

Keyword(s):

Abstract:

©

Multi-tenancy in Cloud-based Collaboration Services

David Banks, John Erickson, Michael Rhodes

HP Laboratories
HPL-2009-17

FRACTAL, Multi-Tenanted, Architecture, Cloud, SaaS, HP

In this paper, we argue that increased outsourcing of non-core competencies will drive the demand for a
new generation of multi-tenanted cloud-based platforms that address the needs of content-centered
collaboration between organizations. We introduce the FRACTAL conceptual prototype which has allowed
us to evaluate the suitability of current enterprise content management (ECM) technologies for this type of
platform. Our early results highlight several areas, particularly around multi-tenancy, where we feel current
platforms are inadequate and fundamentally new approaches are required.

External Posting Date: February 21, 2009 [Fulltext] Approved for External Publication
Internal Posting Date: February 21, 2009 [Fulltext]

Copyright 2009 Hewlett-Packard Development Company, L.P.

Multi-tenancy in Cloud-based Collaboration Services
David Banks

Hewlett Packard Labs
Longdown Avenue, Stoke Gifford

Bristol, BS34 8QZ, UK
+44 117 3128244

dbanks@hp.com

John S. Erickson
Hewlett Packard Labs

PO Box 1158
Norwich, VT 05055 USA

+1 802 649 1683

john.erickson@hp.com

Michael Rhodes
Hewlett Packard Labs

Longdown Avenue, Stoke Gifford
Bristol, BS34 8QZ, UK

+44 117 3128173

michael.rhodes@hp.com

ABSTRACT

In this paper, we argue that increased outsourcing of non-core

competencies will drive the demand for a new generation of

multi-tenanted cloud-based platforms that address the needs of

content-centered collaboration between organizations. We

introduce the FRACTAL conceptual prototype which has allowed

us to evaluate the suitability of current enterprise content

management (ECM) technologies for this type of platform. Our

early results highlight several areas, particularly around multi-

tenancy, where we feel current platforms are inadequate and

fundamentally new approaches are required.

Categories and Subject Descriptors

H.3.5 [Information Storage and Retrieval]: Online Information

Systems – Commercial services, Web-based services

General Terms

Management, Performance, Design, Reliability, Security

Keywords

FRACTAL, Multi-Tenanted, Architecture, Cloud, SaaS, HP

1. INTRODUCTION
As we approach the end of the first decade of the 21st century, we

are witnessing a disruptive change in the provisioning of

information technology: the advent of the era of cloud computing.

In an increasingly global marketplace, businesses are seeking to

operate more efficiently by outsourcing non-core competencies.

There are two sides to this trend. First, for most organizations

information technology is not a core competence and is something

they would prefer to leave to specialists. Until recently, the only

option for these companies was to have those specialists on-

premises, but offerings from the likes of Google, Amazon and

Salesforce.com are becoming increasingly viable alternatives.

Second, businesses often choose to excel in a single area and

partner for the rest. Collaboration across organizational

boundaries is now a core part of the product development process,

yet traditional Enterprise Content Management (ECM) software

has not kept up, leaving users in collaborating organizations to use

email as their lowest common denominator. Over the next few

years, as the millennial generation starts to enter the workforce,

we expect them to act as catalysts of change, increasing the pace

of adoption of new tools.

In response to these trends, we envision a new generation of

cloud-based collaboration platforms emerging to address the

needs of content-centered collaboration between businesses.

Although superficially similar to the best of today’s ECM

systems, these platforms will operate on a massive scale,

simultaneously supporting thousands of organizations and

millions of users. The FRACTAL project [1] in HP Labs has the

long term goal to design and deploy such a platform.

In this short paper we first introduce the FRACTAL Conceptual

Prototype, built using AlfrescoTM, a leading open source ECM

system. We then present our rationale for why neither Alfresco

nor any other leading ECM system is a suitable base for such a

cloud platform.

2. FRACTAL CONCEPTUAL PROTOTYPE

2.1 Goals of the Prototype
We had three distinct goals for the prototype: first, we wanted a

functioning system that would help us to better envision

FRACTAL from an end user perspective; second, we wanted to

clarify requirements for the underlying platform; and third, we

wanted to understand limitations of current ECM technologies for

realizing multi-tenanted cloud-based applications.

2.2 Key Features
The key features we wished to demonstrate were:

Content Spaces: hosted spaces that bring together people, content,

collaborative tools, and customizable active behaviors.

