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Joint source-channel with side information coding error
exponents

Cheng Chang

Abstract

In this paper, we study the upper and the lower bounds on the joint source-channel coding error
exponent with decoder side-information. The results in the paper are non-trivial extensions of the Csiszár’s
classical paper [5]. Unlike the joint source-channel coding result in [5], it is not obvious whether the
lower bound and the upper bound are equivalent even if the channel coding error exponent is known.
For a class of channels, including the symmetric channels, we apply a game-theoretic result to establish
the existence of a saddle point and hence prove that the lower and upper bounds are the same if the
channel coding error exponent is known. More interestingly, we show that encoder side-information does
not increase the error exponents in this case.

I. I NTRODUCTION

In Shannon’s very first paper on information theory [11], it is established that separate coding is optimal
for memoryless source channel pairs. Reliable communication is possible if and only if the entropy of
the source is lower than the capacity of the channel. However, the story is different when error exponent
is considered. It is shown that joint source-channel coding achieves strictly better error exponent than
separate1 coding [5]. The key technical component of [5] is a channel coding scheme to protect different
message sets with different channel coding error exponents. In this paper, we are concerned with the
joint source-channel coding with side information problem as shown in Figure 1. For a special setup of
Figure 1, where the discrete memoryless channel (DMC) is a noiseless channel with capacity2 R, i.e. the
source coding with side-information problem, the reliable reconstruction ofan at the decoder is possible
if and only if R is larger than the conditional entropyH(PA|B) [13]. The error exponents of this problem
is also studied in [8], [6] and more importantly in [1].
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Fig. 1. Source coding with decoder side-information

The duality between source coding with decoder side-information and channel coding is established in
the 80’s [1]. This is an important result that all the channel coding error exponent bounds can be easily
applied to source coding with side-information error exponent. The result is a consequence of the type
covering lemma [6], also known as the Johnson-Stein-Lovász theorem [4]. With this duality result, we
know that the error exponent of channel coding of channelWY |X with channel code compositionQX is
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1In [5], Csisźar hand-wavily shows that the obvious separate coding scheme is suboptimal in terms achieving the best error

exponent. The rather obvious result is rigidly proved in [14].
2In this paper, we use bits andlog2, andR is always non-negative.



essentially the same problem as the error exponent of source coding with decoder side-information where
the joint distribution isQX ×WY |X . Hence a natural question is what if we put these two dual problems
together, what is the error exponent of joint source-channel coding with decoder side-information?

The more general case, whereWY |X is a noisy channel, is recently studied [15], [14]. It is shown
that, not surprisingly, the reliable reconstruction ofan is possible if and only if the channel capacity
of the channel is larger than the conditional entropy of the source. A suboptimal error exponent based
on a mixture scheme of separate coding and the joint source channel coding first developed in [5] is
achieved. In this paper, we follow Csiszár’s idea in [5] and develop a new coding scheme for joint source
channel coding with decoder side-information. For a class of channels, including the symmetric channels,
the resulted lower and upper bounds have the same property as the joint source-channel coding error
exponentwithout side-information in [5]: they match if the channel coding error exponent is known at a
critical rate. We use a game theoretic approach to interpret this result.

The outline of the paper is as follows. We review the problem setup and classical error exponent
results in Section II. Then in Section III, we present the error exponent result for joint source-channel
coding with both decoder and encoder side information which provides a simple upper bound to the error
exponent investigated in the paper. This is a simple corollary of Theorem 5 in [5]. The main result of
this paper is presented in Section IV. Some implications of these bounds are given in Section V.

II. REVIEW OF SOURCE AND CHANNEL DOING ERROR EXPONENTS

In this paper random variables are denoted bya and b, the realizations of the random variables are
denoted bya andb.

A. System model of joint source-channel coding with decoder side-information

As shown in Figure 1, the source and side-information,an andbn respectively, are random variables i.i.d
from distributionPAB on a finite alphabetA×B. The channel is memoryless with input/output probability
transitionWY |X , where the input/output alphabetsX andY are finite. Without loss of generality, we
assume that the number of source symbols and the number of channel uses are equal, i.e. the encoder
observesan and sends a codewordxn(an) of lengthn to the channel, the decoder observes the channel
outputyn and side-informationbn which is not available to the encoder, the estimate isân(bn, yn).

The error probability is the expectation of the decoding error average over all channel and source
behaviors.

Pr(an 6= ân(bn, yn)) =
∑

an,bn

PAB(an, bn)
∑
yn

WY |X(yn|xn(an))1(an 6= ân(bn, yn)). (1)

The error exponent, for the optimal coding scheme, is defined as

E(PAB,WY |X) = lim inf
n→∞−

1
n

log Pr(an 6= ân(bn, yn)). (2)

The main result of this paper is to establish both upper and lower bounds onE(PAB,WY |X) and show
the tightness of these bounds.

B. Classical error exponent results
3 We review some classical results on channel coding error exponents and source coding with side-

information error exponents. These bounds are investigated in [9], [6], [8] and [7].

3In this paper, we write the error exponents (both channel coding and source coding) in the style of Csiszár’s method of
types, equivalent Gallager style error exponents can be derived through the Fenchel duality.
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1) Channel coding error exponentsEc(R,WY |X): Channel coding is a special case of joint source-
channel coding with side-information: the sourcea and the side-informationb are independent, i.e.
PAB = PA × PB, and a is a uniform distributed random variable on{1, 2, ..., 2R}. For the sake of
simplicity, we assume that2R is an integer. This is not a problem if2R is not an integer since we can
lump K symbols together and approximate2KR by an integer for someK, this is not a problem because
lim

K→∞
1
K log2(b2KRc) = R. With this interpretation of channel coding, the definitions of error probability

in (1) and error exponent in (2) still holds.
The channel coding error exponentEc(R,WY |X) is lower bounded by the random coding error

exponent and upper bounded by the sphere packing error exponent.

Er(R, WY |X) ≤ Ec(R,WY |X) ≤ Esp(R, WY |X) (3)

whereEr(R,WY |X) = max
SX

inf
VY |X

D(VY |X‖WY |X |SX) + |I(VY |X ;SX)−R|+ (4)

= max
SX

Er(R, SX , WY |X)

andEsp(R,WY |X) = max
SX

inf
VY |X :I(VY |X ;SX)<R

D(VY |X‖WY |X |SX) (5)

= max
SX

Esp(R,SX ,WY |X)

HereSX is the input composition (type) of the code words.Er(R,WY |X) = Esp(R, WY |X) in the high
rate regime thatR > Rcr whereRcr is defined in [9] as the minimum rate for which the sphere packing
Esp(R, WY |X) and random coding error exponentsEr(R, WY |X) match for channelWY |X . There are
tighter bounds on the channel coding error exponentsEc(R, WY |X) in the low rate regime forR < Rcr,
known as straight-line lower bounds and expurgation upper bounds [9]. However, in this paper, we focus
on the basic random coding and sphere packing bounds, as the main message can be effectively carried
out.

It is well known [9] that both the random coding and the sphere-packing bounds are decreasing with
R and are convex inR. And they are both positive if and only ifR < C(WY |X), whereC(WY |X) is
the capacity of the channelWY |X .

