

Keyword(s):

Abstract:

©

A query refinement model for exploratory semantic search

Dave Reynolds, Ian Dickinson, Dave Grosvenor

HP Laboratories
HPL-2009-167

semantic search; RDF; SPARQL; query refinement

We describe a novel approach to exploratory semantic search applied to the problem domain of
e-discovery. In this domain, as in many others, we need to support non-expert users in composing queries
over a complex and heterogeneous knowledge base. We achieve this by enabling users to initiate a query
through a few seed concepts and terms, and then guide them in incrementally refining the query and
exploring the dataset without requiring prior knowledge of the ontology. This is achieved through a query
refinement service which suggests and ranks queries which connect the initial seed concepts (and an
optional result type), and then suggests query refinements based on the instance data and associated
ontology. This service is enabled by an abstract query representation which reflects the user exploration
model and simplifies the interface between the refinement service and the user-facing components.

External Posting Date: July 21, 2009 [Fulltext] Approved for External Publication
Internal Posting Date: July 21, 2009 [Fulltext]

Copyright 2009 Hewlett-Packard Development Company, L.P.

A query refinement model for exploratory
semantic search

Dave Reynolds, Ian Dickinson, and Dave Grosvenor

Hewlett Packard Laboratories, Bristol
{dave.reynolds,ian.dickinson,dave.grosvenor}@hp.com

Abstract. We describe a novel approach to exploratory semantic search
applied to the problem domain of e-discovery. In this domain, as in many
others, we need to support non-expert users in composing queries over
a complex and heterogeneous knowledge base. We achieve this by en-
abling users to initiate a query through a few seed concepts and terms,
and then guide them in incrementally refining the query and exploring
the dataset without requiring prior knowledge of the ontology. This is
achieved through a query refinement service which suggests and ranks
queries which connect the initial seed concepts (and an optional result
type), and then suggests query refinements based on the instance data
and associated ontology. This service is enabled by an abstract query rep-
resentation which reflects the user exploration model and simplifies the
interface between the refinement service and the user-facing components.

Key words: query refinement; semantic search

1 Introduction

In this paper we describe an approach to exploratory semantic search, motivated
by specific user requirements in the domain of e-discovery. While we believe the
techniques we report are broadly applicable, the e-discovery domain has some
interesting characteristics which motivate our extensions to other exploratory
search approaches.

E-discovery [1] is the process of collecting, preparing, reviewing, and produc-
ing electronically stored information (ESI) in the context of a legal process. For
example, a company named in a patent dispute may be required to produce a
wide range of design documents, letters, emails, product and part descriptions
and meeting records, possibly dating back many years. E-discovery is typically
characterised through a phased model1, of which the first phase, identification,
is our concern in this paper. Although it clearly overlaps with enterprise search,
e-discovery is not just a search problem. The priority during the identification
phase is completeness: all potentially responsive ESI must be located [2]. Failure
to locate relevant ESI may directly (and adversely) affect the outcome of the
legal action. The initial identification phase is concerned with finding not only

1 The Electronic Discovery Reference Model, http://www.edrm.net/

2 Dave Reynolds, Ian Dickinson, and Dave Grosvenor

specific documents, but also relevant people, projects, organizations and data
repositories. In contrast, enterprise search typically focuses on finding the few
documents most likely to answer a user’s question.

We have been developing a system to support this e-discovery identifica-
tion phase by integrating data from many diverse sources across an enterprise.
Such information includes contact and organizational information (as is typically
found in an enterprise directory), product descriptions, and role information in-
dicating the roles that individuals and workgroups play in relation to products
and business activities. The sources from which information is extracted include
formal structured published sources (e.g. databases, LDAP directory services
or centralised XML product catalogues), and information gleaned from intranet
web sites and content management systems by text mining algorithms. The het-
erogeneity of these sources leads to a complex knowledge representation requir-
ing an open, extensible data model. In our work, we use RDF2 as the common
information model, and a collection of OWL3 ontologies to enable semantic in-
tegration. We use the term knowledge base to describe the collection of RDF
information and OWL ontologies available to our system.

In this paper we describe the exploratory search and query interface which
enables users to exploit this complex, interconnected knowledge base to assist
in discovering people, products, organizations and repositories for a given e-
discovery case. A goal of our research is not only to improve the underlying
mechanisms by which users can navigate a rich knowledge base, but also to
ensure that those enhanced mechanisms really do help people to achieve their
information-seeking goals.

