is true:

5,Cp e n n
Pr (1 #m(a"(c; x s"))|c1 = c1,s" =s") < 2"Epp (Z W|ea(k)an] = L) =Y " 1(Jex (k)ix| > L))
k=1 k=1
_ G [
= 2"PPr (Y 1(|ea(k)ik] > L) > u (55)
k=1
_ u+v w + v
— onit ( l > pl(l _ p)u+v—l (56)
l=u
< nR u+tv L1 _ o \utv—l
= m{( )Py 6
S 2TLR X n27(u+v) l:uSliSr,‘zH»'u D(“iv Hp) (58)
_ nR n , i uuv <p
= 2 o ron(aly) e S ) (59)

u+v

(55) follows the definition ofu. (56) follows thatc, € {0,1}" is an i.i.d. Bernoullip sequence. (57) is because
u+ v < n. (58) and (59) follows basic information theoretic inequalities [6]. From Lemma 7 in Appendix E,
we know that the(u + U)D(u+v||p is monotonically increasing withh and monotonically decreasing with
“_ s also monotonically increasing with and monotonically decreasing withy so the expression in (59) is

u+v . . . . . . .
monotonicallydecreasingwith « and monotonicallyincreasing with v.
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(59) is true for all codeword; and sequencé'(“), typical or not. So it is also true for all thosg € B”,
g1 € S.(1(c1)) andd(e; x s™,2") < D + 6, in this case, we can give a feasible region foand v, i.e. then
give a bound on (59). We further investigate the distortion for the said typical sequences:

n(D+61) > nd(ep x s",z")

= Y (e(k)sp — @)

k=1
= Y (a®si—@)+ Y @
k:c1(k)=1 k:c1(k)=0
= > (ak)sk—@)?+ > @+ >ooo#
k:c1(k)=1 k:c1(k)=0,z1,>L k:cy1(k)=0,z,<L
> Y (e(k)sp — dx)® + 0L (60)
kicq (k)=1

where (60) follows the definition of. Notice that by definition:;, = ¢1(k)sk, SOz > 0 implies thate; (k) = 1,
the first term of (60) is:

PR CT I > (ke —dn)?

k:c1(k)=1 ki|lzg|>L>| &k

> (zul - L)

kilog|>L2> |2k ]

Y%

We rewrite (60) as:

n(D+6)> > (Ja| - L)* +oL? (61)

ki|wg|>L> |2k

From the definition ofu: we know thatu = Z 1(Je1(k)z)| > L) hence

k=1
SWael =L ak)) = D U(lwkl >0) =Y 10 < |zx] < L) = > 1(|er(k)dn)| > L)
k=1 k=1 k=1 k=1
= > Uzl >L)—u
k=1
2 n(lzk] > L) —wu (62)

Recall thats,,...5;,) are the none-zero entries ef', without out loss of generality, 11|, ...|5, (|2, |>L5)—ul
be the smallestu(|zx| > L) — u many |z, |'s that are larger tharl, without loss of generality lefs;| > .... >
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|80 (|2 |>L)—ul = L. Then substituting (62) into (61) and denote By= |5,|, we have:

n(|zg|>L)—u
n(D+6) > ST (5] - L)? +wL?
j=1

= > (51— L) +oL? (63)

§:L<5;1<U
= > (157 = 2L|5] + L?) + oL?

§:L<|5;|<U

U 1 .2
> 2x1(c) /L(S—L)Qm(des—e(l—FL)Z +oL? (64)
u o 1 2 2 2

> 2xn(p—ce s—L e~ Zds—e(l+ L + vl 65
> 2xn=o ([ -0 (1+1) (65)
> n Zp/ (s — L)? e~ Tds+ —L? —neKy(p, L) (66)
= I /7271_ n ’

(63) follows the definition ofs'(¢1), (64) is true becaus&'(“!) € S (1(c;)) is e-typical Gaussianv (0, 1). (65) is
true because, € B'. Finally in (66), Ki(p, L) is a finite function ofp and L, we do not need/ in the picture
because we can replaégwith oo when bounding the the residue. We rewrite (66) as:

U
1 52 v
2 s—L)Y ——e Tds+ —L?><D+6 +eKi(p, L 67
p/L ( ) \/ﬂ n = 1 € 1(]3 ) ( )
Meanwhile, becaus® = |5;] > ... > |3n(|zk|>L)—u| = L are the smallest(|zx| > L) —u many |z,['s that are
larger thanL, 5'(°1) is a e-typical Gaussmn sequence, 80z, > L) —u < 1(c;)(Pr(L < |s| < U) + €), hence:
u > n(zg] > L) —1(c1)(Pr(L < |s| < U) +¢)
> n(p—e)(Pr(]s| > L) —€) —n(p+e)(Pr(L < |s| < U) +¢)
= npPr(|s| > U) — neKy(p, L) (68)
The above analysis are true for all ande, we let both be small, we have
u>n(pPr(|s| > U) — e) (69)

S.t.:2 s—L
p/L ( ) o

where 5hm0 e = 0, this is true because for arly that satisfies (67), it either also satisfies the more stringent
JE—

5‘2
e~ T ds + %LQ <D (70)

constraint in (70) or the gap betweéh and the biggest/ that satisfies (70) is small whefh and e are small.
Then (70) follows the continuity oPr(|s| > U) in U.

Notice that (59) holds for all codewordl and s™, in particular it is true for the typical ones; € B!* and
g1 € S (1(cy)) andd(c; x s™,@") < D + &1, also (59) is monotonically decreasing with with (69) and let
r = £, recall the definition ob |n (54) fore; € B, v <n—n(p—e€) = n(l—p+e) or equivalentlyr € [0,1—pl,
we rewrite (59):

PI‘ (1 # ( (Cl XS ))|C1 =1 € Bn "=35"¢e Se(l(cl))7d(61 X Sn,fn) < D+51)

n , if <p
u+v —
S >< { n2~ (u+v) D(“_H, [F2) , if -2 - >p
~ . i Pls>r)
nE Pr(|s|>U)+r —
AR no M ((Prsl>U)+n) D(sddEIp)—es) ¢ _Prls|>U) 7

Br(sl>0)+r — P
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with (70) being satisfied, wherdim e3 = 0 because the exponent in (71) is continuousuinwe know that

€2 —

lim e =0, SO 511m ez = 0 as well.

