

Keyword(s):

Abstract:

©

Web Article Extraction for Web Printing: a DOM+Visual based Approach

Ping Luo, Jian Fan, Sam Liu, Fen Lin, Yuhong Xiong, Jerry; Liu

HP Laboratories
HPL-2009-185

Article extraction, maximal scoring subsequence

This work studies the problem of extracting articles from Web pages for better printing. Different from
existing approaches of article extraction, Web printing poses several unique requirements: 1) Identifying
just the boundary surrounding the text-body is not the ideal solution for article extraction. It is highly
desirable to filter out some uninformative links and advertisements within this boundary. 2) It is necessary
to identify paragraphs, which may not be readily separated as DOM nodes, for the purpose of better layout
of the article. 3) Its performance should be independent of content domains, written languages, and Web
page templates. Toward these goals we propose a novel method of article extraction using both DOM
(Document Object Model) and visual features. The main components of our method include: 1) a text
segment/paragraph identification algorithm based on line-breaking features, 2) a global optimization
method, Maximum Scoring Subsequence, based on text segments for identifying the boundary of the article
body, 3) an outlier elimination step based on left or right alignment of text segments with the article body.
Our experiments showed the proposed method is effective in terms of precision and recall at the level of
text segments.

External Posting Date: August 21, 2009 [Fulltext] Approved for External Publication
Internal Posting Date: August 21, 2009 [Fulltext]

To be published in the 9th ACM Symposium on Document Engineering, DocEng'09, Munich, Germany. September 16-18, 2009

Copyright The 9th ACM Symposium on Document Engineering, DocEng'09, 2009

Web Article Extraction for Web Printing: a DOM+Visual
based Approach

Ping Luo, Jian Fan, Sam Liu, Fen Lin, Yuhong Xiong, Jerry Liu
Hewlett Packard Labs

{ping.luo, jian.fan, sam.liu, fen.lin, yuhong.xiong, jerry.liu}@hp.com

ABSTRACT
This work studies the problem of extracting articles from
Web pages for better printing. Different from existing ap-
proaches of article extraction, Web printing poses several
unique requirements: 1) Identifying just the boundary sur-
rounding the text-body is not the ideal solution for article
extraction. It is highly desirable to filter out some uninfor-
mative links and advertisements within this boundary. 2)
It is necessary to identify paragraphs, which may not be
readily separated as DOM nodes, for the purpose of better
layout of the article. 3) Its performance should be indepen-
dent of content domains, written languages, and Web page
templates. Toward these goals we propose a novel method
of article extraction using both DOM (Document Object
Model) and visual features. The main components of our
method include: 1) a text segment/paragraph identification
algorithm based on line-breaking features, 2) a global op-
timization method, Maximum Scoring Subsequence, based
on text segments for identifying the boundary of the article
body, 3) an outlier elimination step based on left or right
alignment of text segments with the article body. Our ex-
periments showed the proposed method is effective in terms
of precision and recall at the level of text segments.

Categories and Subject Descriptors
I.7.2 [Document and Text Processing]: Document Prepa-
ration—hypertext/hypermedia, languages and systems, markup
languages, scripting languages; I.2.6 [Artificial Intelligence]:
Learning—concept learning

General Terms
Algorithms, Experimentation

Keywords
Article extraction, maximal scoring subsequence

1. INTRODUCTION
Many people find the seemly simple task of printing web

pages often frustrating because of common problems such as

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DocEng’09, September 16–18, 2009, Munich, Germany.
Copyright 2009 ACM 978-1-60558-575-8/09/09 ...$5.00.

Figure 1: An example Web article with bounding
rectangles of text segments (left), our Printout of
the extracted article text, title and image (right).

too many pages generated, poor page layout, and distracting
ads at conspicuous locations - just to name some. The prob-
lem mainly stemmed from how information is represented on
a web page, which is encoded in a language (HTML) that is
not targeted for printing. HTML can be messy and confus-
ing to interpret by the current browser print utility, so the
web page that is rendered by the browser does not match the
print output. As an illustration of current print problems,
we randomly select a recent Web page1 in Figure 1(left) from
SL.com, a prime candidate for printing news worthy articles.
As one can try, the printout provided by the Web browser
suffers from including a large area of un-informative content
(navigation menu, ads and related links) in it. More im-
portantly, this poor user experience would surely discourage
future printing from the web. To improve web printing, we
like to have the much preferred printout in Figure 1(right),
which contains only the title, article text-body, and associ-
ated images.

