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Uncertainty and Risk Management in Cyber
Situational Awareness

Jason Li, Xinming Ou, and Raj Rajagopalan

Abstract Handling cyber threats unavoidably needs to deal with both uncertain and
imprecise information. What we can observe as potential malicious activities can
seldom give us 100% confidence on important questions we careabout,e.g.what
machines are compromised and what damage has been incurred.In security plan-
ning, we need information on how likely a vulnerability can lead to a successful
compromise to better balance security and functionality, performance, and ease of
use. These information are at best qualitative and are oftenvague and imprecise. In
cyber situational awareness, we have to rely on such imperfect information to detect
real attacks and to prevent an attack from happening throughappropriate risk man-
agement. This chapter surveys existing technologies in handling uncertainty and risk
management in cyber situational awareness.

1 Reasoning about Uncertainty is a Necessity

In the physical world it is commonplace that one must deal with uncertainty when
security is concerned. For example, law enforcement agencies do not (and cannot)
know every aspect of every individual citizen’s life. But when a crime is commit-
ted there are effective investigative methods to capture the perpetrators. As a result
we are not living in havoc where crimes are committed everywhere. Like the law
enforcement agencies, cyber defenders also have to deal with a great deal of uncer-
tainty, the degree of which is compounded by the nature of computing. For example,
it is impossible for a system administrator to know what is going on within every
computer inside an enterprise network. Even when every activity on every device
can be logged, there is currently no effective way to processthe logs due to their
vagueness as attack indicators as well as the sheer volume ofthem. For example,
a log showing SSH log in from an external IP address could be from a legitimate
user, or from an adversary who has stolen a valid user credential. An HTTP packet
overflowing a buffer in the web service could be due to an application error or an
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attempt to gain privilege on the server. Cyber defenders do not know who the at-
tackers are nor where they are. Even with the help of intrusion detection systems
(IDS), the large number of false positives brings significant uncertainty to the true
interpretation of IDS alerts. And there are still false negatives where some attacks
will not be reported by any IDS sensor. There are plenty of zero-day vulnerabilities1

in application software and there is no way to know for sure which software can be
exploited by an attacker. With the large number of personal computers, laptops con-
nected from home, and various emerging digital devices becoming part of enterprise
networks, system administrators can no longer have a staticpicture of the network
topology nor the precise configuration of every device in thenetwork. The bottom
line is, it is not possible for cyber defenders to be completely “certain” or “accurate”
about all security-relevant information, yet they need to make decisions in the se-
curity management process, which is largely manual and ad-hoc these days. Unlike
crimes in the physical world, automation has enabled cyber crimes to be conducted
at a much higher speed and volume; without significant automation on the defense
side we would not be able to effectively stem the threats.

The uncertainty challenge exists in all three phases of cyber situation awareness:
prior security risk management, real-time intrusion detection, and posterior foren-
sics analysis. The nature of uncertainty in these three aspects are slightly different.
In risk management what we are uncertain about is the likelihood that a vulnerabil-
ity exists in a piece of software, the chances that a vulnerability can be exploited
successfully, the possibility that a user may succumb to social engineering, and so
on. This type of uncertainty is in some sense “static” and reflects various kinds of
risks inherent in a system. We call it thestatic uncertainty. The uncertainty in real-
time situation awareness mostly arises from the invisibility of attackers in cyber
space — it is hard to know where the attackers are and what choices he(she) has
made in carrying out the attack. As a result all the IDS sensors can only capture the
symptomatic phenomena caused by attacks but cannot positively ascertain whether
an attack has happened and succeeded. The same problem exists for forensics anal-
ysis, with added difficulty caused by the gigantic amount of data but also more
processing time available compared with the intrusion detection problem. We use
the term “intrusion analysis” to encompass both the problemof intrusion detection
and forensics analysis. We call the type of uncertainty found in intrusion analysis
thedynamic uncertainty, since they are mostly related to dynamic events. We will
focus our discussion on the dynamic uncertainty but will also briefly address the
static uncertainty.

2 Two Approaches to Handling Dynamic Uncertainty

The challenge in handling dynamic uncertainty is how to start from imprecise and
limited knowledge about attack possibilities, and quicklysift through large amounts

1 A zero-day vulnerability is one that has not been reported publicly but known by the underground
hackers.
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of log information to identify a small set of data that altogether makes the picture of
attacks clear. In doing so, the uncertainty about the system’s security will be drasti-
cally reduced. For example, in many network intrusions, a small number of system
logs are often sufficient to show that an attack has certainlyhappened, as well as
how it progressed. The difficulty is how to start from uncertain views of the potential
problem (e.g., IDS alerts) and quickly search for a few log entries from Terabytes of
them so that the attacker’s trace is clearly shown. System administrators are highly
time-constrained. An automatic tool that can sift through the ocean of uncertainty to
quickly and accurately locate the problem areas will be highly valuable in practice.

