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Uncertainty and Risk Management in Cyber
Situational Awareness

Jason Li, Xinming Ou, and Raj Rajagopalan

Abstract Handling cyber threats unavoidably needs to deal with botiettain and
imprecise information. What we can observe as potentiaicioalk activities can
seldom give us 100% confidence on important questions weataret,e.g. what
machines are compromised and what damage has been indarsegturity plan-
ning, we need information on how likely a vulnerability caadl to a successful
compromise to better balance security and functionalgyfqymance, and ease of
use. These information are at best qualitative and are gftgne and imprecise. In
cyber situational awareness, we have to rely on such imgenfirmation to detect
real attacks and to prevent an attack from happening thrapglopriate risk man-
agement. This chapter surveys existing technologies idlmanuncertainty and risk
management in cyber situational awareness.

1 Reasoning about Uncertainty is a Necessity

In the physical world it is commonplace that one must deahwitcertainty when
security is concerned. For example, law enforcement agsern not (and cannot)
know every aspect of every individual citizen’s life. But @&ha crime is commit-
ted there are effective investigative methods to captuegtrpetrators. As a result
we are not living in havoc where crimes are committed evegrehLike the law
enforcement agencies, cyber defenders also have to déshwiteat deal of uncer-
tainty, the degree of which is compounded by the nature ofegimg. For example,
it is impossible for a system administrator to know what isngoon within every
computer inside an enterprise network. Even when everyigctin every device
can be logged, there is currently no effective way to protiesdogs due to their
vagueness as attack indicators as well as the sheer volutherof For example,
a log showing SSH log in from an external IP address could o fa legitimate
user, or from an adversary who has stolen a valid user criaflefwt HTTP packet
overflowing a buffer in the web service could be due to an apfibn error or an
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attempt to gain privilege on the server. Cyber defendersad&know who the at-
tackers are nor where they are. Even with the help of intrudietection systems
(IDS), the large number of false positives brings signiftaamcertainty to the true
interpretation of IDS alerts. And there are still false rnegs where some attacks
will not be reported by any IDS sensor. There are plenty ad-zky vulnerabilities
in application software and there is no way to know for suréchvisoftware can be
exploited by an attacker. With the large number of persoo@lputers, laptops con-
nected from home, and various emerging digital devicesib@wppart of enterprise
networks, system administrators can no longer have a gtatigre of the network
topology nor the precise configuration of every device inriewvork. The bottom
line is, itis not possible for cyber defenders to be compfetertain” or “accurate”
about all security-relevant information, yet they need @kendecisions in the se-
curity management process, which is largely manual andoadiese days. Unlike
crimes in the physical world, automation has enabled cyteres to be conducted
at a much higher speed and volume; without significant autioman the defense
side we would not be able to effectively stem the threats.

The uncertainty challenge exists in all three phases ofrcsihgation awareness:
prior security risk management, real-time intrusion detbec and posterior foren-
sics analysis. The nature of uncertainty in these threectéspee slightly different.
In risk management what we are uncertain about is the liketiithat a vulnerabil-
ity exists in a piece of software, the chances that a vulnksaban be exploited
successfully, the possibility that a user may succumb téaseagineering, and so
on. This type of uncertainty is in some sense “static” ancecgsl various kinds of
risks inherent in a system. We call it te&tic uncertaintyThe uncertainty in real-
time situation awareness mostly arises from the invigibihf attackers in cyber
space — it is hard to know where the attackers are and whatehdie(she) has
made in carrying out the attack. As a result all the IDS sensan only capture the
symptomatic phenomena caused by attacks but cannot ghgitiscertain whether
an attack has happened and succeeded. The same problesriexistensics anal-
ysis, with added difficulty caused by the gigantic amount afadbut also more
processing time available compared with the intrusionctate problem. We use
the term “intrusion analysis” to encompass both the proldé&mtrusion detection
and forensics analysis. We call the type of uncertainty ébumintrusion analysis
the dynamic uncertaintysince they are mostly related to dynamic events. We will
focus our discussion on the dynamic uncertainty but wilbdsiefly address the
static uncertainty.

2 Two Approaches to Handling Dynamic Uncertainty

The challenge in handling dynamic uncertainty is how tot§tam imprecise and
limited knowledge about attack possibilities, and quidifythrough large amounts

1 A zero-day vulnerability is one that has not been reportdigly but known by the underground
hackers.
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of log information to identify a small set of data that alttiger makes the picture of
attacks clear. In doing so, the uncertainty about the systeacurity will be drasti-
cally reduced. For example, in many network intrusions, alsnumber of system
logs are often sufficient to show that an attack has certdiapypened, as well as
how it progressed. The difficulty is how to start from uncirtaews of the potential
problem g.g., IDS alertsand quickly search for a few log entries from Terabytes of
them so that the attacker’s trace is clearly shown. Systemirastrators are highly
time-constrained. An automatic tool that can sift througgacean of uncertainty to
quickly and accurately locate the problem areas will be lyighluable in practice.