2) Source coding with decoder side-information error exponents:This is also a special case of the
general setup in Figure 1. This time the channelWY |X is a noiseless channel with input-output alphabet
X = Y and |X | = 2R. Again, we can reasonably assume that2R is an integer.

The source coding with side-information error exponent4 e(R, PAB) can be bounded as follows:

eL(R,PAB) ≤ e(R, PAB) ≤ eU (R, PAB) (6)

where eL(R, PAB) = inf
QAB

D(QAB‖PAB) + |R−H(QA|B)|+

eU (R, PAB) = inf
QAB :H(QA|B)>R

D(QAB‖PAB).

The duality between channel coding and source coding with decoder side information had been well
understood [1]. We give the following duality results on error exponents. .

e(R, QA, PB|A) = Ec(H(QA)−R, QA, PB|A)

or equivalently :e(H(QA)−R, QA, PB|A) = Ec(R, QA, PB|A)

4In this paper, ifR ≥ log2 |A| for source coding with side-information error exponents, we let the error exponent be∞.
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whereEc(R,QA, PB|A) is the channel coding error exponent for channelPB|A at rateR and the codebook
composition isQA. e(R, QA, PB|A) is the source coding with side information error exponent at rateR
with source sequences uniformly distributed in typeQA and the side information is the output of channel
PB|A with input sequence of typeQA. So obviously, we have:

Ec(R, PB|A) = max
QA

{Ec(R, QA, PB|A)}
e(R, PAB) = min

QA

{D(QA‖PA) + e(R,QA, PB|A)}

These results are established by the type covering lemma [5] on the operational level, i.e. a complete
characterizations of the source coding with side information error exponente(R, QA, PB|A) implies a
complete characterizations of the channel coding error exponentEc(H(QA) − R,QA, PB|A) and vice
versa.

From these duality results, it is well known that both the lower and the upper bounds are increasing
with R and are convex inR. And they are both positive if and only ifR > H(PA|B). The special case
of the source coding with decoder side information problem is that the side information is independent
of the source, i.e.PAB = PA × PB. In this case, the error exponent is completely characterized [6],

e(R, PA) = inf
QA:H(QA)>R

D(QA‖PA) (7)

3) Joint source-channel coding error exponents [5]:In his seminal paper [5], the joint source-channel
coding error exponents is studied. This is yet another special case of the general setup in Figure 1. When
a and b are independent, i.e.PAB = PA × PB, we can drop all theb terms in (1). Hence the error
probability is defined as:

Pr(an 6= ân(yn)) =
∑
an

PA(an)
∑
yn

WY |X(yn|xn(an))1(an 6= ân(yn)). (8)

Write the error exponent of (8) asE(PA,WY |X). The lower and upper bounds of the error exponents
are derived in [5]. It is shown that:

min
R
{e(R, PA) + Esp(R, WY |X)} ≤ E(PA,WY |X) ≤ min

R
{e(R, PA) + Er(R, WY |X)} (9)

The upper bound is derived by using standard method of types argument. The lower bound is a direct
consequence of the channel coding Theorem 5 in [5].

The difference between the lower and upper bounds is in the channel coding error exponent. The joint
source channel coding error exponent is “almost” completely characterized because the only possible
improvement is to determine the channel coding error exponent which is still not completely characterized
in the low rate regime whereR < Rcr. However, letR∗ be the rate that minimizes{e(R, PA) +
Er(R,WY |X)}, if R∗ ≥ Rcr or equivalentlyEr(R∗, WY |X) = Esp(R∗,WY |X), then we have a complete
characterization of the joint source channel coding error exponent:

E(PA,WY |X) = e(R∗, PA) + Er(R∗,WY |X). (10)

The goal of this paper is to derive a similar result forE(PAB, WY |X) defined in (2) as that for the joint
source channel coding in (9) and (10).
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4) A recite of Theorem 5 in [5]:Given a sequence of positive integers{mn} with 1
n log mn → 0

andmn message setsA1, ....Amn
each with size|Ai| = 2nRi . Then there exists a channel code(f0, φ0),

where the encoderf0 :
⋃mn

i=0Ai → X n where f0(a) = xn(a) ∈ Si
X for a ∈ Ai and the decoder

φ0 : Yn → ⋃mn

i=0Ai, write φ0(yn) as â(yn) s.t. for any messagea ∈ Ai, the decoding error

pe(a) =
∑
yn

WY |X(yn|xn(a))1(a 6= â(yn)) ≤ 2n(Er(Ri,Si
X ,WY |X)−εn)

for every channelWY |X , andεn → 0. In particular, if the channelWY |X is known to the encoder, each
Si

X can be picked to maximizeEr(Ri, S
i
X ,WY |X), hence for eacha ∈ Ai:

pe(a) ≤ 2n(Er(Ri,WY |X)−εn).

This channel coding theorem as Csiszár put it, the “main result of this paper” in [5]. We use this theorem

directly in the proof of the lower bound in Proposition 1 and further modify it to show the lower bound
in Theorem 1.

III. JOINT SOURCE-CHANNEL CODING ERROR EXPONENT WITH BOTH DECODER AND ENCODER

SIDE-INFORMATION

As a warmup to the more interesting scenario where the side-information is not known to the encoder,
we present the upper/lower bounds when both the encoder and the decoder know the side-information.
This setup is shown in Figure 2.

Encoder DMC WY |X Decoder-- -
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Fig. 2. Source coding with both decoderand encoderside-information

The error probability of the coding system is, similar to (1):

Pr(an 6= ân(bn, yn)) =
∑

an,bn

PAB(an, bn)
∑
yn

WY |X(yn|xn(an, bn))1(an 6= ân(bn, yn)). (11)

The error exponent of this setup is denoted byEboth(PAB,WY |X) which is defined in the same way as
E(PAB,WY |X) in (2). The difference is that the encoder observes both sourcean and the side-information
bn, hence the output of the encoder is a function of both:xn(an, bn). So obviously,Eboth(PAB,WY |X)
is not smaller thanE(PAB,WY |X).

Comparing (11) and (8), we can see the connections between joint source-channel coding with both
decoder and encoder side information and joint source-channel coding. Knowing the side informationbn,
the joint source channel coding with both encoder and decoder side information problem is essentially
a channel coding problem with messages distributed onAn with a distributionPA|B(an|bn). Hence we
can extend the results for joint source-channel coding error exponent [5]. We summarize the bounds on
Eboth(PAB,WY |X) in the following proposition.
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Proposition 1: Lower and upper bound onEboth(PAB,WY |X)

Eboth(PAB,WY |X) ≤ min
R
{eU (R,PAB) + Esp(R, WY |X)}

Eboth(PAB,WY |Z) ≥ min
R
{eU (R, PAB) + Er(R, WY |X)} (12)

Not explicitly stated, but it should be clear that the range ofR is (0, log2 |A|).
Proof: see Appendix A. BecauseEboth(PAB,WY |X) is no smaller thanE(PAB,WY |X), so the lower

bound ofE(PAB,WY |X) in Theorem 1 is also a lower bound forEboth(PAB, WY |X). However, in the
appendix, we give a simple proof of the lower bound onEboth(PAB,WY |X) which is a corollary of
Theorem 5 in [5]. ¤

Comparing the lower and the upper bounds for the case with both encoder and decoder side-information,
we can easily see that ifR∗ minimizes{eU (R, PAB)+Er(R, WY |X)} andEsp(R∗, WY |X) = Er(R∗,WY |X),
then the upper bound and the lower bound match. Hence,

Eboth(PAB, WY |X) = eU (R∗, PAB) + Er(R∗, WY |X). (13)

In this caseEboth(PAB,WY |X) is completely characterized.