2.1 The logical approach

It has long been recognized that logical relations in computer attack conditions are
important to consider in security analysis [5, 12, 52]. Modeling of such relations
have yielded various approaches to vulnerability analysis[3, 7, 10, 13, 18, 19, 25,
27, 36, 39, 38, 44, 45, 50, 51, 53] and IDS alert correlation [7, 9, 33, 35, 37, 54].
They have all adopted a somewhat deterministic logic in modeling: if the pre-
condition of an attack is true, the post-condition is true. While these types of logical
relations are important, they cannot account for the uncertainty in cyber security
analysis. For example, an abnormal high network traffic is often an alert to system
administrators on potential security problems. How can we model this in a deter-
ministic logic? Does the observation reflect an attack activity? What is its pre- and
post-conditions? It is hard to give definite answers to thesequestions because many
events (both attack and non-attack activities) could causea high network traffic.
Another example is zero-day vulnerabilities, which have enabled a large number of
intrusions into enterprise networks. One cannot make a deterministic judgment on
whether a piece of software contains a zero-day vulnerability, but has to consider
this possibility in security defense.

2.2 The statistical approach

A natural approach to handling uncertainty is to use statistical models, and there
have been numerous attempts of this in the past [4, 11, 17]. However, there is
a fundamental limitation in solving the uncertainty problems in cybersecurity us-
ing statistical modelsalone. Attackers do not play by rules. They adapt and do not
typically follow a statistical pattern, as demonstrated byvarious forms of evading
techniques [14, 15]. Thus, it is unlikely that statistical models alone can provide
high-confidence conclusion on observed security events. Nevertheless, many such
events have a statistical nature. A high network traffic deviating from the statistical
norm gives a valuable hint on potential problems, and the confidence level on the
true causes of such alerts can be statistically described asfalse positives and false
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negatives. It is important to account for the statistical differences in various asser-
tions’ confidence level. For example, compared with the anomalous high network
traffic, a netflow filter that shows communication with known BotNet controllers is a
more confident assertion on attacker activity. A simple and effective model for such
statistical differences on assertion confidence will help in tackling the uncertainty
problem.

To summarize, both deterministic logics and statistical models are valuable tools
in cyber defense, but neither alone is sufficient to tackle the uncertainty challenge.
Combining the two, however, will likely yield a reasoning method much more pow-
erful than their sum. A reasoning framework that accounts for bothlogical relations
and confidence differences among the various assertions will bethe key in han-
dling uncertainty in cybersecurity. How to design such a framework and apply it
in security analysis is still an open problem. In the next twosections we will il-
lustrate two recent attempts at achieving this “marriage” between logical causality
and uncertainty. Section 3 describes an approach through statistical graphical model
(Bayesian Network) derived from attack graphs [24]; Section 4 describes a variant of
modal logic empirically developed from studying real intrusion incidents [40, 41].

3 From Attack Graphs to Bayesian Networks

To carry out enterprise security analysis, attack graphs have become the main-stream
approach [3, 18, 19, 20, 26, 38, 50, 51, 53]. An attack graph illustrates all possi-
ble multi-stage attacks in an enterprise network, typically by presenting the logical
causality relations among multiple privileges and configuration settings. Such log-
ical relations aredeterministic: the bad things will certainly happen in their worst
forms as long as all the prerequisites are satisfied, and no bad things will happen
if such conditions do not hold. While it is important to understand such logical re-
lations, the deterministic nature has limited their use in practical network defense,
especially when uncertainty has to been dealt with such as inintrusion detection and
response.

3.1 A case study

Let us look at an example as shown in Figure 1, which is based ona real intru-
sion [38]. Suppose the following potential attack paths arediscovered after ana-
lyzing the configuration. An attacker first compromiseswebServer by remotely
exploiting vulnerabilityCVE-2002-0392 to get local access on the server. Since
webServer is allowed to accessfileServer through the NFS protocol, he can
then try to modify data on the file server. There are two ways toachieve this. If there
are vulnerabilities in the NFS service daemons, he can try toexploit them and get
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Fig. 1 An example attack scenario and attack graph.

local access on the machine; or if the NFS export table is not set up appropriately,
he can modify files on the server through the NFS protocol by using programs like
NFS Shell2. Once he can modify files on the file server, the attacker can install a
Trojan-horse program in the executable binaries onfileServer that is mounted
by machineworkStation. The attacker can now wait for an innocent user on
workStation to execute it and obtain control on the machine. Portion of the at-
tack graph corresponding to the above scenario is shown in Figure 1 (b).

The nodep4 and its parentsp1, p2, p3 express the causality relation in the NFS
Shell attack: if an attacker compromises the web server (p1), the web server can
access the file server through the NFS protocol (p2), and the file server exports a
partition to the web server (p3), then the attacker will be able to launch an NFS
Shell attack to access files on the file server (p4). Suppose we want to use this piece
of information in real-time security analysis. When we suspect the web server has
been compromised, with how much confidence can we say that thefiles on the file
server have been compromised? The answer is far less certainthan the deterministic
logic of the attack graph. How can we know whether the attacker has chosen to
launch this attack? Even if he did so, how can we know the attack has succeeded?
Moreover, how can we account for the real-time observationsthat may be relevant
to the question. For example, a file system integrity checkersuch as Tripwire [22]
may report that certain files have been modified during the period. How shall we
update our belief about possible attacks given this observation?