,e—0

Notice that the coding system can pick arbitrdryit plcks the best possiblé, we have, if
R < R = max{ h(L,U,r)}
L>0 "U>L,re[0,1— p] Tl(L U,r)<D
xPr(|s|>U) xPr(|s|>U)
whereh(L,U,r) = { (px Pr(ls| > U) JrT)D(pIX)Pr(Is\5>U)+rHp) if piprTs\i‘U)ﬁ =P
sy Yy 0 |f pxPr(|s|>U) <p
pXxPr(|s|>U)+r
then
5,Cp
lim Pr (1 # m(a"F(c; x s™))|ci = 1 € B, s" = 5™ € Sc(1(c1)),d(c1 x s™,3") < D +6,) =0 (72)
The above inequality is true for all thoge € B, 5'(°1) € S.(1(c;)) andd(c; x s™,2") < D + 61 , SO
5,Cp
lim Pr (1 # m(a"(c; x s")),c1 € B™,s" € Sc(1(c1)),d(c; x s",%X") < D +61) =0 (73)

Finally we can upper bound the overall error probability of the randomized coding scheme. The decoding error
ep.n(R) is defined in (36) which is equivalent to (46) because of the symmetry. We decompose the error event into
4 atypical events as illustrated at the beginning of the proof. Foriary R,

Cp,s

epm(R) = Pr(l#m(a" (e xs"))) (74)
< Pr(Cl ¢ BY)
Cp,s
+ Pr(a € BYLE ) ¢ 5.(1(c)))

Cp,s
+ Pr (c1 € B",3) € S.(1(cy)), d(c; x s",%") > D + 51)

5,Cp
+ Pr (1 # m(a"(c; x s")),c1 € B™,s" € Sc(1(c1)),d(c; x s",%™) < D+ &) (75)

where (74) follows (46). The asymptotic behaviors of the four terms in (74) are shown in (49), (50), (51) and (73)
respectively.d; can be arbitrarily small, so we can finally claim that: for a good lossy source coding system in
the strong sense with distortion constrainf the randomized channel coding error converges to zero gses to
infinity:

lim e,,(R) =

n—oo

This concludes the proof of Lemma 5. O
VII. DI1ScUSSIONS ANDNUMERICAL RESULT

Now we have two upper bounds and two lower bounds on the rate distortion furdetionp). We reiterate the
bounds,

R(D,p) < H(p) + pR(D,N(0,p)) (76)
R(D,p) < R(D,N(0,p)) (77)
R(D,p) = pR(D, N(0,p)) (78)
D,p) > pR(D,N i L 2 pR(D,N (D, W79
R(D,p) 2 pR(D,N(O,p)) +maa{  ~ min o ep M Uir)} = PR(D, N(0,p)) + Ri(D, H79)
(p x Pr(ls| > U) +r)D(emeoyiz ) i sirsondy = P
whereh(L,U,r) = { g e o “pxbra0) (80)
pXPr(|s|>U)+r
U 2
s is GaussianV(0,1) and Ty (L, U,r) = rL* + 2p/ (s —L)* 12 e~ Tds
L s
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where R(D, N(0,p)) is the rate distortion function for zero mean varianc&aussian random sequence with
distortion constraintD, R(D, N(0,p)) = max{0, ; log, 5}. (76), (77) and (78) are derived in Propositions 2, 3
and 4 respectively, (79) is the main result in Theorem 1.
A. Properties of the improveme; (D, p)

The improvement of our new lower bound, the second t&fD, p) in (79), has a game theoretic interpretation.
In a two player zero sum game, the first player (the coding system) chaosies second player (adversary) chooses
U andr with string attached in (80), the payoff to player onehid/, L, r). First we argue that the improvement
of our lower bound, the second terR}(p, D) in (79), is monotonically decreasing with and if for someD, the
improvement is zero.

Corollary 3: R;(D,p) is monotonically decreasing with, i.e. for D; > Ds, R;(D1,p) < R;(D2,p)
Proof: R;(D,p) is of the form of

h(L,U,r)},

so for all L > 0, if the pair (U, r) is feasible forD,, it is also feasible forD;, hence the minimum ok(L, U, r)
for D, is no bigger than that foDs. O

max{ min
L>0 "U>L,r€[0,1—p|:Ty (L,U,r)<D

More importantly the improvement is withiie, H (p)] in light of the upper bound in (76). In the low distortion
regime, i.e.% < 1. We argue that the improvemen; (D, p) is close toplog, %

Corollary 4: Asymptotic behavior ofR;(D, p) in the low distortion regime , for any > 0
. 1
élglo Ri(D,p) = plog, ];

Proof: We only give a sketch of proof here. The coding system pick a positive 1, but L? > D, say
L = D3 The distortion constraint offy (L, U, r) implies thatD > rL?, hence
D 0.4
Sor goes to zero a® goes to zero. Similarly we argue thét goes to zero a® goes to zero. In light of the
distortion constraint and that is picked to beD?3, also the obvious inequality that2sL > —2- — 4L? for all
s andL:

U U U

D > (s — L)? = e~ ds > / (3—82 - 3L2)Le_%ds = / (E —3D%9) = e~ 7 ds

2p — JL vors L Ver pos 4
hence:

