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On the rate distortion function of Bernoulli Gaussian sequences

Cheng Chang

Abstract

In this paper, we study the rate distortion function of the i.i.d sequence of multiplications of a Bernoullip random
variable and a gaussian random variable∼ N(0, 1). We use a new technique in the derivation of the lower bound in
which we establish the duality between channel coding and lossy source coding in the strong sense. We improve the
lower bound on the rate distortion function over the best known lower bound byp log2

1
p

if distortion D is small.
This has some interesting implications on sparse signals wherep is small since the known gap between the lower
and upper bound isH(p). This improvement in the lower bound shows that the lower and upper bounds are almost

identical for sparse signals with small distortion becauselim
p→0

p log2
1
p

H(p)
= 1.

I. BERNOULLI-GAUSSIAN MODEL AND SOME OBVIOUS BOUNDS ON ITS RATE DISTORTION FUNCTIONS

Notations: in this paper we usex , y , u for random variables andx, y, u for the realization of the random

variables or constants. We denote by
x

Pr(A) the probability of eventA under measurex . We use bit andlog2 in
this paper.

Consider a sequence of signalsx1, x2, ....xn, wherexi’s are zero most of the time. Whenxi is non-zero, it is
an arbitrary real number. In the signal processing literature, the signalsxn is called sparse if most of them are
zero. In their seminal work on compressive sensing [4] and [7], Candès, Tao and Donoho show that, to exactly
reconstruct the sparse signalsxn, only a fraction ofn measurements are needed. Furthermore, the reconstruction can
be done by a linear programming based efficient algorithm. In the compressed sensing literature, the non-zero part
of the sparse signals are arbitrary real numbers without any statistical distribution assigned to them. Furthermore
the compressed sensing system tries to recover the signalsxn losslessly without distortion of the reconstructed
signals. These assumptions are not completely valid if the source statistics are known to the coding system, more
importantly, if the goal of the sensing system is only to recover the data within a certain distortion. In the recent
work by Fletcher etc. [9], [8], [10], the . What is lacking in the previous study of this problem is a systematic
study of the information theoretic bounds on the rate distortion functions of the sources. In this paper, we give both
lower and upper bounds on the rate distortion functions.

A. Bernoulli-Gaussian random variableΞ(p, σ2)
The information theoretic model of the “sparse gaussian” signals is captured in the following what we call a

Bernoulli-Gaussian random variable.

Definition 1: A random variablex is Bernoulli-Gaussian, denoted byΞ(p, σ2), if x = b × s, where s is a
Gaussian random variable with mean0 and varianceσ2, s ∼ N(0, σ2), andb is a Bernoullip random variable,
Pr(b = 0) = 1− p andPr(b = 1) = p, p ∈ [0, 1].

This random variable is a mixture of a continuous random variable and a discrete random variable. This adds to
the difficulties to study the rate distortion functions of this random variable. The main result of this paper is a lower
bound and an upper bound on the rate distortion functions of a sequence of independent random variables with
distributionΞ(p, σ2). It will be clear soon in Proposition 1 that we only need to study the rate distortion functions
for s ∼ N(0, 1), i.e. the rate distortion functions forΞ(p, 1). First, we review the definition of rate distortion
functions in both the average distortion and strong distortion sense.

B. Review of the rate distortion theory

In the standard setup of rate distortion theory, the encoder mapsn i.i.d. random variablesxn ∈ Xn, x ∼ px , into
nR bits and then the decoder reconstruct the original signal within a certain distortion. The encoder and decoder
are denoted byfn andgn respectively:

fn : Xn → {0, 1}nR and gn : {0, 1}nR → X̂n,
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and the distortion is defined asd(xn, x̂n) = 1
n

n∑
i=1

d(xi, x̂i).

Definition 2: Rate distortion function ([5], pg. 341): the rate distortion functionR(D) is the infinimum of rates
R, such that(R,D) is in the rate distortion region of the source for a give distortionD. Where the rate distortion
region is the closure of achievable rate distortion pairs(R, D) defined as follows.(R, D) is said to be achievable
in the expected distortion sense if there exists a sequence of(2nR, n) rate codes(fn, gn), such that

lim
n→∞

E (d(xn, gn(fn(xn)))) ≤ D (1)

The strong sense of rate distortion function is defined similarly with the following criteria for the codes: for all
δ > 0

lim
n→∞

Pr (d(xn, gn(fn(xn)) ≥ D + δ) = 0 (2)

where, in this paper, the distortion functiond(xn, x̂n) = 1
n

n∑
i=1

(xi − x̂i)2.

It turns out that the rate distortions function for both the average distortion and the strong distortion are the same
for discrete random variables Chapter 13.6 [5]. We can generalize this result easily to continuous random variables
whose variance is finite and the probability density function satisfies the usual regularity conditions. The proof
can be carried out by quantizing the probability density function and then by using the proof for discrete random
variables in [5]. A somewhat detailed sketch of how this works is in Appendix A.

A good lossy coding system in the strong sense is notnecessarilygood in the expected distortion sense.
Considering the following example, a good lossy coder can miss the distortion constraint for a subsetΥn ⊆ Rn with

asymptotically0 measure, lim
n→∞

x
Pr(Υn) = 0. However the good lossy coder canintentionallymake the distortion

on Υn no smaller than 2D
x

Pr(Υn)
, hence the expected distortion is at least2D.

However it is easy to see that given a good lossy coding system in the strong sense, we can easily make it also
good in the expected sense if the mean and variance ofx are finite. We sketch the proof in Appendix B. So from
now on, when we say a lossy coding system is good in the strong sense, that implies that the system is also good
in the expected distortion sense.

The following lemma characterizes the rate distortion functionR(D).

Lemma 1:Rate distortion theorem [12]:

R(D) = min
px̂|x :

∑
x,x̂

px (x)px̂|x (x̂|x)d(x,x̂)≤D
I(x ; x̂). (3)

Corollary 1: Rate distortion theorem for Gaussian random variables [2]: for random variablex ∼ N(0, σ2), the
rate distortion function is:

R(D, N(0, σ2)) = {
1
2 log2

σ2

D , 0 ≤ D ≤ σ2,
0, D > σ2.

(4)

It is also shown that with the same variance and squared distortion measure, Gaussian random variables requires
the most bits to be described. Both lower and upper bounds are given in Exercise 8 on Pg. 370 [5]. The proof can
be found in [2].

Corollary 2: Rate distortion bounds for continuous random variables under square distortion measure (Exercise
8 on pg. 372 [5]): the rate distortion functionR(D) can be bounded as:

h(x)− D

2
log(2πe) ≤ R(D) ≤ max{1

2
log

σ2

D
, 0} (5)

The lower bound in Corollary 2 is known as the Shannon lower bound in the literature [5].
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C. Rate distortion function forΞ(p, σ2)
The main goal of this paper is to derive an upper and a lower bound on the rate distortion functionR(D) of

the Bernoulli-Gaussian random variableΞ(p, σ2). We denote this quantity byR(D, Ξ(p, σ2)). We summarize some
obvious properties ofR(D, Ξ(p, σ2)) in the following four propositions. The proof is in Appendix C.

First we explain why we only need to studyR(D, Ξ(p, 1)). We write R(D, Ξ(p, 1)) as R(D, p) in the rest of
the paper and investigateR(D, p).

Proposition 1: R(D, Ξ(p, σ2)) = R( D
σ2 ,Ξ(p, 1))

From this point on, we only investigateR(D, Ξ(p, 1)), simply written asR(D, p). Now we give three obvious
bounds on the rate distortion functionR(D, p).

Proposition 2: Upper bound 1 onR(D, p):

R(D, p) ≤ H(p) + pR(
D

p
,N(0, 1)) = H(p) + pR(D, N(0, p)) (6)

whereR(D, N(0, 1)) is the Gaussian rate distortion function forN(0, 1), defined in Corollary 1.

Proposition 3: Upper bound 2 onR(D, p):

R(D, p) ≤ R(D, N(0, p)) (7)

Proposition 4: A lower bound onR(D, p):

R(D, p) ≥ pR(
D

p
,N(0, 1)) = pR(D, N(0, p)) (8)

We give a conceptually clear explanation of these three bounds. In Proposition 2, we construct a very simple
coding system that first losslessly describe the locations of the non-zero elements ofxn ∼ Ξ(p, 1), then lossily
describe the value of these non-zero elements using a Gaussian lossy coder. In Proposition 3, we prove it by using
the well known fact that for continuous random variables, with the same variance and distortion measure, Gaussian
sequences require the highest rate. The difficulty is thatΞ(p, 1) is not a continuous random variable. We approximate
it by a sequence of continuous random variables whose rate distortion functions converge to that ofΞ(p, 1). In
the proof of 4, we reduce a Bernoulli-Gaussian sequence to a Gaussian sequence by letting the decoder know the
non-zero locations for free and derivea lower bound ofR(D, p) from the Gaussian rate distortion function.

The more rigorous proofs of these bounds are in Appendix C. It is non trivial to bound the rate distortion
function of one random variablex by the rate distortion function of another random variabley . To show that
R(D, x) ≤ R(D, y), the technique we use in the proofs for the above four propositions is toconstructa good lossy
coding system forx from a good lossy coding system fory under the same rate-distortion constraintR andD.

Among the three bounds described in Proposition 2, 3 and 4, we find the lower bound the most unsatisfactory.
Shannon lower bound [5] does not apply to the Bernoulli-Gaussian randomΞ(p, 1) variables because the differential
entropy ofΞ(p, 1) is negative infinity. This paper is focused on deriving a more information-theoretically interesting
lower bound onR(D, p). In the next several sections, we investigate the lower bound problem. As a simple corollary
of this new lower bound, we give a close form lower bound on the rate distortion function in VII that improves
the previous known result byp log2

1
p in the high resolution regime (D

p ¿ 1).

II. A N IMPROVED LOWER BOUND ONR(D, p)
First, we reiterate the definition of a strong lossy source coding system for a Bernoulli-Gaussian sequence

xn ∼ Ξ(0, 1) wherex = b × s and b is a Bernoulli-p random variable whiles ∼ N(0, 1) is a Gaussian random
variable. A(R, D) encoder-decoder sequencefn, gn does the following,

fn : Rn → {0, 1}nR, fn(xn) = anR and gn : {0, 1}nR →Rn, gn(anR) = x̂n

from the definition of the rate distortion function in strong sense defined in (2), we have for allδ1 > 0:
x

Pr (d(xn, x̂n) ≥ D + δ1) =
x

Pr (d(xn, gn(fn(xn))) ≥ D + δ1) = en(δ1) and lim
n→∞

en(δ1) = 0. (9)
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Recall that we can have a good lossy coder in both the strong sense and the expected distortion sense
according to the discussions in Appendix B. So we assume the good coding system herefn, gn is good in
both senses.

So letEx (d(xn, x̂n)) = Ex (d(xn, gn(fn(xn)))) = D + ςn, then lim
n→∞

ςn = 0. (10)

Notice thatxn = bn × sn, where the multiplication× here is done entry by entry, so that ifbi = 0, the value
of si does not have any impact onxn. The output of the encoderfn is a random variable that is a function of the
sequencexn, we write the output asanR = fn(xn). our investigation of the rate distortion function relies on the
properties of the encoder outputanR.

l-
?

- --Encoderfn

sn

Decodergn x̂n

xn
×bn

anR

Fig. 1. A lossy source coding system for Bernoulli-Gaussian sequencexn = bn × sn

In Proposition 4, the lower bound is derived by letting a genie tell the decoder the non-zero positions of the
Bernoulli-Gaussian sequence, i.e. thebn part of xn = bn × sn, and the rate is only counted for the lossy source
coding of the non-zero Gaussian subsequences̃1(bn), where1(bn) is the number of1’s in sequencebn and s̃i = sli

if bli = 1, i = 1, 2, ..., 1(bn). To tighten the lower bound in Proposition 4, we need to drop the genie who let the
decoder know the entirety ofbn. In the following several sections, we attempt to tighten up the lower bound by
investigating the information aboutbn that has tobe transmitted to the decoder.

First we summarize our main result in the following theorem.
Theorem 1:Main theorem: a new lower bound on the rate distortion functionR(D, p) for Bernoulli-Gaussian

random variableΞ(p, 1) under distortion constraintD.

R(D, p) ≥ pR(D,N(0, p)) + R̃

where R̃ = max
L≥0

{ min
U≥L,r∈[0,1−p]:T1(L,U,r)≤D

h(L,U, r)} (11)

whereh(L,U, r) = { (p× Pr(|s| > U) + r)D( p×Pr(|s|>U)
p×Pr(|s|>U)+r‖p) , if p×Pr(|s|>U)

p×Pr(|s|>U)+r ≥ p

0 , if p×Pr(|s|>U)
p×Pr(|s|>U)+r < p

s ∼ N(0, 1) is a Gaussian random variable.

