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Joint source-channel with side information coding error
exponents

Cheng Chang

Abstract

In this paper, we study the upper and the lower bounds on the joint source-channel coding error
exponent with decoder side-information. The results in the paper are non-trivial extensions of tA€<Csisz
classical paper [5]. Unlike the joint source-channel coding result in [5], it is not obvious whether the
lower bound and the upper bound are equivalent even if the channel coding error exponent is known.
For a class of channels, including the symmetric channels, we apply a game-theoretic result to establish
the existence of a saddle point and hence prove that the lower and upper bounds are the same if the
channel coding error exponent is known. More interestingly, we show that encoder side-information does
not increase the error exponents in this case.

I. INTRODUCTION

In Shannon’s very first paper on information theory [11], it is established that separate coding is optimal
for memoryless source channel pairs. Reliable communication is possible if and only if the entropy of
the source is lower than the capacity of the channel. However, the story is different when error exponent
is considered. It is shown that joint source-channel coding achieves strictly better error exponent than
separatecoding [5]. The key technical component of [5] is a channel coding scheme to protect different
message sets with different channel coding error exponents. In this paper, we are concerned with the
joint source-channel coding with side information problem as shown in Figure 1. For a special setup of
Figure 1, where the discrete memoryless channel (DMC) is a noiseless channel with éaRaciy the
source coding with side-information problem, the reliable reconstructiart aft the decoder is possible
if and only if R is larger than the conditional entrogy (P, z) [13]. The error exponents of this problem
is also studied in [8], [6] and more importantly in [1].
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Fig. 1. Source coding with decoder side-information

The duality between source coding with decoder side-information and channel coding is established in
the 80’s [1]. This is an important result that all the channel coding error exponent bounds can be easily
applied to source coding with side-information error exponent. The result is a consequence of the type
covering lemma [6], also known as the Johnson-Steindsavtheorem [4]. With this duality result, we
know that the error exponent of channel coding of chanfig|y with channel code compositioR x is
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In [5], Csisar hand-wavily shows that the obvious separate coding scheme is suboptimal in terms achieving the best error
exponent. The rather obvious result is rigidly proved in [14].

%In this paper, we use bits aldg,, and R is always non-negative.



essentially the same problem as the error exponent of source coding with decoder side-information where
the joint distribution isQ) x x Wy x. Hence a natural question is what if we put these two dual problems
together, what is the error exponent of joint source-channel coding with decoder side-information?

The more general case, whelgy | x is a noisy channel, is recently studied [15], [14]. It is shown
that, not surprisingly, the reliable reconstruction &f is possible if and only if the channel capacity
of the channel is larger than the conditional entropy of the source. A suboptimal error exponent based
on a mixture scheme of separate coding and the joint source channel coding first developed in [5] is
achieved. In this paper, we follow Cs#&z idea in [5] and develop a new coding scheme for joint source
channel coding with decoder side-information. For a class of channels, including the symmetric channels,
the resulted lower and upper bounds have the same property as the joint source-channel coding error
exponentwithout side-information in [5]: they match if the channel coding error exponent is known at a
critical rate. We use a game theoretic approach to interpret this result.

The outline of the paper is as follows. We review the problem setup and classical error exponent
results in Section Il. Then in Section lll, we present the error exponent result for joint source-channel
coding with both decoder and encoder side information which provides a simple upper bound to the error
exponent investigated in the paper. This is a simple corollary of Theorem 5 in [5]. The main result of
this paper is presented in Section IV. Some implications of these bounds are given in Section V.

Il. REVIEW OF SOURCE AND CHANNEL DOING ERROR EXPONENTS

In this paper random variables are denotedabgnd b, the realizations of the random variables are
denoted bya andb.

A. System model of joint source-channel coding with decoder side-information

As shown in Figure 1, the source and side-informatifrand 6™ respectively, are random variables i.i.d
from distributionP4 g on a finite alphabetl x 5. The channel is memoryless with input/output probability
transition Wy x, where the input/output alphabets and Y are finite. Without loss of generality, we
assume that the number of source symbols and the number of channel uses are equal, i.e. the encoder
observes:” and sends a codeword'(a™) of lengthn to the channel, the decoder observes the channel
outputy™ and side-informatiod™ which is not available to the encoder, the estimate”i@", y™).

The error probability is the expectation of the decoding error average over all channel and source
behaviors.

Pr(a" #3"(b",y")) = Y Pap(a",b") Y Wy x(y"[z"(a"))1(a" #a"(b",y")). 1)
an,bn y"

The error exponent, for the optimal coding scheme, is defined as
1
E(Pap, Wy|x) = lim _inf - logPr(a™ #3"(b", y™)). 2

The main result of this paper is to establish both upper and lower bound¥ Bas, Wy x) and show
the tightness of these bounds.
B. Classical error exponent results

3 We review some classical results on channel coding error exponents and source coding with side-
information error exponents. These bounds are investigated in [9], [6], [8] and [7].

%In this paper, we write the error exponents (both channel coding and source coding) in the style af<sisthod of
types, equivalent Gallager style error exponents can be derived through the Fenchel duality.



1) Channel coding error exponents.(R, Wy, x): Channel coding is a special case of joint source-
channel coding with side-information: the sourgeand the side-informatiorb are independent, i.e.
P4sg = P4 x Pg, and a is a uniform distributed random variable qﬂ,Q,...,QR}. For the sake of
simplicity, we assume that” is an integer. This is not a problem 2f* is not an integer since we can
lump K symbols together and approxim&€% by an integer for somé, this is not a problem because
Jim +log, (| 2KF|) = R. With this interpretation of channel coding, the definitions of error probability
in (1) and error exponent in (2) still holds.

The channel coding error exponeht.(R, Wy x) is lower bounded by the random coding error
exponent and upper bounded by the sphere packing error exponent.

E.(R,Wy|x) < Ec(R,Wy|x) < Esp(R, Wy|x) (3)
WhereEr(R, WY\X) = I%&X‘;Df D(VY|XHWY|X|SX) + ’I(Vyp(,SX) *R’J’_ (4)
x Vyix

= max E,(R, Sx, Wyx)
and F, (R, W = inf D(V; Wy x|S 5
p(R, Wy |x) Il 5 <R My x[[Wyx[Sx) (5)

= HéaXEsp(RysX7WY\X)

Here Sy is the input composition (type) of the code words (R, Wy |x) = Esp(R, Wy x) in the high
rate regime thalk > R.. whereR,, is defined in [9] as the minimum rate for which the sphere packing
Esp(R, Wy|x) and random coding error exponents (R, Wy x) match for channelyx. There are
tighter bounds on the channel coding error exponéntdi, Wy x) in the low rate regime folR < R,
known as straight-line lower bounds and expurgation upper bounds [9]. However, in this paper, we focus
on the basic random coding and sphere packing bounds, as the main message can be effectively carried
out.