Vs 1 2 D Voapee L s D 0.6
Ao.sjﬁe 2d3§%+/DO.33D Ee 2ds§%+3D
take limit on both side whe — 0, the right hand side i§, the left hand side is zero if and only if — 0 as
D goes to zero. We just showed that if we pitk= D°3 and D goes to zero, then botli andr goes to zero if
the distortion constraint be satisfied. This means that the in this case:
p x Pr(|s| > U)

px Pr(|s| >U)+

. . I —_ 1
Mm Ri(D,p) = lim (px Pr(|s| > U) +r)D( ~llp) = pD(1]lp) = plog, ’

]

A simple corollary of Corollary 4 is as follows. For smaill the sparse signal studied in the compressive sensing
literature:

1 1 1
H(p) = plogz(i) +(1-p) 10gz(ﬂ) = plogz(];) + log,(e)p
So the gap between the improved lower bound in (79) and the upper bound in (76) is dbggéstp which is
dominated by the improvemeptlogzé for small p.
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B. Numerical Results

We plot the bounds in (76)- (79) fgr = 0.1. As shown in Figure 4, the rate distortion functidt{D, p) is
bounded by the lower and upper bounds in (76)- (79)
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Fig. 4. Lower and upper bounds d®i(D, p) for p = 0.1 at high distortion levels, the distortioP runs from0.005 to 0.1

VIIl. CONCLUSIONS ANDFUTURE WORK

In this paper we study the rate distortion function for Bernoulli-Gaussian sequences. The main result is an
improved lower bound on the rate distortion function. The improvement over the known best lower bound is
plog, % if D is small. This is significant since the currently known gap between the lower bound and upper bound
is H(p), hence the improved lower bound is almost tight for sparse signals whetel. To derive this lower
bound, we develop a new technique to lower bound part of the rate distortion function through a randomized lossy
coding channel. This is, to our knowledge, the first work on this topic. This new lower bound and the obvious upper
bounds do not match. The lower bounding technique we use in this paper can be improved if we can relax the
near-zero error probability constraint on the randomized channel coding. A potentially useful direction is to replace
the channel coding part with a lossy source coder. This is left for future work. There is another interesting result
we developed on the way to prove the main result. We showed the equivalence of the rate distortion functions in
strong sense and expected distortion sense for continuous random variables with finite variances.
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APPENDIX
Rate distortion function in the strong sense for continuous random variables

It is shown that the rate distortions function for both the average distortion and the strong distortion are the same

for

discrete random variables Chapter 13.6 [5]. However it is not obvious if it is also true for continuous random

variables. In this section, we give a sketch on why it is also true for continuous(mixed) random variables. Since

we

have not seen similar results in the classic literature on rate distortion function [3] [2] and [11], we feel it is

necessary to give a sketch of proof here.
As shown in Figure 6, to make it more general, wexdie a mixture of a continuous probability functipfr)
and finite many discrete values with positive probabilitiBs(& = a;) = p; > 0 shown as impulses in the figure).

We

need the mean and the variancexdb be finite: F(x) < oo and E(x?) < cc.
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Fig. 6. Probability density functiop(x) of a continuous random variable

First, we argue that the rate distortion function in the expected distortion sense exists for the mixed random
variables by approximating the impulses in the pdf by a sharp step fuRctiowe have a continuous pdf and the
rate distortion theorem can be applied. It remains to be shown that the continuous rate distortion function converges
to the one forx asm — oo. This can be easily proved by noticing that the approximation error is at g%)ébr
this approximation, hence the rate distortion function of the continuous random variable converges to the mixed
one.

Now we show that the rate distortion function in the strong sense for continuous(mixed) random vayiable
denoted byRs (D, x) is equal to the rate distortion function in the expected sense, denot&j; bip, x).

p(x)

Fig. 7. Quantization of a probability density functigiiz) of a mixed random variable, 7 level quantization for the continuous part and
exact representation of the discrete part.

As shown in Figure 7, for the continuous part of the probability density function, we quantize the real line into
(2K+1) quantization levels with the interval size The intervals ard— Ku, —(K —1)ul, ..., [—u, 0], [0, u], ..., [( K —
1)u, Ku] and the “tail” interval(—oo, — Ku] | J[Ku, 00). For each interval, the representation value is the middle
point of the interval, specifically for the “tail” interval, the representation valug M/e use the following function
g, 10 map a mixed random variable to a discrete random variable:

x, px(x) > 0,
aku(z) = (k+3)u, pe(z)=0andz € [ku, (k+1u), k=-K,..,K—1
0, px(x) =0 andz € (—oo, —Ku] J[Ku, 00)

For a random variable, the output of the mapx ., = ¢k .(x) is a discrete random variable. Hence we know
that the rate distortion functions in the strong sense, denoteBdJf{\D, yx ,,) and the expected distortion sense,
denoted byRg (D, yk ), are the same.

Now we have four rate distortion functions, the rate distortion function for the mixed (continuous) random
variablex, Rs(D, x) and Rg(D, x), and the rate distortion functions for the quantized discrete random variables

2For an impulsePr(x = a;) = p; > 0, we add the continuous pdf(z) by the following step functiorp;(z): p;(xz) = m if = €
[as — 5%, a; + 5], pi(x) = 0 otherwise.
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Rs(D,yk.) and Rg(D, yk,). The goal is to show thatRs(D, x) = Rg(D,x). First, from the discussion in
Appendix B, we know thaiRs(D, x) > Rg(D, x). It remains to be shown thats(D, x) < Rg(D, x). We will

use the discrete random variabig ,,’s rate distortion functions as bridges to show that. We will show that when
u — 0 and Ku — oo: Rg(D,x) < Rg(D,yk.) and Rg(D, yk,.) < Rg(D,x). And knowing that for discrete
random variabley .,, Rs(D, yx ) = Re(D, yk). We will have:

Rs(D,x) < Rs(D,yk.u) = Re(D, yru) < Re(D,x).

This will conclude our proof thatRs(D,x) = Rg(D,x). Now we only need to show thaRgs(D,x) <
Rs(D,yk ) and Rg(D, yxw) < Rp(D, x).