Proof: The theorem is a corollary of the Lemma 2, 3, 4 and 5:

R(D, p) ≥ I(anR; sn|bn) + I(anR; bn)
n

(12)

≥ pR(D − (1− p)E[x̂2|b = 0], N(0, p)) +
I(anR; bn)

n
(13)

≥ pR(D − (1− p)E[x̂2|b = 0], N(0, p)) + R̃ (14)

≥ pR(D,N(0, p)) + R̃ (15)

(12) is proved in Lemma 2. (13) is proved in Lemma 3. (14) is proved in Lemma 4 and 5,R̃ is defined in (11).
(15) follows that rate distortion function for Gaussian random variablesR(D, N(0, p)) is monotonically decreasing
with D. ¥

There are four parts in our investigation. First in Section III, we lower bound the number of bitsnR by the
sum of two mutual information terms. The first one is the conditional mutual information between the output
of the encoderanR and the Gaussian sequencesn given the Bernoulli sequencebn: I(anR; sn|bn). The second
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is the mutual information between the output of the encoderanR and the Bernoulli sequencebn: I(anR; bn).
Then in Section IV we lower boundI(anR; sn|bn) by using a simple argument similar to that in Proposition 4. In
Section V, we lower boundI(anR; bn) by the capacity of thelossy coding channel, while the capacity of the channel
is unspecified. In Section VI, we givea lower bound of the channel capacity by using a random coding argument.
Finally in Theorem 1, we combine these bounds together to give a lower bound on the rate distortion function
R(D, p) for the Bernoulli-Gaussian random sequenceΞ(p, 1) under distortion constraintD. The investigation spans
the next four sections in this paper.

III. F IRST STEP: LOWER BOUNDINGnR BY THE SUM OF TWO MUTUAL INFORMATION

I(anR; bn) + I(anR; sn|bn)
First we have the following simple lemma that tells us that the rate is lower bounded by the sum of two mutual

information termsI(anR; bn) + I(anR; sn) whereanR is the output of the lossy encoder andbn and sn are the
Bernoulli sequence and the Gaussian sequence that generate the Bernoulli-Gaussianxn ∼ Ξ(p, 1).

Lemma 2:For a lossy coding system shown in Figure 1, the rate of the lossy source coding system can be lower
bounded as follows:

nR ≥ I(anR; bn) + I(anR; sn|bn)

Proof: The output of the encoderanR ∈ {0, 1}nR, so the entropy of the random variable is upper bounded by

H(anR) ≤ nR (16)

Notice thatanR is a a function ofxn, i.e. a function ofsn andbn, so

H(anR) = H(anR)−H(anR|sn, bn) (17)

Combining (16) and (17), and notice thatbn⊥sn, we have:

nR ≥ H(anR)−H(anR|sn, bn)
= I(anR; sn, bn)
= I(anR; bn) + I(anR; sn|bn) (18)

where (18) is true by the chain rule for mutual information [5]. ¤
IV. L OWER BOUNDINGI(anR; sn|bn), PROPOSITION4 REVISITED

In this section we lower bound the conditional mutual information termI(anR; sn|bn) in the lower bound of
nR (18). From Proposition 4, we know that letting a genie tell the non-zero locations ofxn to the decoder, the
coding system still needs at leastnpR(D, N(0, p)) bits to describe the values of the non-zero entries ofxn. In the
proof of Proposition 4, like the proofs for other propositions in Section I-A, we use the lossy source coding system
for the Bernoulli-Gaussian sequences to construct a lossy source coding system for a random sequence with known
rate distortion functions.

The proof here, however is trickier in the sense that we are not bounding the rate distortion functionR(D, p),
instead we only bound the conditional mutual informationI(anR; sn|bn) which is part of the rate. Hence we cannot
constructa lossy coder for sequence with known rate distortion using the lossy coder for the Bernoulli-Gaussian
sequence. Instead, we use the classical technique in [5].

Lemma 3:Lower bound onI(anR; sn|bn)

I(anR; sn|bn) ≥ npR(D − (1− p)E[x̂2|b = 0], N(0, p)). (19)

where

E[x̂2|b = 0] =
1
n

n∑

i=1

E[x̂2
i |bi = 0]

=
1
n

(∑

bn

Pr(bn = bn)
∑

i:bi=0

(E[x̂2
i |bn = bn])

)
(20)
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Proof: The proof is similar to the lower bound proof for Gaussian rate distortion function on Page 345 [5].
First, notice that the estimatêxn = gn(anR) is a function ofan. And theanR = fn(xn) = fn(bn× sn). Hence we
have the following Markov Chain:

bn × sn → anR → x̂n (21)

From the data processing theorem [5], we know thatI(anR; sn|bn) ≥ I(x̂n; sn|bn). For a binary sequencebn ∈
{0, 1}n, let 1(bn) =

n∑
i=1

bi be the number of1’s in bn. bi ∈ {0, 1}, so if bi = 0 then x̂n and si are independent

because in that casexi = bi × si = 0 and sn is i.i.d and x̂n is a deterministic function ofxn. Write i1, ..., i1(bn)

the non-zero positions ofbn, and letI(bn) = {i1, ..., i1(bn)}, then

I(x̂n; sn|bn = bn) = I(x̂n; si1 , ..., si1(bn) |bn = bn) = I(x̂n; si1,...,i1(bn)). (22)

Define theε1-strong typical setBn
ε1 for binary sequences:

Bn
ε1 , {bn ∈ {0, 1}n : |1(bn)

n
− p| ≤ ε1}.

From the AEP [5], letPr(bn /∈ Bn
ε1) = υn:

lim
n→∞

υn = 0 (23)

Now we have:

I(anR; sn|bn) ≥ I(x̂n; sn|bn)

=
∑

bn∈{0,1}n

Pr(bn = bn)I(x̂n; sn|bn = bn) (24)

=
∑

bn∈Bn
ε1

Pr(bn = bn)I(x̂n; sn|bn = bn) (25)

=
∑

bn∈Bn
ε1

Pr(bn = bn)I(x̂n; si1 , ..., si1(bn) |bn = bn) (26)

=
∑

bn∈Bn
ε1

Pr(bn = bn)
(
H(si1,...,i1(bn) |bn = bn)−H(si1,...,i1(bn) |x̂n, bn = bn)

)

≥
∑

bn∈Bn
ε1

Pr(bn = bn)




1(bn)∑

j=1

H(sij )−
1(bn)∑

j=1

H(sij |x̂n, bn = bn)


 (27)

=
∑

bn∈Bn
ε1

Pr(bn = bn)




1(bn)∑

j=1

H(sij )−
1(bn)∑

j=1

H(sij − x̂ij |x̂n, bn = bn)




≥
∑

bn∈Bn
ε1

Pr(bn = bn)




1(bn)∑

j=1

H(sij )−
1(bn)∑

j=1

H(sij − x̂ij |bn = bn)


 (28)

(24) follows the definition of conditional mutual information, (25) is true because mutual information is non-negative
and (26) follows (22). (27) is true becausesn is i.i.d and independent ofbn. The rest are obvious.si ∼ N(0, 1),
soH(si) = 1

2 log(2πe). According Theorem 9.6.5 in [5], Gaussian random variables maximize the entropy over all
distributions with thes ame covariance, so:

H(sij − x̂ij |bn = bn) ≤ H(N(0, E[(sij − x̂ij )
2|bn = bn]) =

1
2

log(2πeE[(sij − x̂ij )
2|bn = bn]).

Now (28) becomes:
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I(anR; sn|bn) ≥
∑

bn∈Bn
ε1

Pr(bn = bn)




1(bn)∑

j=1

1
2

log(2πe)−
1(bn)∑

j=1

1
2

log(2πeE[(sij − x̂ij )
2|bn = bn])




=
∑

bn∈Bn
ε1

Pr(bn = bn)


−

1(bn)∑

j=1

1
2

log(E[(sij − x̂ij )
2|bn = bn])




= −1
2

∑

bn∈Bn
ε1

1(bn)∑

j=1

Pr(bn = bn)
(
log(E[(sij

− x̂ij
)2|bn = bn])

)

= −1
2




∑

bn∈Bn
ε1

1(bn)∑

j=1

Pr(bn = bn)
∑

bn∈Bn
ε1

1(bn)∑
j=1

Pr(bn = bn)

log(E[(sij − x̂ij )
2|bn = bn])



×


 ∑

bn∈Bn
ε1

1(bn)∑

j=1

Pr(bn = bn)




≥ −1
2

log




∑

bn∈Bn
ε1

1(bn)∑

j=1

Pr(bn = bn)
∑

bn∈Bn
ε1

1(bn)∑
j=1

Pr(bn = bn)

(E[(sij − x̂ij )
2|bn = bn])



×


 ∑

bn∈Bn
ε1

1(bn)∑

j=1

Pr(bn = bn)


 (29)

(29) follows the fact that− log(·) is convex
⋃

. We bound the two terms as follows, first:

 ∑

bn∈Bn
ε1

1(bn)∑

j=1

Pr(bn = bn)


 =


 ∑

bn∈Bn
ε1

1(bn) Pr(bn = bn)




≥

 ∑

bn∈Bn
ε1

n(p− ε1) Pr(bn = bn)




≥ n(p− ε1)(1− υn) (30)

Before bounding the other term, we have the following observation:
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 ∑

bn∈Bn
ε1

1(bn)∑

j=1

Pr(bn = bn)(E[(sij − x̂ij )
2|bn = bn])




=


 ∑

bn∈Bn
ε1

1(bn)∑

j=1

Pr(bn = bn)(E[(xij − x̂ij )
2|bn = bn])




≤

∑

bn

1(bn)∑

j=1

Pr(bn = bn)(E[(xij − x̂ij )
2|bn = bn])




≤ n(D + ςn)−

∑

bn

∑

i/∈I(bn)

Pr(bn = bn)(E[(xi − x̂i)2|bn = bn])


 (31)

≤ n(D + ςn)−

∑

bn

∑

i/∈I(bn)

Pr(bn = bn)(E[x̂2
i |bn = bn])




= n(D + ςn)− nE[x̂2|b = 0] (32)

whereI(bn) = {i1, ..., i1(bn)} and ςn → 0 as n goes to infinity, (31) follows the fact thatfn, gn is good in the
expected distortion sense as well (10). So the first term in (29) can be lower bounded as follows, combining (30)
and (32):

−1
2

log




∑

bn∈Bn
ε1

1(bn)∑

j=1

Pr(bn = bn)
∑

bn∈Bn
ε1

1(bn)∑
j=1

Pr(bn = bn)

(E[(sij − x̂ij )
2|bn = bn])



≥ −1

2
log

(
(D − E[x̂2|b = 0] + ςn)

(p− ε1)(1− υn)

)
(33)

first notice that we are lower bounding a conditional mutual informationI(anR; sn|bn) which is non-negative,
so we assume the first term being positive or else we lower bound the conditional mutual information by0, so
substituting (30) and (33) into (29), we have:

I(anR; sn|bn) ≥ n(p− ε1)(1− υn)max{0, log
(

(p− ε1)(1− υn)
(D − (1− p)E[x̂2|b = 0] + ςn)

)
} (34)

Notice thatε1 is an arbitrary positive real number, and bothυn and ςn goes to zero asn goes to infinity, so we
just showed that

I(anR; sn|bn) ≥ np×max{0, log
(

p

D − (1− p)E[x̂2|b = 0]

)
} = npR(D − (1− p)E[x̂2|b = 0], N(0, p))

The lemma is proved. ¤

As a trivial corollary of Lemma 2 and Lemma 3, we have:

nR ≥ I(anR; bn) + I(anR; sn|bn) ≥ npR(D − (1− p)E[x̂2|b = 0], N(0, p)) ≥ npR(D, N(0, p))

This also proves Proposition 4.
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V. L OWER BOUNDINGI(anR, bn) BY THE RANDOMIZED CHANNEL CAPACITY OF A LOSSY COMPRESSOR

In this section we give a lower bound on the mutual informationI(anR; bn) from a channel capacity perspective.
This is partly inspired by the seminal work in [1]. First we have another look at the whole lossy coding system
in Figure 1, we single out the binary randomnessbn and make the rest of the system a “lossy coding channel” as
shown in Figure 2. The channel input is a binary sequencebn ∈ {0, 1}n, and the channel output isanR ∈ {0, 1}nR.
What the channel does is to first multiplybn by a Gaussian random sequencesn and then send it to a good lossy
encoderfn. The output is the output of the lossy coding encoderfn.