2.1 Thelogical approach

It has long been recognized that logical relations in compattack conditions are
important to consider in security analysis [5, 12, 52]. Modgof such relations
have yielded various approaches to vulnerability analsig, 10, 13, 18, 19, 25,
27, 36, 39, 38, 44, 45, 50, 51, 53] and IDS alert correlatiqro[ 33, 35, 37, 54].
They have all adopted a somewhat deterministic logic in riogleif the pre-
condition of an attack is true, the post-condition is trudiM/these types of logical
relations are important, they cannot account for the uaggst in cyber security
analysis. For example, an abnormal high network traffic isrofn alert to system
administrators on potential security problems. How can vegleh this in a deter-
ministic logic? Does the observation reflect an attack ag@wVhat is its pre- and
post-conditions? It is hard to give definite answers to thgsstions because many
events (both attack and non-attack activities) could caubegh network traffic.
Another example is zero-day vulnerabilities, which haval#ed a large number of
intrusions into enterprise networks. One cannot make am@iéstic judgment on
whether a piece of software contains a zero-day vulnetghilit has to consider
this possibility in security defense.

2.2 The statistical approach

A natural approach to handling uncertainty is to use stedistmodels, and there
have been numerous attempts of this in the past [4, 11, 1AkeMer, there is

a fundamental limitation in solving the uncertainty prabkein cybersecurity us-
ing statistical modelalone Attackers do not play by rules. They adapt and do not
typically follow a statistical pattern, as demonstratedvhyious forms of evading
techniques [14, 15]. Thus, it is unlikely that statisticabehels alone can provide
high-confidence conclusion on observed security eventgeftleeless, many such
events have a statistical nature. A high network traffic aévg from the statistical
norm gives a valuable hint on potential problems, and thdidence level on the
true causes of such alerts can be statistically describ&alsespositives and false
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negatives. It is important to account for the statisticéfiedénces in various asser-
tions’ confidence level. For example, compared with the aadoos high network

traffic, a netflow filter that shows communication with knowstRet controllersis a

more confident assertion on attacker activity. A simple dfettéve model for such

statistical differences on assertion confidence will halpackling the uncertainty
problem.

To summarize, both deterministic logics and statisticatlet are valuable tools
in cyber defense, but neither alone is sufficient to tackéeuthcertainty challenge.
Combining the two, however, will likely yield a reasoning timed much more pow-
erful than their sum. A reasoning framework that accountdéthlogical relations
and confidence differences among the various assertions withbekey in han-
dling uncertainty in cybersecurity. How to design such anfeavork and apply it
in security analysis is still an open problem. In the next sections we will il-
lustrate two recent attempts at achieving this “marriagegieen logical causality
and uncertainty. Section 3 describes an approach throatiststal graphical model
(Bayesian Network) derived from attack graphs [24]; Sectialescribes a variant of
modal logic empirically developed from studying real irgian incidents [40, 41].

3 From Attack Graphs to Bayesian Networks

To carry out enterprise security analysis, attack grapis bacome the main-stream
approach [3, 18, 19, 20, 26, 38, 50, 51, 53]. An attack grdphktiates all possi-
ble multi-stage attacks in an enterprise network, typycayl presenting the logical
causality relations among multiple privileges and configion settings. Such log-
ical relations araleterministic the bad things will certainly happen in their worst
forms as long as all the prerequisites are satisfied, and ddhdags will happen
if such conditions do not hold. While it is important to unstand such logical re-
lations, the deterministic nature has limited their usermcpical network defense,
especially when uncertainty has to been dealt with suchiagrirsion detection and
response.

3.1 A case study

Let us look at an example as shown in Figure 1, which is based @al intru-
sion [38]. Suppose the following potential attack paths @diseovered after ana-
lyzing the configuration. An attacker first compromisebSer ver by remotely
exploiting vulnerabilityCVE- 2002- 0392 to get local access on the server. Since
webSer ver is allowed to accessi | eSer ver through the NFS protocol, he can
then try to modify data on the file server. There are two waysctoeve this. If there
are vulnerabilities in the NFS service daemons, he can texpdoit them and get
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Fig. 1 An example attack scenario and attack graph.

local access on the machine; or if the NFS export table is etotjg appropriately,
he can modify files on the server through the NFS protocol laygusrograms like
NFS Shef. Once he can modify files on the file server, the attacker csialira
Trojan-horse program in the executable binarie$ bheSer ver that is mounted
by machinenor kSt at i on. The attacker can now wait for an innocent user on
wor kSt at i on to execute it and obtain control on the machine. Portion efai
tack graph corresponding to the above scenario is showrgiré&il (b).