1) Rs(D,x) < Rs(D, yk,.): We only need to show that if at a rate-distortion p@®, D), there is a good lossy
coder fp. . ., gng... IN the strong sense forx ., then there is a good lossy codgy, g,, in the strong sense for.

From the definition of the good lossy coder in the strong sense, we know that fer:aiy:

YK,u

lim “PE (AR s e e (i))) = D00 ) =0

n—oo

Notice thatyy , = gk ..(x), SO the above equation becomes:

lim Pr (s (™), e P (a16,0(x"))) = D+ ) =0 (81)

n—oo

where the quantizeyx,(-) is illustrated in Figure 7. Now we show the following encoder decoder fair, , gn . .,
is good in the strong sense ferwhenw goes to zero and{u goes to infinity. Where

an,u(') = an,u (qK,U('))v andgnx,u(') = g'ﬂKu()
Notice that the distortionl(-, -) is the mean square of the difference, so almost surely:

d(xnagnk,u(fnx,u(xn))) = d(Xn?gnK.u(an,u(qK,u(Xn)))) )
< d( n»un( n))Jrd(qK,u(Xn)vgnK‘u,(.fnx,u,(qK,u(Xn))))

= - Z —4K,u XZ >+ d(QK,u(Xn)vgnK,u (an.u (QK,u(Xn)))) (82)

We analyze the first term in (82). We decompose the sum square depending o isoguantized, remember for
x > Ku, the quantization i$ and we assume thdt'u is big enough that no discrete part ofis larger thank u:

- Z —4dK,u Xz 2 - % Z (Xi - qK,u(X’i))Q + % Z X,‘Q

itx; | <Ku i:|x; | >Ku

u—&—l Z xf

n
it|x; | >Ku

IN

Pick u < 6o and Ku big enough such that, (1(|x| > Ku)x?) < §y—u, this is clearly doable becau#s (x?) < oc.
Now we use the weak law of large humbers,

1 i x 1
ﬁ Z —qreu(x))? > 0) < PT(E Z x2 > 0g — u)
i=1 it|x; | >Ku
x 1 n
= Pr(- ;(1(|x| > Ku)x? > 8o — u)
— 0 asn — oo (83)

Now we can bound the following probability:
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X X

Pr(d(x", gnyc . (frge.. (x"))) > 260) < Pr( Z( — 4r.u(x)” + daru(X"): G Fuie, (arc.u(x")))) > 184)

< B30 - ) > 6o)

=1

+ P (), G (e o (@60 (X™)))) > 60) (85)
— 0 asn— oo (86)

where (84) follows (82). (85) is true becauBe(x+y > 2¢p) < Pr(x > €p or y > €g) < Pr(x > €g) +Pr(y > ),
while (86) follows (81) and (83).

2) Rep(D,yk.) < Rg(D,x) : We only need to show that if at a rate-distortion p@i, D), there is a good
lossy coderf,,, g, in the expected distortion sense fgrthen there is a good lossy codﬁ{Kﬁu,gnm in the strong
sense foryg .

From the definition of the good lossy coder in the expected distortion sense, we know that

T}LII;OE(d(Xnvgn(fn(XnD)) <D

Now we construct a good lossy coder in the expected distortion sense, we implement the following “inverse”
map of gk ,,, denoted bywg ,,. Wherewy ,, is a random map, for any real sequenéegenerated by the random
variableyg ., y; can only take values od = {ku : k = —K, ...,0,..., K anda € R wherep,(a) > 0, the inverse
mapwg , : A — R, such thatwg ., (yx ) ~ x and for ally € A: wg ,,(y) € {x € R : gk (z) = y}. Pictorically
the inverse map maps the impulses in Figure 7 back to the mixed random variable with probability density function
in Figure 6. The good lossy coder in the expected distortion sensgfpris for all y™ € A™:

an,u (yn) = fn(WKﬂL(yn))
gnK,u = 0n
Now we analyze the expected distortion of such coder.

B (A0 G P V) = B (A3 90U WicalvR,)))
S E (d(ylré,u? WKﬂt(yITé,’zt))) + E (d(WK u(yK u) gn(fn(WK u yKu ﬁ7)

The second term in (87) convergesifoasn goes to infinity because/K,u(yKu)) ~ x"™ and f,, g, is good for
x™ in the expected distortion sense. As for the first term in (87), we show it converges to zero forsamall
big Ku asn goes to infinity.

Eyy., (d(YK,ua WK,u(YK,u))) = Ey, W= E yKu WK,u(yK,U(Z)))2)
i=1

3

EyK,u((yK,u - WK,u(yK,u))Q)
= EyK,u(l(WK,u(yK,u) < K“)(YK,u - WK7u(yK7u))2)

+EyK‘u(1(WK,u(yK,u) > KU)(}/K,U, - WK,u(yK,u))z)
2

u
< a + E)’K,u(l(WK-,U(yK,U) > KU)(YK,u - WK,u(yK,u))z) (88)
2
= L4 B> Ku)x?) (89)
— O0asu—0andKu — o0 (90)

(88) is true because ifwrk . (yx,..)| < Ku, then the quantization error is no bigger thgn (89) follows that
wk u(Yx,u) ~ x. (90) is true because the variancesofs finite. (90) and (87) gives us the desired result that the
expected distortion 0f,, . ,, fn, . converges td) if u goes to zeroKu goes to infinity.
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B. Constructing a good lossy source coding in the expected distortion sense from a good one in the strong sense

The construction here is a general proof. It works for both continuous, discrete and mixed random variables.
By constructing a good lossy source coder in the expected distortion sense from a good lossy coder in the strong
sense at the same rate-distortion pdiRt D), we can easily see that the rate distortion function in the strong sense
is not smaller than the rate distortion function in the expected distortion sense. This fact is used in the proof in
Appendix A.