The problem of intrusion analysis is a far more imprecise process than deter-
ministic reasoning. We do not know the attacker’s choices thus there is the un-
certainty from unknown attacker motivation and behaviors.Cyber attacks are not
always 100% guaranteed to succeed thus there is the uncertainty from the imper-

2 A program that provides user-level access to an NFS server
(ftp://ftp.cs.vu.nl/pub/leendert/nfsshell.tar.gz)
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fect nature of exploits. The defender’s observations on potential attack activities are
limited and as a result we have the uncertainty from false positives and false nega-
tives of IDS sensors. Nevertheless, the logical causality encoded in a deterministic
attack graph is invaluable to understand real-time security events, and will be useful
for building practical network defense tools if we canappropriatelyaccount for the
uncertainty inherent in the reasoning process.

3.2 Desired properties of Bayesian Networks in Intrusion Analysis

Recent years have seen a number of attempts at using BayesianNetworks to model
such uncertainty in security analysis [2, 24, 32, 58]. Bayesian Network (BN) [43]
marries the logical structure represented as a directed acyclic graph (DAG) and the
uncertain nature of reasoning encoded as the conditional probability table (CPT)
associated with every node in the graph. Using a BN model, onecan query for ques-
tions like “how likely a machine has been compromised given the current evidence”,
“based on the current observation, what is likely to happen next and what shall I
do to prevent it from happening”, and “which sensors shall be further investigated
to confirm/rule out attacks”. This could yield powerful tools for real-time security
analysisif a BN model can be built that reflects reality. Two key parts in building
a BN are: 1) the graph structure and 2) the CPT parameters. Since attack graphs
already provide a graphical model that reflects logical causality, it is natural to base
the BN structure on the attack graph. How to obtain the CPT parameters has re-
mained a difficult task. We believe the following are desirable properties of a BN
model for cyber security analysis:

1. The graphical structure shall modularize and separate various types of uncer-
tainty and avoid mingling different types of uncertainty inthe same CPT.

2. The majority of CPT parameters shall be computed automatically from well-
defined and realistic data sources.

3. The BN model shall not be too sensitive to perturbation on the CPT parameters.

Cyber security analysis, unlike other more well-behaved problem domains, does not
naturally lend itself to statistical analysis. We do not have the ground truths in real
traces from which we can learn the large number of CPT parameters, and the at-
tackers are constantly adapting. As a result the CPT parameters need to be produced
from often vague and subjective judgments. It is infeasibleto ask a human user
to assign every CPT parameter for every BN. The vast majorityof these numbers
need to be computed automatically from various data sourcesthat reflect the various
types of uncertainty in cyber security. A BN model that modularizes and separates
the various types of uncertainty will make this process easier. Since those numbers
are imprecise in nature, the result of BN analysis shall not be too sensitive to CPT
parameters.
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3.3 Building BN’s from attack graphs

A Bayesian Network (BN) is a graphical representation of cause-and-effect relation-
ships within a problem domain. More formally, a Bayesian network is a Directed
Acyclic Graph (DAG) in which: the nodes represent variablesof interest (proposi-
tions); the set of directed links represent the causal influence among the variables;
the strength of an influence is represented by conditional probability tables (CPT).
For example, if we imagine the graph structure in Figure 1 (b)is a Bayesian network,
the nodep4 could have the following CPT associated with it.

p1 p2 p3 p4

T T T 0.8
otherwise 0

If all of p4’s parents are true, the probability ofp4 being true is 0.8. In all other
cases the probability is 0 (p4 is false). For any node in the DAG, given its parents,
that node is conditionally independent of any other node that is not its descendent.
This conditional independence makes a Bayesian network model a compact repre-
sentation of the joint probability distribution over the interested variables. Bayesian
networks can also serve as the inference engine, and can compute efficiently any
queries over the variables modeled therein [43].

The semantics of BN’s graph structure corresponds to that ofan attack graph,
especially a type of attack graphs called “logical attack graph” [38, 46] where each
vertex is associated with a proposition and the arcs represent the logical causality re-
lations between the vertices. We give the meaning of the propositions in the example
of Figure 1.

p1 : execCode(webServer,apache)
p2 : reachable(webServer,fileServer, nfsProtocol,nfsPort)
p3 : nfsExportInfo(fileServer,/export, write,webServer)
p4 : nfsShellAttackAccomplished(fileServer, /export, write)
p5 : localFileAccessAcomplished(fileServer, /export, write)
p6 : accessFile(fileServer,write,/export)

The vertices are divided into three types. The square vertices are the ones that
do not have any parent (e.g. p2, p3). They typically represent the input to the attack-
graph generator — network reachability, configuration settings, potential vulnerabil-
ities in software applications, security advisories, and so on. The diamond vertices
represent privileges an attacker could obtain, such as userapache’s privilege on the
web server (p1) and file modification privilege on the file server (p6). Since there
may be more than one way to obtain a privilege, the incoming arcs to a diamond ver-
tex form a logical OR relation. For example,p6 can be enabled by eitherp4 or p5.
Thus, we call those vertices “OR node”. The elliptic vertices, on the other hand, rep-
resent the logical AND relations and are called “AND node”. Many attacks can only
be accomplished when multiple pre-conditions are met, and the AND nodes capture
this semantics. In the example, the attackp4 can be accomplished only when all its
three parents are true, and hence it is an AND node. Such OR andAND semantics
can be easily encoded in the CPT’s of a Bayesian network, which subsumes the de-
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terministic logical relations. Thus there is no need to distinguish the AND/OR node
types when we convert the attack graph to a BN.