The nature of the domain problem highlights a number of requirements we
need to address:

– users are searching over both documents and conceptual entities (people,
workgroups, products, locations);

– most searches involve locating a complete set of resources meeting some
criteria, not simply retrieving a few most relevant documents;

– there are many different ways in which concepts can be related, with multiple
paths of evidence to follow;

– our users are not conversant with the schemas used to store structured data
in the enterprise, nor are they necessarily aware of the concepts and proper-
ties modelling this data in our knowledge base;

– the user does not normally have a specific well formulated query but has to
explore the knowledge base to find relevant entities and connections;

– the knowledge base may change dynamically as new sources become inte-
grated, opening new paths to investigate;

– our users must be able to defend the claim that the search results are com-
plete, so it is important to record the process of exploration as well as the
results.

2 Resource Description Framework (RDF), http://www.w3.org/RDF/
3 OWL Web Ontology Language Reference, http://www.w3.org/TR/owl-ref/

A query refinement model for exploratory semantic search 3

We summarise our approach as supporting iterative exploration of the knowl-
edge base allowing a user to initiate an approximate query, and then refine it to
home in on the set of concepts and connections relevant to the case. This raises
two primary challenges:

1. How can a user initiate a query when the data model is not known?
2. How can we effectively guide a user in refining the query?

1.1 Motivating example

The following brief example illustrates the kinds of queries we wish to assist our
users with. In a patent violation dispute involving Company B, Company C is
called to give documentary evidence germane to the case. Company C was a
large customer of Company B, and therefore may be able to throw light on the
intellectual property claims. The presiding judge has mandated Company C to
produce all relevant documents relating to Company C’s use of Company B’s
products, possibly including: emails, letters, meeting records, marketing mate-
rial, technical specifications and customer support case records. Company C last
worked with Company B five years ago, and members of the project team have
variously moved to new roles in the company, or have left Company C altogether.
C’s legal team need to identify all relevant internal sources of data and make
sure that nothing is deleted. They must identify authors of documents from the
time of the project, and locate those that are still within the organization. They
must identify current possessors of relevant documents, who may not have been
the original authors. For project team members who have now left Company C,
the legal team must identify from the documents of the period who the likely
collaborators and managers of those staff would have been, to check if those
persons retain any relevant documentation.

2 User query model and exploratory user interface

The basic user interaction paradigm we are basing our work on has been char-
acterised elsewhere as exploratory search [3]. In exploratory search, information
seeking is regarded as a long-lived activity, in which search actions are interleaved
with responses from the system, including partial results or result summaries.
These responses in turn inform and guide the user’s future search actions. Ex-
ploratory search is well-suited to situations in which users do not start with
clearly articulated search goals and strategies, but expect to have these goals
and strategies instantiated and refined as a result of the exploration process
itself.

The eDiscovery domain presents some differences to exploratory search as
typically characterised in the literature. In particular, we note:

– our corpus contains both structured data and unstructured documents, so
during an exploration session users will effectively be issuing both structured
queries and unstructured searches by keyword;

4 Dave Reynolds, Ian Dickinson, and Dave Grosvenor

– the primary goal is to identify a complete set of responsive items, not to
retrieve them for the consumption of the user

We have designed and partially implemented a user interface that attempts
to address these issues and provide an exploration interface suited to our domain.
The remainder of this section describes the overall design of the user experience,
illustrated with notes from the current prototype.

2.1 Abstract user interaction model

We abstract the overall user interaction as a series of moves through a connected
space of interaction states. Each node in the space corresponds to an interaction
state, represented by a 5-tuple:

Si = 〈ψi, ρi, σi, ci, hi〉

where Si is the i’th state, ψ is the current query (encoded in our abstract
query notation AQL, described below), ρ is the set of results obtained from
interpreting and running ψ, σ is a ranked list of candidate adjacent states, c
is the current context, and h is the history of commands that the user has
issued. Each state denotes a complete set of results, and is annotated with the
set of moves (the history) that produced it. This supports both the exploration
capabilities we want to enable, but also the case-recording requirements in the
e-discovery domain.