Assume both the first and second order moment afe finite, i.e.E(x) = u, < oo and E(x?) = o, < oo. If
fn, gn 1S good in the strong sense f&( D), then we denote by{',, C R", the subset the distortion constraint is not

satisfied, i.eX,, = {z™ € R" : d(a", gn(fn(z™)) > D+ §}. Denote bye,, = ﬁr(Tn), thene,, — 0. A good lossy
coder might havey,, (f,,(z™)) arbitrarily faraway frome™ for 2™ € T,, as pointed out in Section |-B and cause the
expected distortion arbitrarily large. We build a new lossy coding sygtem,, such thagjn(fn(x”)) = gn(fu(z™))

for 2 ¢ T, and g, (f.(2")) = 0 for 2™ € T,,. Obviously is good in the strong sense, we only need to show that
fn, Gn is also good in the expected distortion sense. The expected distortifn &f is:

B, 3 (fa (") = Pr(x" € TO B Gu(Ful<" )" € TE) + Pr(x” € T B, Gl 6))x" € T,
(1 —en)(D+96)+Pr(x" € Tp)E (d( nvgn(fn( "X € Yy)

(1 —en)(D+6)+Pr(x" € Y,) Zx2|x €T, (91)

IN

Now we upper bound the second term, first according to the weak law of large numbers and the variance and the
mean ofx are finite, we know that for any > 0, there exista. < oo, s.t for alln > n.:

X 1 n
Pr(%ZXZZ*JX\ >e) <e. (92)
1=1

This implies that for any subsét € R™ with measurelgr(l“) > 1 —¢, then there is a subsé&y C I, such that
Pr(l“l) >1—2eand forallz” e Iy [ 37 22 — 0y <.

From the definition ok,,, we know that for large enough, e,, = ﬁr(T ) <eor equivalentIyPXr(Tg) >1—e
From the above discussion, there exists suligete Y¢, such thatPr(Fl) > 1 — 2¢ and for all 2™ € T';:

n

|L3" 22 — 04| < e. So the expectation of the mean variancexbfcan be decomposed:

1 n
Ox = E;
= Pr(x" e YO)E ZXQ\X YY) +Pr(x" € Y,) Zx2|x eT,)
1
> Pr(x"ely)E Zx2|x el)+Pr(x" €Yy) ZXQ\X eT,)
i=1
> (1—¢€)(ox—e€)+Pr(x"eT,) Zx2|x”€T
Hence:
Pr(x" € T,) Zx2|x €T, <e(l+0y) (93)

=1

Substituting (91) into (93), we have:
E(d(x", gn(fa(x™))) < (1 = eu)(D +8) + e(1+0x) < D+ + (1 + o)

_Note that the above is true for allandd, so we can let both be arbitrarily small and the expected distortion of
fn, Gn is arbitrarily close toD. Hence we just constructed a good lossy coding system in the expected distortion
sense from a good lossy coding system in the strong sense. O
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C. Proof of the simple bounds: proof of Propositions 1, 2, 3 and 4

Proof of Proposition 1:

To showR(D, Z(p, 0?)) > R(Z,E(p, 1)), we only need to construct a sequence of good, in the strong sense of
rate distortion in (2), encoder/decoder pdif§, g.,), n = 1,2, ..., for Z(p, 1) from that for=(p, o?), (fn,gn), n =
1,2,.... Let f/ andg/, be as follows, for alk” € X™ anda"f € {0,1}"%:

Fala™) = fulow™), (@) = Sgua™™)

So forx ~ E(p,0,1)

Pr (d<x",g;<f;<x”>>> >

= pr(a, Lan(Falox) = 250

— Pr(d(ox", ga(falox™))) = D +9) (94)

where (94) is because the distortion measi(te y) = (z — y)? in this paper.
Obviously forx ~ Z(p, 1), ox ~ Z(p,0?), and if f,, and g,, are good in the strong sense, defined in (2), for
Z(p, 0?), then for all§ > 0:

D+§>

o2

lim Pr(d(ox", gn(fn(ox™)) > D +4) =0. (95)

n—oo

Combining (94) and (95), we have:

i Pr (a1 (1200 = 250 ) =o.

n— 00 o

Notice that is an arbitrary positive number ands constant, we just show th&( D, Z(p, 02)) > R(L,Z(p, 1)).
Similarly we can show thaR(D,Z(p,0?)) < R(Z,Z(p,1)). This complete the proof thak(D =
R(2.E(p.1)). O

JiEY
S

)
VN)

Proof of Proposition 2: for a Bernoulli-Gaussian random sequeréeby Definition 1, we know that; = b; x s;,
b; ~ Bernoulli —p ands; ~ N(0,1) are i.i.d random variables. The encod&grworks as follows. It is consisted
of two parts. First the encoder encoble losslesslysing a fixed length code-book. Then the encoder entassdly
the subsequence af* whereb; # 0 by applying standard Gaussian lossy source coding.

We now describe the coding scherfig g,,, in details. Ifb™ is ¢;-strong typical, and writd (b™) as the number
of 1's in sequenceé™. i.e.:

# —pl < e}

b* e B 2 {b" € {0,1}" ;|
then f,, one-to-one map&™ to a binary sequence of lengti{ H (p) +7(e1)) excluding the all zero signal, otherwise
b" ¢ B!, f. sends the all zero signal, wherge;) — 0 if e, — 0, this is guaranteed by the standard lossless

source coding theorem. Obviously for all > 0:

b
lim Pr(b" ¢ B) =0 (96)

n—oo

Now for eachz™ = b" x s", if b" € B, we know thatn(p —¢;) < 1(b") < n(p + €1). Denote by a new
sequencesy, .51,y the non zero entries of”. Then the encodef,, passess'(®") to a good Gaussian lossy
encoder-decoder paifl(bn),gl(bn) with rate R(%N(O, 1)) for a sequence of length(b™). If output of fl(bn),
when1(b™) < n(p + €1), is shorter tham(p + el)R(%N(O, 1)), fn just pad zeros at the end. The total block
length forx™ is