It is well known [9] that both the random coding and the sphere-packing bounds are decreasing with
R and are convex iz. And they are both positive if and only & < C(Wyx), whereC(Wyx) is
the capacity of the channély- x.

2) Source coding with decoder side-information error exponefitsis is also a special case of the
general setup in Figure 1. This time the chanigl x is a noiseless channel with input-output alphabet
X =Y and|X| = 2%. Again, we can reasonably assume t?8tis an integer.

The source coding with side-information error expofierit?, P4p) can be bounded as follows:

er(R, Pap) < e(R,Pap) < ey(R, Pap) (6)

where eL(R,PAB) :Ci2nf D(QABHPAB)+’R_H(QA|B)|+

eU(R,PAB) = inf D(QABHPAB)-
Qap:H(Qas)>R

The duality between channel coding and source coding with decoder side information had been well
understood [1]. We give the following duality results on error exponents. .

Q(R, QA)PB|A) = EC(H(QA) _R7 QA)PB|A)
or equivalently :e(H(Qa) — R,Qa, Ppja) = E.(R,Qa,Ppa)

“In this paper, ifR > log, |.A| for source coding with side-information error exponents, we let the error exponest. be



whereE.(R, Q, Pp|4) is the channel coding error exponent for chanfg|, at rateR and the codebook
composition isQ 4. e(R, Qa, Pp|4) is the source coding with side information error exponent at fate
with source sequences uniformly distributed in typg and the side information is the output of channel
Pp4 With input sequence of typ 4. So obviously, we have:

E(R, Ppja) = %aAX{Ec(R, Qa, Ppja)}
e(R,Pap) = Igin{D(QAHPA) +e(R,Qa, Ppa)}

These results are established by the type covering lemma [5] on the operational level, i.e. a complete
characterizations of the source coding with side information error expaéhtQ 4, Pg4) implies a
complete characterizations of the channel coding error expoligiff (Q4) — R,Qa, Ppj4) and vice
versa.

From these duality results, it is well known that both the lower and the upper bounds are increasing
with R and are convex ir. And they are both positive if and only ® > H(P4 ). The special case
of the source coding with decoder side information problem is that the side information is independent
of the source, i.ePap = P4 x Pg. In this case, the error exponent is completely characterized [6],

R.Py)= inf D P 7
e(R, Pa) ot ok (QallPa) (7)

3) Joint source-channel coding error exponents [B): his seminal paper [5], the joint source-channel
coding error exponents is studied. This is yet another special case of the general setup in Figure 1. When
a and b are independent, i.ePsp = P4 x Pg, we can drop all thé terms in (1). Hence the error
probability is defined as:

Pr(a" £ 3" (™) = 3 Pala™) 3 Wy x (e (@)1(a” #a"(y")). (8)

Write the error exponent of (8) aB(Pa, Wy x). The lower and upper bounds of the error exponents
are derived in [5]. It is shown that:

m}%n{e(R, PA) + ESP(Rv WY\X)} < E(P/b WY|X) < m}%n{e(R, PA) + ET(Rv WY\X)} 9)

The upper bound is derived by using standard method of types argument. The lower bound is a direct
consequence of the channel coding Theorem 5 in [5].

The difference between the lower and upper bounds is in the channel coding error exponent. The joint
source channel coding error exponent is “almost” completely characterized because the only possible
improvement is to determine the channel coding error exponent which is still not completely characterized
in the low rate regime wheré&? < R... However, letR* be the rate that minimizege(R, P4) +
E.(R,Wy|x)}, if R* > R, or equivalentlyE,(R*, Wy |x) = Esp(R*, Wy x), then we have a complete
characterization of the joint source channel coding error exponent:

E(PA7 WY|X) = e(R*v PA) + ET(R*v WY|X) (10)

The goal of this paper is to derive a similar result 6Pz, Wy |x) defined in (2) as that for the joint
source channel coding in (9) and (10).



4) A recite of Theorem 5 in [5]:Given a sequence of positive integdns.,,} with %log my, — 0
andm,, message setd, ....A,, each with sizd.A4;| = 2"%. Then there exists a channel cadg, ¢o),
where the encodef, : "y A; — X™ where fy(a) = 2"(a) € S for a € A; and the decoder
¢o : V" — Ui Ai, write ¢o(y™) asa(y™) s.t. for any message € A;, the decoding error

pe(a) = 3 Wyix(y"la"(a))L(a # a(y")) < 2" Sl =e)
-

for every channely | x, ande, — 0. In particular, if the channeéll’y, x is known to the encoder, each
S% can be picked to maximiz&,(R;, S%, Wy |x), hence for eaclh € A;:

pe(a) < Qn(ET(Ri»an)fen) )

This channel coding theorem as Céisput it, the “main result of this paper” in [5]. We use this theorem

directly in the proof of the lower bound in Proposition 1 and further modify it to show the lower bound
in Theorem 1.

[11. JOINT SOURCECHANNEL CODING ERROR EXPONENT WITH BOTH DECODER AND ENCODER
SIDE-INFORMATION

As a warmup to the more interesting scenario where the side-information is not known to the encoder,
we present the upper/lower bounds when both the encoder and the decoder know the side-information.
This setup is shown in Figure 2.
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Fig. 2. Source coding with both decodand encoderside-information

The error probability of the coding system is, similar to (1):

Pr(a" #3"(b"y") = Y Pap(a™,b") Y Wyx (42" (@, b")1(a" #a"(b",y").  (11)
an,bn yn
The error exponent of this setup is denoted By, (Pap, Wy x) Which is defined in the same way as
E(Pap, Wy|x) in (2). The difference is that the encoder observes both satireed the side-information
b™, hence the output of the encoder is a function of bathia™,b"). So obviously,Epu,(Pas, Wy |x)
is not smaller than(Pap, Wy x).

Comparing (11) and (8), we can see the connections between joint source-channel coding with both
decoder and encoder side information and joint source-channel coding. Knowing the side infobfhation
the joint source channel coding with both encoder and decoder side information problem is essentially
a channel coding problem with messages distributedd6rwith a distribution P z(a"[b"). Hence we
can extend the results for joint source-channel coding error exponent [5]. We summarize the bounds on
Epotn(Pas, Wy |x) in the following proposition.



Proposition 1: Lower and upper bound 0B, (Pas, Wy|x)
Eotn(Pap, Wy |x) < mén{eU(R7 Pap) + Esp(R, Wy |x)}
Evotn(Pap, Wy|z) 2 minfev (R, Pap) + Er(R, Wy |x)} (12)
Not explicitly stated, but it should be clear that the rangeRak (0, log, |.A|).