If we want to construct a Bayesian Network from an attack graph for real-time se-
curity analysis, can we simply use the unmodified graph structure and attach CPT’s
to all the nodes to capture the uncertainty in reasoning? Theanswer is no. For exam-
ple, we know that due to the uncertainty from attacker choice, p4 may not become
true after all ofp1, p2, andp3 are true simply because the attacker did not choose
to launch the attack. To model this uncertainty under this unmodified graph struc-
ture, we would have to use the CPT associated with nodep4. However, there may
be other reasons whyp4 does not become true after all its parents are true — for
example, the attacker may have chosen to launch the attack but the attack failed
due to the difficulty nature of the exploit. Such uncertaintyarising from the inher-
ent nature of a vulnerability will have to be encoded in the same CPT associated
with p4. Thus the CPT number 0.8 will have a number of contributing factors in
it, which makes the generation and maintenance of the CPT parameters a difficult
task. For example, when we see the same attack activity in other parts of the net-
work, we may want to increase the likelihood that an attackermay choose to use
this attack. But in the unmodified graph structure there is noeasy way to separate
this attacker-choice uncertainty from the other factors inthe CPT number of 0.8. As
a result this type of correlation cannot be conducted elegantly. In this case the BN
structure does not modularize various types of uncertaintyinto separate CPT’s, and
it violates principal 1 introduced in Section 3.2. This is just one example problem
we have discovered in the current literature on building BN’s from attack graphs
for security analysis. We believe a more disciplined BN construction methodology
needs to be studied to better capture the uncertainty in cyber security.

In summary, Bayesian Network provides a promising approachto handle uncer-
tainty in cyber situational awareness. But key challenges still remain as to how to
build/maintain the BN model efficiently. This is still a rapidly evolving field and in-
terested readers are encouraged to consult the relevant literature cited in this chapter.

4 An Empirical Approach to Developing a Logic for Uncertainty
in Situation Awareness

While statistical graphical models like Bayesian Network are theoretically rigorous
and proven effective in other areas of research, when it comes to intrusion analysis
they have an un-addressed gap, namely how to set statisticalparameters in terms
of hard probability distributions. For security analysis,it is nearly impossible to
obtain the ground truth in real traces and it is hard if not impossible to realistically
simulate attack scenarios. Similarly, while it would be ideal to characterize intrusion
analysis tools in terms of hard metrics such as alarm compression ratio combined
with true and false positive ratios (see [54] for definitionsand other metrics), it is
impossible to calibrate tools without representative datawith known ground truth.
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At the same time, the fact that human system administrators have been using manual
analysis and low-level tools to detect attacks in logs and real-time alerts inspires us
to formulate a logic,in an empirical manner, that approximates human reasoning
that works with a qualitative assessment on a few confidence levels that are relatively
easy to understand. We acknowledge that this formulation not only hides the lack
of knowledge of base probabilities but also reflects the great deal of ambiguity that
exists in intrusion analysis of real data. We hope that by creating an option to specify
the confidence level explicitly and by providing general practical tools to manipulate
these uncertain pieces of knowledge, we can bypass some of these fundamental
problems and gain experience that may make some statisticalapproaches viable in
the future.

4.1 A case study

We first show a case study we conducted by interviewing a system administrator
for a university campus network. He told us about how he identified compromised
machines on the campus network during a security incident, which was due to a
zero-day vulnerability in the TrendMicro anti-malware service. All the reasoning
and correlation was done manually but was very effective. Wethen identify the
rationale behind the decisions he made at various points, and design a logic that
captures this reasoning process. The logic is capable of handling uncertainty which
is crucial for real-time security analysis, since the observations are often vague and
limited, and we do not know where the attacker is and what choices he made in an
attack.

4.1.1 Scenario description

The scenario is illustrated in Figure 2(1), and described below. System Administra-
tor (SA) noticed an abnormal increase in campus-network traffic (Observation 1).
SA took the netflow dump for that time period and ran a packet capture tool on it
to search for known malicious IP addresses, and identified that four Trend Micro
servers initiated IRC connection to some known BotNet controllers (Observation
2). SA hence determined that the four TrendMicro servers likely had been com-
promised. He sat down at one of them and dumped the memory, from which he
found what appeared to be malicious code (Observation 3). He also looked up for
all the open TCP socket connections and noticed that the server had been connecting
to some other Trend Micro servers on campus through the IRC channel (Observa-
tion 4). He hence determined that those servers were also compromised. He did the
same thing for the other identified servers and found more compromised servers.
Altogether he identified 12 compromised machines and took them off line.