D
n(H(p) + 7(e1)) +nlp+ e) B2 N0, 1)). 97
If the output form the encoder is not a all zero sequence, the deggdast looks at the first(H (p) + 7(e1))

bits and recoveb™ exactly and hencé(b™). Theng, discards the padded zeros at the end and pass the rest to the
Gaussian lossy decodgi ;) with rate R(%,N(O, 1)) for a sequence of length(v™). Theng, put the outputs
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of gi,») to the non-zero locations df* one by one. By using the coding system described above, we have for
b" € B,

nd(@", gn(fo(2"))) = 10")dE "), G1m (frm (3'))) (98)
and because™ and b™ are independent and the coding systﬁmn),gl(bn) is good, for all fixedv” € B, for all
do > 0:

lim Pr (d( 0. g1y (o (B0) 2 2 +5o) —o. (99)

n—oo

Now we evaluate the performance §f, g,,, for all 6; > 0:

lim Pr(d(x™, ga(fu(x™)) = D +8) < lim {Pr(b" ¢ B") + Pr (d(x", gu(fu(x™))) = D + 61/b" € BT ) X100)

= lim Pr (d(x", gn(fu(x™))) = D+ |b" € BL.) (101)
n n(D + 0 " "

= nlLH;O PI’ (d sHe” ) 1(b™) fl bm) (Sl(b )))) Z (l(bn)l)|b S Bel) (102)
n D+6)

< lim Pr (dEC Gy (Fue (320 > P E) g\ (103

< lim r( ', Grom (fiem )))7n(p+61)| € BZ ) (103)

. n D ) p— D61
= lim Pr{dE'"), g1 m (Fipm (31 >+1b"eB">
ner;O r( ( g1 (fl(l ( ))) = p(p+€1) | €1
=0 (104)

(100) is because for eventsand B, Pr(A) = Pr(A, B) + Pr(A4, B®) < Pr(B) + Pr(A|B°). (101) is true because
of (96). (98) implies (102). (103) is true because™) < n(p + €1) if b € BY,. Finally, for anyd,, by letting e;
small enough, henc@g‘;}—De)1 > 0 and by (99) and the fact that(®") is |nduced byx™, we have (104).

(97) together with (104) implies that:

R(D.p) < H(p) +pR<§, N(0.1)) + r(e1) + elR<% N(0.1)).

Notice that we can pick; arbitrarily small and hence(e;) arbitrarily small, we haveR(D,p) < H(p) +
pR(Z,N(0,1)) = H(p) + pR(D, N(0,p)). 0

Proof of Proposition 3: this is a direct corollary of the upper bound in Corollary 2. Notice that the variance of
a Bernoulli-Gaussian random variatfép, 1) is p, so according to Corollary 2, E(p, 1) is a continuous random
variable, we would have:

R(D,p) < max{ log ,0} = R(D, N(0,p)) (105)

The technicality here is th&(p, 1) is not a continuous random variable, but the fix is quite easy. Let random

variabley,, be thep-mixture of a Gaussiav (0, 1) and a uniformly distributed random variable {}Hm, m] ie.
with probability 1 — p, y,,, ~ N(0,1) and with probabilityp, y,, ~ U[fa, E] The pdf ofy,, is
1=pe% > L
) ={_ 2> v " (106)

Obviously, y,,, is a continuous random variable with variance 3# Now according to Corollary 2, we know
that the rate distortion function for,,, R,, (D) is upper bounded by

max{% log %7 0} = R(D,N(0,p+ —)). (107)

3m?2
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Now we upper boundR(D,p) by constructing a good randomized lossy coding systemxfer =(p,1) in
the average sens¢!, g, from a good lossy coding system fer,, f2,¢%. Given x™ ~ Z(p, 1), f# applies the
following operation on it, fori = 1,2,...,n, let

_ Xiy Xi 7& 07
zi={ Xt x =0 (108)
whereu;’s are independent ang} ~ U[%, %] is a uniform distributed random variable. It is clear thahas the
same distribution ag,,,. Now f" passes” to encoderf. The decodep” = g. Now we analyze the performance
of the coding systenf, g&.
First, becauseg?, ¢ is a good in the strong sense fay,, we have, for anyy; > 0:

lim Pr(d(z", g} (f}(z")) > D + 61) =

From the construction of, g, we know thatg (f%(z™)) = g2(f%(x™)) a.s., wherez” is induced fromx™ and
u™, denoteg (f¥(x™)); or equivalentlyg (f(z")); by w;, S0 :

lim Pr d(z" gn(fi(x™) > D+61)) = lim Pr(d(z",w")>D+6;)) =0. (109)

n—oo n—oo

Secondly, from the construction ef', we know that for alli, |x; — z;| < - a.s.. So we have a.s.:

A g = Yl

< %Ejm—awwa—mw
< fgj Flz - wi)?
S - + Z - Wz + - Z |Z’L — W (110)

By the Cauchy-Schwartz inequality, a.s.:

n

(Z |z — wi])? < (Z |zi — Wz‘|2)(z 1)

hence a.s.

1 — 1 —
- C—w| < | = - — w;|2). 111
”;:1 |zi — wi| < $ n(;:l |zi — wi[?) (111)

Now for a realization ofx” and v™: z™ and«™, the induced realization of” and g“(f!(x™)) are z" and w™
respectively. Ifd(z", w™) < D + ¢1, then combining (110) and (111), we have:

dam g (F2) € =4 (4o V2N
1+2\/ﬁ51

< D+ + ———

This means that

X,u

Pr(d(z",w") > D + 6,) > Pr (d(x”, W) > D+ 6 +

1+2\/D+51) (112)
m
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The above coding system is a randomized coding system where the performance is measured under the distribution
of the “dithering” random variable:. Now if we take the above average “dithering”, i.e.: for ea¢he R",

1+2\/D+51) <1
m b

u

if Pr (d(x", w™) > D+ 6 +

there existsu™(z") € [=2, L] and of coursey;(z™) = 0 if z; # 0, such that the distortion betweer? and the

output of the the lossy coding systefff, g/ with input 2™ + " (z™) is no bigger thanD + §; + 122401

1+2yD+56
d(a", g (f2(z" +u"(z")))) < D + 6 + %m
otherwise, simply let u"(2™) = 0.