Proof: see Appendix A. Becaus@y.i; (P, Wy|x) is no smaller tha( Pag, Wy |x ), S0 the lower
bound of E(Pap, Wy|x) in Theorem 1 is also a lower bound {1, (Pap, Wy|x). However, in the
appendix, we give a simple proof of the lower bound BR,,(Pas, Wy x) Which is a corollary of
Theorem 5 in [5]. O

Comparing the lower and the upper bounds for the case with both encoder and decoder side-information,
we can easily see thatiR* minimizes{ey (R, Pap)+E; (R, Wy |x)} andEg,(R*, Wy x) = E.(R*, Wy|x),
then the upper bound and the lower bound match. Hence,

Epoth(Pap, Wy |x) = eu (R, Pap) + E-(R", Wy |x). (13)
In this caseEyon (Pas, Wy|x) is completely characterized.

IV. JOINT SOURCECHANNEL ERROR EXPONENTS WITH ONLY DECODER SIDE INFORMATION

We study the more interesting problem where only decoder knows the side-information in this section.
We first give a lower and an upper bound on the error exponent of joint source-channel coding with
decoder only side-information. The result is summarized in the following Theorem.

Theorem 1:Lower and upper bound on the joint source channel coding with decoder side-information
only, as setup in Figure 1, error exponent: For the error probalitya™ # 3" (b", y™)) and error
exponentE(Pap, Wy |x) defined in (1) and (2), we have the following lower and upper bounds:

E(Pap, Wy |x) > (14)
%iAn Sm(%x) ngli\rfly‘x{D(QABHPAB) + D(Vy x [ Wy x]Sx(Qa)) + [1(Sx(Qa); Vyx) — H(Qap)| "}
E(Pap, Wy |x) < (15)

min max min D P + D(VA4 W- S
o SX(QA)QBM,VY‘X:I(SX(QA);VY‘X)<H(QA|B){ (QasllPaB) + D(Vy x[[Wy x|Sx(Qa))}

Proof: The main technical tool used here is the method of types. For the lower bound we propose a
joint coding scheme for the joint source channel coding with side information problem. This scheme is
a modification of the coding scheme first proposed in [5]. However, we cannot directly use the channel
coding Theorem 5 in [5] because of the presence of the side information. In essence, we have to study
a more complicated case using the method of types. Details see Appendix B. O

To simplify the expressions of the lower and upper bounds and later give a sufficient condition for
these two bounds to match, we introduce the “digital interfagesind have the following corollary.

Corollary 1: upper and lower bounds oi(P4g, Wy x) with “digital interface” R

E(Pap, Wy|x) < Igin S m}%n{eU(Ra Pup,Qa) + Esp(R, Sx(Qa), Wy x)} (16)
E(Pap,Wy|z) > %in SHI(%X)H}%H{@U(R, Pap,Qa) + Er(R, Sx(Qa), Wy |x)} 17)

whereE,.(R, Sx(Qa), Wy x) is the standard random coding error exponent for chalnel at rateRR

with input distributionSx (Q 1) defined in (4), whileei; (R, Pap, @ 4) is a peculiar source coding with
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side-information error exponent for sourBa g at rateR, where the empirical source distribution is fixed
at Q4. That is forQ 4

ev(R, Pap,Qa) = o ‘Aél(lgll )>RD(QAB||PAB) (18)

Proof: The proof is in Appendix C. 0

With the simplified expression of the lower and upper bounds in Corollary 1, we can give a game
theoretic interpretation of the bounds. And more importantly, we present some sufficient conditions for
the two bounds to match.

A. A game theoretic interpretation of the bounds

The lower and upper bounds established in Corollary 1 clearly have a game theoretic interpretation. This
is a two player zero sum game. The first player is “nature”, the second player is the coding system, the
payoff from “nature” to the coding system is the bounds on the error exponents in Corollary 1. “Nature”
chooses the marginal of the sour€e, (observable to the coding system) aRdwhich is essentially
the side informatiorn)z 4 and the channel behavidfy | x (non-observable to the coding system). The
coding system choosEx(Q4) after observingl 4. Hence in this game, the "nature” has two moves,
the first move onQ 4 and the last move o® which is essentiallyQz 4 and Vy|x, while the coding
system has the middle move 6 (Q4).

Comparing Corollary 1 for joint source-channel coding with decoder side information and the classical
joint source-channel coding error exponent [5] in (9), it is desirable to have a sufficient condition that the
lower bound and the upper bound match, i.e. the complete characterization as that in (10). It is simpler
for the case in (9) since all is needed is that the sphere backing bound and the random coding bound to
match at the critical rat&®* as discussed in Section II-B.3. However, for the two bounds in Corollary 1,
it is not clear what the conditions are such that these two bounds match. Suppose that the solution of
the game (16) iSQ%, S%(Qa4), R*) and solution of the game (17) (¥, S%(Q4), k). An obvious
sufficient condition for the two bounds match is as follows:

(Q4, 5% (Qa), R = (Q4%, S%(Qa), R") and E,(R", S%(Qa), Wy|x) = Eg(R", S%(Q4), Wy |x) (19)

This condition is hard to verify foany source channel pairs. In the next section, we try to simplify the
condition under which these two bounds match for a class of channels.

B. A sufficient condition to reduagin{max{min{-}}} to min{-}

The difficulty in studying the bounds in Corollary 1 is that thén and max operators are nested.
The problem will be simplified if we can change the order of i@ and max operators.

Corollary 2: For symmetric channel$Vy,y defined on Page 94 in [9], this includes the binary
symmetric and binary erasure channels, where the input distribGtioto maximize the random coding
error exponentt,. (R, Sx, Wy x) is uniform on X, or for more general channéJswhere the input
distribution S to maximize the random coding error exponén{ R, Sx, Wy x) is the same for alR,
then the upper and lower bounds in Theorem 1 and Corollary 1 can be further simplified to the following
forms:

E(Pap, Wy|x) < min{ev (R, Pap) + Egp(R, Wy |x)} (20)
E(Pap, Wy|z) 2 min{ey(R, Pap) + Er(R. Wy|x)} (21)

SFor example, a channel consisted of parallel symmetric channels.



Note: in this case, the upper and lower boundsigi°s 5, Wy | x ) is the same as those @1 (Pas, Wy |x)
in Proposition 1. More discussions see Section V.

Proof: An important property for symmetric channels is that the input distribution that maximizes
the random coding error exponent is constant for all f@fehence the innemax min{-} is equal to
min max{-}, i.e.