Notice that this is not a standard communication channel. It is in some sense a arbitrarily varying channel. The
constraint on the channel is such that the lossy coder pairfn, gn is good in both the strong and expected distortion
sense.The goal in this section is to lower bound the mutual information I(anR, bn) by the number bits
(channel capacity) that can be reliably communicated across the channel in average over a randomized
codebook.

More interestingly, the input sequencebn obeys the statistics of a Bernoulli process with non-zero probabilityp.
So it will be soon obvious that we need to investigate the channel capacity for the randomized codebooks where
each code word is chosen according to its probability under i.i.d Bernoulli-p.
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Fig. 2. A “lossy coding” channel derived from the lossy coding system for Bernoulli-Gaussian sequencexn = bn × sn,

As shown in Figure 3, we have a channel coding problem. A messagem is a random variable uniformly distributed
on {1, 2, ..., 2nR}. The constraint on the channel encoderFn is that the code wordbn is chosen for messagem
with probability

p1(bn)(1− p)n−1(bn),

where1(bn) is the number of1’s in sequencebn, this will be explained in details in Definition 3. The constraint
on the lossy coding channelis such that the estimate of the Bernoulli Gaussian random sequencexn = bn × sn,
through the lossy coding systemfn, gn: x̂n is within a distortionD + δ1 of the true sequencexn with probability1
for all δ1 > 0 asymptotically. Before giving the lemma on the lower bound of the mutual informationI(anR; bn),

we give the following definition of randomized channel capacity for the lossy source channel.

Definition 3: Randomized channel capacity for the lossy source channel is written asR̃p
1: let Bn = {0, 1}n, let

C(n) be the codebook set of ratẽR: C(n) = B2nR̃

n is the set product of2nR̃ manyBn’s: Bn × Bn × ... × Bn, a
codebookC ∈ C(n), C = (c1, c2, ...c2nR̃) is such that the codeword for messagem, m = 1, 2, ...2nR̃, is the i’th
entry of C: cm. From the definitioncm ∈ Bn for all n. We let Cp be a random variable distributed onC(n), such
that a codebookC = (c1, c2, ...c2nR̃) ∈ C(n) is chosen as the codebook, i.e.Cp = C with the following probability:

Pr(Cp = C) =
2nR̃∏
m=1

p1(cm)(1− p)n−1(cm) (35)

1Note: in this section we usẽR to denote the channel capacity of the lossy coding channel. This is not the rate of the lossy coding system
R.
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Fig. 3. A channel coding system for the “lossy coding” channel

the average error probability of the randomized coding with uniform distributedCp is defined as:

ep,n(R̃) =
∑

C∈B2nR̃
n

Pr(Cp = C)


 1

2nR̃

2nR̃∑
m=1

s
Pr(m 6= m̂(anR(cm × sn)))




=
∑

C∈B2nR̃
n

Pr(Cp = C)
(
Pr(m 6= m̂(anR)|Cp = C)

)
(36)

where the error probability is over all codebooksC(n) = B2nR̃

q with distribution defined in (35) and all messages
m ∈ {1, 2, ..., 2nR̃}, i.e. the random variablem is uniformly distributed in (36). Notice that in Figure 3, a codebook
C is chosen and known to both the encoder and the decoder. The output from the channel encoder isFn(m) = cm,
the output from the lossy encoder is a random sequencefn(cm × sn) = anR(cm × sn), and the estimate ofm is
m̂(anR(cm × sn)) = Gn(anR(cm × sn))).

The randomized channel capacity for the lossy coding systemfn, gn is R̃p, if for all R̃ < R̃p, there exists a
channel decoderGn, such that the average error goes to zero asn goes to infinity:

lim
n→∞

ep,n(R̃) = 0, equivalently:R̃p = sup
lim

n→∞
ep,n(R̃)=0

{R̃}.

The following lemma summarizes the main result in this section.

Lemma 4:Lower bounding the mutual informationI(anR, bn) by the randomized capacity: for anyε > 0 the
mutual information is lower bounded by the minimum randomized lossy coding channel capacity:

lim inf
n→∞

1
n

I(anR; bn) ≥ R̃p = sup
lim

n→∞
ep,n(R̃)=0

{R̃} (37)

Proof: : to show 37, from the definition of̃Rp, we know that it is enough to show that for all̃R, such that
lim

n→∞
ep,n(R̃) = 0:

lim inf
n→∞

1
n

I(anR; bn) ≥ R̃.

First we take a new perspective of the Bernoulli sequencebn. Instead of lettingbn be i.i.d generated from
the Bernoullip random process, we first generate two auxiliary random variablesCp andm and then thebn is a
function of the two auxiliary random variables in a way such thatbn is an i.i.d Bernoullip sequence.

We first generate a codebook random variableCp according to the distribution described in (35), where the code
book Cp = C = (c1, ..., c2nR̃) with the following probability:

Pr(Cp = C) =
2nR̃∏
m=1

p1(cm)(1− p)n−1(cm).
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Then we pick the message random variablem according that is uniform on{1, 2, ..., 2nR̃}. Finally we let the binary
sequencebn be a function ofCp andm, such that forCp = C = (c1, ..., c2nR̃) andm = m, bn = cm. It is easy to
see thatbn chosen this way have the following distribution:

Pr(bn = bn) = p1(bn)(1− p)n−1(bn).

So we have the following Markov Chain:

(Cp, m) → bn → anR (38)

So from the data processing lemma and the chain rule for mutual information, we know that:

I(anR; bn) ≥ I(anR; Cp, m)
= I(anR; m|Cp) + I(anR; Cp)
≥ I(anR; m|Cp) (39)

where the last inequality follows that mutual information is always non-negative. Now the overall error probability
is, as defined in (36):

ep,n(R̃) =
∑

C∈B2nR̃
n

Pr(Cp = C)
(
Pr(m 6= m̂(anR)|Cp = C)

)
(40)

wherePr(Cp = C)(Pr(m 6= m̂(anR)|Cp = C)) is the decoding error when the code bookC is chosen. Hence this
is a standard communication problem that we can use the technique detailed in Chapter 8.9 [5] to lower bound the
mutual informationI(anR; bn) by the rateR̃ that a reliable communication is possible. Notice that if the codebook
C is chosen, we have the following Markov Chain:

m → bn → anR → m̂, (41)

more specificallybn is a deterministic function ofm, m̂ is a deterministic function ofanR. So we can apply Fano’s
inequality (Theorem 2.11.1 [5] for any fixed codebookC:

H(m|anR, Cp = C) ≤ 1 + Pr(m 6= m̂(anR)|Cp = C)nR̃ (42)

Now, from the standard information theoretic equalities:

nR̃ = H(m)
= H(m|Cp = C)
= H(m|anR, Cp = C) + I(anR;m|Cp = C)
≤ 1 + Pr(m 6= m̂(anR)|Cp = C)nR̃ + I(anR;m|Cp = C)

Multiply both sides byPr(Cp = C) and sum over allC ∈ B2nR̃

n , we have:

nR̃ ≤ 1 +
∑

C∈B2nR̃
n

Pr(Cp = C)
(
Pr(m 6= m̂(anR)|Cp = C)nR̃ + I(anR; m|Cp = C)

)

= 1 + nR̃× ep,n(R̃) + I(anR; m|Cp) (43)

Finally, substitute (39) into (43), we have:

I(anR; bn) ≥ I(anR;m|Cp) ≥ nR̃− 1− nR̃× ep,n(R̃)

So, if the randomized lossy coding capacity is aboveR̃, i.e. lim
n→∞

ep,n(R̃) = 0, then

lim inf
n→∞

1
n

I(anR; bn) ≥ R̃

¤
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VI. RANDOMIZED CHANNEL CAPACITY OF A LOSSY COMPRESSOR, A LOWER BOUND

In the previous section, we showed the relation between the mutual informationI(anR, bn) is lower bounded
by the randomized lossy coding capacity if the input codewords look like an i.i.d Bernoullip sequence. What was
missing in the previous section is a lower bound on the randomized capacity. In this section we study the capacity,
in particular the lower bound on the capacity. Notice that the encoder is using a randomized code book according
to the distribution in (35). We only need to design the decoderGn in Figure 3. If we could show that for some
R̃, the average error probabilityep,n(R̃) goes to zero asn goes to infinity, then whatever thẽR is, it is a lower
bound on the randomized lossy coding capacityR̃p. We give a lower bound oñRp. As will be clear soon from our
derivation of the lower bound, this bound is not tight. However, this is our first effort to derive a non-trivial lower
bound to the rate distortion functionR(D, p).

Lemma 5:A lower bound on the randomized lossy coding capacity:

R̃p ≥ R̃ = max
L≥0

{ min
U≥L,r∈[0,1−p]:T1(L,U,r)≤D

h(L, U, r)}

whereh(L,U, r) = { (p× Pr(|s| > U) + r)D( p×Pr(|s|>U)
p×Pr(|s|>U)+r‖p) , if p×Pr(|s|>U)

p×Pr(|s|>U)+r ≥ p

0 , if p×Pr(|s|>U)
p×Pr(|s|>U)+r < p

(44)

s in (44) is GaussianN(0, 1) andT1(L,U, r) = rL2 + 2p

∫ U

L

(s− L)2
1√
2π

e−
s2
2 ds

Or equivalently, for allR̃ ≤ R̃, the decoding error defined in (36) for the randomized coding scheme converges
to zero asn goes to infinity:

lim
n→∞

ep,n(R̃) = 0

Proof: we first describe the decoderGn. The codebookC is chosen, i.e.Cp = C. As shown in Figure 3, if a
messagem is to be sent, wherem ∈ {1, 2, ..., 2nR̃} with equal probability, the binary output to the channel encoder
Fn is cm. After the modulation of the Gaussian sequencesn and the lossy source coding encoderfn, the channel
decoderGn receivesanR. The first step ofGn is to run the lossy source decodergn and get the lossy estimate of
xn = cm × sn, x̂n = gn(anR). The second step ofGn is to estimatem from x̂n. We pick the code word with the
most entries’ absolute value above the positive real numberL:

m̂(anR(c1 × sn)) = m̂(x̂n) = arg max
i

n∑

k=1

1(|ci(k)x̂k)| ≥ L) (45)

whereci ∈ {0, 1}n is the codeword for messagei in the chosen codebookC and ci(k) ∈ {0, 1} is thek-th entry
of the codewordci. Now we analyze the average error probability of the above coding system over all codebooks
according the the codebook distribution in (35) and the over all Gaussian sequencesn. The average error probability
is hence as shown in (36):

ep,n(R̃) =
∑

C∈B2nR̃
n

Pr(Cp = C)


 1

2nR̃

2nR̃∑
m=1

s
Pr(m 6= m̂(anR(cm × sn)))




=
∑

C∈B2nR̃
n

Pr(Cp = C)
(

s
Pr(1 6= m̂(anR(c1 × sn)))

)
(46)

=
Cp,s

Pr (1 6= m̂(anR(c1 × sn))) (47)

where (46) follows the symmetry of the system.
We decompose (47) into four parts. We sketch the partitions then give a detailed analysis.

12



1) The atypical behavior of codewordc1. The typicality is defined in the usual way [5] for finite discrete random
sequences. The concentration theorem is well established in the literature.

2) The atypical behavior of̃s1(c1) while c1 is typical, wherẽs1(c1) is the non-zero subsequence ofxn = c1× sn

where s̃1 = si1 , ..., s̃1(c1) = si1(c1) , wherei1, ..., i1(c1) are the non-zero locations ofc1. The typicality for a
GaussianN(0, 1) sequence is defined in Appendix D. We prove the concentration result in Lemma 6.

3) The atypical behavior of the lossy source coding while bothc1 andsi1 , ..., si1(c1) are typical. i.e. the distortion
of the Bernoulli-Gaussian sequenced(c1×sn, x̂n) = d(xn, x̂n) > D, the concentration of the typical behavior
of the lossy source coding is established in (9) for good lossy coders.

4) The probability that there exists a messagem that has a higher score than message1 according to the decoding
rule in (45) while everything else (the codeword for message1, c1, the subsequencesi1 , ..., si1(c1) , and the
distortiond(c1 × sn, x̂n) are typical. We bound this error by a union bound argument.

The first part is the atypicality of the codeword for message1, c1, the second part is the error probability for
c1 ∈ Bn

ε , where

Bn
ε , {bn ∈ {0, 1}n : |1(bn)

n
− p| ≤ ε}.