Finally, let f, and g, be such that, for alk”, f.(z") = f¥ (2" + u"(2")) and g, = g}. The construction of
gn, fn implies that

Pr(d(x", g (fu (")) > D + 6, + Tr2vD+o an”l) <Pr (d(x”, w™) > D+ 4§y + 1+2vD+ 0 va+61> (113)
Now combining (109), (112) and (113), we have:
Jim B, 00 (fa6")) 2 D 4y + 12V DR
Note that the rate of the coding systemAs (D) which is upper bounded b(D, N (0,p + 5=3)) in (107). So
R(D + 6 + 1e2vDto ”nfm,p) < R(D,N(0,p + #)) (114)

while (114) is true for all5; > 0 andm € N. Note that the Gaussian rate distortion functiBD, N (0,02)) is
continuous inc? and the Bernoulli-Gaussian rate distortion functi@D, p) is monotonically decreasing and
bounded inD, hence continuous with measute By letting m — oo and §; — 0, we have:R(D,p) <
R(D,N(0,p)). O

Proof of Proposition 4: For a good lossy coding systeff, g, for Bernoulli-Gaussian sequengé = b™ xs™ ~
=(p, 1) defined in Definition 1 and distortion constraib the rate isR(D, p), i.e.

fn : Rn - {07 1}nR(D,p) gn ' {07 l}nR(D,p) - Rna f;I‘ (d(Xnvgﬂ(fﬂ(Xn))) Z D + 61) = €n

and for allé; > 0: lim e, = 0. (115)

n—oo

We use the same notations as those in the proof of Proposition 2. We construct a goodniengthn(p —
€1),n(p + €1)] lossy source coding systelfy,, , g, for s» ~ N(0,p) under the same distortion constraibt
wherem,, will be determined later. First we decompasg by (96), we know that there existg, < oo, such that

X
for all n > n,,, Pr(b" € B") > 1, so for alln > n,:

Pr (d(x", gu(fu(x"))) > D + 81)

€n =

> Pr(b" € BY , d(x", gn(fu(x"))) = D +61) (116)

— 3 Pr(b" =", d(X", galfu(x™) = D+ 61) (117)
bneBr

= P enn) Y T =N B g (fuM) 2 DA S BT =B (118)

pmeBr Pr(b™ € BY,)

1 X

> 5 D G0N P, gn(fa(x") 2 D+ 01]b" = b") (119)

breBr
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(116), (117) and (118) are obvious, in (119), we denot&*) by %. Notice that¢() is a probability
Pr(breBr,

measure orB! . Hence there exists" € B", write 1(b") = m,, € [n(p — €1), n(p + €1)], such that:

Pr (d(x™, gn(fa(x™))) = D + 61 |b" = ") < 2e,,. (120)

We bound the distortion of™ as follows, letl; < ly < ... <lp,, L = {l1,...l;m, }, be the positions of the non-zero
elements ob™,

nd(z", gn(fu(z >Z w1, = gn(fa(2™)1)*. (121)
Substituting (121) into (120), we have:
Pr (Z"wi — g (Fa(x™)1.)? = n(D + 61)[b" = b“) < 2e,. (122)
=1

Now we are ready to construct a good lossy source coding syﬁ;ermmn for s™» ~ N(0,p). The encodegfmn

works as follows, for any sequeng&~ ¢ Rmn, fim, (37) = f.(T(s™)), for a binary sequenceP-»)" ¢
{0, 1} 1P g (gB(DpIn) = T—1g, (aF(P-P)n)) whereT is a one-to-one map froR™» to R™:

T(3") =s", wheres;, =8;, i=1,2,...,m, ands; =0, i ¢ L
T71(s") = 5™, wheres; =s;,, i=1,2,....m
x" = b" x s, so if b = b" thenx; = 0 for all i ¢ L, and by the memorylessness df. We have:

s

Pr (mad(s™ G, (o, (s")) 2 n(D +8)) = Pr (Z”@- — G (fon, (5M)s)? = (D + 51>>

=1
= Pr (Z(Xzi = gn(fu(@™)1)* = n(D + 61)|b" = b)
i=1
< 2e,. (123)
where the inequality is by (122). Notice that, = 1(0") € [n(p—e1),n(p +€1)], SO - € [qu o 61} So (123)
and (115) tells us:
0 = lim Pr(mad(s™, G, (fon (s™)) = n(D + 1))
= i Pr (A i, (o, (570 2 (D4 30
s 1
>  lim Pr (d( "0 G (Fr, (™)) > (D+61)> . (124)
n— o0 pP— €
The encoder decoder pafr,, , G, usenR(D,p) bits, so the rate of this coding systemfig(D—’p B(D.p)

p—€r
(124) is true for all§; andey, by lettinge; — 0, we just construct a raté2:2) - distortion ’;’ coding system for
ii.d Gaussian random variablgg» ~ N(0,1). From Corollary 1 we know thaf22) > R(2 N (0,1)), i.e

R(D.p) > pR<§, N(0,1)) = pR(D, N(0,p))
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D. Strong Typical Gaussian Sequences

In this appendix we define and investigate the properties of the so called strong typical Gaussian sequences. For
a sequence” € R", for a real numbefl” € R, the empiricall-th moment of entries iB™ within interval [T, ]

is denoted by ST )
i=1 1(8i > 1)s;
- .