Active behaviors: a way for end users to define functional

extensions operating within the context of a content space

involving content, metadata, automated processing services and

tasks carried out by other users. An active behavior may be

manually invoked as needed, or it may be automatically triggered

by a change to a content space or the passing of time. An

invocation may involve a single content object or many objects in

parallel. Their complexity ranges from automatically creating up-

to-date PDF versions of documents as they are modified, to

running workflows to automatically collate information from

several collaborating organizations into a single document.

Agile configuration: must be light-weight, low-touch and

customizable by end users without IT involvement.

Open and extensible by third parties: an Internet platform with

open APIs, where third parties are motivated to develop

customizations/extensions that can then be published through a

marketplace and easily discovered by end users.

2.3 Technical Approach
We evaluated several technologies as a starting point for the

prototype, including Joomla, Drupal, Alfresco, Liferay, TikiWiki

and SharePoint. Our selection criteria included: strong document

management features; embedded workflow; social capabilities

(blogs, wikis, tagging); and user interface qualities similar to

those we envisioned for FRACTAL. We selected Alfresco’s new

Share technology [2] because it excelled across all these factors.

2.4 Conceptual Prototype Overview
In this section we give a brief tour of the prototype. For further

details, we refer the reader to a series of short demo videos we

have produced based on the prototype [3].

Figure 1. A FRACTAL Content Space.

In Figure 1 we show an example content space to support a

collaborative pharmaceutical research project called UTS-Alpha.

The content space has a customizable set of collaboration tools

(wikis, blogs, etc) and a configurable default view, the dashboard.

Figure 2. The Document Library Application.

In Figure 2 we show one of the collaborative applications

included in the content space: a document library providing

versioning and concurrent editing capabilities. Thumbnails and

previews are generated automatically, using content

transformation services available within the platform.

Figure 3. The FRACTAL Extensions Marketplace.

In Figure 3 we show the FRACTAL Extensions Marketplace, a

special-purpose content space that provides a place for developers

to publish extensions and a rich set of search and browse

capabilities to enable users to discover them. In the prototype we

used the Simile Exhibit faceted browser [4], which gave us

several views (tabular, timeline, etc). In the figure, different

selection facets are visible, derived from descriptive, commercial

and social metadata bound to the listed extensions. Adopting an

extension into a content space simply requires clicking the install

button, not unlike adopting Gadgets for the iGoogle interface.

Figure 4. The new Progress Report Application.

In Figure 4 we show the effect of adopting the Progress Report

application into the UTS-Alpha content space; a new dashboard

component (dashlet) has been added and is ready to use. The

Progress Report application is an example active behavior we

developed, implemented mostly as a jBPM workflow, that

facilitates periodic authoring of a report by members of the

content space, with the completed report being automatically

archived in the document library.

3. TECHNICAL CHALLENGES
We successfully used Alfresco Share to rapidly prototype a

functioning system with many of the end-user characteristics we

envision for FRACTAL. Our success notwithstanding, we believe

neither Alfresco nor any of the other leading ECM platforms

provide a suitable base for a multi-tenanted, cloud-scale

collaboration platform. Many of our concerns pertain to multi-

tenancy, thus we start with the definition of multi-tenancy put

forward by Bob Warfield [5]:

Multi-tenancy refers to the ability to run multiple customers on a

single software instance installed on multiple servers. This is done

to increase resource utilization by allowing load balancing among

tenants, and to reduce operational complexity and cost in

managing the software to deliver the service. From a customer’s

perspective, multi-tenancy is transparent. The customer seems to

have an instance of the software entirely to themselves. Most

importantly, the customer’s data is secure relative to other

customer’s data and customization can be employed to the degree

the application supports it without regard to what other tenants

are doing.

Problems with this definition arise when trying to apply it to a

service that facilitates collaboration between organizations. The

hard segmentation called for between customers’ data actually

makes it impossible for different customers to share data when

they need to collaborate. To overcome this, we argue ―tenant‖ and

―customer‖ should not be thought of as synonymous. In a multi-

tenanted collaboration service, a tenant should instead be thought

of as a collection of distinct, collaborative activities and related

content – a content space in FRACTAL’s terminology. A content

space may have a single user and thus be a private space. It might

instead have multiple users from the same company, and thus be a

collaborative company space. Finally, it may have users from

different organizations, and be a collaborative space for inter-

organizational activities.

3.1 Data Isolation between Tenants
The first type of isolation we consider is data isolation: ensuring

that tenants’ data is kept adequately segregated, and that tenants

are not able to gain unauthorized access to each other’s data.