The context has two roles in our system. First, it records relevant information
that helps present a manageable presentation of possibly complex results to the
user. Second, it provides (possibly heuristic) guidance to the query refinement
service in order that it can better rank the candidate suggestions to present to
the user. These roles overlap to some extent. In our case, we use an RDF model
to encode the context, thus providing an extensible container which is well suited
to holding context terms which may be extended or refined in future. A simple
example of the context would be to record the current resultset window: if ρi

contains 105 items, it is neither efficient nor helpful to the user to present them
all at once. Instead, we record the start and length of a window onto the current
resultset in the context.

There are two distinct phases in the user-experience model, corresponding to
the initial state S0 and subsequent exploration states Si≥1. In particular, for S0

we need to generate an initial query ψ0 based on some initial user inputs or seeds.
In principle there can be many kinds of user input seeds; currently we support
four: unstructured text keywords, formal concepts (representing individuals or
classes from the domain ontologies), relations, and desired result types. An initial
dialogue in the user interface allows users to quickly and iteratively build a set
of seed inputs.

Following the initial seed selection, given an interaction state Si, we present
an interface to the user that contains the following categories of affordance:

A query refinement model for exploratory semantic search 5

– a presentation of (some subset of) the resultset ρi. By default this uses a table
presentation, but other presentation and visualization forms are supported
by the architecture. Presentations may be selected dynamically based on
result types and information from the current context;

– UI actions to move directly to an adjacent state Sj , by selecting one of the
suggested query refinements – e.g. to filter the resultset, or to pivot along
some relationship in the data;

– UI actions to move to an adjacent state by directly editing the current state
description – e.g. by adding or changing search terms, changing the desired
output type, etc.

– UI actions to alter the context
– UI actions to move directly to a previously explored state via the history

Each action taken by the user is added to the state history, and takes the user
to a new interaction state. In addition to providing an abstract understanding
of the overall process of interacting with this system, this abstract model is the
basis for the user model, which is recorded in an RDF model on the server. This
model then provides a resource that can be used by the query refinement, query
suggestion and presentation tuning services as inputs to the choices made by
those algorithms4.

2.2 User-interface implementation

We use a rich-client architecture for our experimental system, in which a front-
end written in Flex5 manages presentation and user-gesture translation. Gestures
that cannot be directly performed on the client are encoded as command objects
which act to change the current state description. These commands are serialised
and sent to the server. The Java back-end responds reactively to the state chang-
ing commands by dynamically invoking services, such as the query refiner and
query suggester, below. To keep responsiveness high while allowing for slower-
running services, responses are streamed back to the client asynchronously as
they are generated by the query processing services.

Concept resolution Concept resolution is primarily used during the initial
query formulation dialogue, though it is also available to users during the later
exploration phase. We make a distinction between query terms that are recog-
nised members of a controlled vocabulary – terms in the one of the underlying on-
tologies – and keyword-matching terms that are not controlled. The UI provides
easy mapping between these two disjoint term spaces by using auto-completion:
as the user enters characters in a query term, for example “enterprise informat-
ics”, the look-ahead sub-system will match those characters to the skos:label
or rdfs:label of knowledge base terms, such as the individual representing the
4 Use of the context user model in the query refining algorithms is not yet implemented

in the current prototype
5 Adobe Flex 3, http://www.adobe.com/products/flex/

6 Dave Reynolds, Ian Dickinson, and Dave Grosvenor

Enterprise Informatics Lab. If the user accepts the match, the term is replaced
with the concept’s URI. However, the original user input is retained, making it
easy for the user to flip the interpretation of the term between a concept and an
unstructured text keyword match, or to select an alternative mapping from the
input text to a concept term in the KB.

Query refinement The algorithms underlying the query refinement services
are discussed in more detail below. Here we outline how the possible exploration
moves are presented to the user. Figure 1 shows a screenshot of the current pro-
totype UI (which is still in early development). The query shown lists co-authors
of members of a given laboratory who have authored documents containing the
keyword ‘rdf’. This state was achieved with two moves: an initial query formu-
lation and a navigation via the ‘co-authors’ suggested link. Further suggested
related queries are listed to the left of the resultset display area. The current
state is summarised just above the result and navigation displays.