IV. JOINT SOURCE-CHANNEL ERROR EXPONENTS WITH ONLY DECODER SIDE INFORMATION

We study the more interesting problem where only decoder knows the side-information in this section.
We first give a lower and an upper bound on the error exponent of joint source-channel coding with
decoder only side-information. The result is summarized in the following Theorem.

Theorem 1:Lower and upper bound on the joint source channel coding with decoder side-information
only, as setup in Figure 1, error exponent: For the error probabilityPr(an 6= ân(bn, yn)) and error
exponentE(PAB, WY |X) defined in (1) and (2), we have the following lower and upper bounds:

E(PAB,WY |X) ≥ (14)

min
QA

max
SX(QA)

min
QB|A,VY |X

{D(QAB‖PAB) + D(VY |X‖WY |X |SX(QA)) + |I(SX(QA);VY |X)−H(QA|B)|+}
E(PAB,WY |X) ≤ (15)

min
QA

max
SX(QA)

min
QB|A,VY |X :I(SX(QA);VY |X)<H(QA|B)

{D(QAB‖PAB) + D(VY |X‖WY |X |SX(QA))}

Proof: The main technical tool used here is the method of types. For the lower bound we propose a
joint coding scheme for the joint source channel coding with side information problem. This scheme is
a modification of the coding scheme first proposed in [5]. However, we cannot directly use the channel
coding Theorem 5 in [5] because of the presence of the side information. In essence, we have to study
a more complicated case using the method of types. Details see Appendix B. ¤

To simplify the expressions of the lower and upper bounds and later give a sufficient condition for
these two bounds to match, we introduce the “digital interface”R and have the following corollary.

Corollary 1: upper and lower bounds onE(PAB,WY |X) with “digital interface” R

E(PAB,WY |X) ≤ min
QA

max
SX(QA)

min
R
{eU (R, PAB, QA) + Esp(R,SX(QA),WY |X)} (16)

E(PAB,WY |Z) ≥ min
QA

max
SX(QA)

min
R
{eU (R, PAB, QA) + Er(R, SX(QA),WY |X)} (17)

whereEr(R,SX(QA),WY |X) is the standard random coding error exponent for channelWY |X at rateR
with input distributionSX(QA) defined in (4), whileeU (R, PAB, QA) is a peculiar source coding with
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side-information error exponent for sourcePAB at rateR, where the empirical source distribution is fixed
at QA. That is forQA

eU (R,PAB, QA) , min
QB|A:H(QA|B)≥R

D(QAB‖PAB) (18)

Proof: The proof is in Appendix C. ¤

With the simplified expression of the lower and upper bounds in Corollary 1, we can give a game
theoretic interpretation of the bounds. And more importantly, we present some sufficient conditions for
the two bounds to match.

A. A game theoretic interpretation of the bounds

The lower and upper bounds established in Corollary 1 clearly have a game theoretic interpretation. This
is a two player zero sum game. The first player is “nature”, the second player is the coding system, the
payoff from “nature” to the coding system is the bounds on the error exponents in Corollary 1. “Nature”
chooses the marginal of the sourceQA (observable to the coding system) andR which is essentially
the side informationQB|A and the channel behaviorVY |X (non-observable to the coding system). The
coding system chooseSX(QA) after observingQA. Hence in this game, the ”nature” has two moves,
the first move onQA and the last move onR which is essentiallyQB|A and VY |X , while the coding
system has the middle move onSX(QA).

Comparing Corollary 1 for joint source-channel coding with decoder side information and the classical
joint source-channel coding error exponent [5] in (9), it is desirable to have a sufficient condition that the
lower bound and the upper bound match, i.e. the complete characterization as that in (10). It is simpler
for the case in (9) since all is needed is that the sphere backing bound and the random coding bound to
match at the critical rateR∗ as discussed in Section II-B.3. However, for the two bounds in Corollary 1,
it is not clear what the conditions are such that these two bounds match. Suppose that the solution of
the game (16) is(Qu

A, Su
X(QA), Ru) and solution of the game (17) is(Ql

A, Sl
X(QA), Rl). An obvious

sufficient condition for the two bounds match is as follows:

(Ql
A, Sl

X(QA), Rl) = (Qu
A, Su

X(QA), Ru) andEr(Ru, Su
X(QA), WY |X) = Esp(Ru, Su

X(QA),WY |X) (19)

This condition is hard to verify forany source channel pairs. In the next section, we try to simplify the
condition under which these two bounds match for a class of channels.

B. A sufficient condition to reducemin{max{min{·}}} to min{·}
The difficulty in studying the bounds in Corollary 1 is that themin and max operators are nested.

The problem will be simplified if we can change the order of themin andmax operators.
Corollary 2: For symmetric channelsWY |X defined on Page 94 in [9], this includes the binary

symmetric and binary erasure channels, where the input distributionSX to maximize the random coding
error exponentEr(R, SX ,WY |X) is uniform onX , or for more general channels5, where the input
distributionSX to maximize the random coding error exponentEr(R, SX ,WY |X) is the same for allR,
then the upper and lower bounds in Theorem 1 and Corollary 1 can be further simplified to the following
forms:

E(PAB,WY |X) ≤ min
R
{eU (R, PAB) + Esp(R, WY |X)} (20)

E(PAB,WY |Z) ≥ min
R
{eU (R,PAB) + Er(R, WY |X)} (21)

5For example, a channel consisted of parallel symmetric channels.
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Note: in this case, the upper and lower bounds forE(PAB,WY |X) is the same as those forEboth(PAB,WY |X)
in Proposition 1. More discussions see Section V.

Proof: An important property for symmetric channels is that the input distribution that maximizes
the random coding error exponent is constant for all rateR, hence the innermaxmin{·} is equal to
minmax{·}, i.e.

E(PAB,WY |X) ≥ min
QA

max
SX(QA)

min
R
{eU (R, PAB, QA) + Er(R, SX(QA), WY |X)}

= min
QA

min
R

max
SX(QA)

{eU (R, PAB, QA) + Er(R, SX(QA), WY |X)}
= min

QA

min
R
{eU (R, PAB, QA) + Er(R, WY |X)} (22)

= min
R
{min

QA

{eU (R, PAB, QA)}+ Er(R, WY |X)}
= min

R
{eU (R, PAB) + Er(R, WY |X)} (23)

where (22) follows the definition of random coding bound in (3) and (23) follows the obvious equality:

min
QA

eU (R,PAB, QA) = min
QAB :H(QA|B)≥R

D(QAB‖PAB) = eU (R, PAB).