Under the codebook probabilityCp, all ci’s are binary sequences of length-n with distribution such that for all
bn ∈ {0, 1}n:

Cp

Pr(ci = bn) = p1(bn)(1− p)n−1(bn), i = 1, 2, ...2nR̃. (48)

so we obviously have [5]:

lim
n→∞

Cp

Pr(c1 /∈ Bn
ε ) = 0 (49)

The second partis the atypicality of the Gaussian subsequencesi1 , ..., si1(c1) , wherei1, ..., i1(c1) are the non-zero
locations ofc1, while c1 is typical,c1 ∈ Bn

ε ). The typical GaussianN(0, 1) set is defined as follows, first we have
two definitions: for a real sequencesn and s.t.−∞ ≤ S ≤ T ≤ ∞, the l-th moment of entries insn within interval
[S, T ] is denoted by

nl
sn(S, T ) =

∑n
i=1 1(S < si < T )sl

i

n
.

Then theε-typical set for GaussianN(0, 1) is defined as:

Sε(n) =

{
sn : max

l=0,1,2

{
sup
S,T

∣∣∣∣∣n
l
sn(S, T )−

∫ T

S

sl 1√
2π

e
−s2
2 ds

∣∣∣∣∣ < ε

}}

We prove the concentration result in Lemma 6 in Appendix D:lim
n→∞

s
Pr(sn /∈ Sε(n)) = 0. c1 and sn are

independent, and ifc1 ∈ Bn
ε , then1(c1) ≥ p(n− ε), so if n goes to infinity,1(c1) goes to infinity too, so

lim
n→∞

Cp,s

Pr (c1 ∈ Bn
ε , s̃1(c1) /∈ Sε(1(c1))) ≤ lim

n→∞

Cp,s

Pr (s̃1(c1) /∈ Sε(1(c1))|c1 ∈ Bn
ε )

= 0 (50)

where the first inequality follows that conditional probability is bigger than joint probability.

The third part is the atypical behavior of the lossy coding system. Following the definition of a good lossy
source coder in the strong sense in (9) and thatxn = c1 × sn, we have, for allδ1 > 0

lim
n→∞

x
Pr (d(xn, x̂n) ≥ D + δ1) = lim

n→∞

Cp,s

Pr (d(c1 × sn, x̂n) ≥ D + δ1) = 0
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This implies that:

lim
n→∞

Cp,s

Pr
(
c1 ∈ Bn

ε , s̃1(c1) ∈ Sε(1(c1)), d(c1 × sn, x̂n) ≥ D + δ1

)
= 0 (51)

The fourth part is when the code wordc1, the Gaussian subsequences̃1(c1), and the distortiond(c1 × sn, x̂n)
are all typical, the decoding error for the channel decoder following the decoding rule in (45).

The output of the lossy source coding decoder isx̂n = gn(anR(c1 × sn)), from the decoding rule in (45), the
estimate of the messagêm(anR(c1× sn))) is not equal to the true message1, if and only if there exists a message
m 6= 1, such that

n∑

k=1

1(|cm(k)x̂k)| ≥ L) ≥
n∑

k=1

1(|c1(k)x̂k)| ≥ L) (52)

Notice that the codebooks are symmetric to the messages, i.e. over all the codebooks, the probability that the
estimation of the messagêm = i is equal to the probability that̂m = j for all i, j ∈ {1, 2, ..., 2nR̃} and i 6= 1,
j 6= 1. So we can union bound the decoding error probability of the event shown in (52) as follows:

s,Cp

Pr (1 6= m̂(anR(c1 × sn))) ≤ 2nR̃
s,Cp

Pr

(
n∑

k=1

1(|c2(k)x̂k| ≥ L) ≥
n∑

k=1

1(|c1(k)x̂k| ≥ L)

)
(53)

where the probability is calculated over all possible codebooks over the measureCp and the Gaussian sequences
sn. First, for a codewordc1, and the lossy coding estimate ofc1× sn, x̂n, denote byu andv the number of entries
of the estimatêxk with absolute value aboveL wherec1(k) is 1 and0 respectively:

u =
n∑

k=1

1(|c1(k)x̂k)| ≥ L)

v =
n∑

k=1

1(|x̂k)| ≥ L andc1(k) = 0). (54)

With u and v fixed( here we fix the codewordc1, the sequencesn and the estimatêxn), we union bound the
probability of the following event that there exists a messagem 6= 1, such that (52) is true:

s,Cp

Pr (1 6= m̂(anR(c1 × sn))|c1 = c1, s
n = sn) ≤ 2nR̃

Cp

Pr

(
n∑

k=1

1(|c2(k)x̂k| ≥ L) ≥
n∑

k=1

1(|c1(k)x̂k| ≥ L)

)

= 2nR̃
Cp

Pr

(
n∑

k=1

1(|c2(k)x̂k| ≥ L) ≥ u

)
(55)

= 2nR̃
u+v∑

l=u

(
u + v

l

)
pl(1− p)u+v−l (56)

≤ 2nR̃ × n max
l:u≤l≤u+v

{
(

u + v
l

)
pl(1− p)u+v−l} (57)

≤ 2nR̃ × n2
−(u+v) min

l:u≤l≤u+v
D( l

u+v ‖p)
(58)

= 2nR̃ × { n , if u
u+v ≤ p

n2−(u+v)D( u
u+v ‖p) , if u

u+v > p
(59)

(55) follows the definition ofu. (56) follows thatc2 ∈ {0, 1}n is an i.i.d. Bernoullip sequence. (57) is because
u + v ≤ n. (58) and (59) follows basic information theoretic inequalities [6]. From Lemma 7 in Appendix E,
we know that the(u + v)D( u

u+v‖p) is monotonically increasing withu and monotonically decreasing withv.
u

u+v is also monotonically increasing withu and monotonically decreasing withv, so the expression in (59) is
monotonicallydecreasingwith u and monotonicallyincreasing with v.
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(59) is true for all codewordc1 and sequencẽs1(c1), typical or not. So it is also true for all thosec1 ∈ Bn
ε ,

s̃1(c1) ∈ Sε(1(c1)) andd(c1 × sn, x̂n) ≤ D + δ1 in this case, we can give a feasible region foru andv, i.e. then
give a bound on (59). We further investigate the distortion for the said typical sequences:

n(D + δ1) ≥ nd(c1 × sn, x̂n)

=
n∑

k=1

(c1(k)sk − x̂k)2

=
∑

k:c1(k)=1

(c1(k)sk − x̂k)2 +
∑

k:c1(k)=0

x̂2
k

=
∑

k:c1(k)=1

(c1(k)sk − x̂k)2 +
∑

k:c1(k)=0,xk≥L

x̂2
k +

∑

k:c1(k)=0,xk<L

x̂2
k

≥
∑

k:c1(k)=1

(c1(k)sk − x̂k)2 + vL2 (60)

where (60) follows the definition ofv. Notice that by definitionxk = c1(k)sk, soxk > 0 implies thatc1(k) = 1,
the first term of (60) is:

∑

k:c1(k)=1

(xk − x̂k)2 ≥
∑

k:|xk|≥L≥|x̂k|
(xk − x̂k)2

≥
∑

k:|xk|≥L≥|x̂k|
(|xk| − L)2

We rewrite (60) as:

n(D + δ1) ≥
∑

k:|xk|≥L≥|x̂k|
(|xk| − L)2 + vL2 (61)

From the definition ofu: we know thatu =
n∑

k=1

1(|c1(k)x̂k)| ≥ L) hence

n∑

k=1

1(|xk| ≥ L ≥ |x̂k|) ≥
n∑

k=1

1(|xk| > 0)−
n∑

k=1

1(0 < |xk| ≤ L)−
n∑

k=1

1(|c1(k)x̂k)| ≥ L)

=
n∑

k=1

1(|xk| > L)− u

, n(|xk| > L)− u (62)

Recall thats̃1, ...s̃1(c1) are the none-zero entries ofxn, without out loss of generality, let|s̃1|, ...|s̃n(|xk|>L)−u|
be the smallestn(|xk| > L) − u many |xk|’s that are larger thanL, without loss of generality let|s̃1| ≥ .... ≥
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|s̃n(|xk|>L)−u| ≥ L. Then substituting (62) into (61) and denote byŨ = |s̃1|, we have:

n(D + δ1) ≥
n(|xk|>L)−u∑

j=1

(|s̃j | − L)2 + vL2

=
∑

j:L<|s̃j |≤Ũ

(|s̃j | − L)2 + vL2 (63)

=
∑

j:L<|s̃j |≤Ũ

(|s̃j |2 − 2L|s̃j |+ L2) + vL2

≥ 2× 1(c1)

(∫ Ũ

L

(s− L)2
1√
2π

e−
s2
2 ds− ε(1 + L)2

)
+ vL2 (64)

≥ 2× n(p− ε)

(∫ Ũ

L

(s− L)2
1√
2π

e−
s2
2 ds− ε(1 + L)2

)
+ vL2 (65)

≥ n

(
2p

∫ Ũ

L

(s− L)2
1√
2π

e−
s2
2 ds +

v

n
L2

)
− nεK1(p, L) (66)

(63) follows the definition of̃s1(c1), (64) is true becausẽs1(c1) ∈ Sε(1(c1)) is ε-typical GaussianN(0, 1). (65) is
true becausec1 ∈ Bn

ε . Finally in (66),K1(p, L) is a finite function ofp andL, we do not need̃U in the picture
because we can replacẽU with ∞ when bounding the the residue. We rewrite (66) as:

2p

∫ Ũ

L

(s− L)2
1√
2π

e−
s2
2 ds +

v

n
L2 ≤ D + δ1 + εK1(p, L) (67)

Meanwhile, becausẽU = |s̃1| ≥ ... ≥ |s̃n(|xk|>L)−u| ≥ L are the smallestn(|xk| > L)− u many |xk|’s that are
larger thanL, s̃1(c1) is a ε-typical Gaussian sequence, son(|xk| > L)− u ≤ 1(c1)(Pr(L < |s| < Ũ) + ε), hence:

u > n(|xk| > L)− 1(c1)(Pr(L < |s| < Ũ) + ε)
≥ n(p− ε)(Pr(|s| > L)− ε)− n(p + ε)(Pr(L < |s| < Ũ) + ε)
= npPr(|s| > Ũ)− nεK2(p, L) (68)

The above analysis are true for allδ1 and ε, we let both be small, we have

u ≥ n
(
p Pr(|s| > U)− ε2

)
(69)

s.t.: 2p

∫ U

L

(s− L)2
1√
2π

e−
s2
2 ds +

v

n
L2 ≤ D (70)

where lim
δ,ε→0

ε2 = 0, this is true because for anỹU that satisfies (67), it either also satisfies the more stringent

constraint in (70) or the gap betweeñU and the biggestU that satisfies (70) is small whenδ1 and ε are small.
Then (70) follows the continuity ofPr(|s| > U) in U .

Notice that (59) holds for all codewordc1 and sn, in particular it is true for the typical ones,c1 ∈ Bn
ε and

s̃1(c1) ∈ Sε(1(c1)) andd(c1 × sn, x̂n) ≤ D + δ1, also (59) is monotonically decreasing withu, with (69) and let
r = v

n , recall the definition ofv in (54), for c1 ∈ Bε
n, v ≤ n−n(p− ε) = n(1−p+ ε) or equivalentlyr ∈ [0, 1−p],

we rewrite (59):
s,Cp

Pr (1 6= m̂(anR(c1 × sn))|c1 = c1 ∈ Bn
ε , sn = sn ∈ Sε(1(c1)), d(c1 × sn, x̂n) ≤ D + δ1)

≤ 2nR̃ × { n , if u
u+v ≤ p

n2−(u+v)D( u
u+v ‖p) , if u

u+v > p

≤ 2nR̃ × {
n , if Pr(|s|>U)

Pr(|s|>U)+r ≤ p

n2−n((Pr(|s|>U)+r)D(
Pr(|s|>U)

Pr(|s|>U)+r
‖p)−ε3) , if Pr(|s|>U)

Pr(|s|>U)+r > p
(71)
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with (70) being satisfied, wherelim
ε2→0

ε3 = 0 because the exponent in (71) is continuous inu, we know that

lim
δ,ε→0

ε2 = 0, so lim
δ,ε→0

ε3 = 0 as well.