Providing friendly user experience for Web printing is
strongly dependent on accurately extracting desired infor-
mation from semi-structured HTML documents, which has
been well-studied in previous work. Here, we only discuss
the related work of two recent papers [1, 3], which are the
state of the art in article extraction. Wang et al. [3] propose
a template-independent method for Web news extraction.

1http://sportsillustrated.cnn.com/2009/soccer/05/27/
champions.league.ap/index.html

Based on some visual features this method learns the wrap-
per to identify the minimal DOM sub-tree which contains
the whole article text-body. Pasternack and Roth [1] intro-
duce a global heuristic of maximum subsequence segmenta-
tion based on word-level local classifiers, and apply it to the
domain of news Web sites. However, these methods are ill
suited for Web printing for the following reasons:
• Both of these methods only identify the boundary of the

text-body. Since some unwanted content such as link-lists
(to related stories) and ads, may exist within this block,
article extraction at this level is not the ideal solution for
Web page printing. Pasternack and Roth [1] argue that
removing whatever junk remains becomes much simpler, and
also propose some simple rules to do it. One of these rules
is to remove the contents of any div HTML tag pair in the
DOM that contains a hyperlink. However, it is quite often
that the article paragraphs include some links within them.
Thus, this rule would incorrectly remove these paragraphs.
Additionally, by our experiences of reading hundreds of Web
articles it is not a trivial task to remove noises within the
text-body.
• Both of these methods cannot detect the paragraph sep-

aration within the text-body. For a better printable article
we need this information for the re-layout of text-body with
title and image. Due to the heterogeneity of HTML tags
used to separate paragraphs it is not a trivial task neither.
• The method from Pasternack and Roth [1] is dependent

of content domains and writing languages. That is to say,
the model trained on the data in one content domain (or
language) is not applicable to the data in another domain (or
language). For example, the model trained based on news
articles is not applicable to healthcare articles. The reason
is that this model uses the word-level features in the local
classifier. However, as a general solution of article extraction
for Web printing the method must be independent of content
domains, writing languages, and Web page templates.

In this paper we propose the method of article extrac-
tion which addresses the above challenges. First, based on
line-breaking features we present a Web page segmentation
algorithm to generate text segments, the basic elements for
processing, each of which may correspond to a paragraph.
We then use a global optimization method, Maximum Scor-
ing Subsequence, over segment-level (not word-level or DOM
tree leaf node level) local classifier, and apply it to detect the
boundary of text-body. Finally, we propose a novel method
of left and right alignment to remove the unwanted content
in the text-body block. Since we only use the DOM and vi-
sual information in our method, it is independent of content
domains, writing languages, and Web page templates.

2. PROBLEM DESCRIPTION
In this work we adopt the same description of article in [1].

By “article” we mean a contiguous, coherent work of prose
on a single topic or multiple closely related topics that alone
comprises the main informational content of the page – news
stories, encyclopedia entries, or a single blog post are con-
sidered articles, whereas a collection of headlines with brief
summaries, a list of search results, or a set of blog posts are
not.

While a Web article is unstructured in HTML/DOM, it
does have some sense of visual structure. For example, the
article body usually consists of contiguous paragraph blocks
occupying the main area of the Web page. As for the article
title it usually has more standout font and always positioned

Figure 2: An example of text segment identification.
Nodes with solid blue color are line-break nodes.
Red round rectangles indicate text segments.

before the text-body. For a Web article, we extract the
title, text-body, and non-ads image for Web printing. This
task is complicated by the presence of less informative and
typically unrelated material, such as links to related stories,
navigation menu, and ads. In this paper we mainly describe
our work on article text-body extraction.

3. IDENTIFICATION OF TEXT SEGMENTS
The first task is to define the basic processing element

for article extraction. Trivially, we can consider the text
DOM leaf nodes (text leaf nodes for short) as the basic el-
ements. However, this element might be too primitive for
article extraction. For example, it is quite often that there
exist several links in a paragraph of a news article. Thus,
the leaf nodes within the link HTML tags will divide the
whole paragraph into multiple pieces. However, ideally we
want the whole paragraph intact and to be the basic pro-
cessing element (its advantage will be discussed later). In
this section we will give the definition of text segment that
meets this requirement.