E(Pap,Wy|x) > Iginsm(%x)m}%n{eU(RaPAB)QA)+Er(R7SX(QA)aWY|X)}

= minmi R, Pag, +E.(R,S , WA
%anénsin(%i){ez]( 4B, Q4) (R, Sx(Qa), Wy|x)}

= minmin{ev (R, Pap, Qa) + B (R, Wyx)} (22)
= m}%n{rgiAn{eU(R, Pap,Qa)} + Er(R, Wy |x)}
= minfey(R, Pap) + Er(R, Wy x)} (23)

where (22) follows the definition of random coding bound in (3) and (23) follows the obvious equality:

min ey (R, Pap, = min D P =ey(R, PaB).
B u(R, Pag,Qa) O (Qas||Pap) = ev (R, PaB)

The upper bound in 20 is trivial by noticing thatax min{-} < minmax{-} [2], hence:

E(Pap,Wy|x) < %insm(%x)m}%n{eU(RypABvQA)+Esp(RaSX(QA)7WY|X)}

< IglAH mb%n Sf(n(%}i){eU(R’ Pap,Qa) + Egp(R, Sx(Qa), Wy x)}

= rglAn min{ey (R, Pap, Q4) + Esp(R, Wy x)}

= m}%n{rgan{eU(R, Pap,Qa)} + Esp(R, Wy x)}

— m}%n{eU(R, Pap) + Esp(R, Wy x)} (24)
Corollary 2 is proved. O

With this corollary proved, we can give a sufficient condition under which the lower bound and upper
bound match similar to that for the joint source-channel coding case in Section 1I-B.3. More discussions
see Section V.

C. Why it is hard to generalize Corollary 2 to non-symmetric channels?
Whethersm(an)mI%n{eU(R, Pap,Qa)+E (R, Sx(Qa), Wy |x)} is equal tcml%n Sm(zx){eU(R, Pap,Qa)+
E.(R,Sx(Qa), Wy|x)} is not obvious for general (non-symmetric) channels. A sufficient condition of

the existence of a unique saddle point hence the equality is known as the Sion’s Theorem [12] which
states that:

. o -
Bfé%ggﬁf(uw) ggﬁgé%cf(uw) (25)

if M and are convex, compact spaces gha quasi-concave-convex (definitions see [2]) and continuous
function on M x N. For the function of interest,:

S min{ey (R, Pap, Q4) + Er(R, Sx(Qa), Wy|x)}- (26)



We examine the sufficient condition under which a unique equilibrium exists, according to the Sion’s The-
orem. Firstey (R, Pap, Qa)+Esp(R, Sx(Qa), Wy |x) is quasi-convex in? because bothy (R, Pap, Q)

and B, (R, Sx(Qa), Wy|x) are convex, hence quasi-convexfih However, (26) is not quasi concave

on Sx(Qa):

E, (R, Sx(Qa), Wy|x) = ‘}31; D(Vyix [Wy(x]Sx(Qa)) + [T(Vy|x; Sx(Qa)) — RIT,

notice that the first term is linear iIfx(Q4), the second term is quasi-concave but not concave. But
the sum of a linear function and a quasi-concave function might not be quasi-concave. This shows that
the min max theorem cannot be established by using the Sion’s Theorem. This does not mean that the
minmax theorem cannot be proved. However for a non quasi-concave function that may have multiple
peaks,min max{-} is not necessarily equal t@ax min{-}.

V. “ALMOST” COMPLETE CHARACTERIZATION OFE(Pap, Wy|x) FOR SYMMETRIC CHANNELS

The sufficient condition in Corollary 2 is important, since binary symmetric and binary erasure channels
are among the most well studied discrete memoryless channels. We further discuss the implications of
the “almost” complete characterization 81 Pap, Wy x) for symmetric channels.

First we give an example shown in Figure 3 and Figure 4. The sauisea Bernoulli0.5 random
variable and the joint distribution has the distribution

0.50 0.00
Pap _{ 0.05 0.45 } (27)

The channellWy x is a binary symmetric channel with cross rdt®25. The channel coding error
exponent bound®, (R, Wy x) and Es, (R, Wy x) and the source coding with decoder side-information
upper boundey (R, P4p) are plotted in Figure 3. The channel coding bound match wRile: R.,,
where R, is defined in [9].

Note: the lower bound of the source coding with side information error expongiR, P4g) is not
plotted in the figure.

In Figure 4, we add both the lower and upper bounds on the joint source channel coding with decoder
side information to the plot in Figure 3. For this source channel Bajs andWy|x, we have a complete
characterization ofy.;,(Pan, Wy x) because the channel is symmetric and the two bounds match at
the minimal point, i.e. the two curvesy (R, Pag) + Eqp(R, Wy x) and ev(R, Pag) + E-(R, Wy|X)
match at the minimal point as shown in Figure 4. The value of the minimufy ishown in Figure 4.

A. Encoder side information often does not help

Similar to Proposition 1, we can see the conditions under which we can give a complete characterization
of the joint source channel coding with decoder only side information error expdn@iis, Wy x).
If R* minimizes{ey (R, Pap) + E-(R, Wy x)} and Eq,(R*, Wy |x) = E.(R*, Wy |x), then the upper
bound and the lower bound match. Hence:

E(PAB,Wy|X) :€U(R*,PAB)—|—E7.(R*,Wy|X). (28)

Comparing Corollary 2 and Proposition 1, we bound the error exponent with or without decoding
side-information by the same lower and upper bounds. This does not meatRai, Wy ;) =
Epotn(Pap, Wy|z) always holds. But if the lower bound and upper bound match, which is shown in
Figure 4, then we have:

E(Pap,Wy|z) = Evotn(Pap, Wy|z) = ev(R", Pap) + Er(R", Wy |x). (29)
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Fig. 3. The upper bound on source coding with side- Fig. 4. ey (R, Pap)+Eq (R, Wy |x) andey (R, Pas)+
information error exponenty (R, Pag) is the dotted E.(R,Wy x) are added to Figure 3 in dashed line and
line. The random coding bound,. (R, Wy | x ) and sphere  solid line respectively, they match at the minimal point
packing boundE;,(R, Wy x) for channel coding error  hence the joint source-channel coding with decoder side-
exponents are the solid line and the dashed line respec-information error exponent is completely determined as
tively. E(Pas,Wy|x) = E; And E, is the separate coding
error exponenttscparate (Pan, Wy |x) defined in (33).

where R* minimizesey (R, Pap) + E-(R, Wy x) and R* > R.,. This is another example for block
coding where knowing side-information does not help increase the error exponent. In the contrary, as
discussed in [3], in the delay constrained setup, there is a penalty for not knowing the side-information
even if the channel is noiseless.