Fig. 1. Screenshot of prototype user interface

The labels on the suggested queries are auto-generated from the abstract
query language expressions generated by the query refinement service. A signif-
icant challenge in pursuing this form of query refinement is to synthesise labels
that are both compact and meaningful to our users. We hope to address this
issue in future research.

A query refinement model for exploratory semantic search 7

A further challenge is that there may be many possible refinements from any
given interaction state, but presenting too many such choices will overwhelm
the user and reduce usability. One tactic we have used is to group candidate re-
finements into thematic groups: for example, related queries, link traversals (e.g.
from people to their managers), narrowing or widening via the concept hierarchy,
or facet-based filtering. Such groups are presented in different UI controls, and
allow the user to make tactical choices at a coarser granularity than individual
refinements. A future extension is to allow user preference for a particular class
of refinement, which becomes a parameter to the query refinement service.

3 Architecture

A high level outline of the architecture which supports this user interface is
illustrated in figure 2.

Fig. 2. High level architecture

We omit the details of the infrastructure for wrapping existing information
sources, mapping between conceptual models and performing off-line text ana-
lytics (but see Butler et al [4] for more details). We take as given that the query
refining capability has access to an RDF knowledge base, a document index over
documents associated with entities in the knowledge base and to the necessary
ontologies including the common upper ontology.

The core component is the query controller, which provides four services: hy-
brid query service, concept resolver, resultset manager and query refiner. These
services are located in a Java servlet container, so expose a Java API to co-
resident components such as the user interface controller in the normal way.
However, they each also expose a RESTful[5] API over HTTP, allowing the ser-
vices to also be utilised in a larger, decentralised service-oriented architecture.
RDF, OWL and SPARQL processing are based on the Jena platform [6].

8 Dave Reynolds, Ian Dickinson, and Dave Grosvenor

The hybrid query service provides standard SPARQL query over the knowl-
edge base. It also handles embedded queries for documents by delegating some
query terms to the document index, via the use of property functions6.

The concept resolver service maps lexical terms to knowledge base concepts
such as names of people or workgroups, or ontology concepts such as user-
relevant classes and properties. Our initial implementation is simply a text index
over labels and descriptive terms associated with the knowledge base resources.
However, these descriptive terms may be derived from text analytic processes
which can identify aliases, and expand acronyms and abbreviations.

The ResultSet manager provides an abstraction above the raw SPARQL
query layer to enable the query model described earlier. In our system, a Re-
sultSet is an ordered list of RDF resources which match a query specification,
together with a set of RDF statements that describes each resource. By query
specification, we mean a SPARQL SELECT query, with optional ordering and
text index annotations. The RDF description to be associated with each matched
resource can be specified separately from the main query and can range from a
generic concise bounded description[7] to an application-specific template. The
ResultSet also includes metadata for the query and the whole set of results (also
encoded in RDF); this enables abstracted views of the set such as clustering or
summarization. The interface is designed to support lazy evaluation and a query
can be transparently suspended, cached or restarted without affecting any client
services. ResultSets are first class objects in the system. They appear as a web
resources, identified by URIs, and so references to them (and their associated
content and metadata) can be easily passed around the distributed architecture.

The final service, the query refinement is the primary focus of this paper. It
provides two core functions. The first, instantiate, takes a set of keywords and
seed concepts and generates a ranked set of possible queries relevant to those
seed terms. The user interface is thus able to combine the concept resolution
service (to map lexical terms to concepts) with the instantiate service to initiate
a search. The second function, refine, takes a previously generated query and
returns possible refinements of it. In essence, it suggests possible moves in the
exploratory search. The results of each service operation are encoded as RDF
models allow us to include rich and extensible metadata to describe the queries
and their interpretation.

4 Query refinement model

We divide the space of possible query refinements into a number of categories of
refinement types. This enables the user interface to group and organize refine-
ment suggestions. We capture this conceptual model of the space of refinements
as a simple OWL ontology, thereby enabling us to encode sets of related refine-
ment suggestions as RDF models.

When the user interface controller requests query refinement suggestions they
can specify a set of categories to suggest. The categories we define are:
6 http://jena.sourceforge.net/ARQ/extension.html#propertyFunctions

A query refinement model for exploratory semantic search 9

Instantiate Generate an initial query which connects a set of seed concepts
and/or document keywords and an optional target class. For example given
a document keyword, an organization and a target class of Person, the in-
stantiation might look for people within the given organization who authored
(or possess) documents with that keyword. For any seed query, many possible
instantiations are possible.