3.1 Identification of Line-break Nodes
After analyzing many HTML source files we find that a

paragraph in a Web article can be created using different
tags, including some paired-tags such as div, p, and block-
quote, or some single-tags such as br and hr. Although the
tag used to form a paragraph is different it is always true
that there does not exist any line-break within a paragraph.
Thus, generally speaking, we want to group the successive
text leaf nodes between two line-breaks into a text segment.

Now the problem is how to get the line-break informa-
tion from the DOM tree and the display information of the
Web page. In our work we consider the following two rules
to obtain the line-breaks among text. 1) The CSS display
property. The CSS display property sets how/if an element
is displayed. If the display property of a node is “block”,
this element will be displayed as a block-level element, with
a line-break before and after the element. 2) The single (not
paired) tags br and hr will generate a line-break after them.
The first rule considers the line-breaks before and after some
paired-tags tags, such as div, p, and blockquote. Since it is
hard to list all such tags that generate line-breaks we lever-
age the CSS display property on each tag. Note that this
information can only be obtained after rendering this page.
Furthermore, the second rule considers the line-breaks after
some single-tags, such as br and hr. This can be obtained
through parsing the DOM tree.

For convenience in description we give the definition of
line-break nodes as follows.

Table 1: The leaf nodes and their NLNs
Text Leaf Node NLN Text Leaf Node NLN

n12 n2 n13 n2

n6 n6 n7 n2

n19 n14 n20 n2

n16 n2 n17 n3

n18 n3

Definition 1 (Line-break Node). A DOM node is a
line-break node if and only if the value of its display property
is “block” or the HTML tag of this node is br or hr.

We give an example DOM tree in Figure 2 to clarify how
to generate text segments. In this figure The number beside
each node is its index number. The circular nodes are the
HTML tag nodes, while the rectangular nodes are the text
leaf nodes. (Note that some HTML tag nodes can also be a
leaf node in the DOM tree. For example, Node 6 in Figure 2
is a leaf node with the single-tag br.) The circular nodes with
solid blue color are the line-break nodes. After rendering this
DOM tree the corresponding Web page appears as follows:

text in n12 and n13

text in n7

text in n19

text in n20 and n16

text in n17 and n18

where ni is the i-th node in the DOM tree. Ideally we would
like to get the following five text segments: {n12, n13}, {n7},
{n19}, {n20, n16}, {n17, n18}, each of which corresponds to
a line in the Web page.

It is quite common that the sub-tree of a line-break node
contains another line-break node. For example, in Figure 2
the sub-tree of line-break Node 2 contains two other line-
break nodes, Node 6 and Node 14. Due to this nesting
relationship among line-break nodes, it is not trivial to group
the text leaf nodes into a text segment.

3.2 Bottom-up Grouping of Text Nodes
To group the text leaf nodes, we first identify the Nearest

Line-break Node (NLN), defined in Definition 2, for each leaf
node on the DOM tree.

Definition 2 (Nearest Line-break Node). Given a
leaf node n in a DOM tree T , the nearest line-break node for
n is the first line-break node along the shortest path from n
to the root of T .

Note that in the above definition the shortest path includes
the two end points, node n and the root of T . It indicates
that if a leaf node is a line-break node (eg. Node 6 in Fig-
ure 2), its NLN is itself. Table 1 lists all the leaf nodes and
their NLNs in the example tree in Figure 2.

By the following steps we can group the text leaf nodes
into multiple text segments.

1. Generate the sequence of all the leaf nodes, which are
ranked in the order that they appear in the HTML file. For
the example in Figure 2, this sequence is (n12, n13, n6, n7,
n19, n20, n16, n17, n18). Note that in this list n6 is a single-
tag node, not a text leaf node.

2. Group the successive nodes in this sequence with the
same NLN into a text group. For the example in Figure 2
we get 6 groups: g1 = {n12, n13}, g2 = {n6}, g3 = {n7}, g4 =
{n19}, g5 = {n20, n16}, g6 = {n17, n18}. In this example, n7

and n20 has the same NLN of n2, but they are not successive

to each other in the sequence of leaf nodes. Thus, these two
nodes are not in a group.