The nodep, and its parentps, pp, p3 express the causality relation in the NFS
Shell attack: if an attacker compromises the web serpg), the web server can
access the file server through the NFS protogg),(and the file server exports a
partition to the web servempg), then the attacker will be able to launch an NFS
Shell attack to access files on the file serm®) (Suppose we want to use this piece
of information in real-time security analysis. When we spthe web server has
been compromised, with how much confidence can we say théitdhen the file
server have been compromised? The answer is far less céwaaithe deterministic
logic of the attack graph. How can we know whether the attabke chosen to
launch this attack? Even if he did so, how can we know the lattas succeeded?
Moreover, how can we account for the real-time observatibasmay be relevant
to the question. For example, a file system integrity cheskeh as Tripwire [22]
may report that certain files have been modified during thegeHow shall we
update our belief about possible attacks given this obfenz

The problem of intrusion analysis is a far more imprecisecgss than deter-
ministic reasoning. We do not know the attacker’'s choices ttihere is the un-
certainty from unknown attacker motivation and behavi@gber attacks are not
always 100% guaranteed to succeed thus there is the umtgrfi@m the imper-

2 A program that provides userlevel access to an NFS  server
(ftp://ftp.cs.vu.nl/publ/leendert/nfsshell.tar.gz)
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fect nature of exploits. The defender’s observations oemt@! attack activities are
limited and as a result we have the uncertainty from falséipes and false nega-
tives of IDS sensors. Nevertheless, the logical causatitpéed in a deterministic
attack graph is invaluable to understand real-time segceviénts, and will be useful
for building practical network defense tools if we cappropriatelyaccount for the

uncertainty inherent in the reasoning process.

3.2 Desired properties of Bayesian Networksin Intrusion Analysis

Recent years have seen a number of attempts at using Bajéstianrks to model
such uncertainty in security analysis [2, 24, 32, 58]. Bayedletwork (BN) [43]
marries the logical structure represented as a directediagyaph (DAG) and the
uncertain nature of reasoning encoded as the conditionalapility table (CPT)
associated with every node in the graph. Using a BN modelgcaneuery for ques-
tions like “how likely a machine has been compromised given the curvéeiece’,
“based on the current observation, what is likely to happed aad what shall |
do to prevent it from happeningand ‘which sensors shall be further investigated
to confirm/rule out attacKs This could yield powerful tools for real-time security
analysisf a BN model can be built that reflects reality. Two key parts in building
a BN are: 1) the graph structure and 2) the CPT parameterse @iack graphs
already provide a graphical model that reflects logical abtysit is natural to base
the BN structure on the attack graph. How to obtain the CP&rpaters has re-
mained a difficult task. We believe the following are dediegtroperties of a BN
model for cyber security analysis:

1. The graphical structure shall modularize and separaieustypes of uncer-
tainty and avoid mingling different types of uncertaintytie same CPT.

2. The majority of CPT parameters shall be computed autcalbtifrom well-
defined and realistic data sources.

3. The BN model shall not be too sensitive to perturbatiorh@nGPT parameters.

Cyber security analysis, unlike other more well-behaved@m domains, does not
naturally lend itself to statistical analysis. We do notédve ground truths in real

traces from which we can learn the large number of CPT paemsiednd the at-

tackers are constantly adapting. As a result the CPT paesisteted to be produced
from often vague and subjective judgments. It is infeasibleask a human user
to assign every CPT parameter for every BN. The vast majofithese numbers

need to be computed automatically from various data sotineg¢seflect the various

types of uncertainty in cyber security. A BN model that madizles and separates
the various types of uncertainty will make this processazaSince those numbers
are imprecise in nature, the result of BN analysis shall matolo sensitive to CPT

parameters.
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3.3 Building BN’s from attack graphs

A Bayesian Network (BN) is a graphical representation oseaand-effect relation-
ships within a problem domain. More formally, a Bayesiannmek is a Directed
Acyclic Graph (DAG) in which: the nodes represent varialdémterest (proposi-
tions); the set of directed links represent the causal inleeamong the variables;
the strength of an influence is represented by conditioraatility tables (CPT).
For example, if we imagine the graph structure in Figure 15bB)Bayesian network,
the nodep, could have the following CPT associated with it.

P1 P2 P3| P4

TTT|08

otherwise 0

If all of p4’s parents are true, the probability pf being true is (8. In all other
cases the probability is of is false). For any node in the DAG, given its parents,
that node is conditionally independent of any other nodeithaot its descendent.
This conditional independence makes a Bayesian networlehzodompact repre-
sentation of the joint probability distribution over theéerested variables. Bayesian
networks can also serve as the inference engine, and canutemificiently any
queries over the variables modeled therein [43].

The semantics of BN's graph structure corresponds to thanddttack graph,
especially a type of attack graphs called “logical attacpd’ [38, 46] where each
vertex is associated with a proposition and the arcs représelogical causality re-
lations between the vertices. We give the meaning of thegsitipns in the example
of Figure 1.

p1 : execCode(webServer,apache)

p2 : reachable(webServer,fileServer, nfsProtocol,nfsPort)
ps : nfsExportinfo(fileServer,/export, write,webServer)

ps : nfsShellAttackAccomplished(fileServer, /export, wyite
ps : localFileAccessAcomplished(fileServer, /export, write
ps : accessFile(fileServer,write,/export)

The vertices are divided into three types. The square esriice the ones that
do not have any parereé.@. p, p3). They typically represent the input to the attack-
graph generator — network reachability, configuratiorisgé, potential vulnerabil-
ities in software applications, security advisories, amas. The diamond vertices
represent privileges an attacker could obtain, such asapsahe’s privilege on the
web server 1) and file modification privilege on the file servag]. Since there
may be more than one way to obtain a privilege, the incomiogiara diamond ver-
tex form a logical OR relation. For examplgs can be enabled by eith@y or ps.
Thus, we call those vertices “OR node”. The elliptic versicen the other hand, rep-
resent the logical AND relations and are called “AND nodeamy attacks can only
be accomplished when multiple pre-conditions are met, kadND nodes capture
this semantics. In the example, the attggkcan be accomplished only when all its
three parents are true, and hence it is an AND node. Such ORIdBdsemantics
can be easily encoded in the CPT’s of a Bayesian network hwhibsumes the de-
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terministic logical relations. Thus there is no need toidgtish the AND/OR node
types when we convert the attack graph to a BN.