Narrow Reduce the ResultSet in size by focussing on some aspect. Includes:
Constrain Add a constraint to an existing query. For example, limit the

returned people to those who are based in a particular geography.
Specialize Narrow the scope of a constraint in an existing query by de-

scending a hierarchy. Such hierarchies can include part-of relations (e.g.
narrow the query to just those people within a sub-organization of the
original seed organization) as well as taxonomic hierarchies.

Widen Increase the ResultSet in size by generalizing some aspect. Includes:
WeakenConstraint Weaken or remove an existing constraint.
Generalize Widen the scope of a constraint by ascending a hierarchy. Like

Specialize, this applies to part-of relations as well as taxonomic hi-
erarchies.

AddRelated Broaden a query by adding in additional results which are
linked to those in the base query. For example, expand the set of people
in our original instantiate example by also returning all people who co-
authored matching documents.

Link Find all resources connected to those in the base query by some relation.
That relation might be an explicit RDF property or might be an induced re-
lation computable over the knowledge base. Examples include the co-authors
relationship pattern, and various textual similarity measures. In the current
implementation such induced relations are defined by pre-defined query tem-
plates. In future, we hope to add user generation of link refinements through
some form of “macro” mechanism.

Related Find queries which are alternates to some base query. Typically this
case arises after an instantiate step where alternative property paths could
have been used (e.g. selecting possessor instead of creator as the link from
a document to a person.

In this paper we concentrate on Instantiate and Link refinements but our overall
framework is designed to support the full range described above.

5 Abstract query representation

As noted earlier, we use SPARQL, extended with document indexing, as our
underlying query mechanism. However, we found it cumbersome to work directly
with raw SPARQL in the query refinement service. Instead, we developed an
abstract query representation (AQL) as an intermediate layer used both within
the query refinement algorithms and for external access to the refinement service.
This abstraction meets several design goals:

10 Dave Reynolds, Ian Dickinson, and Dave Grosvenor

– compositional, it is easy to take an existing abstract query and add con-
straint filtering, link following or description templates without needing to
decompose the base query

– support for our query model – queries denote a ResultSet which combines
an ordered set of matching resources with a set of RDF statements de-
scribing those resources. We thus combine SPARQL select, describe and
construct in one abstraction, combining control of resource selection and
ordering, and resource description

– easy to manipulate programmatically
– serializable to RDF so that we store set of suggested query refinements along

with their inter-relationships and metadata.

Note that this representation is not intended as a new RDF query language. It
is a convenient abstraction which simplifies the query refinement service interface
and its internal design.

The abstract query representation is constructed as an algebra of operators,
encoded as S-expressions. The key operators in our representation are:

(ALL) corresponds to all resources across the entire knowledge base (and asso-
ciated document index).

(ENUM value*) a set of explicit enumerated values.
(SOURCE uri) all resources corresponding to a particular named graph within

the overall knowledge base.
(SPARQL query) all resources which match a SPARQL SELECT query with a

single distinguished variable.

(FILTER constraint* Q1) filter the results from query Q1 retaining only those
that match all the constraints. A constraint is a pair (pexpr cvalue). A
pexpr is one of: predicate for an RDF property or virtual property, (INV
predicate) for the inverse of a predicate, (CHAIN predicate*) for a linked
sequence of predicates, (TEMPORAL predicate range) for reference to a
temporally qualified predicates7 or ANY for a wildcard predicate. A cvalue

can be an RDF resource, a range expression, or a nested abstract query
expression.

(FOLLOW pexpr Q1) take all results from query Q1 and find the set of values
related to those resources via the given predicate expression (i.e. implements
the link refinement).

(GROW pexpr Q1) perform a FOLLOW from the base query Q1 but return the
union of Q1 and the linked results.

(DESCRIBE Q1) includes in the ResultSet a concise bounded description [7] of
each resource that matches Q1.

(DESCRIBEBY BGP Q1) includes in the ResultSet a description of each resource
that matches Q1 as defined by a SPARQL basic graph pattern.

7 Support for temporal qualification is important in this application domain but is
outside the scope of this paper.

A query refinement model for exploratory semantic search 11

(ORDERBY predicate Q1) order the resource matches in the result set accord-
ing the value of the given predicate.