The upper bound in 20 is trivial by noticing thatmaxmin{·} ≤ minmax{·} [2], hence:

E(PAB,WY |X) ≤ min
QA

max
SX(QA)

min
R
{eU (R, PAB, QA) + Esp(R, SX(QA),WY |X)}

≤ min
QA

min
R

max
SX(QA)

{eU (R, PAB, QA) + Esp(R, SX(QA),WY |X)}
= min

QA

min
R
{eU (R, PAB, QA) + Esp(R, WY |X)}

= min
R
{min

QA

{eU (R, PAB, QA)}+ Esp(R, WY |X)}
= min

R
{eU (R, PAB) + Esp(R, WY |X)} (24)

Corollary 2 is proved. ¤

With this corollary proved, we can give a sufficient condition under which the lower bound and upper
bound match similar to that for the joint source-channel coding case in Section II-B.3. More discussions
see Section V.

C. Why it is hard to generalize Corollary 2 to non-symmetric channels?

Whether max
SX(QA)

min
R
{eU (R, PAB, QA)+Er(R, SX(QA), WY |X)} is equal tomin

R
max

SX(QA)
{eU (R, PAB, QA)+

Er(R,SX(QA),WY |X)} is not obvious for general (non-symmetric) channels. A sufficient condition of
the existence of a unique saddle point hence the equality is known as the Sion’s Theorem [12] which
states that:

max
µ∈M

min
ν∈N

f(µ, ν) = min
ν∈N

max
µ∈M

f(µ, ν) (25)

if M andN are convex, compact spaces andf a quasi-concave-convex (definitions see [2]) and continuous
function onM×N . For the function of interest,:

max
SX(QA)

min
R
{eU (R,PAB, QA) + Er(R, SX(QA),WY |X)}. (26)
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We examine the sufficient condition under which a unique equilibrium exists, according to the Sion’s The-
orem. First,eU (R, PAB, QA)+Esp(R, SX(QA), WY |X) is quasi-convex inR because botheU (R, PAB, QA)
andEsp(R, SX(QA), WY |X) are convex, hence quasi-convex inR. However, (26) is not quasi concave
on SX(QA):

Er(R, SX(QA),WY |X) = inf
VY |X

D(VY |X‖WY |X |SX(QA)) + |I(VY |X ; SX(QA))−R|+,

notice that the first term is linear inSX(QA), the second term is quasi-concave but not concave. But
the sum of a linear function and a quasi-concave function might not be quasi-concave. This shows that
the minmax theorem cannot be established by using the Sion’s Theorem. This does not mean that the
minmax theorem cannot be proved. However for a non quasi-concave function that may have multiple
peaks,minmax{·} is not necessarily equal tomax min{·}.

V. “A LMOST” COMPLETE CHARACTERIZATION OFE(PAB,WY |X) FOR SYMMETRIC CHANNELS

The sufficient condition in Corollary 2 is important, since binary symmetric and binary erasure channels
are among the most well studied discrete memoryless channels. We further discuss the implications of
the “almost” complete characterization ofE(PAB,WY |X) for symmetric channels.

First we give an example shown in Figure 3 and Figure 4. The sourcea is a Bernoulli0.5 random
variable and the joint distribution has the distribution

PAB =
{

0.50 0.00
0.05 0.45

}
(27)

The channelWY |X is a binary symmetric channel with cross rate0.025. The channel coding error
exponent boundsEr(R,WY |X) andEsp(R,WY |X) and the source coding with decoder side-information
upper boundeU (R, PAB) are plotted in Figure 3. The channel coding bound match whileR ≥ Rcr,
whereRcr is defined in [9].
Note: the lower bound of the source coding with side information error exponenteL(R, PAB) is not
plotted in the figure.

In Figure 4, we add both the lower and upper bounds on the joint source channel coding with decoder
side information to the plot in Figure 3. For this source channel pairPAB andWY |X , we have a complete
characterization ofEboth(PAB,WY |X) because the channel is symmetric and the two bounds match at
the minimal point, i.e. the two curves:eU (R,PAB) + Esp(R, WY |X) and eU (R, PAB) + Er(R,WY |X)
match at the minimal point as shown in Figure 4. The value of the minimum isEj shown in Figure 4.

A. Encoder side information often does not help

Similar to Proposition 1, we can see the conditions under which we can give a complete characterization
of the joint source channel coding with decoder only side information error exponentE(PAB,WY |X).
If R∗ minimizes{eU (R, PAB) + Er(R, WY |X)} andEsp(R∗,WY |X) = Er(R∗,WY |X), then the upper
bound and the lower bound match. Hence:

E(PAB, WY |X) = eU (R∗, PAB) + Er(R∗,WY |X). (28)

Comparing Corollary 2 and Proposition 1, we bound the error exponent with or without decoding
side-information by the same lower and upper bounds. This does not mean thatE(PAB,WY |Z) =
Eboth(PAB,WY |Z) always holds. But if the lower bound and upper bound match, which is shown in
Figure 4, then we have:

E(PAB,WY |Z) = Eboth(PAB, WY |Z) = eU (R∗, PAB) + Er(R∗,WY |X). (29)

9



Rate R
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0.2

0.4

0.6
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1

1.2

1.4

1.6

1.8

Fig. 3. The upper bound on source coding with side-
information error exponenteU (R, PAB) is the dotted
line. The random coding boundEr(R, WY |X) and sphere
packing boundEsp(R, WY |X) for channel coding error
exponents are the solid line and the dashed line respec-
tively.

Rate R
0 1

0  

Es
0.2
Ej

0.4

0.6

0.8

1  

1.2

1.4

1.6

1.8

Fig. 4. eU (R, PAB)+Esp(R, WY |X) andeU (R, PAB)+
Er(R, WY |X) are added to Figure 3 in dashed line and
solid line respectively, they match at the minimal point
hence the joint source-channel coding with decoder side-
information error exponent is completely determined as
E(PAB , WY |X) = Ej And Es is the separate coding
error exponentEseparate(PAB , WY |X) defined in (33).

whereR∗ minimizes eU (R, PAB) + Er(R,WY |X) and R∗ > Rcr. This is another example for block
coding where knowing side-information does not help increase the error exponent. In the contrary, as
discussed in [3], in the delay constrained setup, there is a penalty for not knowing the side-information
even if the channel is noiseless.

B. Separate coding is strictly sub-optimal

An obvious coding scheme for the problem in Figure 1 is to implement a separate coding scheme.
A source encoder first encodes the source sequencean into a rateR, whereR is determined later, bit
streamcnR(an) then an independent channel encoder encodes the bitscnR into channel inputsxn. The
channel decoder first decodes the channel outputyn into bits ĉnR and then the independent source decoder
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reconstructŝan from ĉnR and side informationbn. This is a separate coding scheme with outer source
with side information coding and inner channel coding, both at rateR. If both coding are random coding
that achieves the random coding error exponents for both source coding and channel coding respectively.
The union bound of the error probability is as follows:

Pr(an 6= ân(bn, yn)) = Pr(cnR 6= ĉnR(yn)) + Pr(an 6= â(ĉnR(yn), bn), cnR = cnR(yn)) (30)

≤ Pr(cnR 6= ĉnR(yn)) + Pr(an 6= â(ĉnR(yn), bn)|cnR = cnR(yn)) (31)

≤ 2−n(Er(R,WY |X)−ε1n) + 2−n(eL(R,PAB)−ε2n) (32)

whereε1n and ε2n converges to zero asn goes to infinity. (30) follows the union bound argument that a
decoding error occurs if either the inner channel coding fails or the outer source coding fails. (31) is true
because conditional probability is large or equal to joint probability. Finally (32) is true because both
the outer source coding and inner channel coding achieve the random coding error exponents. From (32)
and that we can optimize the digital interface rateR between the channel coder and source coder, we
know that the separate coding error exponent is

max
R
{min{Er(R, WY |X), eL(R, PAB}} , Eseparate(PAB, WY |X) (33)

This separate coding scheme is also discussed for joint source channel coding in [5]. A similar bound
is drawn. We next show why the separate coding error exponentEseparate(PAB, WY |X) is in general
strictly smaller than the lower bound ofE(PAB,WY |X) in (21).