We observe that all the alerts above contain some amount of uncertainty regard-
ing their implication. Observation 1 could just mean some users started downloading
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movies through BitTorrent. Observation 2 has a higher degree of likelihood that the
identified servers are compromised, but simply an IRC connection to a known Bot-
Net controller does not necessarily mean the machine has been compromised. For
example, it could be that some system admin was probing BotNet controllers for re-
search purposes. (The interviewed system administrator actually does this himself.)
Observation 3 is also a strong indication that the machine has been controlled by an
attacker. But it is not always easy to determine whether a suspicious module found
in the memory dump is indeed malicious, especially with zero-day vulnerabilities as
in this case. So this alert also contains some amount of falsepositive. Observation
4, like observation 2, cannot directly prove that the machines observed are under the
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control of attackers. However, when we put all the four pieces of evidence together,
it becomes clear that an attack has certainly happened and succeeded, and we can
tell with almost certainty which machines have been compromised. We observe two
key components in human reasoning on uncertain information: 1) from the current
beliefs based on the current observation, use logical reasoning to determine what
additional observation could help to “strengthen” the beliefs’ confidence; 2) from
a large number of possibilities, derive a high-confidence belief corroborated by a
number of complementary evidences logically linked together. For example, even
though the SA was not sure whether the abnormal high traffic really indicated an
attack, he knew that this observation is logically linked tonetwork activity, which
can also be observed by netflow dump. When from the netflow dumpthe TrendMi-
cro servers were shown to communicate with malicious IP addresses, and from the
memory dump a potentially malicious code module was found, the two pieces of
evidence both indicated that the server was likely compromised, thus strengthening
the belief’s confidence to almost certain.

4.2 Encoding the case study in logic

Figure 2(2) presents a high-level view of the reasoning framework. The framework
consists of two layers: observations and an internal reasoning model, both with un-
certainty. The observations are from system monitoring data such as IDS alerts,
netflow dumps, syslog,etc.They are mapped into the internal reasoning model as
conditions representing unobservable security status under interest. For example,
abnormal high traffic is an observation, andan attacker is performing

some network activity is an internal condition. Logical relations exist between
observations and internal conditions with varying degreesof certainty. For example,
we can sayabnormal high traffic indicates the possibility that an

attacker is performing some network activity. Another example:netflow
dump showing a host communicating with known BotNet controllers

indicates that an attacker likely has compromised the host. Likewise,
there are logical relations among the various internal conditions and these relations
contain varying degrees of certainty as well. For example, one can sayafter an

attacker compromised a machine, he may possibly perform some network

activity from the machine, andafter an attacker sends an exploit to

a machine, he will likely compromise the machine. These statements cap-
ture the rationale behind human reasoning when manually detecting intrusions from
the logs. The internal model is analogous to a human brain — observations are re-
flected into a human’s thinking as beliefs with varying strengths, and the beliefs are
related to one another with varying strengths as well. We design logical rules to
capture both aspects and a formalized reasoning process to simulate human’s think-
ing such that 1) we can target observations to a small subset of all possible data
through hints provided by the internal reasoning process; 2) we can sift through the
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uncertain observations and internal conditions to reach high-confidence beliefs for
situation awareness.

4.2.1 Notations

There are two types of facts in our logic: those for observations and those for in-
ternal conditions. We useobs(F) to denote a fact about observations, andint(F) to
denote a fact about internal conditions. For example,
obs(netflowBlackListFilter(172.16.9.20,129.7.10.5)) is an observation from the
netflow blacklist filter that machine 172.16.9.20 is communicating with a known
malicious IP address 129.7.10.5, andint(compromised(172.16.9.20)) is an internal
condition that machine 172.16.9.20 has been compromised. We use three modality
operatorsp, l ,c, standing for “possible, likely, certain” to express different confi-
dence levels.p represents low confidence,l represents high confidence, andc is
the almost certainty which is the goal of situation awareness. The logic formulation
consists of two parts:observation correspondencewhich maps observations to in-
ternal conditions, andinternal modelthat captures logical relations among internal
conditions. The two parts for this example are shown in Figure 3 and 4 respectively.