B. Separate coding is strictly sub-optimal

An obvious coding scheme for the problem in Figure 1 is to implement a separate coding scheme.
A source encoder first encodes the source sequehdeto a rateR, where R is determined later, bit
streamc™f*(a™) then an independent channel encoder encodes the™itsto channel inputs:™. The
channel decoder first decodes the channel outpirnto bits¢™? and then the independent source decoder
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reconstructsi” from ¢*f* and side informatiord™. This is a separate coding scheme with outer source
with side information coding and inner channel coding, both at Raté both coding are random coding

that achieves the random coding error exponents for both source coding and channel coding respectively.
The union bound of the error probability is as follows:

Pr(a" #3"(b",y") = Pr(c" £ (y") + Pr(a" #a(c™(y"), b"), " = " (y™)) (30)
< Pr(c™ £ (y™) + Pr(a® #3((y"), b = MH(y™)) (31)
< n(E (RWy x)—€l) 4o n(er(R,Pap)—€2) (32)

wheree! ande? converges to zero as goes to infinity. (30) follows the union bound argument that a
decodlng error occurs if either the inner channel coding fails or the outer source coding fails. (31) is true
because conditional probability is large or equal to joint probability. Finally (32) is true because both
the outer source coding and inner channel coding achieve the random coding error exponents. From (32)
and that we can optimize the digital interface raebetween the channel coder and source coder, we
know that the separate coding error exponent is

m]%x{min{ET(R, Wy x),er(R, Pag}} = Escparate(Pan, Wy|x) (33)

This separate coding scheme is also discussed for joint source channel coding in [5]. A similar bound
is drawn. We next show why the separate coding error expoBfent, ...(Pas, Wy|x) is in general
strictly smaller than the lower bound &(P4p, Wy x) in (21).

First, obviously,Eseparate(Pap, Wy |x) < m]%x{min{ET(R, Wy x),ev(R, Pap)}}. Secondiy B, (R, Wy x)

is monotonically decreasingy (R, Pap) is monotonically increasing, and both are continuous and convex
as shown in Figure 4. This means that for ré&tesuch thatt, (R, Wy |x) = ev (R, Pap):

Eseparate(Pa, Wy |x) = E(R, Wy x) = ey(R, Pap)
Now let R* be the rate to minimizgey (R, Pap) + E-(R, Wy |x)}, i.e.
E(Pap,Wy|x) > eu(R", Pap) + E-(R*, Wy |x).
There are three scenarios. Firstiif = R, then
E(Pap, Wy x) > ev(R*, Pap) + E-(R*, Wy|x) = 2E.(R, Wy|x) = 2Eseparate(Pas, Wy|x)-
Secondly, ifR* < R,
E(Pap, Wy |x) > E.(R*, Wy|x) > E,(R, Wy |x) = Eseparate(Pap, Wy |x)-
Finally if R* > R,
E(Pa,Wy|x) > eu(R*, Pap) > ey(R, Pap) = Eseparate(Pan, Wy |x)-
So in all cases, the joint source channel coding error expoheRl 5, Wy x) is strictly larger than

the separate coding error exponeit . qtc(Pang, WY‘X). This is clearly illustrated in Figure 4.

Note: Escparate (PaB, Wy|X) is an achievable separate coding error exponent from the obvious separate
coding scheme. What we prove is that this obvious one is strictly smaller than the joint source-channel
coding error exponent. This is similar to the claim Céismakes in [5]. It should be clear that the upper
bound of any separate source channel coding error exponeniis;{min{ E,(R, Wy x ), ev (R, Pap}}
which is comparable to (33). The proof hinges on the complete transparency between the source coding
and channel coding, otherwise we have a joint coding schemes. A detailed discussion is in [14].
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VI. CONCLUSIONS

We study the joint source channel coding with decoder side-information problem, with or without
encoder side-information. This is an extension of Gaiszjoint source channel coding error exponent
problem in [5]. To derive the lower bound, we use a novel joint source channel with decoder side-
information decoding scheme. We further investigate the conditions under which the lower bounds and
upper bounds match. A game theoretic approach is applied to show the equivalence of the lower and
upper bound. This approach might be useful in simplifying other error exponents with a cascade of
min-max operators , for example, the Wyner-Ziv coding error exponent recently studied in [10].

APPENDIX
A. Proof of upper and lower bounds dty,:(Pas, Wy |x)

We prove Proposition 1 in this section. The upper bound and lower bounds are simple corollaries of
the method of types and Theorem 5 in [5] respectively.

1) Upper bound:Consider a distributio® 4 5, the joint source channel encoder observes the realization
of the sourcda’™, b™) with type @ 45, for the case where the decoder knows the side-informatiomhere
aré® 2n(H(Qais)=<.) many equally likely sequences.A" conditional onb™. These are the sequences with
the same joint probability with™ as the sequenc&®. Even knowing the joint typ&) 45 (given by a
genie) and the side-informatidi¥, the decoder needs to guess the correct one from the channel output
y". This is a channel coding problem with rat&Q 4 5) — €.

Now consider the channel input (a™, b™) whereb™ is the side-information, notice that there are at most
(n+1)1*l many different input types, there is a tyS& (Q 45), such that more thafn +1)~ 1l = 2-n<.
fraction of the channel inputs given side-informatihand the joint type ofa”,b") being@ 45 have
type Sx(Qap). For a channely x, such that the channel capacity of the channel given the input
distribution S is smaller thanH (Q 4 ), i-€.

I(Sx(Qap); Vyx) < H(QaB),

then if the channell’y| x behaves liké/y | x with the code book with typ&x (Q45), with high probably,
the decoder cannot correctly decide from one of $H&(@Q415) sequences. This is guaranteed by the
Blowing up Lemma [6] or see a detailed proof in [7].

The probability that both the source behaves likg s and the channel behaves likg|x is

9—U(D(Qan||Pap)+D(Vy x|[Wyx[Sx (Qan))—€,) (34)
Notice that the source behaviQrs s and the channel behavidk| x are arbitrary, as long ag(Q 4 5) >

®Here €}, goes to zero as goes to infinity,i = 1,2, 3.

12



I(Sx(Qag); Vy|x), we can upper bound the error exponent as follows:

Botn(Pas, Wy|z)

S vt (@Y 5 @amivy o D QA IPAB) + DV [Wy x] 9 (Qan))} (35)
= m}%n{QAByY‘Z:H(QMB)@%;I(SX(QAB);VW) D(Qagl|PaB) + D(Vy|x[[Wyx|Sx(Qar))} (36)
= ml%n{QAB:HI?CiQIj‘B)>R{D(QAB”PAB) + Vy‘Z:R>I(f€€l(i(ICIQAB);Vy\x) D(Vy x|[Wy x|Sx(Qar))}37)
< min{, min  {D(QaslPan) + Bu(R Wyix)}) (38)
= min{ey (R, Pap) + Bop(R, Wy x)} (39)

(35) is a direct consequence of (34). In (36), we introduce the “digital interféethe equivalence
in (36) and (37) should be obvious. (38) and (39) are by definitions of the channel coding and source
coding error exponents. O

2) Lower bound:Given a side-information sequené® which is known to both the encoder and the
decoder. We partition the source sequenced&ebased on their joint type with”. The number of joint
typesm,, < (n+ 1)MI1Bl and denote by, 5, i = 1,2,...m,, the joint types. It should be clear that the

i, 5’S here all have the same marginal distributionbas

Let A;(b") = {a" : (a",b") € Q'4p}, i=1,2,..m,.