Notice that the coding system can pick arbitraryL, it picks the best possibleL, we have, if

R̃ < R̃ = max
L≥0

{ min
U≥L,r∈[0,1−p]:T1(L,U,r)≤D

h(L,U, r)}

whereh(L,U, r) = { (p× Pr(|s| > U) + r)D( p×Pr(|s|>U)
p×Pr(|s|>U)+r‖p) , if p×Pr(|s|>U)

p×Pr(|s|>U)+r ≥ p

0 , if p×Pr(|s|>U)
p×Pr(|s|>U)+r < p

then

lim
n→∞

s,Cp

Pr (1 6= m̂(anR(c1 × sn))|c1 = c1 ∈ Bn
ε , sn = sn ∈ Sε(1(c1)), d(c1 × sn, x̂n) ≤ D + δ1) = 0 (72)

The above inequality is true for all thosec1 ∈ Bn
ε , s̃1(c1) ∈ Sε(1(c1)) andd(c1 × sn, x̂n) ≤ D + δ1 , so

lim
n→∞

s,Cp

Pr (1 6= m̂(anR(c1 × sn)), c1 ∈ Bn
ε , sn ∈ Sε(1(c1)), d(c1 × sn, x̂n) ≤ D + δ1) = 0 (73)

Finally we can upper bound the overall error probability of the randomized coding scheme. The decoding error
ep,n(R̃) is defined in (36) which is equivalent to (46) because of the symmetry. We decompose the error event into
4 atypical events as illustrated at the beginning of the proof. For anyR̃ < R̃,

ep,n(R̃) =
Cp,s

Pr (1 6= m̂(anR(c1 × sn))) (74)

≤
Cp

Pr(c1 /∈ Bn
ε )

+
Cp,s

Pr (c1 ∈ Bn
ε , s̃1(c1) /∈ Sε(1(c1)))

+
Cp,s

Pr
(
c1 ∈ Bn

ε , s̃1(c1) ∈ Sε(1(c1)), d(c1 × sn, x̂n) > D + δ1

)

+
s,Cp

Pr (1 6= m̂(anR(c1 × sn)), c1 ∈ Bn
ε , sn ∈ Sε(1(c1)), d(c1 × sn, x̂n) ≤ D + δ1) (75)

where (74) follows (46). The asymptotic behaviors of the four terms in (74) are shown in (49), (50), (51) and (73)
respectively.δ1 can be arbitrarily small, so we can finally claim that: for a good lossy source coding system in
the strong sense with distortion constraintD, the randomized channel coding error converges to zero asn goes to
infinity:

lim
n→∞

ep,n(R̃) = 0

This concludes the proof of Lemma 5. ¤
VII. D ISCUSSIONS ANDNUMERICAL RESULT

Now we have two upper bounds and two lower bounds on the rate distortion functionR(D, p). We reiterate the
bounds,

R(D, p) ≤ H(p) + pR(D,N(0, p)) (76)

R(D, p) ≤ R(D,N(0, p)) (77)

R(D, p) ≥ pR(D, N(0, p)) (78)

R(D, p) ≥ pR(D, N(0, p)) + max
L≥0

{ min
U≥L,r∈[0,1−p]:T1(L,U,r)≤D

h(L,U, r)} , pR(D, N(0, p)) + Ri(D, p)(79)

whereh(L, U, r) = { (p× Pr(|s| > U) + r)D( p×Pr(|s|>U)
p×Pr(|s|>U)+r‖p) , if p×Pr(|s|>U)

p×Pr(|s|>U)+r ≥ p

0 , if p×Pr(|s|>U)
p×Pr(|s|>U)+r < p

(80)

s is GaussianN(0, 1) andT1(L,U, r) = rL2 + 2p

∫ U

L

(s− L)2
1√
2π

e−
s2
2 ds
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whereR(D, N(0, p)) is the rate distortion function for zero mean variancep Gaussian random sequence with
distortion constraintD, R(D,N(0, p)) = max{0, 1

2 log2
p
D}. (76), (77) and (78) are derived in Propositions 2, 3

and 4 respectively, (79) is the main result in Theorem 1.

A. Properties of the improvementRi(D, p)
The improvement of our new lower bound, the second termRi(D, p) in (79), has a game theoretic interpretation.

In a two player zero sum game, the first player (the coding system) choosesL, the second player (adversary) chooses
U and r with string attached in (80), the payoff to player one ish(U,L, r). First we argue that the improvement
of our lower bound, the second termRi(p,D) in (79), is monotonically decreasing withD and if for someD, the
improvement is zero.

Corollary 3: Ri(D, p) is monotonically decreasing withD, i.e. for D1 > D2, Ri(D1, p) ≤ Ri(D2, p)

Proof: Ri(D, p) is of the form of

max
L≥0

{ min
U≥L,r∈[0,1−p]:T1(L,U,r)≤D

h(L,U, r)},

so for all L ≥ 0, if the pair (U, r) is feasible forD2, it is also feasible forD1, hence the minimum ofh(L,U, r)
for D1 is no bigger than that forD2. ¤

More importantly the improvement is within[0,H(p)] in light of the upper bound in (76). In the low distortion
regime, i.e.Dp ¿ 1. We argue that the improvementRi(D, p) is close top log2

1
p .

Corollary 4: Asymptotic behavior ofRi(D, p) in the low distortion regime , for anyp > 0

lim
D→0

Ri(D, p) = p log2

1
p

Proof: We only give a sketch of proof here. The coding system pick a positiveL ¿ 1, but L2 À D, say
L = D0.3 The distortion constraint onT1(L,U, r) implies thatD ≥ rL2, hence

r ≤ D

L2
= D0.4.

So r goes to zero asD goes to zero. Similarly we argue thatU goes to zero asD goes to zero. In light of the
distortion constraint and thatL is picked to beD0.3, also the obvious inequality that−2sL ≥ − s2

4 − 4L2 for all
s andL:

D

2p
≥

∫ U

L

(s− L)2
1√
2π

e−
s2
2 ds ≥

∫ U

L

(
3s2

4
− 3L2)

1√
2π

e−
s2
2 ds =

∫ U

D0.3
(
3s2

4
− 3D0.6)

1√
2π

e−
s2
2 ds

hence: ∫ U

D0.3

3s2

4
1√
2π

e−
s2
2 ds ≤ D

2p
+

∫ U

D0.3
3D0.6 1√

2π
e−

s2
2 ds ≤ D

2p
+ 3D0.6

take limit on both side whenD → 0, the right hand side is0, the left hand side is zero if and only ifU → 0 as
D goes to zero. We just showed that if we pickL = D0.3 andD goes to zero, then bothU andr goes to zero if
the distortion constraint be satisfied. This means that the in this case:

lim
D→0

Ri(D, p) = lim
r,U→0

(p× Pr(|s| > U) + r)D(
p× Pr(|s| > U)

p× Pr(|s| > U) + r
‖p) = pD(1‖p) = p log2

1
p

¤

A simple corollary of Corollary 4 is as follows. For smallp, the sparse signal studied in the compressive sensing
literature:

H(p) = p log2(
1
p
) + (1− p) log2(

1
1− p

) = p log2(
1
p
) + log2(e)p

So the gap between the improved lower bound in (79) and the upper bound in (76) is at mostlog2(e)p which is
dominated by the improvementp log2

1
p for small p.
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B. Numerical Results

We plot the bounds in (76)- (79) forp = 0.1. As shown in Figure 4, the rate distortion functionR(D, p) is
bounded by the lower and upper bounds in (76)- (79)
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Upper1 R(D, N(0,p))
Upper2 H(p)+pR(D,N(0,p))
Lower1 pR(D,N(0,p))
Improved lower pR(D,N(0,p))+R

i
(D,p)

Fig. 4. Lower and upper bounds onR(D, p) for p = 0.1 at high distortion levels, the distortionD runs from0.005 to 0.1

VIII. C ONCLUSIONS ANDFUTURE WORK

In this paper we study the rate distortion function for Bernoulli-Gaussian sequences. The main result is an
improved lower bound on the rate distortion function. The improvement over the known best lower bound is
p log2

1
p if D is small. This is significant since the currently known gap between the lower bound and upper bound

is H(p), hence the improved lower bound is almost tight for sparse signals wherep ¿ 1. To derive this lower
bound, we develop a new technique to lower bound part of the rate distortion function through a randomized lossy
coding channel. This is, to our knowledge, the first work on this topic. This new lower bound and the obvious upper
bounds do not match. The lower bounding technique we use in this paper can be improved if we can relax the
near-zero error probability constraint on the randomized channel coding. A potentially useful direction is to replace
the channel coding part with a lossy source coder. This is left for future work. There is another interesting result
we developed on the way to prove the main result. We showed the equivalence of the rate distortion functions in
strong sense and expected distortion sense for continuous random variables with finite variances.
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APPENDIX

A. Rate distortion function in the strong sense for continuous random variables

It is shown that the rate distortions function for both the average distortion and the strong distortion are the same
for discrete random variables Chapter 13.6 [5]. However it is not obvious if it is also true for continuous random
variables. In this section, we give a sketch on why it is also true for continuous(mixed) random variables. Since
we have not seen similar results in the classic literature on rate distortion function [3] [2] and [11], we feel it is
necessary to give a sketch of proof here.

As shown in Figure 6, to make it more general, we letx be a mixture of a continuous probability functionp(x)
and finite many discrete values with positive probabilities (Pr(x = ai) = pi > 0 shown as impulses in the figure).
We need the mean and the variance ofx to be finite:E(x) < ∞ andE(x2) < ∞.
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p(x)

0

x

Fig. 6. Probability density functionp(x) of a continuous random variablex

First, we argue that the rate distortion function in the expected distortion sense exists for the mixed random
variables by approximating the impulses in the pdf by a sharp step function2 so we have a continuous pdf and the
rate distortion theorem can be applied. It remains to be shown that the continuous rate distortion function converges
to the one forx asm →∞. This can be easily proved by noticing that the approximation error is at most1

2m for
this approximation, hence the rate distortion function of the continuous random variable converges to the mixed
one.

Now we show that the rate distortion function in the strong sense for continuous(mixed) random variablex ,
denoted byRS(D, x) is equal to the rate distortion function in the expected sense, denoted byRE(D, x).

p(x)

0

x

+ + +++

u

+ +
−3u 3u

Fig. 7. Quantization of a probability density functionp(x) of a mixed random variablex , 7 level quantization for the continuous part and
exact representation of the discrete part.

As shown in Figure 7, for the continuous part of the probability density function, we quantize the real line into
(2K+1) quantization levels with the interval sized. The intervals are:[−Ku,−(K−1)u], ..., [−u, 0], [0, u], ..., [(K−
1)u,Ku] and the “tail” interval(−∞,−Ku]

⋃
[Ku,∞). For each interval, the representation value is the middle

point of the interval, specifically for the “tail” interval, the representation value is0. We use the following function
qK,u to map a mixed random variable to a discrete random variable:

qK,u(x) =
x, px(x) > 0,

(k + 1
2 )u, px(x) = 0 andx ∈ [ku, (k + 1)u), k = −K, ...,K − 1

0, px(x) = 0 andx ∈ (−∞,−Ku]
⋃

[Ku,∞)

For a random variablex , the output of the mapyK,u = qK,u(x) is a discrete random variable. Hence we know
that the rate distortion functions in the strong sense, denoted byRS(D, yK,u) and the expected distortion sense,
denoted byRE(D, yK,u), are the same.

Now we have four rate distortion functions, the rate distortion function for the mixed (continuous) random
variablex , RS(D, x) andRE(D, x), and the rate distortion functions for the quantized discrete random variables

2For an impulsePr(x = ai) = pi > 0, we add the continuous pdfp(x) by the following step functionpi(x): pi(x) = m if x ∈
[ai − 1

2m
, ai + 1

2m
], pi(x) = 0 otherwise.
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RS(D, yK,u) and RE(D, yK,u). The goal is to show thatRS(D, x) = RE(D, x). First, from the discussion in
Appendix B, we know thatRS(D, x) ≥ RE(D, x). It remains to be shown thatRS(D, x) ≤ RE(D, x). We will
use the discrete random variableyK,u’s rate distortion functions as bridges to show that. We will show that when
u → 0 and Ku → ∞: RS(D, x) ≤ RS(D, yK,u) and RE(D, yK,u) ≤ RE(D, x). And knowing that for discrete
random variablesyK,u, RS(D, yK,u) = RE(D, yK,u). We will have:

RS(D, x) ≤ RS(D, yK,u) = RE(D, yK,u) ≤ RE(D, x).

This will conclude our proof thatRS(D, x) = RE(D, x). Now we only need to show thatRS(D, x) ≤
RS(D, yK,u) andRE(D, yK,u) ≤ RE(D, x).

1) RS(D, x) ≤ RS(D, yK,u): We only need to show that if at a rate-distortion pair(R, D), there is a good lossy
coderf̃nK,u

, g̃nK,u
in the strong sense foryK,u, then there is a good lossy coderfn, gn in the strong sense forx .