A1 : obs(anomalyHighTraffic)
p

7−→ int(attackerNetActivity)

A2 : obs(netflowBlackListFilter(H,BlackListedIP))
l

7−→ int(attackerNetActivity)

A3 : obs(netflowBlackListFilter(H,BlackListedIP))
l

7−→ int(compromised(H))

A4 : obs(memoryDumpMaliciousCode(H))
l

7−→ int(compromised(H))

A5 : obs(memoryDumpIRCSocket(H1,H2))
p

7−→ int(exchangeCtlMessage(H1,H2))

Fig. 3 Observation correspondence

4.2.2 Observation correspondence

Observation correspondence gives a “meaning” to an observation, in the form of
internal conditions. For example, inA1 an abnormal high network traffic (anomaly-
HighTraffic) is mapped toint(attackerNetActivity), meaning an attacker is perform-
ing some network activity. This is a low-confidence judgmentthus the modality
operator isp. Intuitively the p mode means there is other equally possible inter-
pretations for the same observation. RuleA2 andA3 give the meaning to an alert
identified in a netflow analysis. There are a number of filtering tools available that
can search for potential malicious patterns in a netflow dump, such as “capture dae-
mon” and “flow-nfilter”. This rule deals with one filter that identifies communication
with known malicious IP addresses. Since any such activity is a strong indication of
attacker activity and the fact that the machine involved hasbeen compromised, the
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modality of the two rules isl . There are still other possibilities,e.g., the communica-
tion could be issued by a legitimate user who wants to find out something about the
malicious IP address. But the likelihood of that is significantly lower than what is
represented by the righthand side of the two rules. RuleA4 says if memory dump on
machineH identifies malicious code, thenH is likely to be compromised. RuleA5

says that if the memory dump identifies open IRC sockets between machineH1 and
H2, then it is possible that the IRC channel is used to exchange control messages
between BotNet machines.

We present these observation correspondence rules not to expect everyone would
agree on them. For example, some reader may think the modality of rule A4 shall
be c. This is completely OK. One advantage of such a logic is that it facilitates
discussion and sharing of security knowledge. Empirical experiences from a large
community can help tune the modality parameters in those rules. We envision a rule
repository model like that for Snort3, where a community of participants contribute
and agree upon a set of rules in an open language. Currently there are only coarse-
grained classification and some natural-language explanations for the meanings be-
hind each Snort alert. The logic language can be used by the Snort rule writers to
develop a number of internal-model predicates so that the observation correspon-
dence rules provide meanings to the various IDS alerts, which can then be reasoned
about automatically.

I1 : int(compromised(H1))
pc
−→ int(sendExploit(H1,H2))

I2 : int(sendExploit(H1,H2))
l p
−→ int(compromised(H2))

I3 : int(compromised(H1)), int(compromised(H2))
pc
−→ int(exchangeCtlMessage(H1,H2))

Fig. 4 Internal model

4.2.3 Internal model

The
m1m2−→ operator in the internal model represents the “leads to” relationship be-

tween internal conditions, and as a result the arrow must be aligned with time: since
the righthand side is caused by the lefthand side, it must happen no earlier than the
lefthand side. However, thereasoningcan go along both directions, and hence two
modality operators (m1,m2) are associated with each rule. For example, ruleI1 says
“if an attacker has compromised machineH1, he can send an exploit fromH1 to an-
other machineH2.” The forward reasoning has a low certainty: the attacker may or
may not choose to send an exploit after compromising a machine. Thus the forward
reasoning is qualified by thep modality. Reasoning on the reverse direction however
has thec modality: if an attacker sends an exploit from one machine toanother, he

3 A widely used network intrusion detection system: http://www.snort.org/
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shall have already compromised the first machine. In ruleI2, the fact that an attacker
sends an exploit to a machine leads to the compromise of the machine. The forward
reasoning is also not certain, since the exploit may fail to execute on the target host.
We have used the confidence levell — attackers typically make sure their exploit
will likely work before using it in an attack. On the other direction, sending in a
remote exploit is just one of many possible ways to compromise a host. Thus the
reverse reasoning forI2 has thep modality. I3 is the only rule in this model that
has two facts on the lefthand side. Like in typical logic-programming languages,
the comma represents the AND logical relation. The forward direction has thep
modality: if an attacker compromised two machinesH1,H2, the two machines can
possibly exchange BotNet control messages between them to coordinate further at-
tacks. The backward direction has thec modality: if two machines are exchanging
BotNet control messages, both of them must have been compromised.

The above logical formulation is encoded in Prolog and a preliminary deduction
system is implemented to simulate the “confidence strengthening” process in human
reasoning. The key deduction rule for this is shown below.

int(F, l) ⇐ Pf1 int(F, l) ⇐ Pf2 Pf1 ‖ Pf2
int(F,c) ⇐ strengthenedPf(Pf1,Pf2)

We useint(F,m) ⇐ Pf to indicate the internal factF is true with modalitym,
and Pf is the proof which shows the derivation steps in the logic arriving at the
conclusion. The‖ relation indicates two proofs areindependent, which is defined
as sharing no common observations and internal facts. This deduction rule states
that if we have two disjoint reasoning traces to reach a fact with confidence levell ,
then the fact’s confidence level can be boosted toc. The application of this simple
reasoning engine has already shown interesting results [41].

This is just the first small step towards achieving the visionpresented in Figure 2.
There are still great challenges ahead and significant research efforts are needed to
tackle these challenges. Detailed technical description of the approach can be found
in some recent manuscripts [40, 41].