First, obviously,Eseparate(PAB,WY |X) ≤ max
R
{min{Er(R,WY |X), eU (R, PAB)}}. Secondly{Er(R,WY |X)

is monotonically decreasing,eU (R,PAB) is monotonically increasing, and both are continuous and convex
as shown in Figure 4. This means that for rateR̄ such thatEr(R̄, WY |X) = eU (R̄, PAB):

Eseparate(PAB,WY |X) = Er(R̄,WY |X) = eU (R̄, PAB)

Now let R∗ be the rate to minimize{eU (R, PAB) + Er(R,WY |X)}, i.e.

E(PAB,WY |X) ≥ eU (R∗, PAB) + Er(R∗,WY |X).

There are three scenarios. First ifR∗ = R̄, then

E(PAB,WY |X) ≥ eU (R∗, PAB) + Er(R∗,WY |X) = 2Er(R̄, WY |X) = 2Eseparate(PAB, WY |X).

Secondly, ifR∗ < R̄,

E(PAB,WY |X) ≥ Er(R∗,WY |X) > Er(R̄,WY |X) = Eseparate(PAB,WY |X).

Finally if R∗ > R̄,

E(PAB,WY |X) ≥ eU (R∗, PAB) > eU (R̄, PAB) = Eseparate(PAB,WY |X).

So in all cases, the joint source channel coding error exponentE(PAB,WY |X) is strictly larger than
the separate coding error exponentEseparate(PAB,WY |X). This is clearly illustrated in Figure 4.

Note:Eseparate(PAB,WY |X) is an achievable separate coding error exponent from the obvious separate
coding scheme. What we prove is that this obvious one is strictly smaller than the joint source-channel
coding error exponent. This is similar to the claim Csiszár makes in [5]. It should be clear that the upper
bound of any separate source channel coding error exponent ismaxR{min{Esp(R, WY |X), eU (R, PAB}}
which is comparable to (33). The proof hinges on the complete transparency between the source coding
and channel coding, otherwise we have a joint coding schemes. A detailed discussion is in [14].
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VI. CONCLUSIONS

We study the joint source channel coding with decoder side-information problem, with or without
encoder side-information. This is an extension of Csiszár’s joint source channel coding error exponent
problem in [5]. To derive the lower bound, we use a novel joint source channel with decoder side-
information decoding scheme. We further investigate the conditions under which the lower bounds and
upper bounds match. A game theoretic approach is applied to show the equivalence of the lower and
upper bound. This approach might be useful in simplifying other error exponents with a cascade of
min-max operators , for example, the Wyner-Ziv coding error exponent recently studied in [10].

APPENDIX

A. Proof of upper and lower bounds onEboth(PAB,WY |X)

We prove Proposition 1 in this section. The upper bound and lower bounds are simple corollaries of
the method of types and Theorem 5 in [5] respectively.

1) Upper bound:Consider a distributionQAB, the joint source channel encoder observes the realization
of the source(an, bn) with typeQAB, for the case where the decoder knows the side-informationbn. There
are6 2n(H(QA|B)−ε1n) many equally likely sequences∈ An conditional onbn. These are the sequences with
the same joint probability withbn as the sequencean. Even knowing the joint typeQAB (given by a
genie) and the side-informationbn, the decoder needs to guess the correct one from the channel output
yn. This is a channel coding problem with rateH(QA|B)− ε1n.

Now consider the channel inputxn(an, bn) wherebn is the side-information, notice that there are at most
(n+1)|X | many different input types, there is a typeSX(QAB), such that more than(n+1)−|X | = 2−nε2n

fraction of the channel inputs given side-informationbn and the joint type of(an, bn) beingQAB have
type SX(QAB). For a channelVY |X , such that the channel capacity of the channel given the input
distributionSX is smaller thanH(QA|B), i.e.

I(SX(QAB);VY |X) < H(QA|B),

then if the channelWY |X behaves likeVY |X with the code book with typeSX(QAB), with high probably,
the decoder cannot correctly decide from one of the2nH(QA|B) sequences. This is guaranteed by the
Blowing up Lemma [6] or see a detailed proof in [7].

The probability that both the source behaves likeQA|B and the channel behaves likeVY |X is

2−n(D(QAB‖PAB)+D(VY |X‖WY |X |SX(QAB))−ε3n). (34)

Notice that the source behaviorQAB and the channel behaviorVY |X are arbitrary, as long asH(QA|B) >

6Here εi
n goes to zero asn goes to infinity,i = 1, 2, 3.
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I(SX(QAB);VY |X), we can upper bound the error exponent as follows:

Eboth(PAB, WY |Z)

≤ min
QAB ,VY |Z :H(QA|B)>I(SX(QAB);VY |X)

{D(QAB‖PAB) + D(VY |X‖WY |X |SX(QAB))} (35)

= min
R
{ min

QAB ,VY |Z :H(QA|B)>R>I(SX(QAB);VY |X)
D(QAB‖PAB) + D(VY |X‖WY |X |SX(QAB))} (36)

= min
R
{ min

QAB :H(QA|B)>R
{D(QAB‖PAB) + min

VY |Z :R>I(SX(QAB);VY |X)
D(VY |X‖WY |X |SX(QAB))}}(37)

≤ min
R
{ min

QAB :H(QA|B)>R
{D(QAB‖PAB) + Esp(R,WY |X)}} (38)

= min
R
{eU (R, PAB) + Esp(R, WY |X)} (39)

(35) is a direct consequence of (34). In (36), we introduce the “digital interface”R, the equivalence
in (36) and (37) should be obvious. (38) and (39) are by definitions of the channel coding and source
coding error exponents. ¤

2) Lower bound:Given a side-information sequencebn which is known to both the encoder and the
decoder. We partition the source sequence setAn based on their joint type withbn. The number of joint
typesmn ≤ (n + 1)|A||B| and denote byQi

AB, i = 1, 2, ...mn the joint types. It should be clear that the
Qi

AB ’s here all have the same marginal distribution asbn.

Let Ai(bn) = {an : (an, bn) ∈ Qi
AB}, i = 1, 2, ...mn.