Definition 4: e-typical Gaussian sequences: A sequesités said to bec typical for N(0, 1), if the followings
are true: for any real numbér > —oo,

n! (T) =

sn

> 1 a2
l l =
Ngn (T') — s e 2 ds| <e 125
)= [T } (125)
The e-typical set of N (0, 1) is denoted byS.(n), similar to the strong typical set for random sequences with finite
alphabet, we have the following concentration lemma. Note that the convergence is uniform convergence, in the
sense that we ask the sequence to be typical for all real nurfibemiultaneously.

max_ < sup
1=0,1,2 | 7

An almost equivalent “double-sided” definition etypical Gaussian sequence is as follows. First, for any <
S < T < oo, we denote by
> iy 1(si €[S, T))s;

n

nb% (S, T) =

Similar to that in Definition 4, we define the typical s&t(n) as the set of all sequeneg, s.t.

T
1 —s2
max 4 sup |ns. (S, T —/ st e 2 ds
l—OJ,Q{SSI'])“ s ( ) S 2T

We now illustrate the equivalence of the two typical sét§n) and S*(n). First, obviouslyS*(n) C S.(n).
Secondly,

< e} (126)

T oo oo
1 = 1 -2 1 -2
1% ! = ! ! ! == ! =
supnsnS,T—/s ez ds :supn(nS—nsnT—/s 62d5+/5 e 2 ds
S<T ( ) S V2T S<T o (5) @) S V2T T V2T
I (g /oO R LT a1 ==y
< sup |ngn - s e 2 ds|+ |ngn —/ s e 2 ds
Sgl; (%) S V2T (T) T v 2T
o R
< 2sup [nl. (T —/ s! e 2 ds
S Zsup g (T) = | 8 o=

This meansS.(n) C S;.(n), so the concentration of the “double-sided” and the “one-sided” typical sets are
equivalent. We use the latter definition etypical set in the main body of the paper. However, for the sake of
simplicity of notations, we prove the concentration of thtypical set of the “one-sided” definition.

Lemma 6:Concentration of Gaussian sequences: for iN.(D, 1) random sequence®, for all e > 0
lim Pr(s™ € S(n)) =1 (127)
n—oo

Proof: we give a sketch of the proof here. The idea is to first quantize the real line for the Gang$iah
random variable then apply the concentration result for i.i.d discrete finite random sequences. The quantization goes
as follows, we study the following interval$(—oco, — Kw], [-Kw, — (K — 1)w], ..., [(K — 1w, Kw], [Kw, 0]}, i.e.
the end points of the intervals are defined as follows: for an intggeithin range[—K — 1, K + 1] we denote
w(y)=jwif j=—-K,.., K andw(—K —1) = —co andw(K + 1) = co. We can obviously let> be small enough
and K be big enough such that the following two integrals are true fojall — K — 1,... K

/W(jJFl) ;1 e
s e 2 ds
w(j) V2T

<%mH:QL2 (128)
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We let S«-X(n) be the set that the typicality condition in (126) is true T0e= w(j) forall j € {-K —1,..., K +1}
simultaneously, i.e.

o 1 -2
Sk (n) = {s": max su nb (w(j 7/ st ez ds| <e 129
(n) = {s": max {j_m?.,m i) = [ o } (129)

We show that

lim Pr(s™ € % (n)) =1 (130)

This is true because from the weak law of large numbers we know that=fap, 1, 2:

© 1 e

lim Pr( [nL. (T —/ st ez ds <e> =1 131
n—oeo ( (1) T V2 ( )

for all T € R|J{—o0, 0}, in particular for allT = w(j), j = —K — 1,..., K + 1. This is a finite set, so
lim Pr(s" € <% (n))

n—oo

= lim Pr( max { sup
j=—

n—00 1=0,1, K—1,. ,K+1
=1 (132)
(130) is proved. In particular:
lim Pr(s" € 5% (n)) = 1 (133)

Now we are ready to use (133) to prove the lemma.
For anys™ and a real numberF € [w(j),w(j +1)], j € {—K — 1, ..., K + 1}, then obviously

4 (T) € [l (w(j + 1)), nba (w(4))], s0 forl =0,1,2:
nl (T)—/Oosl L 54 < ol (w(‘))—/wsl L s
v r " Vor SR VG
= n ((.u(j))f/oo st 1 ez2ds+/T st 1 6752ds
i) V2 i) V2w
. ( ()) oo ;1 =2 w(j+1) P
< ngn(w(y —/ S ezds—i—/ S e 2 ds
wG) V2T w(j) V2n
o0
< nén(w(]))—/ st 1 ez ds —l—E7 (134)
wy) V2 2

where (134) follows (128), similarly we have foér=0,1,2 :

nl. (T) — /TOO st zwe#ds > —|nb(w(G+1)) - /w:+1) st \/12?6%2&9 ~ 3 (135)
(134) and (135) tells us that fdr=0,1,2 :
nl. (T) — /OO st 1 e_Tszds < sup nb. (w(4)) — /00 st L 6’_;2 ds| + <. (136)
T 27 j=—K—1,.,K+1 W) V2T 2
Notice the definitions ofs.(n) and $¢" (n), (136) implies thatS. (n) 2 S%* (n), hence:
Jim Pr(s" € Sc(n)) > Jim Pr(s" € S;K(n)) =1
The lemma is proved. |
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E. Properties of(u + v) D( ;% |lp)

In this section we show some properties(af+ v) D( ;% [|p), summarized in the following lemma.

Lemma 7:1f u,v >0, % > p, then(u + v)D(;4[lp) is monotonically increasing witlh and monotonically
decreasing withy.

Proof: First, both .- and D(% ||p) are positive and monotonically increasing withif _*— > p. Hence

(u+v)D(;4lp) is monotonically increasing with.

Secondly, using basic calculus, we have:

du+ oDl 4 (wlos(ag) T vlos(GEin)
dv N dv
= h Y t1+lo <v )
B ut+v u+v & (u+v)(1—p)
1 _ U
_ 1 u+v
o ( L—p )

< 0 (137)

The last inequality is true becau% > p hencel — - <1 —p. ]
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