If we want to construct a Bayesian Network from an attack bifapreal-time se-
curity analysis, can we simply use the unmodified graph g&ireand attach CPT’s
to all the nodes to capture the uncertainty in reasoning@anbeer is no. For exam-
ple, we know that due to the uncertainty from attacker chgigemay not become
true after all ofps, p2, andps are true simply because the attacker did not choose
to launch the attack. To model this uncertainty under thimaaified graph struc-
ture, we would have to use the CPT associated with qmdélowever, there may
be other reasons why, does not become true after all its parents are true — for
example, the attacker may have chosen to launch the attadkdwattack failed
due to the difficulty nature of the exploit. Such uncertaiatigsing from the inher-
ent nature of a vulnerability will have to be encoded in themse&CPT associated
with ps. Thus the CPT number.® will have a number of contributing factors in
it, which makes the generation and maintenance of the CPanpeters a difficult
task. For example, when we see the same attack activity er @idrts of the net-
work, we may want to increase the likelihood that an attackay choose to use
this attack. But in the unmodified graph structure there igasy way to separate
this attacker-choice uncertainty from the other factoth&CPT number of 8. As
a result this type of correlation cannot be conducted elibggdn this case the BN
structure does not modularize various types of uncertaimtyseparate CPT'’s, and
it violates principal 1 introduced in Section 3.2. This istjone example problem
we have discovered in the current literature on building 8fom attack graphs
for security analysis. We believe a more disciplined BN ¢tarcdion methodology
needs to be studied to better capture the uncertainty irr ogoeirity.

In summary, Bayesian Network provides a promising appréat¢tandle uncer-
tainty in cyber situational awareness. But key challengiggamain as to how to
build/maintain the BN model efficiently. This is still a raly evolving field and in-
terested readers are encouraged to consult the relewanatlite cited in this chapter.

4 An Empirical Approach to Developing a Logic for Uncertainty
in Situation Awareness

While statistical graphical models like Bayesian Netwark theoretically rigorous
and proven effective in other areas of research, when it sammtrusion analysis
they have an un-addressed gap, namely how to set statigicaineters in terms
of hard probability distributions. For security analysisis nearly impossible to
obtain the ground truth in real traces and it is hard if notasgble to realistically
simulate attack scenarios. Similarly, while it would bedbi® characterize intrusion
analysis tools in terms of hard metrics such as alarm corsjoresatio combined
with true and false positive ratios (see [54] for definiti@ml other metrics), it is
impossible to calibrate tools without representative aéth known ground truth.
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At the same time, the fact that human system administratms been using manual
analysis and low-level tools to detect attacks in logs aatitime alerts inspires us
to formulate a logicjn an empirical mannerthat approximates human reasoning
that works with a qualitative assessment on a few confidevedd that are relatively
easy to understand. We acknowledge that this formulatiaronly hides the lack
of knowledge of base probabilities but also reflects thetgiteal of ambiguity that
exists in intrusion analysis of real data. We hope that bgtang an option to specify
the confidence level explicitly and by providing generalpical tools to manipulate
these uncertain pieces of knowledge, we can bypass somesd fandamental
problems and gain experience that may make some statiappabaches viable in
the future.

4.1 A case study

We first show a case study we conducted by interviewing a sysigministrator
for a university campus network. He told us about how he ifledtcompromised
machines on the campus network during a security incidehigciwwas due to a
zero-day vulnerability in the TrendMicro anti-malware\gee. All the reasoning
and correlation was done manually but was very effective.thém identify the
rationale behind the decisions he made at various pointsdasign a logic that
captures this reasoning process. The logic is capable afingruncertainty which
is crucial for real-time security analysis, since the obatons are often vague and
limited, and we do not know where the attacker is and whateg®he made in an
attack.

4.1.1 Scenario description

The scenario is illustrated in Figure 2(1), and describdoviaeSystem Administra-
tor (SA) noticed an abnormal increase in campus-netwofidr@Observation L
SA took the netflow dump for that time period and ran a packptwa tool on it
to search for known malicious IP addresses, and identifiadftur Trend Micro
servers initiated IRC connection to some known BotNet aileirs (Observation
2). SA hence determined that the four TrendMicro serverdylikead been com-
promised. He sat down at one of them and dumped the memony, irfleich he
found what appeared to be malicious co@$ervation 3 He also looked up for
all the open TCP socket connections and noticed that theisead been connecting
to some other Trend Micro servers on campus through the IR@re# Observa-
tion 4). He hence determined that those servers were also conmgadntie did the
same thing for the other identified servers and found morepcomised servers.
Altogether he identified 12 compromised machines and toemtbff line.