4.3 Comparison with previous approaches

There have been numerous approaches to intrusion alerts correlation proposed in
the past [7, 9, 33, 35, 37, 54]. They provide important insights into logical causality
relations in IDS alerts, but fall short of a systematic solution to the real-time se-
curity analysis problem due to: 1) the lack of capabilities for representing varying
degrees of uncertainty in assertions derived from system monitoring data and using
these uncertain judgments to reach (almost) certain conclusions, and 2) the lack of
a unified framework capable of handlingany security-relevant information — not
just IDS alerts.
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The confidence level about “true” system conditions derivedfrom an observa-
tion varies depending on the nature of the observation. A keychallenge in situation
awareness is how to sift through the ocean of uncertain observation and reach a con-
clusion with high confidence. To this end it is necessary to distinguish the different
confidence levels in the reasoning process. Zhaiet al. [58] uses Bayesian networks
to correlate complementary intrusion evidence from both IDS alerts and system
monitoring logs so that highly confident traces can be distinguished from less con-
fident ones. However, one big question in such statistical models is how to obtain
the numerical parameters, such as the conditional probability tables (CPT) associ-
ated with every node in a BN which may affect the analysis result. The paper pre-
sented a formulation for computing the CPT entries but it is far from clear how the
computation can be justified theoretically or validated empirically. In comparison,
the approach discussed above represents the various certainty levels qualitatively as
modality operators, and the uncertainty levels are directly integrated into the reason-
ing process. As a result the reasoning system will have more leverage on utilizing
the varying degrees of uncertainty to make better decisions.

Another drawback of the previous approaches is that the reasoning models often
center around IDS alerts with pre- and postconditions. Thiswill limit the model’s
capability to reason about a larger variety of system monitoring data. As illustrated
in our case study, in some intrusions IDS alerts only play therole of triggering in-
vestigation. Sometimes there is no IDS alert at all either because there are no IDS
devices deployed or the IDS devices missed the attack completely. Yet the system
administrator was still able to trace to the compromised machines. Moreover, in our
case study we found it very difficult to come up with a pre- and postcondition model
for every possible observation. For example, what shall be the pre- and postcondi-
tions for an abnormal high network traffic? There are too manypossibilities and
a single pre- and postcondition won’t be sufficient. Centering the reasoning model
around IDS alerts with pre- and postconditions will likely become inflexible when
more types of system monitoring information need to be included in the reasoning
process. In comparison, the observation correspondence model in our logic gives a
meaning toanyobservation (not just IDS alert). This model is more direct:it gives
an observation a meaning about itself, instead of a meaning in terms of other condi-
tions that can be logically linked to it. Another general model for incorporating all
possible types of data in security analysis is M2D2 [33]. Compared with M2D2, our
model is much more simple. For example, we do not classify information into vari-
ous categories with mathematical notations such as functions and relations. Rather,
everything in our model is just a simple “statement” — one that can be easily trans-
lated into natural language. Such simplicity in modeling has shown the advantage in
incorporating a large variety of security-relevant information. Also M2D2 is not able
to represent the varying degrees of uncertainty levels useful for security analysis.
Given the complexity of cyber attacks and the large number ofsystem monitoring
tools, it is important to have a simple logic that can encode all possible types of se-
curity relevant information and capture the uncertain nature of such data’s meanings
in security analysis.
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The limitation of statistical models has been discussed before. Instead of directly
applying these existing models, we propose to start from thebottom and design
a logic that approximates human reasoning. Unlike quantitative probabilities, the
qualitative assessment on confidence levels such as “possible”, “likely”, and “cer-
tain” are relatively easy to be understood and used by human experts. As the first
step we design a logic withmodality operators4 that capture the various qualitative
confidence levels in reasoning about situation awareness. It is possible that this logic
derived from empirical study can be refined and re-formalized in some existing sta-
tistical models described above, the well-studied theories on modal logic [23], or a
combination of both. Another advantage of the logical approach is that the justifica-
tion for a conclusion can be generated in the form of logical proofs. This makes it
clear what conditions are used and what assumptions are madein reaching the con-
clusion. How to produce such justification is far less obvious in statistical models.

5 Static Uncertainty and Risk Management

Another important aspect of uncertainty in cyber situationawareness is the static
uncertainty or the inherent risk in a system. Analysis and management of such risks
is especially crucial to make sensible decisions in security investment. This has be-
come a critical challenge in security management since enterprise networks have
become essential to the operation of companies, laboratories, universities, and gov-
ernment agencies. As they continue to grow both in size and complexity, vulnerabil-
ities are regularly discovered in software applications which are exploited to stage
cyber attacks. Currently, management of security risk of anenterprise network is
an art and not a science. There is no objective way to measure the security of an
enterprise network. As a result it is difficult to answer suchquestions as “are we
more secure than yesterday”, or “how should we invest our limited resources to im-
prove security”, or “how does this vulnerability impact theoverall security of my
system”. By increasing security spending an organization can decrease the risk as-
sociated with security breaches. However, to do this tradeoff analysis there is a need
for quantitative models of security instead of the current qualitative models.