3. For each group generated by Step 2, we check whether
it only contains a single-tag node. If it does, remove this
group. In our example g2 = {n6} is such a group. Thus, it
is removed from the final result.

Definition 3 (Text Segment). Each group of text leaf
nodes, generated from the above process, is a text segment.

Finally, we get the five text segments: {n12, n13}, {n7},
{n19}, {n20, n16}, {n17, n18}, which is the correct result.

4. ARTICLE EXTRACTION
Given a sequence of text segments ~s = (s1, · · · , sn) (where

si is a text segment) generated from a Web page by the
algorithm in Section 3.2, we aim to identify the subsequence
of ~s which exactly bounds the text-body.

4.1 Maximum Scoring Subsequence of Text Seg-
ments

Providing a sequence ~v = (v1, · · · , vn), where vi ∈ R, a
Maximum Scoring Subsequence (MSS) of ~v is a sequence
T = (va, va+1, · · · , vb) where 1 ≤ a ≤ b ≤ n and a and b are
given by

(a, b) = arg max
x,y

y∑

i=x

vi (1)

The complexity of the algorithm for the above problem is
linear with respect to the length of ~v [2].

Typically, the text-body, a contiguous block of text with
common font size (and color) and without too many links
and decoration tags, always occupies the main area of the
Web page. Thus, we adopt the algorithm of MSS to identify
the range of the text-body. Specifically, we use a segment-
level classifiers F (a function from a text segment to a value
in [−1, 1]) to give a score for each segment. The bigger this
value is, the more probable that the segment is in the text-
body. We then solve the following MSS problem.

Given a sequence of text segments ~s = (s1, · · · , sn) (si is
a text segment), we solve the MSS problem in Equation (1)
for the value sequence ~v = (v1, · · · , vn), where

vi = F (si) · StringLength(si), (2)

StringLength(si) is the string length of the text in si. The
resultant text segments in this maximum scoring subsequence
gives the bounding block of the text-body.

The local classifier F gives any text segment a value, which
determines whether it is in the text-body. The text-body is
likely to satisfy the following specifications: 1) the font size
(color) used in any paragraph of the text-body may be the
most commonly used one in the Web page; 2) There may
not be too many links in a paragraph of the text-body.

Thus, we can generate the format-based features for the
local classifier of the text segment. Specifically, for each
text segment we compute the percentage (in terms of string
length) of the text in this segment that appears in a cer-
tain format. The formats we consider in this work include:
1) whether it is in the most commonly-used font size; 2)
whether it is in the most commonly-used font color; 3) whether
it is the text in a link. Then, these three format require-
ments correspond to the three values of percentage, denoted
by psize, pcolor and plink, respectively. For a given Web page
the commonly-used font size and color can be calculated in
advance in terms of string length. We can train this local
classifier based on the values of psize, pcolor and plink on
each text segment. However, in the current work we manu-
ally formulate this function of F in the following form,

F (s) =

{
1 psize ≥ c1, pcolor ≥ c2, plink ≤ c3
−1 otherwise,

(3)

where c1, c2 and c3 are three constant values, which are
heuristically set to 0.7, 0.2, and 0.5 respectively. Later, the
experimental results will show the effectiveness of this simple
function in article extraction.

4.2 Text-body Refinement by Horizontal Align-
ment

After identifying the range of the text-body by MSS we
leverage the horizontal alignment property to further remove
the junk in this range. The heuristic rule of horizontal align-
ment is based on the fact that the article paragraphs often
overlap largely in horizontal direction.

After rendering a Web page the Web browser can provide
the position information for each HTML tag node in the
DOM tree. This position information of a tag node is ex-
pressed as the rectangle, which bounds the area of the node
and its descendants. Since all the text leaf nodes in a text
segment share the same NLN (see the details of the gener-
ation of text segments in Section 3) we define the bounding
rectangle of any text segment as the rectangle on the shared
NLN of the text leaf nodes in this segment. As shown in Fig-
ure 1(left), the bounding rectangles of all the text segments
in the identified range of article body are also depicted. It
is clear that the bounding rectangles (with solid line) of the
text segments for the article paragraphs have the same left
and right coordinates. However, the bounding rectangles
(with dash line) of the text segments for the caption below
the image and the links to the related stories (which are the
junk within the text-body boundary) only cover a small part
of the horizontal range of the article paragraphs. Thus, we
use this property to further remove the unwanted content in
the bounding block of the article body.