Obviously,Ai’s form a partition ofAn. And each set has size|Ai(bn)| ≤ 2nH(Qi
A|B). Now we can apply

Theorem 5 of [5] as recited earlier: there exists a channel codef0, φ0, such that for eachan ∈ Ai(bn),
i.e. (an, bn) ∈ Qi

AB:

pe,bn(an) =
∑
yn

WY |X(yn|xn(an, bn))1(an 6= ân(bn, yn)) ≤ 2−n(Er(H(Qi
A|B),WY |X)−εn). (40)

The joint source channel coding error probability is hence:

Pr(an 6= ân(bn, yn)) =
∑

an,bn

PAB(an, bn)
∑
yn

WY |X(yn|xn(an))1(an 6= ân(bn, yn))

=
∑

QAB

∑

(an,bn)∈QAB

PAB(an, bn)
∑
yn

WY |X(yn|xn(an, bn))1(an 6= ân(bn, yn))

≤
∑

QAB

∑

(an,bn)∈QAB

PAB(an, bn)2−n(Er(H(QA|B),WY |X)−εn) (41)

≤
∑

QAB

2−nD(QAB‖PAB)2−n(Er(H(QA|B),WY |X)−εn)

≤ (n + 1)|A||B|max
QAB

{2−nD(QAB‖PAB)2−n(Er(H(QA|B),WY |X)−εn)}

≤ 2
−n(min

QAB

{D(QAB‖PAB)+Er(H(QA|B),WY |X)}−ε′n)
(42)

(41) follows by substituting in (40) and the rest inequalities are by method of types.ε′n → 0, so we can
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lower bound the error exponent as

Eboth(PAB, WY |Z) ≥ min
QAB

{D(QAB‖PAB) + Er(H(QA|B),WY |X)} (43)

= min
R
{ min

QAB :H(QA|B)=R
{D(QAB‖PAB) + Er(H(QA|B),WY |X)}} (44)

= min
R
{ min

QAB :H(QA|B)=R
{D(QAB‖PAB)}+ Er(R,WY |X)} (45)

= min
R≥H(PA|B)

{ min
QAB :H(QA|B)=R

{D(QAB‖PAB) + Er(R, WY |X)}} (46)

= min
R≥H(PA|B)

{ min
QAB :H(QA|B)≥R

{D(QAB‖PAB) + Er(R, WY |X)}} (47)

= min
R≥H(PA|B)

{eU (R, PAB) + Er(R,WY |X)} (48)

= min
R
{eU (R, PAB) + Er(R,WY |X)} (49)

(43) is a direct consequence of (42), in (44) we again introduce the “digital interface” variableR. (45) and
(48) are by definitions ofEr(R, WY |X) andeU (R,PAB) respectively. (46) is true becauseEr(R,WY |X)
is monotonically increasing withR and forR < H(PB|A),

min
QAB :H(QA|B)=R

D(QAB‖PAB) ≥ 0 = min
QAB :H(QA|B)=H(PA|B)

D(QAB‖PAB).

(47) is true becauseD(QAB‖PAB) is convex inQAB and the global minimum isQ∗
AB = PAB, but

H(Q∗
A|B) = H(PA|B) ≥ R which means the minimum point is on the boundary. Lastly (49) is because

for R < H(PA|B), eU (R, PAB) is constant at0, while Er(R, WY |X) is monotonically increasing with
R. ¤

B. Lower and upper bounds onE(PAB,WY |X)

We give the proof of Theorem 1 here.
1) Lower bound:From the definition of the error exponent, we need to find a encoding rulex : An →

X n and decoding rulêa : Bn × Yn → X nsuch chat the error probability :

Pr(an 6= ân(bn, yn)) =
∑

an,bn

PAB(an, bn)
∑
yn

WY |X(yn|xn(an))1(an 6= ân(bn, yn)) (50)

is upper bounded by2n(E−εn) whereεn → 0, whereE is the right hand side of (14).
We first describe the encoder and decoder, then prove that this coding system achieves the lower bound.
The encoder only observes the source sequencean. For all those sequencesan with type QA, the

channel input isxn(an) that has typeSX(QA), i.e. the channel input type only depends on the type of
the source, whereSX(QA) is the distribution to maximize the following exponent:

min
QB|A,VY |X

{D(QAB‖PAB) + D(VY |X‖WY |X |SX(QA)) + |I(SX(QA);VY |X)−H(QA|B)|+}.

The decoder observes both the side-informationbn and the channel outputyn, the decoder takes both
the conditional entropy and mutual information across the channel into account:

ân(bn, yn) = arg max
an

I(xn(an); yn)−H(an|bn) (51)

We next need to show that there exists such a encoder/decoder pair that achieve the error exponent
in (14). We also use the method of random selection of codebooks. We denote byC the set of the
codebooks such that the codewords foran ∈ QA all have compositionSX(QA). ObviouslyC is finite,
we let ζ be the random variable uniformly distributed onC. We use codebookc if ζ = c, i.e. we use
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the codebooks with equal probability. The most important property of this codebook distribution is the
point-wise independence of the codewords, for allan ∈ QA and ãn ∈ Q̃A, for any two valid codewords
sn ∈ SX(QA) and s̃n ∈ SX(Q̃A) :

ζ

Pr(xn(an) = sn, xn(ãn) = s̃n) =
ζ

Pr(xn(an) = sn)
ζ

Pr(xn(ãn) = s̃n) =
1

|SX(QA)|
1

|SX(Q̃A)| (52)

We calculate the average error probability on the whole codebook setC. Write the average error
probability aspn

e , then first we have:

pn
e = E(

ζ

Pr(an 6= ân(bn, yn)) =
1
|C|

∑

c∈C

c
Pr(an 6= ân(bn, yn)), (53)

whereE(
ζ

Pr(an 6= ân(bn, yn)) is the expected error probability over all codebooks under the codebook
distributionζ.

For a fixed codebookc ∈ C
c

Pr(an 6= ân(bn, yn))

=
∑

an,bn

PAB(an, bn)
c

Pr(an 6= ân(bn, yn))

=
∑

QAB

∑

(an,bn)∈QAB

(
PAB(an, bn)

c
Pr(an 6= ân(bn, yn))

)

=
∑

QAB

∑

(an,bn)∈QAB

(
PAB(an, bn)

∑
yn

WY |X(yn|xn(an))1c(an 6= ân(bn, yn))

)

=
∑

QAB

∑

(an,bn)∈QAB
PAB(an, bn)

∑

VY |X

∑

yn:(xn(an),yn)∈SX(QA)×VY |X

WY |X(yn|xn(an))1c(an 6= ân(bn, yn))


 (54)

For (an, bn) ∈ QAB, so the source sequencean has marginal distributionQA, from the codebook
generation we know that the codewordxn(an) ∈ SX(QA). For side-informationbn ∈ Bn, we partition
An according to the joint type withbn:

QÃB(bn) = {ãn ∈ An : (ãn, bn) ∈ QÃB}.
We partition SX(QÃ) according to the joint distribution withyn. For a joint distributionUXY s.t.