We observe that all the alerts above contain some amountoefrtainty regard-
ing their implication. Observation 1 could just mean sonersistarted downloading
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Fig. 2 Case study and vision for automated situation awareness

movies through BitTorrent. Observation 2 has a higher degfdikelihood that the
identified servers are compromised, but simply an IRC cotmeto a known Bot-
Net controller does not necessarily mean the machine hasdwmepromised. For
example, it could be that some system admin was probing Batgrollers for re-
search purposes. (The interviewed system administratoalcdoes this himself.)
Observation 3 is also a strong indication that the machiséeen controlled by an
attacker. But it is not always easy to determine whether pisiasis module found
in the memory dump is indeed malicious, especially with zeag vulnerabilities as
in this case. So this alert also contains some amount of fadsiive. Observation
4, like observation 2, cannot directly prove that the maebiobserved are under the
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control of attackers. However, when we put all the four pseafevidence together,
it becomes clear that an attack has certainly happened &edexed, and we can
tell with almost certainty which machines have been compgeth We observe two
key components in human reasoning on uncertain informatipfrom the current
beliefs based on the current observation, use logical néagdo determine what
additional observation could help to “strengthen” the dfsli confidence; 2) from
a large number of possibilities, derive a high-confidendebeorroborated by a
number of complementary evidences logically linked togetkor example, even
though the SA was not sure whether the abnormal high trafiityrandicated an
attack, he knew that this observation is logically linkedch&gwork activity, which
can also be observed by netflow dump. When from the netflow dhmprendMi-
cro servers were shown to communicate with malicious |P estdis, and from the
memory dump a potentially malicious code module was foulnel tivo pieces of
evidence both indicated that the server was likely compserdithus strengthening
the belief’s confidence to almost certain.

4.2 Encoding the case study in logic

Figure 2(2) presents a high-level view of the reasoning &aork. The framework
consists of two layers: observations and an internal reaganodel, both with un-
certainty. The observations are from system monitoring dach as IDS alerts,
netflow dumps, syslogetc. They are mapped into the internal reasoning model as
conditions representing unobservable security statugmninterest. For example,
abnormal high traffic is an observation, anah attacker is perforning
some network activity is an internal condition. Logical relations exist between
observations and internal conditions with varying degodegrtainty. For example,
we can sayabnormal high traffic indicates the possibility that an
attacker is perforning some network activity. Anotherexamplenet flow
dunp showi ng a host comuni cating with known BotNet controllers
indicates that an attacker likely has compromi sed the host. Likewise,
there are logical relations among the various internal tmms$ and these relations
contain varying degrees of certainty as well. For examphe, can sayfter an
attacker conprom sed a nmachine, he may possibly perform sone network
activity fromthe machine,andafter an attacker sends an exploit to

a machine, he will Iikely conprom se the machi ne. These statements cap-
ture the rationale behind human reasoning when manuakgtieg intrusions from
the logs. The internal model is analogous to a human brain servhtions are re-
flected into a human'’s thinking as beliefs with varying stys, and the beliefs are
related to one another with varying strengths as well. Wegdésgical rules to
capture both aspects and a formalized reasoning proceissuilate human’s think-
ing such that 1) we can target observations to a small sulisdt possible data
through hints provided by the internal reasoning procesa/e2can sift through the
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uncertain observations and internal conditions to reagh-hbnfidence beliefs for
situation awareness.

4.2.1 Notations

There are two types of facts in our logic: those for obseovetiand those for in-
ternal conditions. We usebgF) to denote a fact about observations, amtdF) to
denote a fact about internal conditions. For example,
obgnetflowBlackListFiltef17216.9.20,1297.10.5)) is an observation from the
netflow blacklist filter that machine 1716.9.20 is communicating with a known
malicious IP address 12R10.5, andint(compromise(l7216.9.20)) is an internal
condition that machine 1726.9.20 has been compromised. We use three modality
operatorsp, |, ¢, standing for “possible, likely, certain” to express diffat confi-
dence levelsp represents low confidenckrepresents high confidence, aads
the almost certainty which is the goal of situation awaren&ke logic formulation
consists of two partobservation correspondeneehich maps observations to in-
ternal conditions, anthternal modethat captures logical relations among internal
conditions. The two parts for this example are shown in Fegand 4 respectively.