(UNION Q1 Q2) the union of the results from Q1 and Q2.
(INTERSECTION Q1 Q2) the intersection of the resources matching Q1 and Q2.
(DIFFERENCE Q1 Q2) all resources matching Q1 which do not match Q2.

We encode these abstract query expressions in RDF using the SPARQL s-
expression (SSE) support from Jena’s ARQ processor8. The query arguments
can be expressed inline with nested s-expressions or by a URI reference which
identifies the ResultSet arising from a previously explored query.

We can encode in a single RDF model an entire set of query refinements, the
abstract query expressions they correspond to, and their associated descriptive
metadata. This allows us to experiment with additional services which analyze
and describe the query options by enriching the metadata in the RDF model.

When a query is to be executed, the hybrid query service translates the
abstract expressions to SPARQL, dereferencing any embedded query URI ref-
erences. In the current implementation this is done directly at the SPARQL
algebra level, avoiding the need to generate strings in SPARQL surface syntax.

6 Refinement algorithms

In this section, we discuss how the query suggestions are generated using a type
graph, and ranked using both query complexity and frequency-of-use statistics.
The type graph and statistics of use are derived offline from the knowledge base,
rather at query time.

Type-graph The type graph is used to determine the possible connections
between a seed and result types. The edges in the type graph are predicates
from the knowledge base, while the nodes contain type information about the
entities related by the predicates. For example, the possessor predicate in the
type graph links a Document type node to a Person type node. The type graph
can be derived from the ontology by using either using the domain and range
information for predicates provided by the ontology, or the type information
about instances related by a predicate.

We introduce inverse predicates into the type graph for every predicate added
into the type graph, to make it easy to generate exploration links that traverse
the graph in any order.

Figure 3 shows a simple example of a type graph (omitting inverse predicates
for clarity). This type graph can be used to determine multiple connections
from Person to Organization, using the direct connection using the member-of
predicate, or an indirect connection going via the BusinessGroup, BusinessUnit
or WorkGroup type nodes.
8 http://jena.hpl.hp.com/wiki/SSE

12 Dave Reynolds, Ian Dickinson, and Dave Grosvenor

Fig. 3. Simplified type graph omitting some predicate names and inverses

A guided-heuristic search of the graph is used to find the potential connec-
tions between any two types. Each connection determines a sequence of predi-
cates, which are composed in a follow AQL expression. For example, assume
we start with the person ‘Dave Grosvenor’, and want to find connections to
Organization. The query refiner computes that the seed type is Person, and
generates the following AQL expressions:

(FOLLOW :member-of (ENUM hp:dave grosvenor))

(FOLLOW :organizationName (FOLLOW :inBusinessGroup (ENUM hp:dave grosvenor)))

. . . omitted for brevity . . .
(FOLLOW :organizationName (FOLLOW :part-of (FOLLOW :inWorkGroup

(ENUM hp:dave grosvenor))))

Clearly the number of possible connections will grow very rapidly, which
we control though ranking query suggestions by the complexity of the AQL
expression, as shown below.

Instantiate The instantiate refinement takes a set of seed concepts (including
keywords, relations and result types) and generates an initial query which is
likely to represent the user’s initial information-seeking goal.

To do this, we first we find the potential connections from each of the given
seeds to the result-type. This generates a set of query suggestions for each seed.
We then compose a set of combined query suggestions from the individual seed
suggestions, by forming an intersect query expression. The arguments to the

A query refinement model for exploratory semantic search 13

intersection are taken from the contributing individual seed suggestions. This
composition creates a combinatorial explosion in the number of possible query
suggestions. Thus the use of mutliple seeds provides a further motivation for the
use of ranking over query suggestions.

If there is no connection from any given seed to the result type, we construct
an intersect query from those seeds for which there is a non-empty suggestions
set. This is motivated by search-like behaviour, which would attempt to provide
the best results to the set of criteria even when some combination of criteria
cannot be met. This would require some explanation and feedback to the user
that one or more of their seeds are not affecting the suggestions.