From the definition of the good lossy coder in the strong sense, we know that for anyε > 0,:

lim
n→∞

yK,u

Pr
(
d(yn

K,u, g̃nK,u
(f̃nK,u

(yn
K,u))) ≥ D + δ0

)
= 0

Notice thatyn
K,u = qK,u(x), so the above equation becomes:

lim
n→∞

x
Pr

(
d(qK,u(xn), g̃nK,u

(f̃nK,u
(qK,u(xn)))) ≥ D + δ0

)
= 0 (81)

where the quantizerqK,u(·) is illustrated in Figure 7. Now we show the following encoder decoder pairfnK,u
, gnK,u

is good in the strong sense forx whenu goes to zero andKu goes to infinity. Where

fnK,u
(·) = f̃nK,u

(qK,u(·)), andgnK,u
(·) = g̃nK,u

(·).
Notice that the distortiond(·, ·) is the mean square of the difference, so almost surely:

d(xn, gnK,u
(fnK,u

(xn))) = d(xn, g̃nK,u
(f̃nK,u

(qK,u(xn))))

≤ d(xn, qK,u(xn)) + d(qK,u(xn), g̃nK,u
(f̃nK,u

(qK,u(xn))))

=
1
n

n∑

i=1

(xi − qK,u(xi))2 + d(qK,u(xn), g̃nK,u
(f̃nK,u

(qK,u(xn)))) (82)

We analyze the first term in (82). We decompose the sum square depending on howxi is quantized, remember for
x > Ku, the quantization is0 and we assume thatKu is big enough that no discrete part ofx is larger thanKu:

1
n

n∑

i=1

(xi − qK,u(xi))2 =
1
n

∑

i:|xi|≤Ku

(xi − qK,u(xi))2 +
1
n

∑

i:|xi|>Ku

x2
i

≤ u +
1
n

∑

i:|xi|>Ku

x2
i

Picku < δ0 andKu big enough such thatEx(1(|x | > Ku)x2) < δ0−u, this is clearly doable becauseEx(x2) < ∞.
Now we use the weak law of large numbers,

x
Pr(

1
n

n∑

i=1

(xi − qK,u(xi))2 > δ0) ≤
x
Pr(

1
n

∑

i:|xi|>Ku

x2
i > δ0 − u)

=
x
Pr(

1
n

n∑

i=1

(1(|x | > Ku)x2 > δ0 − u)

→ 0 asn →∞ (83)

Now we can bound the following probability:
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x
Pr(d(xn, gnK,u

(fnK,u
(xn))) > 2δ0) ≤

x
Pr(

1
n

n∑

i=1

(xi − qK,u(xi))2 + d(qK,u(xn), g̃nK,u
(f̃nK,u

(qK,u(xn)))) > 2δ0)(84)

≤
x

Pr(
1
n

n∑

i=1

(xi − qK,u(xi))2 > δ0)

+
x
Pr(d(qK,u(xn), g̃nK,u

(f̃nK,u
(qK,u(xn)))) > δ0) (85)

→ 0 asn →∞ (86)

where (84) follows (82). (85) is true becausePr(x +y > 2ε0) ≤ Pr(x > ε0 or y > ε0) ≤ Pr(x > ε0)+Pr(y > ε0),
while (86) follows (81) and (83).

2) RE(D, yK,u) ≤ RE(D, x) : We only need to show that if at a rate-distortion pair(R, D), there is a good
lossy coderfn, gn in the expected distortion sense forx , then there is a good lossy coderf̃nK,u

, g̃nK,u
in the strong

sense foryK,u.
From the definition of the good lossy coder in the expected distortion sense, we know that

lim
n→∞

E (d(xn, gn(fn(xn)))) ≤ D

Now we construct a good lossy coder in the expected distortion sense, we implement the following “inverse”
map ofqK,u, denoted bywK,u. WherewK,u is a random map, for any real sequenceyn generated by the random
variableyK,u, yi can only take values onA = {ku : k = −K, ..., 0, ...,K anda ∈ R wherepx(a) > 0, the inverse
mapwK,u : A →R, such that:wK,u(yK,u) ∼ x and for ally ∈ A: wK,u(y) ∈ {x ∈ R : qK,u(x) = y}. Pictorically
the inverse map maps the impulses in Figure 7 back to the mixed random variable with probability density function
in Figure 6. The good lossy coder in the expected distortion sense foryK,u is for all yn ∈ An:

f̃nK,u
(yn) = fn(wK,u(yn))

g̃nK,u
= gn

Now we analyze the expected distortion of such coder.

E
(
d(yn

K,u, g̃nK,u(f̃nK,u(yn
K,u)))

)
= E

(
d(yn

K,u, gn(fn(wK,u(yn
K,u))))

)

≤ E
(
d(yn

K,u, wK,u(yn
K,u))

)
+ E

(
d(wK,u(yn

K,u), gn(fn(wK,u(yn
K,u))))

)
(87)

The second term in (87) converges toD asn goes to infinity becausewK,u(yn
K,u)) ∼ xn andfn, gn is good for

xn in the expected distortion sense. As for the first term in (87), we show it converges to zero for smallu and
big Ku asn goes to infinity.

EyK,u

(
d(yn

K,u, wK,u(yn
K,u))

)
= EyK,u

(
1
n

n∑

i=1

(yK,u(i)− wK,u(yK,u(i)))2)

= EyK,u
((yK,u − wK,u(yK,u))2)

= EyK,u(1(wK,u(yK,u) ≤ Ku)(yK,u − wK,u(yK,u))2)
+EyK,u(1(wK,u(yK,u) > Ku)(yK,u − wK,u(yK,u))2)

≤ u2

4
+ EyK,u

(1(wK,u(yK,u) > Ku)(yK,u − wK,u(yK,u))2) (88)

=
u2

4
+ Ex(1(x > Ku)x2) (89)

→ 0 asu → 0 andKu →∞ (90)

(88) is true because if|wK,u(yK,u)| ≤ Ku, then the quantization error is no bigger thanu
2 . (89) follows that

wK,u(yK,u) ∼ x . (90) is true because the variance ofx is finite. (90) and (87) gives us the desired result that the
expected distortion of̃gnK,u

, f̃nK,u
converges toD if u goes to zero,Ku goes to infinity.
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B. Constructing a good lossy source coding in the expected distortion sense from a good one in the strong sense

The construction here is a general proof. It works for both continuous, discrete and mixed random variables.
By constructing a good lossy source coder in the expected distortion sense from a good lossy coder in the strong
sense at the same rate-distortion point(R, D), we can easily see that the rate distortion function in the strong sense
is not smaller than the rate distortion function in the expected distortion sense. This fact is used in the proof in
Appendix A.

Assume both the first and second order moment ofx are finite, i.e.E(x) = µx < ∞ andE(x2) = σx < ∞. If
fn, gn is good in the strong sense forR(D), then we denote byΥn ⊆ Rn, the subset the distortion constraint is not

satisfied, i.e.Υn = {xn ∈ Rn : d(xn, gn(fn(xn)) ≥ D + δ}. Denote byen =
x

Pr(Υn), thenen → 0. A good lossy
coder might havegn(fn(xn)) arbitrarily faraway fromxn for xn ∈ Υn as pointed out in Section I-B and cause the
expected distortion arbitrarily large. We build a new lossy coding systemf̃n, g̃n, such that̃gn(f̃n(xn)) = gn(fn(xn))
for xn /∈ Υn and g̃n(f̃n(xn)) = 0 for xn ∈ Υn. Obviously is good in the strong sense, we only need to show that
f̃n, g̃n is also good in the expected distortion sense. The expected distortion off̃n, g̃n is:

E(d(xn, g̃n(f̃n(xn)))) = Pr(xn ∈ ΥC
n )E(d(xn, g̃n(f̃n(xn)))|xn ∈ ΥC

n ) + Pr(xn ∈ Υn)E(d(xn, g̃n(f̃n(xn)))|xn ∈ Υn)
≤ (1− en)(D + δ) + Pr(xn ∈ Υn)E(d(xn, g̃n(f̃n(xn)))|xn ∈ Υn)

= (1− en)(D + δ) + Pr(xn ∈ Υn)E(
1
n

n∑

i=1

x2
i |xn ∈ Υn) (91)

Now we upper bound the second term, first according to the weak law of large numbers and the variance and the
mean ofx are finite, we know that for anyε > 0, there existsnε < ∞, s.t for all n > nε:

x
Pr(| 1

n

n∑

i=1

x2
i − σx | > ε) < ε. (92)

This implies that for any subsetΓ ∈ Rn with measure
x

Pr(Γ) ≥ 1 − ε, then there is a subsetΓ1 ⊆ Γ, such that
x
Pr(Γ1) ≥ 1− 2ε and for allxn ∈ Γ1: | 1n

∑n
i=1 x2

i − σx | ≤ ε.

From the definition ofen, we know that for large enoughn, en =
x

Pr(Υn) < ε or equivalently
x
Pr(ΥC

n ) ≥ 1− ε.

From the above discussion, there exists subsetΓ1 ∈ ΥC
n , such that

x
Pr(Γ1) ≥ 1 − 2ε and for all xn ∈ Γ1:

| 1n
∑n

i=1 x2
i − σx | ≤ ε. So the expectation of the mean variance ofxn can be decomposed:

σx = E(
1
n

n∑

i=1

x2
i )

= Pr(xn ∈ ΥC
n )E(

1
n

n∑

i=1

x2
i |xn ∈ ΥC

n ) + Pr(xn ∈ Υn)E(
1
n

n∑

i=1

x2
i |xn ∈ Υn)

≥ Pr(xn ∈ Γ1)E(
1
n

n∑

i=1

x2
i |xn ∈ Γ1) + Pr(xn ∈ Υn)E(

1
n

n∑

i=1

x2
i |xn ∈ Υn)

≥ (1− ε)(σx − ε) + Pr(xn ∈ Υn)E(
1
n

n∑

i=1

x2
i |xn ∈ Υn)

Hence:

Pr(xn ∈ Υn)E(
1
n

n∑

i=1

x2
i |xn ∈ Υn) ≤ ε(1 + σx) (93)

Substituting (91) into (93), we have:

E(d(xn, g̃n(f̃n(xn)))) ≤ (1− en)(D + δ) + ε(1 + σx) ≤ D + δ + ε(1 + σx)

Note that the above is true for allε andδ, so we can let both be arbitrarily small and the expected distortion of
f̃n, g̃n is arbitrarily close toD. Hence we just constructed a good lossy coding system in the expected distortion
sense from a good lossy coding system in the strong sense. ¤
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C. Proof of the simple bounds: proof of Propositions 1, 2, 3 and 4

Proof of Proposition 1:
To showR(D, Ξ(p, σ2)) ≥ R( D

σ2 , Ξ(p, 1)), we only need to construct a sequence of good, in the strong sense of
rate distortion in (2), encoder/decoder pairs(f ′n, g′n), n = 1, 2, ..., for Ξ(p, 1) from that forΞ(p, σ2), (fn, gn), n =
1, 2, .... Let f ′n andg′n be as follows, for allxn ∈ Xn andanR ∈ {0, 1}nR:

f ′n(xn) = fn(σxn), g′n(anR) =
1
σ

gn(anR)

So for x ∼ Ξ(p, 0, 1)

Pr
(

d(xn, g′n(f ′n(xn))) ≥ D + δ

σ2

)
= Pr

(
d(xn,

1
σ

gn(fn(σxn))) ≥ D + δ

σ2

)

= Pr (d(σxn, gn(fn(σxn))) ≥ D + δ) (94)

where (94) is because the distortion measured(x, y) = (x− y)2 in this paper.
Obviously for x ∼ Ξ(p, 1), σx ∼ Ξ(p, σ2), and if fn and gn are good in the strong sense, defined in (2), for

Ξ(p, σ2), then for allδ > 0:

lim
n→∞

Pr (d(σxn, gn(fn(σxn)) ≥ D + δ) = 0. (95)

Combining (94) and (95), we have:

lim
n→∞

Pr
(

d(xn, g′n(f ′n(xn))) ≥ D + δ

σ2

)
= 0.

Notice thatδ is an arbitrary positive number andσ is constant, we just show thatR(D, Ξ(p, σ2)) ≥ R( D
σ2 ,Ξ(p, 1)).

Similarly we can show thatR(D, Ξ(p, σ2)) ≤ R( D
σ2 ,Ξ(p, 1)). This complete the proof thatR(D, Ξ(p, σ2)) =

R( D
σ2 ,Ξ(p, 1)). ¤

Proof of Proposition 2: for a Bernoulli-Gaussian random sequencexn, by Definition 1, we know thatxi = bi×si,
bi ∼ Bernoulli− p and si ∼ N(0, 1) are i.i.d random variables. The encoderfn works as follows. It is consisted
of two parts. First the encoder encodebn losslesslyusing a fixed length code-book. Then the encoder encodelossily
the subsequence ofsn wherebi 6= 0 by applying standard Gaussian lossy source coding.