: obganomalyHighTraffi¢ LR int(attackerNetActivity

: obgnetflowBlackListFiltefH, BlackListedIP) LN int(attackerNetActivity

: obgnetflowBlackListFiltefH, BlackListedIP) LN int(compromise(H))

: obs(memoryDumpMaIiciousCode(b-Ir)'—> int(compromise(H))

: obgmemoryDumplRCSocKet;, Hy)) LN int(exchangeCtIMessagid;, Hy))

Feeer

Fig. 3 Observation correspondence

4.2.2 Observation correspondence

Observation correspondence gives a “meaning” to an ohsenyan the form of
internal conditions. For example, A& an abnormal high network traffi@gomaly-
HighTraffic) is mapped tont(attackerNetActivity, meaning an attacker is perform-
ing some network activity. This is a low-confidence judgménis the modality
operator isp. Intuitively the p mode means there is other equally possible inter-
pretations for the same observation. RAleand Az give the meaning to an alert
identified in a netflow analysis. There are a number of filgetimols available that
can search for potential malicious patterns in a netflow diwsuaph as “capture dae-
mon” and “flow-nfilter”. This rule deals with one filter thatédtifies communication
with known malicious IP addresses. Since any such actigitystrong indication of
attacker activity and the fact that the machine involvedit®en compromised, the
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modality of the two rules i. There are still other possibilities,g, the communica-
tion could be issued by a legitimate user who wants to find omtething about the
malicious IP address. But the likelihood of that is signifitta lower than what is
represented by the righthand side of the two rules. Ruylkgays if memory dump on
machineH identifies malicious code, thet is likely to be compromised. Rul&s
says that if the memory dump identifies open IRC sockets ketweachingd; and
Hy, then it is possible that the IRC channel is used to exchaogea messages
between BotNet machines.

We present these observation correspondence rules ngi¢gtesveryone would
agree on them. For example, some reader may think the mpdélitile A4 shall
be c. This is completely OK. One advantage of such a logic is théddilitates
discussion and sharing of security knowledge. Empiricakeiences from a large
community can help tune the modality parameters in thossrilfe envision a rule
repository model like that for Sndrtwhere a community of participants contribute
and agree upon a set of rules in an open language. Curreatly #éne only coarse-
grained classification and some natural-language exptarsfior the meanings be-
hind each Snort alert. The logic language can be used by the Bre writers to
develop a number of internal-model predicates so that tiseroation correspon-
dence rules provide meanings to the various IDS alerts,iwtao then be reasoned
about automatically.

I1 : int(compromise¢Hs )) pe, int(sendExploitH1, Hy))
I> 1 int(sendExploitH1, H2)) le, int(compromise(H,))

I3 : int(compromise(H; )), int(compromisetHs )) = int(exchangeCtiMessagd; , Hy))

Fig. 4 Internal model

4.2.3 Internal model

The ™™ operator in the internal model represents the “leads tadti@iship be-
tween internal conditions, and as a result the arrow musli¢peeal with time: since
the righthand side is caused by the lefthand side, it mugtérapo earlier than the
lefthand side. However, theasoningcan go along both directions, and hence two
modality operatorsny, mp) are associated with each rule. For example, Fugays

“if an attacker has compromised machkig he can send an exploit frokh to an-
other machinéd,.” The forward reasoning has a low certainty: the attackey ora
may not choose to send an exploit after compromising a meacfiinus the forward
reasoning is qualified by themodality. Reasoning on the reverse direction however
has thec modality: if an attacker sends an exploit from one machinantther, he

3 A widely used network intrusion detection system: httpwiwsnort.org/
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shall have already compromised the first machine. Inlgylhe fact that an attacker
sends an exploit to a machine leads to the compromise of thhirmea The forward
reasoning is also not certain, since the exploit may faikexcete on the target host.
We have used the confidence leVel- attackers typically make sure their exploit
will likely work before using it in an attack. On the other elition, sending in a
remote exploit is just one of many possible ways to compreraifiost. Thus the
reverse reasoning fdp has thep modality. I3 is the only rule in this model that
has two facts on the lefthand side. Like in typical logicgmamming languages,
the comma represents the AND logical relation. The forwardation has thep
modality: if an attacker compromised two machimisH,, the two machines can
possibly exchange BotNet control messages between theoaotdinate further at-
tacks. The backward direction has thenodality: if two machines are exchanging
BotNet control messages, both of them must have been congEdm

The above logical formulation is encoded in Prolog and aipiehry deduction
system is implemented to simulate the “confidence stremgilgéprocess in human
reasoning. The key deduction rule for this is shown below.

int(F,1) < Pf, int(F,1) < Pf, Pf| Pk
int(F, c) «< strengthenedRPf;, Pf,)

We useint(F,m) < Pf to indicate the internal fadt is true with modalitym,
and Pf is the proof which shows the derivation steps in the logiivarg at the
conclusion. Thd| relation indicates two proofs aredependentwhich is defined
as sharing no common observations and internal facts. Tddsation rule states
that if we have two disjoint reasoning traces to reach a féttt @onfidence levell,
then the fact’s confidence level can be boosted fBhe application of this simple
reasoning engine has already shown interesting results [41

This is just the first small step towards achieving the vigicesented in Figure 2.
There are still great challenges ahead and significantnaseéforts are needed to
tackle these challenges. Detailed technical descriptitétmeoapproach can be found
in some recent manuscripts [40, 41].

4.3 Comparison with previous approaches

There have been numerous approaches to intrusion alerslatan proposed in
the past[7, 9, 33, 35, 37, 54]. They provide important intsdhto logical causality
relations in IDS alerts, but fall short of a systematic solutto the real-time se-
curity analysis problem due to: 1) the lack of capabilitiesiepresenting varying
degrees of uncertainty in assertions derived from systemitoring data and using
these uncertain judgments to reach (almost) certain ceiaclg, and 2) the lack of
a unified framework capable of handlilagy security-relevant information — not
just IDS alerts.