In Alfresco Share, all content spaces (sites in Alfresco) are

persisted to a single shared store.1 This store is backed by a

relational database, together with a file system that contains

content and a Lucene index. The use of a single shared store is

unsatisfactory for a couple of reasons.

First, because there is a single index spanning all content spaces,

query times increase with the number of content spaces, as well as

with the size of the content spaces.

Second, as files (representing content) from different content

spaces share the same file system directories, it becomes

impossible to perform file system-level backups that segregate

tenants’ data onto different sets of media. Not only are there legal

implications to this, but it also prevents the service provider

offering tenants copies of their own backup media.

3.2 Application Isolation between Tenants
In addition to data isolation, it is important that customizations or

functional extensions to a content space are not visible by default

to other content spaces. For example, if an application has been

adopted into one content space, parts of that application (e.g.

dashlets) should not be visible to users of other content spaces.

In Alfresco Share, applications are implemented as web scripts

written in a combination of server-side Javascript and Freemarker

1 We note Alfresco do implement a form of multi-tenancy in some

of their products [6], but not currently in Alfresco Share [7].

templates. However, all content spaces (sites in Alfresco) share a

common search path for web scripts, so when a new application is

introduced into one content space it is actually available to all

content spaces. Another way the functionality of Alfresco can be

extended is with custom jBPM workflows, but these are also

deployed globally and suffer from the same lack of isolation.

Application isolation requires functional extensions to be

managed more like data objects within content spaces, rather than

in a separate global space, as is currently done within Alfresco.

3.3 Performance Isolation between Tenants
A third type of isolation ensures resource-intensive activity in one

content space does not impact the use of other content spaces.

This is one of the hardest architectural challenges when designing

a multi-tenanted service because it directly conflicts with the goal

of reducing service costs by sharing resources between tenants. In

general, a multi-tenanted service should adopt several approaches

to minimizing the impact of tenants on each other.

First, the service should track resource usage on a per-tenant

basis. Resource usage typically includes storage, I/O bandwidth,

CPU usage, and possibly memory usage. Such tracking enables

resource intensive tenants to be identified. It is also worth tracking

resource usage against other dimensions, such as per user, per

organization, and per application. The latter allows poorly written

applications to be identified and possibly blocked or throttled until

improvements are made.

Second, tenants should be charged based on resources consumed.

This form of pricing (as opposed to a flat rate or fixed

subscription) serves as a form of feedback to make users more

sensitive to what they are doing. All of the large-scale cloud

platforms (Amazon Web Services, Google App Engine, etc.)

utilize some form of resource-based pricing.

Third, the service should dynamically load balance tenants across

hardware resources. Usage patterns are likely to be bursty and

there will be times when resources are over-allocated causing hot

spots to develop. The impact of such hot spots can be minimized

by dynamically altering resources assigned to tenants.

Fourth, a tenant’s activities can be throttled. This is a last resort

because repeatedly throttling a tenant will likely discourage future

use of the service.

The type of fine-grained monitoring, management and billing

infrastructure necessary to support these approaches is absent

from current ECM platforms.

3.4 Tolerant of Hardware Failures
In a cloud-scale service provisioned across thousands of servers,

disk and server failures will occur routinely and must not result in

loss of service. In addition, continuous hardware upgrades must

be possible without interrupting the service to any tenants.

In general, ECM platforms use a variety of techniques to support

high-availability deployments. In Alfresco, servers can be

clustered and share state using a transactional object cache. A

single database is shared between servers, which can itself be

clustered. Indexes are maintained locally, loosely synchronized to

the object cache. Finally, content is stored either on a single

shared file system or on local file systems that are replicated [8].

This approach to achieving high availability is expensive in terms

of hardware, software licenses and operational costs. It also does

not scale to a very large number of nodes. A cloud-scale service

supporting thousands of tenants would require many independent

clusters (pods), simply shifting the problem of load balancing to a

different level.

3.5 Per-Tenant Levels of Service
In a multi-tenanted service, different tenants may require—and be

willing to pay for—different levels of service. For example, one

tenant might place a very low value on their data since they

maintain their own backup and would prefer the cheapest service

possible. Another tenant may want their data to be replicated

multiple times, across data centers in multiple continents. With

ECM platforms, decisions about degrees of redundancy and

replication are deployment decisions that apply to the service as a

whole, and cannot easily be varied per-tenant.