We now describe the coding schemefn, gn, in details. Ifbn is ε1-strong typical, and write1(bn) as the number
of 1’s in sequencebn. i.e.:

bn ∈ Bn
ε1 , {bn ∈ {0, 1}n : |1(bn)

n
− p| ≤ ε1}.

thenfn one-to-one mapsbn to a binary sequence of lengthn(H(p)+τ(ε1)) excluding the all zero signal, otherwise
bn /∈ Bn

ε1 , fn sends the all zero signal, whereτ(ε1) → 0 if ε1 → 0, this is guaranteed by the standard lossless
source coding theorem. Obviously for allε1 > 0:

lim
n→∞

b
Pr(bn /∈ Bn

ε1) = 0 (96)

Now for eachxn = bn × sn, if bn ∈ Bn
ε1 , we know thatn(p − ε1) ≤ 1(bn) ≤ n(p + ε1). Denote by a new

sequencẽs1, ...s̃1(bn) the non zero entries ofxn. Then the encoderfn passes̃s1(bn) to a good Gaussian lossy
encoder-decoder pair̃f1(bn), g̃1(bn) with rate R(D

p , N(0, 1)) for a sequence of length1(bn). If output of f̃1(bn),
when 1(bn) < n(p + ε1), is shorter thann(p + ε1)R(D

p , N(0, 1)), fn just pad zeros at the end. The total block
length forxn is

n(H(p) + τ(ε1)) + n(p + ε1)R(
D

p
,N(0, 1)). (97)

If the output form the encoder is not a all zero sequence, the decodergn first looks at the firstn(H(p) + τ(ε1))
bits and recoverbn exactly and hence1(bn). Thengn discards the padded zeros at the end and pass the rest to the
Gaussian lossy decoderg̃1(bn) with rate R(D

p , N(0, 1)) for a sequence of length1(bn). Then gn put the outputs
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of g̃1(bn) to the non-zero locations ofbn one by one. By using the coding system described above, we have for
bn ∈ Bn

ε1 ,

nd(xn, gn(fn(xn))) = 1(bn)d(s̃1(bn), g̃1(bn)(f̃1(bn)(s̃1(bn)))) (98)

and becausesn andbn are independent and the coding systemf̃1(bn), g̃1(bn) is good, for all fixedbn ∈ Bn
ε1 , for all

δ0 > 0:

lim
n→∞

s̃
Pr

(
d(s̃1(bn), g̃1(bn)(f̃1(bn)(s̃1(bn)))) ≥ D

p
+ δ0

)
= 0. (99)

Now we evaluate the performance offn, gn, for all δ1 > 0:

lim
n→∞

x
Pr (d(xn, gn(fn(xn))) ≥ D + δ1) ≤ lim

n→∞
{

b
Pr

(
bn /∈ Bn

ε1

)
+

x
Pr

(
d(xn, gn(fn(xn))) ≥ D + δ1|bn ∈ Bn

ε1

)}(100)

= lim
n→∞

x
Pr

(
d(xn, gn(fn(xn))) ≥ D + δ1|bn ∈ Bn

ε1

)
(101)

= lim
n→∞

x
Pr

(
d(s̃1(bn), g̃1(bn)(f̃1(bn)(s̃1(bn)))) ≥ n(D + δ1)

1(bn)
|bn ∈ Bn

ε1

)
(102)

≤ lim
n→∞

x
Pr

(
d(s̃1(bn), g̃1(bn)(f̃1(bn)(s̃1(bn)))) ≥ n(D + δ1)

n(p + ε1)
|bn ∈ Bn

ε1

)
(103)

= lim
n→∞

x
Pr

(
d(s̃1(bn), g̃1(bn)(f̃1(bn)(s̃1(bn)))) ≥ D

p
+

δ1p−Dε1
p(p + ε1)

|bn ∈ Bn
ε1

)

= 0 (104)

(100) is because for eventsA andB, Pr(A) = Pr(A,B) + Pr(A,Bc) ≤ Pr(B) + Pr(A|Bc). (101) is true because
of (96). (98) implies (102). (103) is true because1(bn) ≤ n(p + ε1) if bn ∈ Bn

ε1 . Finally, for anyδ1, by letting ε1
small enough, henceδ1p−Dε1

p(p+ε1)
> 0 and by (99) and the fact that̃s1(bn) is induced byxn, we have (104).

(97) together with (104) implies that:

R(D, p) ≤ H(p) + pR(
D

p
,N(0, 1)) + τ(ε1) + ε1R(

D

p
, N(0, 1)).

Notice that we can pickε1 arbitrarily small and henceτ(ε1) arbitrarily small, we haveR(D, p) ≤ H(p) +
pR(D

p , N(0, 1)) = H(p) + pR(D,N(0, p)). ¤

Proof of Proposition 3: this is a direct corollary of the upper bound in Corollary 2. Notice that the variance of
a Bernoulli-Gaussian random variableΞ(p, 1) is p, so according to Corollary 2, ifΞ(p, 1) is a continuous random
variable, we would have:

R(D, p) ≤ max{1
2

log
p

D
, 0} = R(D,N(0, p)) (105)

The technicality here is thatΞ(p, 1) is not a continuous random variable, but the fix is quite easy. Let random
variableym be thep-mixture of a GaussianN(0, 1) and a uniformly distributed random variable on[− 1

m , 1
m ]. i.e.

with probability 1− p, ym ∼ N(0, 1) and with probabilityp, ym ∼ U [− 1
m , 1

m ]. The pdf ofym is

pym(y) = {
1−p
2 e

y2

2 , |y| > 1
m ,

1−p
2 e

y2

2 + pm
2 , |y| ≤ 1

m .
(106)

Obviously,ym is a continuous random variable with variancep + 1
3m2 . Now according to Corollary 2, we know

that the rate distortion function forym, Rym(D) is upper bounded by

max{1
2

log
p

D
, 0} = R(D, N(0, p +

1
3m2

)). (107)
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Now we upper boundR(D, p) by constructing a good randomized lossy coding system forx ∼ Ξ(p, 1) in
the average sense,fu

n, gu
n, from a good lossy coding system forym, f y

n, gy
n. Given xn ∼ Ξ(p, 1), fu

n applies the
following operation on it, fori = 1, 2, ..., n, let

zi = { xi, xi 6= 0,
xi + ui, xi = 0 (108)

whereui’s are independent andui ∼ U [−1
m , 1

m ] is a uniform distributed random variable. It is clear thatzi has the
same distribution asym. Now fu

n passeszn to encoderf y
n. The decodergu

n = gy
n. Now we analyze the performance

of the coding systemfu
n, gu

n.
First, becausef y

n, gy
n is a good in the strong sense forym, we have, for anyδ1 > 0:

lim
n→∞

z
Pr (d(zn, gy

n(f y
n(zn)) ≥ D + δ1) = 0.

From the construction offu
n, gu

n, we know thatgy
n(f y

n(zn)) = gu
n(fu

n(xn)) a.s., wherezn is induced fromxn and
un, denotegu

n(fu
n(xn))i or equivalentlygy

n(f y
n(zn))i by wi, so :

lim
n→∞

x,u

Pr (d(zn, gu
n(fu

n(xn)) ≥ D + δ1)) = lim
n→∞

x,u

Pr (d(zn, wn) ≥ D + δ1)) = 0. (109)

Secondly, from the construction ofzn, we know that for alli, |xi − zi| ≤ 1
m a.s.. So we have a.s.:

d(xn, gu
n(fu

n(xn))) =
1
n

n∑

i=1

(xi − wi)2

=
1
n

n∑

i=1

(xi − zi + zi − wi)2

≤ 1
n

n∑

i=1

(|xi − zi|+ |zi − wi|)2

≤ 1
n

n∑

i=1

(
1
m

+ |zi − wi|)2

≤ 1
m

+
1
n

n∑

i=1

(zi − wi)2 +
2

nm

n∑

i=1

|zi − wi| (110)

By the Cauchy-Schwartz inequality, a.s.:

(
n∑

i=1

|zi − wi|)2 ≤ (
n∑

i=1

|zi − wi|2)(
n∑

i=1

1)

hence a.s.

1
n

n∑

i=1

|zi − wi| ≤
√√√√ 1

n
(

n∑

i=1

|zi − wi|2). (111)

Now for a realization ofxn and un: xn and un, the induced realization ofzn and gu
n(fu

n(xn)) are zn and wn

respectively. Ifd(zn, wn) < D + δ1, then combining (110) and (111), we have:

d(xn, gu
n(fu

n (xn))) ≤ 1
m

+ (D + δ1) +
2
√

D + δ1

m

≤ D + δ1 +
1 + 2

√
D + δ1

m

This means that
x,u

Pr (d(zn, wn) ≥ D + δ1) ≥
x,u

Pr
(

d(xn,wn) ≥ D + δ1 +
1 + 2

√
D + δ1

m

)
(112)
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The above coding system is a randomized coding system where the performance is measured under the distribution
of the “dithering” random variableu. Now if we take the above average “dithering”, i.e.: for eachxn ∈ Rn,

if
u
Pr

(
d(xn,wn) ≥ D + δ1 +

1 + 2
√

D + δ1

m

)
< 1,

there existsun(xn) ∈ [−1
m , 1

m ] and of courseui(xn) = 0 if xi 6= 0, such that the distortion betweenxn and the
output of the the lossy coding systemf y

n, gy
n with input xn + un(xn) is no bigger thanD + δ1 + 1+2

√
D+δ1

m :

d(xn, gy
n(f y

n(xn + un(xn)))) ≤ D + δ1 +
1 + 2

√
D + δ1

m

otherwise, simply let un(xn) = 0.

Finally, let fn and gn be such that, for allxn, fn(xn) = f y
n(xn + un(xn)) and gn = gy

n. The construction of
gn, fn implies that

x
Pr(d(xn, gn(fn(xn)) ≥ D + δ1 +

1 + 2
√

D + δ1

m
) ≤

x,u

Pr
(

d(xn,wn) ≥ D + δ1 +
1 + 2

√
D + δ1

m

)
(113)

Now combining (109), (112) and (113), we have:

lim
n→∞

x
Pr(d(xn, gn(fn(xn)) ≥ D + δ1 +

1 + 2
√

D + δ1

m
) = 0

Note that the rate of the coding system isRym(D) which is upper bounded byR(D,N(0, p + 1
3m2 )) in (107). So

R(D + δ1 +
1 + 2

√
D + δ1

m
, p) ≤ R(D, N(0, p +

1
3m2

)) (114)

while (114) is true for allδ1 > 0 andm ∈ N . Note that the Gaussian rate distortion functionR(D, N(0, σ2)) is
continuous inσ2 and the Bernoulli-Gaussian rate distortion functionR(D, p) is monotonically decreasing and
bounded inD, hence continuous with measure1. By letting m → ∞ and δ1 → 0, we have:R(D, p) ≤
R(D,N(0, p)). ¤

Proof of Proposition 4: For a good lossy coding systemfn, gn for Bernoulli-Gaussian sequencexn = bn×sn ∼
Ξ(p, 1) defined in Definition 1 and distortion constraintD, the rate isR(D, p), i.e.

fn : Rn → {0, 1}nR(D,p) gn : {0, 1}nR(D,p) →Rn,
x
Pr (d(xn, gn(fn(xn))) ≥ D + δ1) = en

and for allδ1 > 0: lim
n→∞

en = 0. (115)

We use the same notations as those in the proof of Proposition 2. We construct a good lengthmn ∈ [n(p −
ε1), n(p + ε1)] lossy source coding system̃fmn , g̃mn for s̃mn ∼ N(0, p) under the same distortion constraintD,
wheremn will be determined later. First we decomposeen, by (96), we know that there existsnε1 < ∞, such that

for all n > nε1 ,
x

Pr(bn ∈ Bn
ε1) ≥ 1

2 , so for all n > nε1 :

en =
x

Pr (d(xn, gn(fn(xn))) ≥ D + δ1)

≥
x

Pr
(
bn ∈ Bn

ε1 , d(xn, gn(fn(xn))) ≥ D + δ1

)
(116)

=
∑

bn∈Bn
ε1

x
Pr (bn = bn , d(xn, gn(fn(xn))) ≥ D + δ1) (117)

=
x

Pr(bn ∈ Bn
ε1)