UX = SX(QÃ) andyn ∈ UY :

UXY (QÃ, yn) = {xn ∈ SX(QÃ) : (xn, yn) ∈ UXY }.
For (an, bn) ∈ QAB and channel outputyn ∈ Yn, s.t. (xn(an), yn) ∈ VY |X , a decoding error is made

if there exists a source sequenceãn 6= an,s.t. ãn ∈ QÃB(bn) whereQÃB may or may not beQAB and
the code wordxn(ãn) ∈ UXY (yn, QÃ), whereUX = SX(QÃ) andyn ∈ UY :

I(xn(ãn); yn)−H(ãn|bn) ≥ I(xn(an); yn)−H(an|bn)

i.e. IUXY
(X;Y )−H(QÃ|B) ≥ I(SX(QA);VY |X)−H(QA|B) (55)
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Now we can expand the indicator function in (54) as follows, for a codebookc:
1c(an 6= ân(bn, yn))

= 1c
(
∃ãn 6= an, s.t.I(xn(ãn), yn)−H(QÃ|B) ≥ I(SX(QA);VY |X)−H(QA|B)

)

≤ min{1,
∑

QÃB , UXY :IUXY
(X,Y )−H(QÃ|B)≥I(SX(QA);VY |X)−H(QA|B)

1c(∃ãn 6= an and ãn ∈ QÃB(bn),

s.t. xn(ãn) ∈ UXY (QÃ, yn)} (56)

Under the uniform codebook distributionζ, for ãn 6= an, xn(ãn) is uniformly distributed inSX(QÃ)
independent ofxn(an), so for all QÃB and UXY with the proper marginals(bn ∈ QB, UX = SX(QÃ)
andyn ∈ UY ) and satisfying (55):

E(1(∃ãn 6= an and ãn ∈ QÃB(bn), s.t. xn(ãn) ∈ UXY (QÃ, yn)))

=
1
|C|

∑

c∈C
1c(∃ãn 6= an and ãn ∈ QÃB(bn), s.t. xn(ãn) ∈ UXY (QÃ, yn))

=
ζ

Pr(∃ãn 6= an and ãn ∈ QÃB(bn), s.t. xn(ãn) ∈ UXY (QÃ, yn))

≤ |QÃB(bn)|
ζ

Pr( xn(ãn) ∈ UXY (QÃ, yn)|ãn 6= an and ãn ∈ QÃB(bn)) (57)

= |QÃB(bn)| |UXY (QÃ, yn)|
|SX(QÃ)| (58)

≤ 2nεn2nH(QÃ|B) 2
nH(UX|Y )

2nH(UX)
(59)

= 2−n(IUXY
(X,Y )−H(QÃ|B)−εn)

≤ 2−n(I(SX(QA);VY |X)−H(QA|B)−εn) (60)

where εn → 0. (57) is by a union bound argument. (58) is true because the codewordxn(ãn) is
uniformly distributed inSX(QÃ). (59) is by the method of types. (60) is true because the condition
in (55) is satisfied.

Combining (56) and (60) and noticing that the numbers of types ofUXY and QÃB are polynomials
of n, hence sub-exponential, we have:

E(1(an 6= ân(bn, yn))) ≤ 1
|C|

∑

c∈C
1c(an 6= ân(bn, yn))

≤ min{1, 2−n(I(SX(QA);VY |X)−H(QA|B)−ε1n)}
= 2−n|I(SX(QA);VY |X)−H(QA|B)−ε1n|+ (61)

Finally, we substitute (61) and (54) into (53). Notice that the number of types ofVY |X and QAB

are polynomials inn and the usual method of types argument ( upper bounding the probability of
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PAB(an, bn) ∈ QAB) etc.), we have:

pn
e =

1
|C|

∑

c∈C

c
Pr(an 6= ân(bn, yn))

≤
∑

QAB ,VY |X

2−n(D(QAB‖PAB)+D(VY |X‖WY |X |SX(QA))+|I(SX(QA);VY |X)−H(QA|B)−ε1n|+−ε2n)

≤
∑

QAB ,VY |X

2−n(D(QAB‖PAB)+D(VY |X‖WY |X |SX(QA))+|I(SX(QA);VY |X)−H(QA|B)|+−ε1n−ε2n)

≤ 2−n(minQAB,VY |X {D(QAB‖PAB)+D(VY |X‖WY |X |SX(QA))+|I(SX(QA);VY |X)−H(QA|B)|+}−ε3n)

whereεi
n → 0 for i = 1, 2, 3. Notice thatpn

e is the average error probability of the codebook setC, so
there exists at least a codebookc, such that the error probability is no bigger thanpn

e .
Now we lower bound the achievable error exponent by

min
QAB ,VY |X

{D(QAB‖PAB) + D(VY |X‖WY |X |SX(QA)) + |I(SX(QA);VY |X)−H(QA|B)|+}

= min
QA

min
QB|A,VY |X

{D(QAB‖PAB) + D(VY |X‖WY |X |SX(QA)) + |I(SX(QA);VY |X)−H(QA|B)|+}

= min
QA

max
SX(QA)

min
QB|A,VY |X

{D(QAB‖PAB) + D(VY |X‖WY |X |SX(QA)) + |I(SX(QA);VY |X)−H(QA|B)|+}

The last equality is true because that the codeword compositionSX(QA) can be picked according to
the source compositionQA. And by our code book selection we always pick the composition to maximize
the error exponent

min
QB|A,VY |X

{D(QAB‖PAB) + D(VY |X‖WY |X |SX(QA)) + |I(SX(QA);VY |X)−H(QA|B)|+}.

Here we slightly abuse the notations whereSX(QA) is always the optimal distribution to maximize
the above exponent givenQA.

The lower bound onE(PAB,WY |X) in Theorem (1) is just proved. ¥

2) Upper bound:7 First we fix the source compositionQA, there are2n(H(QA)−ε1n) sequences inAn

with type QA. When the encoder observes the source sequencean, it has to send a code wordxn(an)
to the channelWY |X . There are at most(n + 1)|X| different types, so at least

2n(H(QA)−ε1n)

(n + 1)|X|
= 2n(H(QA)−ε2

′
n )

of the codewords foran ∈ QA have the same composition, we write this compositionSX(QA), and

A1 = {an ∈ QA : xn(an) ∈ SX(QA)}, where|A1| = 2n(H(QA)−ε2n).

Now we fix the conditional typeQB|A, so we have the marginalQB and the joint distributionQAB

determined byQA andQB|A. Write

QA|B(bn) = {an : (an, bn) ∈ QAB} andQB|A(an) = {bn : (an, bn) ∈ QAB}.
Obviously |QB| = 2n(H(QB)−ε3nn) and for allbn: |QA|B(bn)| = 2n(H(QA|B)−ε4n), for all an: |QB|A(an)| =
2n(H(QB|A)−ε4

′
n ).

7In this proof,εi
n > 0 and εi

n → 0, i = 1, 2, 3, 4, 4′, 5, 6 and7.
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Let B1 = {bn ∈ QB : |QA|B(bn)
⋂

A1| ≥ 2n(H(QA|B)−ε5n)}, whereε5n = ε2n + ε4
′

n + 1
n . We show next

that the size ofB1 is of the order2nH(QB).
Let AB1 = {(an, bn) : an ∈ A1 and (an, bn) ∈ QAB}, we compute the size ofAB1 from two different

ways.
First

|AB1| = |A1||QB|A(an)| = 2n(H(QAB)−ε2n−ε4
′

n ). (62)

Secondly

|AB1| = |{(an, bn) : bn ∈ B1, an ∈ A1 and (an, bn) ∈ QAB}⋃
{(an, bn) : bn ∈ QB −B1, an ∈ A1 and (an, bn) ∈ QAB}| (63)

≤ |B1||QA|B(bn)|+ |QB −B1|2n(H(QA|B)−ε5n) (64)

= |B1|2n(H(QA|B)−ε4n) + (2n(H(QB)−ε3n) − |B1|)2n(H(QA|B)−ε5n)

≤ |B1|2nH(QA|B) + 2nH(QB)2n(H(QA|B)−ε5n) (65)

(63) is by the definition ofAB1 andB1, (64) is by the definition ofB1, (65) is true because allεi
n’s are

positive.
Combining (62) and (65) and use the fact thatε5n = ε2n + ε4

′
n + 1

n , we have:

|B1|2nH(QA|B) ≥ 2n(H(QAB)−ε2n−ε4
′

n ) − 2nH(QB)2n(H(QA|B)−ε5n)

= 2n(H(QAB)−ε2n−ε4
′

n ) × 1
2
.