5. EXPERIMENTAL EVALUATION
Some initial experiments have been conducted to test the

effectiveness of this method of Web article extraction. We
use the test data set of 95 news pages crawled from 10 on-
line news sites, such as CNN, ESPN, BBC, NYTimes and
TechCrunch. We manually label all the text segments in
the text-body on each of these pages, and compare the truth
with the prediction. The evaluation metrics include the pre-
cision and recall, which are calculated at the level of text
segments. If we take Sp as the set of text segments in the
extracted results, and Sl as the set of text segments in the
labeled results, then precision and recall are given by

P =
|Sp ∩ Sl|
|Sp|

, R =
|Sp ∩ Sl|
|Sl|

. (4)

The experimental results with a precision of 91.571% and a
recall of 99.145% show that this method is quite effective in
text-body extraction.

It is worth mentioning that the evaluation metrics, the
precision and recall at the level of words, used in the recent
paper [1] are totally different from the ones defined here.
Specifically, they calculate

P
′ =

|Wp ∩Wl|
|Wp|

, R
′ =

|Wp ∩Wl|
|Wl|

, (5)

where Wp and Wl are the set of words in the predicted and
labeled extraction, respectively. Since the words in the text-
body are likely to be much more than the ones outside the
text-body, these two values of P ′ and R′ tend to be high.
Thus, we argue that the evaluation based on P and R are
more strict than that based on P ′ and R′.

We have compared our method with the one in [1] on some
examples of Web articles. They provide an online demo2 for
2http://took.cs.uiuc.edu/MSS/

the supervised version of their method. We tested this demo
on some recent news articles from CNN and found that the
extracted results from our method are much better. For
example, on these pages their method also output the cap-
tion below the article image and the links to the related
stories as the result. However, our method outputs the ex-
act text-body. Additionally, their result also contains the
HMTL tags and does not identify the separations among
paragraphs, which make it hard to read. We must mention
that their method is faster than ours since they do not use
the visual information which is obtained only through the
time-consuming rendering of the Web page. The systematic
comparison between these two methods will be our future
work.

We have combined our method of article extraction and
the Tabblo Print Toolkit3 to generate a readable and print-
able PDF file for a given Web article. Specifically, we feed
the extracted results, including the text in each paragraph,
the title and image, to TPT. Then, TPT uses the article
template to re-layout the whole page. Figure 1(right) is the
actually the PDF file, generated by our method for the Web
page in Figure 1(left). Some testing on Chinese Web arti-
cles also shows that this method is independent of writing
languages.

6. CONCLUSIONS
In this paper we propose an effective approach of Web

article extraction, which addresses several new challenges
imposed by Web page printing. In preprocessing the Web
page we leverage the line-break features to generate text
segments, each of which may correspond to a paragraph in
the text-body. And then, based on the local features on
each segment and the global optimization of MSS over the
sequence of segments we identify the range of the text-body.
Finally we propose the heuristic rule of left and right align-
ment to remove the junk in the text-body. Our contributions
include the generation of text segments, the segment-level
local classifier with some novel features, and the left and
right alignment for text-body refinement. Our initial exper-
iments show very high success of this method even when
the segment-level local classifier is manually formulated to
a simple form. We believe that only deep semantic analysis
in text and image can further improve the performance of
article extraction.

7. ACKNOWLEDGMENTS
The authors would like to thank Demiao Lin for his work

on developing the labeling tool for Web news metadata.

8. REFERENCES
[1] J. Pasternack and D. Roth. Extracting article text from

the web with maximum subsequence segmentation. In
Proceedings of the 18th WWW, 2009.

[2] W. Ruzzo and M. Tompa. A linear time algorithm for
finding all maximal scoring subsequences. In
Proceedings of ISMB, 1999.

[3] J. Wang, X. He, C. Wang, J. Pei, J. Bu, C. Chen,
Z. Guan, and W. V. Zhang. Can we learn a
template-independent wrapper for news article
extraction from a single training site? In Proceedings of
the 15th SIGKDD, 2009.

3http://www.tabblo.com/