∑

bn∈Bn
ε1

x
Pr(bn = bn)
x

Pr(bn ∈ Bn
ε1)

x
Pr (d(xn, gn(fn(xn))) ≥ D + δ1|bn = bn) (118)

≥ 1
2

∑

bn∈Bn
ε1

φ(bn)
x

Pr (d(xn, gn(fn(xn))) ≥ D + δ1|bn = bn) (119)
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(116), (117) and (118) are obvious, in (119), we denoteφ(bn) by
x

Pr(bn=bn)
x

Pr(bn∈Bn
ε1

)
. Notice thatφ() is a probability

measure onBn
εn

. Hence there exists̄bn ∈ Bn, write 1(b̄n) = mn ∈ [n(p− ε1), n(p + ε1)], such that:

x
Pr

(
d(xn, gn(fn(xn))) ≥ D + δ1|bn = b̄n

) ≤ 2en. (120)

We bound the distortion ofxn as follows, letl1 < l2 < ... < lmn
, L = {l1, ...lmn

}, be the positions of the non-zero
elements of̄bn,

nd(xn, gn(fn(xn))) ≥
mn∑

i=1

(xli − gn(fn(xn))li)
2. (121)

Substituting (121) into (120), we have:

x
Pr

(
mn∑

i=1

(xli − gn(fn(xn))li)
2 ≥ n(D + δ1)|bn = b̄n

)
≤ 2en. (122)

Now we are ready to construct a good lossy source coding systemf̃mn , g̃mn for smn ∼ N(0, p). The encoder̃fmn

works as follows, for any sequencẽsmn ∈ Rmn , f̃mn(s̃mn) = fn(T (smn)), for a binary sequenceaR(D,p)n ∈
{0, 1}R(D,p)n: g̃mn

(aR(D,p)n) = T−1gn(aR(D,p)n)), whereT is a one-to-one map fromRmn to Rn:

T (s̃mn) = sn, wheresli = s̃i, i = 1, 2, ...,mn andsi = 0, i /∈ L

T−1(sn) = s̃mn , wheres̃i = sli , i = 1, 2, ...,mn

xn = bn × sn, so if bn = b̄n thenxi = 0 for all i /∈ L, and by the memorylessness ofxn. We have:

s̃
Pr

(
mnd(smn , g̃mn(f̃mn(smn))) ≥ n(D + δ1)

)
=

s̃
Pr

(
mn∑

i=1

(s̃i − g̃mn(f̃mn(s̃n))i)2 ≥ n(D + δ1)

)

=
x
Pr

(
mn∑

i=1

(xli − gn(fn(xn))li)
2 ≥ n(D + δ1)|bn = b̄n

)

≤ 2en. (123)

where the inequality is by (122). Notice thatmn = 1(b̃n) ∈ [n(p− ε1), n(p + ε1)], so n
mn

∈ [ 1
p+ε1

, 1
p−ε1

]. So (123)
and (115) tells us:

0 = lim
n→∞

s̃
Pr

(
mnd(smn , g̃mn(f̃mn(smn))) ≥ n(D + δ1)

)

= lim
n→∞

s̃
Pr

(
d(smn , g̃mn(f̃mn(smn))) ≥ n

mn
(D + δ1)

)

≥ lim
n→∞

s̃
Pr

(
d(smn , g̃mn(f̃mn(smn))) ≥ 1

p− ε1
(D + δ1)

)
. (124)

The encoder decoder pair̃fmn , g̃mn usenR(D, p) bits, so the rate of this coding system isnR(D,p)
mn

≤ R(D,p)
p−ε1

.

(124) is true for allδ1 and ε1, by letting ε1 → 0, we just construct a rateR(D,p)
p , distortion D

p coding system for

i.i.d Gaussian random variabless̃mn ∼ N(0, 1). From Corollary 1 we know thatR(D,p)
p ≥ R(D

p , N(0, 1)), i.e.

R(D, p) ≥ pR(
D

p
,N(0, 1)) = pR(D, N(0, p))

¤
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D. Strong Typical Gaussian Sequences

In this appendix we define and investigate the properties of the so called strong typical Gaussian sequences. For
a sequencesn ∈ Rn, for a real numberT ∈ R, the empiricall-th moment of entries insn within interval [T,∞]
is denoted by

nl
sn(T ) =

∑n
i=1 1(si > T )sl

i

n
.

Definition 4: ε-typical Gaussian sequences: A sequencesn is said to beε typical for N(0, 1), if the followings
are true: for any real numberT ≥ −∞,

max
l=0,1,2

{
sup
T

∣∣∣∣nl
sn(T )−

∫ ∞

T

sl 1√
2π

e
−s2
2 ds

∣∣∣∣ < ε

}
(125)

The ε-typical set ofN(0, 1) is denoted bySε(n), similar to the strong typical set for random sequences with finite
alphabet, we have the following concentration lemma. Note that the convergence is uniform convergence, in the
sense that we ask the sequence to be typical for all real numbersT simultaneously.

An almost equivalent “double-sided” definition ofε-typical Gaussian sequence is as follows. First, for any−∞ ≤
S ≤ T ≤ ∞, we denote by

nl∗
sn(S, T ) =

∑n
i=1 1(si ∈ [S, T ])sl

i

n
.

Similar to that in Definition 4, we define the typical setS∗ε (n) as the set of all sequencesn, s.t.

max
l=0,1,2

{
sup
S≤T

∣∣∣∣∣n
∗
sn(S, T )−

∫ T

S

sl 1√
2π

e
−s2
2 ds

∣∣∣∣∣ < ε

}
(126)

We now illustrate the equivalence of the two typical setsSε(n) and S∗ε (n). First, obviouslyS∗ε (n) ⊆ Sε(n).
Secondly,

sup
S≤T

∣∣∣∣∣n
l∗
sn(S, T )−

∫ T

S

sl 1√
2π

e
−s2
2 ds

∣∣∣∣∣ = sup
S≤T

∣∣∣∣nl
sn(S)− nl

sn(T )−
∫ ∞

S

sl 1√
2π

e
−s2
2 ds +

∫ ∞

T

sl 1√
2π

e
−s2
2 ds

∣∣∣∣

≤ sup
S≤T

∣∣∣∣nl
sn(S)−

∫ ∞

S

sl 1√
2π

e
−s2
2 ds

∣∣∣∣ +
∣∣∣∣nl

sn(T )−
∫ ∞

T

sl 1√
2π

e
−s2
2 ds

∣∣∣∣

≤ 2 sup
T

∣∣∣∣nl
sn(T )−

∫ ∞

T

sl 1√
2π

e
−s2
2 ds

∣∣∣∣
This meansSε(n) ⊆ S∗2ε(n), so the concentration of the “double-sided” and the “one-sided” typical sets are
equivalent. We use the latter definition ofε-typical set in the main body of the paper. However, for the sake of
simplicity of notations, we prove the concentration of theε-typical set of the “one-sided” definition.

Lemma 6:Concentration of Gaussian sequences: for i.i.dN(0, 1) random sequencesn, for all ε > 0

lim
n→∞

Pr(sn ∈ Sε(n)) = 1 (127)

Proof: we give a sketch of the proof here. The idea is to first quantize the real line for the GaussianN(0, 1)
random variable then apply the concentration result for i.i.d discrete finite random sequences. The quantization goes
as follows, we study the following intervals:{(−∞,−Kω], [−Kω,−(K−1)ω], ..., [(K−1)ω,Kω], [Kω,∞]}, i.e.
the end points of the intervals are defined as follows: for an integerj within range[−K − 1,K + 1] we denote
ω(j) = jω if j = −K, ..., K andω(−K−1) = −∞ andω(K +1) = ∞. We can obviously letω be small enough
andK be big enough such that the following two integrals are true for allj = −K − 1, ...K

∣∣∣∣∣
∫ ω(j+1)

ω(j)

sl 1√
2π

e
−s2
2 ds

∣∣∣∣∣ <
ε

2
for l = 0, 1, 2. (128)
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We letSω,K
ε (n) be the set that the typicality condition in (126) is true forT = ω(j) for all j ∈ {−K−1, ...,K +1}

simultaneously, i.e.

Sω,K
ε (n) = {sn : max

l=0,1,2

{
sup

j=−K−1,...,K+1

∣∣∣∣∣n
l
sn(ω(j))−

∫ ∞

ω(j)

sl 1√
2π

e
−s2
2 ds

∣∣∣∣∣ < ε

}
} (129)

We show that

lim
n→∞

Pr(sn ∈ Sω,K
ε (n)) = 1 (130)

This is true because from the weak law of large numbers we know that forl = 0, 1, 2:

lim
n→∞

Pr
(∣∣∣∣nl

sn(T )−
∫ ∞

T

sl 1√
2π

e
−s2
2 ds

∣∣∣∣ < ε

)
= 1 (131)

for all T ∈ R⋃{−∞,∞}, in particular for allT = ω(j), j = −K − 1, ..., K + 1. This is a finite set, so

lim
n→∞

Pr(sn ∈ Sω,K
ε (n))

= lim
n→∞

Pr( max
l=0,1,2

{
sup

j=−K−1,...,K+1

∣∣∣∣∣n
l
sn(ω(j))−

∫ ∞

ω(j)

1√
2π

e
−s2
2 ds

∣∣∣∣∣

}
< ε)

= 1 (132)

(130) is proved. In particular:

lim
n→∞

Pr(sn ∈ Sω,K
ε
2

(n)) = 1 (133)

Now we are ready to use (133) to prove the lemma.
For anysn and a real numberT ∈ [ω(j), ω(j + 1)], j ∈ {−K − 1, ..., K + 1}, then obviously

nl
sn(T ) ∈ [nl

sn(ω(j + 1)), nl
sn(ω(j))], so for l = 0, 1, 2 :

nl
sn(T )−

∫ ∞

T

sl 1√
2π

e
−s2
2 ds ≤ nl

sn(ω(j))−
∫ ∞

T

sl 1√
2π

e
−s2
2 ds

= nl
sn(ω(j))−

∫ ∞

ω(j)

sl 1√
2π

e
−s2
2 ds +

∫ T

ω(j)

sl 1√
2π

e
−s2
2 ds

≤ nl
sn(ω(j))−

∫ ∞

ω(j)

sl 1√
2π

e
−s2
2 ds +

∫ ω(j+1)

ω(j)

sl 1√
2π

e
−s2
2 ds

≤
∣∣∣∣∣n

l
sn(ω(j))−

∫ ∞

ω(j)

sl 1√
2π

e
−s2
2 ds

∣∣∣∣∣ +
ε

2
, (134)

where (134) follows (128), similarly we have forl = 0, 1, 2 :

nl
sn(T )−

∫ ∞

T

sl 1√
2π

e
−s2
2 ds ≥ −

∣∣∣∣∣n
l
sn(ω(j + 1))−

∫ ∞

ω(j+1)

sl 1√
2π

e
−s2
2 ds

∣∣∣∣∣−
ε

2
. (135)

(134) and (135) tells us that forl = 0, 1, 2 :
∣∣∣∣nl

sn(T )−
∫ ∞

T

sl 1√
2π

e
−s2
2 ds

∣∣∣∣ ≤ sup
j=−K−1,...,K+1

∣∣∣∣∣n
l
sn(ω(j))−

∫ ∞

ω(j)

sl 1√
2π

e
−s2
2 ds

∣∣∣∣∣ +
ε

2
. (136)

Notice the definitions ofSε(n) andSω,K
ε
2

(n), (136) implies thatSε(n) ⊇ Sω,K
ε
2

(n), hence:

lim
n→∞

Pr(sn ∈ Sε(n)) ≥ lim
n→∞

Pr(sn ∈ Sω,K
ε
2

(n)) = 1

The lemma is proved. ¤
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E. Properties of(u + v)D( u
u+v‖p)

In this section we show some properties of(u + v)D( u
u+v‖p), summarized in the following lemma.

Lemma 7: If u, v ≥ 0, u
u+v > p, then(u + v)D( u

u+v‖p) is monotonically increasing withu and monotonically
decreasing withv.

Proof: First, both u
u+v and D( u

u+v‖p) are positive and monotonically increasing withu if u
u+v > p. Hence

(u + v)D( u
u+v‖p) is monotonically increasing withu.

Secondly, using basic calculus, we have:

d(u + v)D( u
u+v‖p)

dv
=

d
(
u log( u

(u+v)p ) + v log( v
(u+v)(1−p) )

)

dv

= − u

u + v
− v

u + v
+ 1 + log

(
v

(u + v)(1− p)

)

= log
(1− u

u+v

1− p

)

< 0 (137)

The last inequality is true becauseuu+v > p hence1− u
u+v < 1− p. ¤
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