The issue of security metrics has long attracted much attention [21, 29, 30], and
recent years have seen significant effort on the developmentof quantitative security
metrics [1, 6, 8, 28, 34, 42, 47]. However, we are yet to establish metrics that can
objectively quantify security risk. Part of the reason is that the treatment on many
aspects of security still stays at the deterministic level.For example, resistance to
attacks is often regarded as binary: an attack is either impossible or trivial. This
is remote from realistic security management, where one hasto admit the varying
degrees of exploit difficulty levels to distinguish more imminent threats from less
ones.

4 Similar to the modality operators in modal logic [23].
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5.1 CVSS metrics

The Common Vulnerability Scoring System (CVSS) [31, 49] provides an open
framework for communicating the characteristics and impacts of IT vulnerabilities.
CVSS consists of three metric groups: Base, Temporal and Environmental. Each of
this group produces a vector of compressed textual representation that reflects var-
ious properties of the vulnerability (metric vector). A formula takes the vector and
produces a numeric score in the range of 0 to 10 indicating theseverity of the vul-
nerability. The most important contribution of CVSS is the metric vector: it provides
a wide range of vulnerability properties that are the basis for deriving the numerical
scores. We use the term “CVSS metrics” to denote the metric vectors and the term
“CVSS scores” to denote the numerical scores. Any CVSS scoremust be published
along with the CVSS metrics. The CVSS metrics convey much richer information
than the numerical scores and are closer to measurable properties of a vulnerability.

AC metricDescription
High Specialized access conditions exist.
Medium The access conditions are somewhat specialized.
Low Specialized access conditions or extenuating circumstances do not exist.

(a) The CVSS Access Complexity Metric

E metric Description
Unproven (U) No exploit code is available, or an exploit is entirely theoretical.
Proof-of- Concept (POC)Proof-of-concept exploit code or an attack demonstration that is not

practical for most systems is available. The code or technique is not
functional in all situations and may require substantial modification by
a skilled attacker.

Functional (F) Functional exploit code is available. The code works in mostsituations
where the vulnerability exists.

High (H) Either the vulnerability is exploitable by functional mobile au-
tonomous code, or no exploit is required (manual trigger) and details
are widely available. The code works in every situation, or is actively
being delivered via a mobile autonomous agent (such as a wormor
virus).

(b) The CVSS Exploitability Metric

Table 1 Example CVSS metrics

The Base group represents the intrinsic and fundamental characteristics of the
vulnerability that are constant over time and user environments. The Temporal group
represents the characteristics of vulnerability that change over time but not among
user environments. The Environmental group represents thecharacteristics of a vul-
nerability that are relevant and unique to a particular userenvironment. Generally,
the base and temporal metrics are specified by vulnerabilitybulletin analysts, se-
curity product vendors, or application vendors because they typically have better
information about the characteristics of a vulnerability and the most up-to-date ex-
ploit technology than do users. The environmental metrics,however, are specified
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by users because they are best able to assess the potential impact of a vulnerability
within their own environments. We observe that how a vulnerability may impact the
security of an enterprise network can only be assessed when the security interac-
tions among components of the network are taken into account. Since attack graphs
capture security interactions within an enterprise network, it is possible that the Ba-
sic and Temporal metrics can be used in combination with attack graphs to compute
a cumulative risk metric for an enterprise network.

As some examples, theAccess Complexity (AC)metric in the Base group and
theExploitability (E)metric in the Temporal group are shown in Table 1. The AC
metric gauges the complexity of exploiting a vulnerabilitybased on whether spe-
cial conditions,e.g.certain race conditions, are necessary to successfully exploit the
vulnerability. A “High” AC metric indicates a vulnerability is inherently difficulty
to exploit, and thus will likely have a low success likelihood. The E metric mea-
sures the current state of exploit techniques or code availability. Public availability
of easy-to-use exploit code increases the number of potential attackers by includ-
ing those who are unskilled, thereby increasing the vulnerability’s overall success
likelihood.

5.2 Combining CVSS and Attack Graphs

The main limitation of CVSS is that it provides scoring of individual vulnerabilities
but it does not provide a sound methodology for aggregating the metrics for a set
of vulnerabilities in a network to provide an overall network security score. For
example, there can be a situation in which the individual vulnerability scores are low
but they can be combined to compromise a critical resource. The overall security of
a network configuration running multiple services cannot bedetermined by simply
counting the number of vulnerabilities or adding up the CVSSscores. Attack graphs
can be used to model causal relationship among vulnerabilities. Recent years have
seen a number of attempts at calculating quantitative metrics by combining CVSS
metrics on attack graphs [16, 48, 55, 56, 57]. We expect that these models can also
be used to suggest configuration changes that mitigate the threats to an enterprise.

6 Conclusion

Both aspects of uncertainty: static uncertainty and dynamic uncertainty, are impor-
tant in cyber situational awareness. We discussed two promising approaches to ad-
dressing the dynamic uncertainty challenge, and briefly introduced the CVSS met-
rics which can be used in combination with attack graphs to address the static un-
certainty challenge for automated risk management. The research for systematically
handling uncertainty and risk in cyber space is still in a preliminary stage. However,
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without addressing this problem in a scientific manner, it will be difficult to achieve
sustainable cyber defense.
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