Uncertainty and Risk Management in Cyber Situational Awess 15

The confidence level about “true” system conditions derifrech an observa-
tion varies depending on the nature of the observation. Ackeylenge in situation
awareness is how to sift through the ocean of uncertain eaen and reach a con-
clusion with high confidence. To this end it is necessary stitjuish the different
confidence levels in the reasoning process. £Zhai.[58] uses Bayesian networks
to correlate complementary intrusion evidence from botl I&lerts and system
monitoring logs so that highly confident traces can be distished from less con-
fident ones. However, one big question in such statisticaletsois how to obtain
the numerical parameters, such as the conditional pratyataibles (CPT) associ-
ated with every node in a BN which may affect the analysislte$he paper pre-
sented a formulation for computing the CPT entries but iaisfifom clear how the
computation can be justified theoretically or validated gioglly. In comparison,
the approach discussed above represents the variousioehtaiels qualitatively as
modality operators, and the uncertainty levels are diyéctégrated into the reason-
ing process. As a result the reasoning system will have newerdge on utilizing
the varying degrees of uncertainty to make better decisions

Another drawback of the previous approaches is that then&ag models often
center around IDS alerts with pre- and postconditions. Whlislimit the model’s
capability to reason about a larger variety of system momigodata. As illustrated
in our case study, in some intrusions IDS alerts only playrtie of triggering in-
vestigation. Sometimes there is no IDS alert at all eitheabee there are no IDS
devices deployed or the IDS devices missed the attack coehpl&et the system
administrator was still able to trace to the compromisedhimes. Moreover, in our
case study we found it very difficult to come up with a pre- anstpondition model
for every possible observation. For example, what shalhkepte- and postcondi-
tions for an abnormal high network traffic? There are too mpogsibilities and
a single pre- and postcondition won't be sufficient. Centgthe reasoning model
around IDS alerts with pre- and postconditions will likelgdome inflexible when
more types of system monitoring information need to be idetlin the reasoning
process. In comparison, the observation correspondendelrmoour logic gives a
meaning taany observation (not just IDS alert). This model is more diréagives
an observation a meaning about itself, instead of a meanitagins of other condi-
tions that can be logically linked to it. Another general rabfbr incorporating all
possible types of data in security analysis is M2D2 [33]. @aned with M2D2, our
model is much more simple. For example, we do not classifyrinhtion into vari-
ous categories with mathematical notations such as fumetad relations. Rather,
everything in our model is just a simple “statement” — ond tam be easily trans-
lated into natural language. Such simplicity in modeling slaown the advantage in
incorporating a large variety of security-relevant infation. Also M2D2 is not able
to represent the varying degrees of uncertainty levelsuli$ef security analysis.
Given the complexity of cyber attacks and the large numbeysfem monitoring
tools, it is important to have a simple logic that can encdbeassible types of se-
curity relevant information and capture the uncertain reatd such data’s meanings
in security analysis.
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The limitation of statistical models has been discussedreefnstead of directly
applying these existing models, we propose to start frombtiitom and design
a logic that approximates human reasoning. Unlike qudivitgrobabilities, the
qualitative assessment on confidence levels such as “pessiikely”, and “cer-
tain” are relatively easy to be understood and used by humperes. As the first
step we design a logic witmodality operator$that capture the various qualitative
confidence levels in reasoning about situation awarendsgdssible that this logic
derived from empirical study can be refined and re-formdlinesome existing sta-
tistical models described above, the well-studied theasiemodal logic [23], or a
combination of both. Another advantage of the logical apphas that the justifica-
tion for a conclusion can be generated in the form of logicabfs. This makes it
clear what conditions are used and what assumptions areimasgching the con-
clusion. How to produce such justification is far less obsigustatistical models.

5 Static Uncertainty and Risk Management

Another important aspect of uncertainty in cyber situatovareness is the static
uncertainty or the inherentrisk in a system. Analysis andagament of such risks
is especially crucial to make sensible decisions in secimitestment. This has be-
come a critical challenge in security management sincergnge networks have
become essential to the operation of companies, laboeatamiversities, and gov-
ernment agencies. As they continue to grow both in size amp&xity, vulnerabil-
ities are regularly discovered in software applicationscitare exploited to stage
cyber attacks. Currently, management of security risk o€miterprise network is
an art and not a science. There is no objective way to mealsarsecurity of an
enterprise network. As a result it is difficult to answer suglestions as “are we
more secure than yesterday”, or “how should we invest outdishresources to im-
prove security”, or “how does this vulnerability impact tbeerall security of my
system”. By increasing security spending an organizateondecrease the risk as-
sociated with security breaches. However, to do this tridealysis there is a need
for quantitative models of security instead of the currardlative models.