3.6 Ease of Extension by Developers
In FRACTAL, we seek to create an open platform that can be

readily extended by third party developers. There are a number of

factors that make a platform attractive to developers. These

include: being able to code in a familiar programming language;

having well designed, stable APIs; providing accurate

documentation; having effective frameworks for testing and

logging; and an integrated development environment.

Our experience is that it is not easy to develop new extensions for

commercial ECM platforms. Some ECM companies have not set

out to create such open platforms in the first place. In addition,

few commercial ECM platforms are sufficiently widely deployed

to have attracted a large following of third party developers.

3.7 Ease of Customization by End Users
With FRACTAL we want to empower ordinary users to tailor

content spaces to their needs. We want their customizations to

extend beyond simply adopting applications written by

professional developers; rather, we want to create an environment

where end users are able to author their own extensions that

precisely meet their needs and, if appropriate, share these with the

broader community.

Many ECM systems embed simple scripting and workflow

capabilities that, in theory, provide an easy route to authoring

simple extensions. Alfresco, like many other ECM systems,

embeds the JBoss jBPM workflow engine to allow custom

workflows to be developed. In our prototype we evaluated the

suitability of this environment for non-technical end users.

Unfortunately, our results were not positive. Even for experienced

software developers, implementing the jBPM workflow for the

Progress Report application described in Section 2.4 was very

time consuming. We found several impediments: the workflow

design environment was Eclipse-based rather than an integral part

of the ECM platform; the graphical editor gave only a partial view

of the workflow, requiring actions to be authored in code; users

needed a good understanding of concurrent programming

concepts, such as forking and joining; XML configuration

changes were needed elsewhere in the platform to support the

workflow, such as defining custom content models and changes to

the Spring startup configuration. This complexity needs to be

eliminated if non-technical users are to have a chance at authoring

their own custom active behaviors. The environment needs to be

as simple to use as an Excel spreadsheet.

4. RELATED WORK
In the scientific domain, the myExperiment work [9] provides an

excellent proof point that users can successfully author and share

complex workflows, given the right tools.

The Ning social network platform [10] demonstrates how easy it

should be for users to create their own customized spaces. The

key difference between Ning and FRACTAL is that Ning is

consumer focused and lacks document management and workflow

capabilities.

Several cloud application platforms have recently emerged that

free developers from worrying about scaling the infrastructure

supporting their application if it is successful: Microsoft Azure

[11], Google App Engine [12] and Salesforce Force.com [13].

5. CONCLUSIONS AND FUTURE WORK
In this paper, we overviewed the FRACTAL project at HP Labs,

and described the FRACTAL Conceptual Prototype. We explored

what we see as the key requirements for a multi-tenanted cloud-

scale platform focused on content-centric collaboration. We

argued the current generation of ECM technologies is not a good

match, and highlighted some of the improvements required. Over

the next 12 months, our research will focus on alternative

implementation patterns to satisfy these requirements.

6. REFERENCES
[1] Erickson J et al 2009. Content-Centered Collaboration

Spaces in the Cloud. HPL Tech Report HPL-2009-11.

Submitted Jan 2009 to IEEE Internet Computing special

issue on Cloud Computing.

[2] Alfresco Share:

http://wiki.alfresco.com/wiki/Alfresco_Labs_3_Share_Featur

e_List

[3] FRACTAL Prototype Videos

http://purl.oclc.org/NET/hp-fractal-prototype-videos

[4] Simile Exhibit

http://code.google.com/p/simile-widgets

[5] Bob Warfield, SmoothSpan Blog 27th October 2007

http://tinyurl.com/8wj78u

[6] Alfresco Multi Tenancy

http://wiki.alfresco.com/wiki/MT

[7] Alfresco Repository Roadmap

http://wiki.alfresco.com/wiki/Repository_Roadmap

[8] Alfresco Cluster Configuration

http://wiki.alfresco.com/wiki/Cluster_Configuration_V2.1.3_

and_Later

[9] De Roure, D., Goble, C. and Stevens, R. (2008) The Design

and Realisation of the myExperiment Virtual Research

Environment for Social Sharing of Workflows. Future

Generation Computer Systems. DOI

http://dx.doi.org/10.1016/j.future.2008.06.010

[10] Ning Social Network Platform

http://ning.com

[11] Microsoft Azure

http://www.microsoft.com/azure

[12] Google App Engine

http://code.google.com/appengine

[13] The Force.com Multitenant Architecture: Understanding the

Design of Salesforce.com’s Internet Application

Development Platform.

http://tinyurl.com/8uxxb7