Obviously,.A;’s form a partition of.4™. And each set has sizél;(b")| < 21 (@415) Now we can apply
Theorem 5 of [5] as recited earlier: there exists a channel ¢pgdey, such that for each™ € A;(b"),

i.e. (a",b") € Q4 p:

p&bn(an) _ Z Wy|X(yn|mn(an’ bn))l(an # an(bn7yn)) < an(Er(H(Q’g‘B),Wy\x)fen). (40)

o
The joint source channel coding error probability is hence:
Pr(a® #3"(b"%y") = Y Pap(a™,b") Y Wyx(y"lz"(a")1(a" #a"(b",y"))
an bn yr
= > > Pap(@ b)) Wyx(y'a" (@ b)) (" £ a" (", "))

QaB (a",b")EQAB y"
Z Z Pap(a®, b”)g—n(Er(H(QA\B%WY\X)—En) (41)
Qas (a™b")EQan
Z 9—nD(Qas|Par)g—n(E-(H(Qa )Wy x)—€n)

QAB
(n 4+ DBl max {2 nP(@QazlPas)g=n(E(H(Qa z), Wy x)=€n)}
Qas

IN

IN

IN

*”((ggg{D(QAB |1Pag)+E-(H(Qar)Wy|x)}—e€,)

< 2 (42)

(41) follows by substituting in (40) and the rest inequalities are by method of types.0, so we can
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lower bound the error exponent as
Evotn(Pap, Wyjz) 2 min{D(Qap||Pa) + E-(H(Qap) Wy x)} (43)
= min min D P L E.(H W 44
in{, min | AD(Quas|Pag) + Er(H(Qup) Wy} (44)
= min min D P + E (R, W 45
R {QAB:H(QA\B):R{ (QABH AB)} ( Y\X)} ( )

= i D P E.(R, W 46
Rzlrﬁﬁw){QABHr?&‘B {D(QaBl|PaB) + Ex( vix)}} (46)

= i D P E.(R,W- 47
Rzlrﬁ%m){QAB:HI?&m)zR{ (QaBlIPaB) + Er(R, Wy x)}} (47)

- RZFI}I(%|B){€U(R7 Pup) + E-(R, WY|X)} (48)
= ml:iin{eU(R, Pap) + E-(R, WY\X)} (49)

(43) is a direct consequence of (42), in (44) we again introduce the “digital interface” vaRap®) and
(48) are by definitions of’,.(R, Wy |x) andey (R, Pap) respectively. (46) is true becausg (R, Wy x)
is monotonically increasing wittk and for R < H(Pp|4),
min D P >0= min D Pup).

Qap:H(QaB)=R (QABH AB) B Qap:H(Qas)=H(PaB) (QABH AB)
(47) is true becaus®(Qag||Pagr) is convex inQap and the global minimum i€)% ; = Pap, but
H(Q*A‘B) = H(P4 ) > R which means the minimum point is on the boundary. Lastly (49) is because
for R < H(Pyp), ev(R, Pap) is constant ab, while E,.(R, Wy,x) is monotonically increasing with
R. O

B. Lower and upper bounds ai(Pag, Wy x)

We give the proof of Theorem 1 here.
1) Lower bound:From the definition of the error exponent, we need to find a encodingeruld™ —
X™ and decoding rul& : B™ x Y™ — X™such chat the error probability :

Pr(a" # 3" (b", y") Z Pap(a",b") ZWY|X (y"|2"(a™)1(a" # @ (b",y")) (50)

is upper bounded bg™(Z—<) wheree,, — 0, whereE is the right hand side of (14).
We first describe the encoder and decoder, then prove that this coding system achieves the lower bound.
The encoder only observes the source sequeficd-or all those sequenceg' with type Q 4, the

channel input ist(a™) that has typeSx(Q4), i.e. the channel input type only depends on the type of

the source, wheré'x (Q4) is the distribution to maximize the following exponent:

ngli\rfly‘x{D(QABHPAB) + D(Vy x Wy x[Sx(Qa)) + [I1(Sx(Qa); Vyx) — H(Qap) T}

The decoder observes both the side-informatibrand the channel outpuf’, the decoder takes both
the conditional entropy and mutual information across the channel into account:
a"(b",y") = argmax I (z"(a"); y") — H(a"|b") (51)

We next need to show that there exists such a encoder/decoder pair that achieve the error exponent
in (14). We also use the method of random selection of codebooks. We dendateth®y set of the
codebooks such that the codewords dre @ 4 all have compositiorsx (Q.4). ObviouslyC is finite,
we let ¢ be the random variable uniformly distributed 6n We use codebook if { = ¢, i.e. we use
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the codebooks with equal probability. The most important property of this codebook distribution is the
point-wise independence of the codewords, foradlle Q4 anda™ € Q 4, for any two valid codewords
s" € Sx(Qa) ands™ € Sx(Qa) :

¢ B B ¢ ¢ _ N 1 1
Pr(z"(a") = s",2"(a") = §") = Pr(a"(a") = s") Pr(z"(a") = §") = Sx (O] 15x (@)

We calculate the average error probability on the whole codebook .sEtrite the average error
probability asp?, then first we have:

(52)

b = BBr(a" £ 3 (b",y") = = 3" Br(a £ 3", y"), (53)

¢
where E(Pr(a™ # a™(b™, y™)) is the expected error probability over all codebooks under the codebook
distribution ¢.
For a fixed codebook € C
Pr(a" £ 3"(b", y")
= Z Pap(a™,b™)Pr(a™ #a"(d",y"))
a™,b

- Y X (Pt zaeny)

Qas (a”,b")EQaB

=2 X (PAB(G”’b”)Zan(y”Iw”(a”))lc(a”#5”(17”,1/”)))

Qas (a”,b")EQaB

=2 2

Qap (a™,b")EQanB
(PAB(a"7 b)Y > Wy x (y"[a" (a"))1%(a™ # a" (b, y”))) (54)
Vyvix  yri(@n(an)ym)€Sx (Qa)x Vv x
For (a™,b™) € Qap, SO the source sequene# has marginal distributiorq) 4, from the codebook
generation we know that the codewatt(a™) € Sx(Q.4). For side-informatiord™ € B"™, we partition
A" according to the joint type with"™:
Qipd") ={a" € A" : (@a",b") € Q;5}-
We partition Sx (Q ;) according to the joint distribution witly". For a joint distributionUxy s.t.
Ux = Sx(QA) andy” e Uy:
Uxy(Qz,y") ={z" € Sx(Qz) : (2", y") € Uxv}.