Link refinements A link refinement identifies resources connected to the re-
sources in a base query, using some linking predicate. We take a sample of the
results from the base query and determine which outgoing or incoming predi-
cates are present in the instances in the knowledge base. These instance samples
are then augmented by examining the type graph for arcs which connect to the
type node corresponding to the base query. The instance sampling allows us to
detect links which are not known to the ontology but are nevertheless present
in the actual data, whereas the ontology-derived links enable us to detect links
which may not be present in our particular sampling. We can then use a weight-
ing function, as shown below, to order the sets of possible links, though we bias
the ranking to favour instance-derived links since we prefer queries which we
know will return at least some results.

Ranking As described above, we use ranking of query suggestions in a variety
of ways to control the combinatorics of the suggestion generation process. There
is a need to rank suggestions from all refinement operations, not just instantiate.

We can rank suggestions based on a number of criteria. One criterion is the
complexity of the AQL expression:

rank(op0) = 1
rank((op1 x)) = 1 + rank(x)

rank((op2 x y)) = 1 + rank(x) + rank(y)

where opi is any AQL operation with arity i. Secondly we can weight the con-
nections used in the query, and prefer queries which make use of more highly
weighted connections. We weight connections by wi ∗ ln(fi) where fi is the fre-
quency with which the associated predicate is used in the knowledge base and
wi is an application-specific weighting factor which allows us to adapt the rec-
ommendations to the user’s task. In the current implementation the weighting
factors are manually entered as part of system configuration; however, in fu-
ture work we would like to explore weighting based on learned preferences for
individual users and case types.

We can combine the search of the type graph with the weighting. We set the
length of a connection arc to be the inverse of the weight (so important, high

14 Dave Reynolds, Ian Dickinson, and Dave Grosvenor

frequency connections are regarded as short) and then search for the N-shortest
paths in the graph. Such shortest paths will also typically correspond to low
complexity queries.

7 Status

We have developed a prototype implementation of the architecture, query ser-
vices and user interface described here. This work has been carried out in the
context of a larger project looking at the application of semantic web technology
to e-discovery. We have developed and tested the exploratory user interface over
an experimental knowledge base drawn from HP’s internal information sources.
The current implementation supports only the instantiate, related and link re-
finements but we do not anticipate difficulties extending the approach to the
other refinement types discussed.

At the time of writing no formal user evaluations have been carried out.
However, initial reactions from our internal sponsors has been very positive in-
dicating that the style of interaction this approach facilitates is a good match to
the requirements of this application domain.

8 Related work

Exploratory search [8] is an active research area in the information retrieval com-
munity, and a variety of interface approaches can be found in the literature. One
commonly used technique is faceted browsing [9], in which attributes of the set
of objects currently displayed as results are used to dynamically generate UI af-
fordances that can filter the resultset down to a narrower collection9. Basic facet
browsing is widely used, especially on eCommerce sites, to filter a set of prod-
ucts to those meeting a customer’s needs. An extension to basic facet filtering
allows the user to select related resultsets by pivoting on a relational attribute,
for example from US presidents to their children, as illustrated by Huynh’s Par-
allax system [10]. Our work uses both facet filtering and pivoting to navigate
the space of interaction states, but our query refiner is able to generate naviga-
tional links that might take several moves to accomplish with traditional facet
browsing and pivoting and can include query generalization as well as narrow-
ing. Moreover, our synthesized suggested query moves can, at least in principle,
abstract away from the underlying data model and present navigational links in
conceptual terms familiar to the user. However our current prototype has only
limited capability in this regard.

The early work by the TAPSOFT project [11] gives a good overview of how
search can exploit the semantic web. TAPSOFT used semantics to both improve
the presentation of search results, and to improve search performance. More
recently, work on semantic search by Cimiano et al [12] and Zhou et al [13]
investigates the interpretation of keywords in semantic search. These approaches,
9 We note that disjunctive facets can increase the size of the resultset.

A query refinement model for exploratory semantic search 15

and ours, aim to suggest structured queries which interpret keywords as concepts.
We also suggest other refinement operations. Both approaches generate ranked
lists of structured queries against the knowledgebase, and derive a subgraph of
the knowledge base to analyze the connections between the entities denoted by
the keywords in the query. This is similar to the approach we use with a type-
graph, however we aim to avoid run-time retrieval of instances from the KB
during the query suggestion process.