Hence|B1| ≥ 2n(H(QB)−ε2n−ε4
′

n − 1
n
) = 2n(H(QB)−ε5n).

Now we consider the decoding error of the following events and show that this error events gives us
an upper bound on the error exponent stated in this theorem:

Source and side information pair AB∗ = {(an, bn) : an ∈ A1, b
n ∈ B1, (an, bn) ∈ QAB}.

First, for each(an, bn) ∈ AB∗:

PAB(an, bn) = 2−n(D(QAB‖PAB)+H(QAB)).

Secondly, the size ofAB∗ is lower bounded as follows from the definition ofB1 and the lower bound
on |B1|:

|AB∗| ≥ |B1| × 2n(H(QA|B)−ε5n)}
≥ 2n(H(QB)−ε5n) × 2n(H(QA|B)−ε5n)

≥ 2n(H(QAB)−2ε5n) (66)

So obviously the probability ofAB∗ is

PAB(AB∗) = |AB∗|2−n(D(QAB‖PAB)+H(QAB)) ≥ 2−n(D(QAB‖PAB)+2ε5n). (67)

Thirdly, if the side-information isbn ∈ B1 there are at least2n(H(QA|B)−ε5n) many an’s such that
(an, bn) ∈ QAB, that is, there are at least2n(H(QA|B)−ε5n) many source sequences with the same likelihood
given the side-informationbn (even there exists a “genie” that tells the decoder that the joint distribution
of (an, bn) is QAB). Furthermore, the channel input codewordxn(an) for these source sequences all
have compositionSX(QA). Hence we have a channel coding problem with rateH(QA|B)− ε5n and fixed
input compositionSX(QA). This is the standard channel coding sphere packing bound studied in [7].

So if bn ∈ B1, thenaverageerror probability for(an, bn) ∈ AB∗ is at least:
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2
−n( min

VY |X :I(SX (QA);VY |X )<H(QA|B)−ε5n

{D(VY |X‖WY |X |SX(QA))}+ε6n)

≥ 2
−n( min

VY |X :I(SX (QA);VY |X )<H(QA|B)
{D(VY |X‖WY |X |SX(QA))}+ε7n)

, (68)

whereε5n andε6n goes to zero asn goes to infinity, henceε7n → 0 becauseI(SX(QA);VY |X) is continuous
in VY |X andD(VY |X‖WY |X |SX(QA)) is convex inVY |X .

Finally we combine (67) and (68), and notice that the above analysis is true for any(adversary) distri-
bution of the sourceQA, and any(optimal) channel codebook compositionSX(QA), and any(adversary)
QB|A after QA andSX(QA) are chosen, the error probability is lower bounded by:

2
−n(min

QA

max
SX (QA)

min
QB|A

{D(QAB‖PAB)+ min
VY |X :I(SX (QA);VY |X )<H(QA|B)

{D(VY |X‖WY |X |SX(QA))}}+2ε5n+ε7n)

= 2
−n(min

QA

max
SX (QA)

min
QB|A,VY |X :I(SX (QA);VY |X )<H(QA|B)

{D(QAB‖PAB)+D(VY |X‖WY |X |SX(QA))}+2ε5n+ε7n)

Both ε5n andε7n converges to zero asn goes to infinity, the upper bound in Theorem 1 is just proved.¥

C. Proof of Corollary 1

The proofs for both lower bounds and uppers with the “digital interface” are similar.
1) Proof of (17), the lower bound:By introducing the auxiliary variableR to separate the source

coding and channel coding error exponents and the definition of error exponents, the following equalities
should be obvious.

E(PAB,WY |X)

≥ min
QA

max
SX(QA)

min
QB|A,VY |X

D(QAB‖PAB) + D(VY |X‖WY |X |SX(QA)) + |I(SX(QA);VY |X)−H(QA|B)|+

= min
QA

max
SX(QA)

min
R

{ min
QB|A,VY |X :H(QA|B)=R

D(QAB‖PAB) + D(VY |X‖WY |X |SX(QA)) + |I(SX(QA);VY |X)−R|+}
= min

QA

max
SX(QA)

min
R
{ min

QB|A:H(QA|B)=R
D(QAB‖PAB) + Er(R, SX(QA),WY |X)} (69)

= min
QA

max
SX(QA)

min
R
{e′U (R, PAB, QA) + Er(R, SX(QA),WY |X)} (70)

whereEr(R,SX(QA),WY |X) is the standard random coding error exponent for channelWY |X at rateR
and input distributionSX(QA), while e′U (R, PAB, QA) is a peculiar source coding with side-information
error exponent for sourcePAB at rateR, where the empirical source distribution is fixed atQA. That is
for QA

e′U (R,PAB, QA) , min
QB|A:H(QA|B)=R

D(QAB‖PAB)

(70) needs more examination. It is obvious that

e′U (R, PAB, QA) ≥ min
QB|A:H(QA|B)≥R

D(QAB‖PAB) , eU (R, PAB, QA).

whereeU (R,PAB, QA) is defined in (18). Now (70) becomes

E(PAB,WY |X) ≥ min
QA

max
SX(QA)

min
R
{eU (R, PAB, QA) + Er(R, SX(QA), WY |X)}. (71)

19



2) Proof of (16), the upper bound:Similar to the proof for (17), we have the following equalities:

E(PAB,WY |X)

≤ min
QA

max
SX(QA)

min
QB|A,VY |X :I(SX(QA);VY |X)<H(QA|B)

{D(QAB‖PAB) + D(VY |X‖WY |X |SX(QA))}
= min

QA

max
SX(QA)

min
R

min
QB|A,VY |X :I(SX(QA);VY |X)<R<H(QA|B)

{D(QAB‖PAB) + D(VY |X‖WY |X |SX(QA))}
= min

QA

max
SX(QA)

min
R
{ min

QB|A:H(QA|B)>R
D(QAB‖PAB) + min

VY |X :I(SX(QA);VY |X)<R
D(VY |X‖WY |X |SX(QA))}

= min
QA

max
SX(QA)

min
R
{ min

QB|A:H(QA|B)>R
D(QAB‖PAB) + Esp(R,SX(QA),WY |X)} (72)

= min
QA

max
SX(QA)

min
R
{eU (R, PAB, QA) + Esp(R, SX(QA),WY |X)} (73)

whereEsp(R, SX(QA),WY |X) is the standard sphere packing bound defined in (5) andeU (R, PAB, QA)
is defined in (18). ¤
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