For (a",b") € Qap and channel outpuy” € )", s.t. (z"(a"),y") € Vy|x, a decoding error is made
if there exists a source sequente# a",s.t.a" € Q ;5(0") where@ ;; may or may not b&) 45 and
the code wordc”(a") € Uxy (y", Q;), whereUx = Sx(Q ;) andy™ € Uy:

I(z™(a");y") — H(a"b") > I(z"(a™);y") — H(a™[b")
ie. Iy, (X3Y) = H(Qg ) 2 1(Sx(Qa): Vyx) — H(Qas) (55)
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Now we can expand the indicator function in (54) as follows, for a codelook
1°(a™ #a"(b",y"))
= 19(30" # o, st 1(2"(@), y") — HQayp) > 1(Sx(Qa) Vi) — H(Quy) )

< min{1, > 1¢(3a" # o™ anda" € Q ;5(b"),
Qip» Uxyiluyy (X,Y)=H(Q45)21(Sx(Qa);Vyix)—H(Qar)
s.t. z"(a") € Uxy(Q4,y")} (56)

Under the uniform codebook distributiap for a™ # o™, 2™(a"™) is uniformly distributed inSx (Q ;)
independent of:"(a"), so for all Q ;5 and Uxy with the proper marginals{ € Qp, Ux = Sx(Qj3)
andy™ € Uy) and satisfying (55):

E( (Fa"™ #a" anda” € Q ;5(0"),s.t. 2"(@") € Uxy(Q 1,¥")))
= Zlcﬂa #a" anda” € Q ;5(b"), s.t. 2™(@") € Uxy(Q5,y"))

cEC
¢
= Pr(3a" #a" anda™ € Q ;5(0"), s.t. 2™ (@") € Uxy(Q 5,y"))
¢
< Qi) Pr( 2™(@") € Uxy(Q4,y")|a" # o™ anda" € Q 55(0")) (57)
Uxy(Q 4, y")]
1000 @iy (58)
Qi g @
Q) 2" XY
ne, oN AilB
< Qnen9 S (T) (59)
— 2_n(Iny (XﬂY)_H(QA\B)_En)
< 9~ n(I(Sx(Qa);Vyix)—H(Qaip)—€n) (60)

wheree, — 0. (57) is by a union bound argument. (58) is true because the codewigid) is
uniformly distributed inSx (@ ;). (59) is by the method of types. (60) is true because the condition
in (55) is satisfied.

Combining (56) and (60) and noticing that the numbers of type&ef and(Q ;, are polynomials
of n, hence sub-exponential, we have:

E(1(a” #a" (0", y"))) < 1 Zl b, y"))
ceC
mln{l 2 n(I(Sx(Qa)iVyx)— (QA\B)fei)}

9= (Sx(Qa);Vyix)—H(Qajn)—€, [ (61)

Finally, we substitute (61) and (54) into (53). Notice that the number of typek,of and Qs
are polynomials inn and the usual method of types argument ( upper bounding the probability of
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Pap(a™, b") € Qap) etc.), we have:

1 c
pe = @ZPr(an#?(bn,y”))
ceC
< Z 9~ (D(Qasl|Pap)+D(Vy x[[Wy|x|Sx (Qa))+(Sx(Qa)iVy x)—H(Qap)—€, [T —€7)

QaB,Vy|x
< Z 9~ (D(Qanl|Pap)+D(Vy x [Wyx[Sx (Qa))+[I(Sx (Qa)iVy | x)—H(Qap)|[* —€; —€7)

QaB,Vy|x
< g n(ming,p.vy x {D(Qas[[Pas)+D(Vy x Wy x[Sx (Qa))HT(Sx(Qa);Vyix)—H(Qas)|T}—€5)

wheree!, — 0 for i = 1,2, 3. Notice thatp” is the average error probability of the codebook Geso
there exists at least a codeboaksuch that the error probability is no bigger theh
Now we lower bound the achievable error exponent by

min {D(Qag||Pap) + D(Vyx|[Wy|x|Sx(Qa)) + [I(Sx(Qa); Vyix) — H(QaB)"}

QaB,Vy|x

= %1;1 QBgli‘f}m{D(QABHPAB) + D(Vy x [ Wy x]Sx(Qa)) + [1(Sx(Qa); Vyx) — H(Qap)| "}

= Igin S o ‘mi‘l}‘ {D(QaB||PaB) + D(Vyx [ Wy x|Sx(Qa)) + H(Sx(Qa); Vyx) — H(Qap)*}

The last equality is true because that the codeword compositigid) 4) can be picked according to
the source compositiof 4. And by our code book selection we always pick the composition to maximize
the error exponent

QBSiXI/IY‘X{D(QABHPAB) + D(Vy x Wy x[Sx(Qa)) + [1(Sx(Qa); Vyx) — H(Qap)T}.

Here we slightly abuse the notations whefe(Q 4) is always the optimal distribution to maximize
the above exponent give 4.
The lower bound or(Pap, Wy x) in Theorem (1) is just proved. [ |

2) Upper bound:” First we fix the source compositiaf) 4, there are2™(1(Q4)=<.) sequences itd™
with type @ 4. When the encoder observes the source sequ&hcié has to send a code word’(a™)
to the channeWy | x. There are at mosn + 1)IX| different types, so at least

on(H(Qa)—er,)

T AT

of the codewords for™ € @4 have the same composition, we write this composit¥an @ 4), and
Al ={a" € Qa:2"(a") € Sx(Qa)}, where|4,| = 2"H(Qa)=<)

_ on(H(Qa)~<Z)

Now we fix the conditional typ&)g 4, so we have the margin&)z and the joint distribution) 45
determined by 4 and Qp|4. Write

Qap(b") = {a": (a",0") € Qap} and@pja(a”) = {b" : (a",0") € Qap}-

Obviously |Qp| = 27(H(@=)=:n) and for allb™: |Q 45(b")| = 2H(@ai)=<) for all a™: |Qp4(a™)| =
on(H(Qpja)—€b)

’In this proof,e’, > 0 ande’, — 0,7 =1,2,3,4,4',5,6 and 7.
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Let By = {b" € Qp : [Qap(b") N Ay| > 2nH(Qain)=<)} wheree), = €2 + ¢} + 1. We show next
that the size ofB; is of the order2"(@s),
Let AB; = {(a™,b") : a™ € Ay and (a",b") € Qap}, we compute the size o B; from two different

ways.
First
ABy| = |A1]|Qpja(a™)] = 22(HQam=eime), (62)
Secondly
|ABy| = |{(a",b"):b" € By, a" € A; and (a”,b") € Qap}
J{(a™, ") : 0" € Qs — By, o € Ay and(a”",b") € Qan}| (63)
< [B1||Qap (") +1Qp — By[2"H (@) =) (64)