9 Conclusions and future work

We have described an implemented architecture to support exploratory query
interfaces over a complex knowledge base. The current prototype illustrates some
key features of a task interface to support users with challenging information
seeking problem. Building on this initial prototype, future work will investigate
ways to use context information to bias query refinement to the user’s interests,
better summariziations of the current interaction state, new query refinement
operators and better ranking of query refinement candidates based on complexity
measures and other metrics on the candidate query expressions.

Our approach illustrates a number distinctive features:

– It conceptualizes the user task as a series of moves in a space of possible
queries, separating the generation of the query space from the user interface
affordances for navigating it.

– It introduces the notion of instantiating a query from an initial set of seed
concepts and then refining it based on a number of categories of refinement
types. These refinements go beyond the filtering seen commonly-used faceted
browsing interfaces, by adding link following and query generalization.

– We provide an abstract query representation which simplifies both the inter-
face to the query refinement service and its internal implementation. We are
able to encode a set of related and categorized query refinements as an RDF
model which both simplifies the service interface and allows us to apply our
RDF tools to the manipulation of this materialized set of search options.

– We have defined initial algorithms for the instantiation and refinement ser-
vice, based on the generation of a type graph from both instance data and
available ontologies.

We believe that our current design and initial implementation provide a
promising start in developing a fresh approach to complex information discovery
and management problems typified by the e-discovery domain. The system offers
a framework in which we can explore new algorithms for suggesting and ranking
moves in query space (as opposed to ranking of query results). This will enable
us to explore mixed initiative interfaces in which the system can proactively offer
navigation and query options tailored to the user task.

16 Dave Reynolds, Ian Dickinson, and Dave Grosvenor

Acknowledgments. Brian McBride and Mark Butler developed the framework
for ingesting time-varying data into knowledge base from multiple sources, and
together with Andy Nelson contributed to the overall application goals and de-
sign. Our architecture depends on ARQ, developed by Andy Seaborne, and the
overall Jena framework designed and built by the Jena team at HP Labs.

References

1. Crowley, C.R., Harris, S.B.: The sedona conference glossary: E-discovery & digital
information management (second edition). Technical report, The Sedonda Confer-
ence Institute (2007)

2. Baron, J.R., Thompson, P.: The search problem posed by large heterogeneous data
sets in litigation: possible future approaches to research. In: ICAIL ’07: Proc. 11th
Int. Conf. on Artificial Intelligence and Law, ACM (2007) 141–147

3. Marchionini, G.: Exploratory search: from finding to understanding. Communica-
tions of the ACM 49(4) (2006) 41–46

4. Butler, M., Reynolds, D., Dickinson, I., Grosvenor, D., McBride, B., Seaborne,
A.: Semantic middleware for e-discovery. Technical Report HPL-2009-76, HP
Laboratories (2009)

5. Fielding, R.T., Taylor, R.N.: Principled design of the modern web architecture.
ACM Trans. Internet Technol. 2(2) (2002) 115–150

6. Carroll, J.J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., Wilkinson, K.:
Jena: implementing the Semantic Web recommendations. In: Proceedings of the
13th International World Wide Web Conference, ACM (2004) 74–83

7. Stickler, P.: Cbd - concise bounded description. Technical report, W3C Member
Submission (2005)

8. White, R., Kules, B., Drucker, S., schraefel, m.c.: Supporting exploratory search:
Introduction to the special issue. Communications of the ACM 49(4) (2006) 36–39

9. Tunkelang, D.: Faceted Search (Synthesis Lectures on Information Concepts, Re-
trieval, and Services). Morgan & Claypool Publishers (2009)

10. Huynh, D.F., Karger, D.R.: Parallax and companion: Set-based browsing for the
data web (2009)

11. Guha, R., McCool, R., Miller, E.: Semantic search. In: Proc. World Wide Web
Conference (WWW’03), ACM (2003) 700–709

12. Tran, T., Cimiano, P., Rudolph, S., Studer, R.: Ontology-based interpretation of
keywords for semantic search. In: ISWC/ASWC. Volume 4825 of Lecture Notes in
Computer Science., Springer (2007) 523–536

13. Zhou, Q., Wang, C., Xiong, M., Wang, H., Yu, Y.: Spark: Adapting keyword
query to semantic search. In: Proc. 6th International Semantic Web Conference
(ISWC’07). Volume 4825 of LNCS., Springer Verlag (2007) 687–700