The issue of security metrics has long attracted much atef21, 29, 30], and
recent years have seen significant effort on the developofepiantitative security
metrics [1, 6, 8, 28, 34, 42, 47]. However, we are yet to eshlvhetrics that can
objectively quantify security risk. Part of the reason iattthe treatment on many
aspects of security still stays at the deterministic lekFel. example, resistance to
attacks is often regarded as binary: an attack is either $sipte or trivial. This
is remote from realistic security management, where onagdadmit the varying
degrees of exploit difficulty levels to distinguish more imment threats from less
ones.

4 Similar to the modality operators in modal logic [23].
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5.1 CVSS metrics

The Common Vulnerability Scoring System (CVSS) [31, 49]vyides an open
framework for communicating the characteristics and ingpatIT vulnerabilities.
CVSS consists of three metric groups: Base, Temporal anaddfmaental. Each of
this group produces a vector of compressed textual repiaganthat reflects var-
ious properties of the vulnerabilityretric vecto). A formula takes the vector and
produces a numeric score in the range of 0 to 10 indicatingekerity of the vul-
nerability. The mostimportant contribution of CVSS is thetnic vector: it provides
a wide range of vulnerability properties that are the bamislériving the numerical
scores. We use the term “CVSS metrics” to denote the metdtorvgand the term
“CVSS scores” to denote the numerical scores. Any CVSS soos be published
along with the CVSS metrics. The CVSS metrics convey mudterignformation
than the numerical scores and are closer to measurablerpesga a vulnerability.

AC metrigDescription

High Specialized access conditions exist.

Medium |The access conditions are somewhat specialized.

Low Specialized access conditions or extenuating circumsgado not exist.
(a) The CVSS Access Complexity Metric

E metric Description

Unproven (U) No exploit code is available, or an exploit is entirely thetaral.
Proof-of- Concept (POCProof-of-concept exploit code or an attack demonstratiat ts no
practical for most systems is available. The code or teclnig no
functional in all situations and may require substantiatlification by
a skilled attacker.

Functional (F) Functional exploit code is available. The code works in nsdsgtions
where the vulnerability exists.
High (H) Either the vulnerability is exploitable by functional mtbiau-

tonomous code, or no exploit is required (manual trigged @etails
are widely available. The code works in every situation,soagtively
being delivered via a mobile autonomous agent (such as a worm
virus).

(b) The CVSS Exploitability Metric

Table 1 Example CVSS metrics

The Base group represents the intrinsic and fundamentahctesistics of the
vulnerability that are constant over time and user enviremis. The Temporal group
represents the characteristics of vulnerability that gleamver time but not among
user environments. The Environmental group representsiidi@cteristics of a vul-
nerability that are relevant and unique to a particular eseironment. Generally,
the base and temporal metrics are specified by vulnerabllitietin analysts, se-
curity product vendors, or application vendors becausg tyically have better
information about the characteristics of a vulnerabilitglahe most up-to-date ex-
ploit technology than do users. The environmental methiogyever, are specified
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by users because they are best able to assess the poteptat iofi a vulnerability
within their own environments. We observe that how a vulbiitg may impact the
security of an enterprise network can only be assessed vigesetcurity interac-
tions among components of the network are taken into acc8imte attack graphs
capture security interactions within an enterprise nekwibis possible that the Ba-
sic and Temporal metrics can be used in combination witltlatieaphs to compute
a cumulative risk metric for an enterprise network.

As some examples, th&ccess Complexity (AChetric in the Base group and
the Exploitability (E) metric in the Temporal group are shown in Table 1. The AC
metric gauges the complexity of exploiting a vulnerabiliggsed on whether spe-
cial conditionsg.g.certain race conditions, are necessary to successfullgieipe
vulnerability. A “High” AC metric indicates a vulnerabijitis inherently difficulty
to exploit, and thus will likely have a low success likelitbd’he E metric mea-
sures the current state of exploit techniques or code &ititya Public availability
of easy-to-use exploit code increases the number of patattackers by includ-
ing those who are unskilled, thereby increasing the vulnitgs overall success
likelihood.

5.2 Combining CVSS and Attack Graphs

The main limitation of CVSS is that it provides scoring of iwidual vulnerabilities
but it does not provide a sound methodology for aggregatiegnetrics for a set
of vulnerabilities in a network to provide an overall netweaecurity score. For
example, there can be a situation in which the individuahetebility scores are low
but they can be combined to compromise a critical resourtce overall security of
a network configuration running multiple services cannotibermined by simply
counting the number of vulnerabilities or adding up the C\68&es. Attack graphs
can be used to model causal relationship among vulneiabilRecent years have
seen a number of attempts at calculating quantitative oselry combining CVSS
metrics on attack graphs [16, 48, 55, 56, 57]. We expect tegtet models can also
be used to suggest configuration changes that mitigate tbat#to an enterprise.

6 Conclusion

Both aspects of uncertainty: static uncertainty and dynamcertainty, are impor-
tant in cyber situational awareness. We discussed two gioghapproaches to ad-
dressing the dynamic uncertainty challenge, and brieflpthiced the CVSS met-
rics which can be used in combination with attack graphs tiress the static un-
certainty challenge for automated risk management. Thearek for systematically
handling uncertainty and risk in cyber space is still in diprmary stage. However,
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without addressing this problem in a scientific manner, itlé difficult to achieve
sustainable cyber defense.
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