‘Bl|2n(H(QA\B)—6ﬁ) + (gn(H(QB)—ei) _ ‘Bl‘)Q"(H(QA\B)_f?L)
|Bl|2"H(QA\B) + 2nH(QB)2n(H(QAIB)_Ei) (65)

IN

(63) is by the definition ofAB; and By, (64) is by the definition of3;, (65) is true because alj,’s are
positive.
Combining (62) and (65) and use the fact tBat= €2 + ¢} + 1, we have:
|31’2”H(QA\B) > on(H(Qap)—c;—ci) _ onH(Qp)on(H(Qap)—c})
1

2

Qn(H(QAB)_Ei _Ei/) X

Hence|Bl| > Qn(H(QB)_Ei_Eg_%) — 2n(H(QB)_€?1)_
Now we consider the decoding error of the following events and show that this error events gives us
an upper bound on the error exponent stated in this theorem:
Source and side information pair AB* = {(a",b") : a € A1,b" € By, (a", V") € Qap}.
First, for each(a”,b") € AB*:
Pap(a™,b") = 27" P@QaslPan)+H(Qaz))
Secondly, the size ofAB* is lower bounded as follows from the definition 8f and the lower bound
on |By|:
|AB*| |By| x 2nUH(Qaiz)—€n))
on(H(Qp)—e€) o on(H(Qain)—€})
on(H(Qap)—2¢}) (66)

(AVAR VAR,

So obviously the probability oA B* is
Pup(AB*) = |AB*|27 " P@aslPan)+H(Qaz)) > 9=n(D(QazlPan)+2¢) (67)

Thirdly, if the side-information isv” € B, there are at leas?”(#(Q4i5)=<.) many ¢’'s such that
(a™,b") € Qap, that is, there are at leagt?(Q417)=<.) many source sequences with the same likelihood
given the side-informatioh™ (even there exists a “genie” that tells the decoder that the joint distribution
of (a™,b") is Qap). Furthermore, the channel input codewat®(a™) for these source sequences all
have compositiorfx (Q 4). Hence we have a channel coding problem with dd(&) 4 5) — €, and fixed
input compositionSx (Q 4). This is the standard channel coding sphere packing bound studied in [7].

So if b € By, thenaverageerror probability for(a™,b™) € AB* is at least:
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n( min {D(Vy x Wy x|Sx (Qa)) }+e)

Vy‘x=I(Sx(QA):VY‘X)<H(QA‘B)—€‘:)L

{D(Vyx||Wyx|Sx(Qa))}+¢€T)
: (68)

wheree), andeS goes to zero as goes to infinity, hence, — 0 becausd (Sx (Qa4); Vy|x) is continuous
in V3 x and D(Vy|x [Wyx|Sx(Q4)) is convex inVyx.

Finally we combine (67) and (68), and notice that the above analysis is true for any(adversary) distri-
bution of the sourc&) 4, and any(optimal) channel codebook compositidn(Q 4), and any(adversary)
Qp|a afterQ4 and Sx(Q ) are chosen, the error probability is lower bounded by:

min
Vy | x I(Sx(QA)Vy | x)<H(Qu|B)

2
—n
> 2

—n(min max min {D(Qag||Pas)+ min
9 (QA SX(QA)QB\A{ (Q ” ) Vy | x 1(Sx(Qa)iVy | x)<H(QA|B)

—n(min max min D Pap)+D(V; 4% S +2€e5 +e”,
_ (xgir SX(QA)QB\A*VY|X’I(SX(QA)?VY|X><H(QA\B>{ (QallPap)+D(Vy x Wy x[Sx (Qa))} )

{D(Vyx[[Wyx|Sx (Qa))}}+2¢€) +e¢7,)

Both ¢ ande’ converges to zero as goes to infinity, the upper bound in Theorem 1 is just prouid.

C. Proof of Corollary 1

The proofs for both lower bounds and uppers with the “digital interface” are similar.

1) Proof of (17), the lower boundBy introducing the auxiliary variable? to separate the source
coding and channel coding error exponents and the definition of error exponents, the following equalities
should be obvious.

E(Pap, Wy|x)

Igin Sm(zg?x) 0 ‘ml‘gl ‘ D(QagllPas) + D(Vy x|[Wy x|Sx(Qa)) + [1(Sx(Qa); Vyix) — H(Qap)|"

= min max min
Qa Sx(Qa) R

Y

min D(Q P + D(V W Sx(Qa)) +1I(Sx(Qa);V —R|T

Qb Ve xH(Qan)=R ( ABH AB) ( Y|X” Y|X’ X( A)) | ( X( A) Y\X) ’ }
%IAD Sf(n(%}i)r%n{QB\A:éI(lgi\B):R (QABH AB) ( X( A) YlX)} ( )
= mi in{el; (R, Pag, +E.(R,S , W 70
mQ1An Sf(n(%)i)n}%n{e[]( AB QA) ( X(QA) Y|X)} ( )

whereE,.(R, Sx(Qa), Wy|x) is the standard random coding error exponent for chalifgl at rateR
and input distributionSx (Q 1), while e}, (R, Pag, Q) is a peculiar source coding with side-information
error exponent for sourcB,p at rate R, where the empirical source distribution is fixed(ag. That is
for Qa4

e (R, Pag,Qa) = min D(Qagl|Pa
ul B, Qa) Ol (Qag||PagB)

(70) needs more examination. It is obvious that

ey (R, Pap,Qa) > 0 ‘Aé?gi‘ )>RD(QABHPAB) 2 ey (R, Pap,Qa)-

whereey (R, Pap,Q4) is defined in (18). Now (70) becomes
E(Pap, Wy |x) > lgin SHl(%X)mFi{D{eU(R, Pap,Qa) + Er(R,Sx(Qa), Wy x)}- (71)
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2) Proof of (16), the upper boundSimilar to the proof for (17), we have the following equalities:

E(Pap, Wy|x)

S O Gt Vorx T (Sx Vo) < H (@i L 2 AB 1 Pa8) + D(VyixlWy ] Sx (Qa))}

= rgzn oA, min QB‘A,VHX:I(Sx(Qril)i;?/y‘x)<R<H(QA|B){D(QAB”PAB) + D(Vy x[[Wyx|Sx(Qa))}

=S W o D QAT o B 1 PO IIS(@)

= R PGB Pa) + B Sx(Q), W)} o

= %IAD Smax, min{ey (R, Pap, Qa) + Esp(R, Sx(Qa), Wy x)} (73)
whereE, (R, Sx(Qa), Wy|x) is the standard sphere packing bound defined in (S)egi®, Pap, Qa)
is defined in (18). .
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