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ABSTRACT
IT organizations want efficiency and are constantly attempt-
ing to reduce or eliminate manual work. Automation tech-
nology facilitates the transition from manual to automatic.
However, until now, automation technology has been applied
in limited settings in IT organizations. For example, auto-
mated software testing uses automation technology, but only
about 5-10% of software testing is automatic. One of the
reasons automation technology is not more widely adopted,
is that there is a very high barrier to using it. The ob-
jects and constructs used for today’s automation originate
from the underlying application or computing environment,
so that using automation technology is as complex as pro-
gramming. We propose a new automation technology for
applications with Graphical User Interfaces (GUI). Unlike
existing automation technology, which uses the objects de-
fined by the technology that was used to build the GUI,
the technology we propose uses screen capture. The system
described in this paper infers GUI semantics from screen
images. The system is modelled after the notion of compil-
ers for programming languages. It has a structural analysis
module, which corresponds to the lexical analyzer (Lex),
and a semantic analysis module, which corresponds to the
parser (Yacc). Structural analysis uses image analysis tech-
niques including segmentation and object recognition, and
semantic analysis uses graph grammars and visual parsing.

Categories and Subject Descriptors
H.4.1 [Information Systems Applications ]: Office Au-
tomation—Workflow management ; F.4.2 [Mathematical
Logic and Formal Languages]: Grammars and Other
Rewriting Systems—Grammar types, Parsing ; I.4.8 [Image
Processing and Computer Vision]: Scene Analysis—
Color, Shape, Object recognition,Time-varying imagery

Keywords
Automation technology, Image analysis, Visual parsing

1. INTRODUCTION
Consider the value of software that can observe a user of a
computer and understand the user’s interaction in much the
same way as a person standing behind the user would under-
stand. Such software would be able to summarize, replicate
and analyze the user’s activity. Such automation technol-
ogy has the potential to streamline workflows, improve pro-
ductivity and provide administrative information through-
out IT management. One could improve UI usability based
on analysis of user steps. One could improve product sup-
port based on capturing user interactions that can recreate
a product issue. We could learn the steps necessary to fix a
problem by capturing service engineer’s interactions during
problem resolution. Today, automation technology is used
in a small number of use cases, such as, automatically test-
ing IT applications and automatically repairing some well
understood operational problems. Today’s automation tech-
nology depends on a detailed model of the computing and
development environments used by the organization. Thus,
the capability of each automation tool is limited to a re-
stricted set of environments, e.g., .NET and HTML, but not
Java. In addition, this automation technology uses informa-
tion that is intended for object rendering. Thus, the seman-
tic information describing the user’s intent is not available.
The approach proposed in this paper aims to overcome both
problems. Our automation technology uses screen capture,
which is available for all GUI computing environments and
applications, to record and replay user activity. Semantic
information is found in the image using image analysis and
visual language techniques.

It may seem that by resorting to screen capture, we have
defined an unnecessarily difficult problem. We foresee sev-
eral trends in IT management, that create a need for such a
generic approach to automation.

Web 2.0 For automation, Web 2.0 is a disruptive technol-
ogy for several reasons, including the large number of
UI technologies, UI technologies with proprietary APIs
such as Adob Flash R©, Microsoft Silverlight R©, and the
dynamic nature of the applications. In such appli-
cations the semantics are encoded in JavaScript, and
not available in the HTML Document Object Model
(DOM).

Software As A Service (SAAS) The trend toward SAAS
implies that IT organizations will have less control over



Figure 1: Block diagram of a system for inferring a
semantic hierarchy from a screen image.

applications, and that the mix of UI technologies in a
mash-like application will be larger.

Virtualization The trend away from a single user on a
single machine toward desktop virtualization implies
that a significant fraction of user interaction will only
be available via image-based protocols, such as the Re-
mote Desktop Protocol (RDP).

While analyzing the screen image is a difficult problem, we
believe it is actually the best approach to understanding
what the user is doing. Unlike the internal objects of the
application, which were intended to be manipulated by the
operating system, the UI was intended to be viewed by a
person. It was designed to be easy to understand and easy
to use. Furthermore, GUIs conform to rules that are familiar
to anyone who has some experience using a computer. For
example, a link is typically underlined, and search boxes
commonly appear on the top right of a Web page. These
common structures and semantics lead us to view GUIs as
visual languages.

When we analyze an instance of a GUI, we want to construct
a hierarchy that represents the objects on the page and their
layout. This hierarchical structure should also be annotated
with the semantics that the user attaches to the interface.
For example, the flight reservation form within the web page
shown in Figure 9. This semantic hierarchy enables us to
record what the user does on the page in a meaningful way.
This paper describes algorithms that, given a screen cap-
ture, computes a semantic hierarchy of the objects in the
image. The approach may be divided into two major steps,
which correspond to the process of compiling programming
languages. The structural analysis step identifies UI layout
and UI objects in the image. This step is analogous to lexi-
cal analysis which identifies tokens in the text stream along
with the hierarchy of the text (paragraphs, sentences). The
semantic analysis step recognizes language structures and
assigns meaning to them. This step is analogous to parsing,
and produces a parse tree which is annotated with seman-
tics. The structure of the system is shown in Figure 1.

The structural analysis step has, as input, a screen image.
Image analysis techniques are used to identify the UI lay-
out and UI objects in the image. This is done using seg-

mentation techniques, described in Section 2.1. There are
many good algorithms for segmentation of natural images,
including watershed [21], mean-shift [10], region growing
methods [23], spectral graph methods, such as normalized
cuts [20], and self-similarity methods [6]. Since GUI images
are very different from natural images the segmentation ap-
proaches should be adapted. Prior work is found on layout
segmentation for Web applications. In this work, the HTML
DOM is assumed to be available, and there are several good
solutions for extracting the layout, most notable the VIPS
algorithm [9]. Our algorithm, in contrast, uses image anal-
ysis, and detects the layout of the page recursively from
the outside in. The output of the segmentation stage in
fed into a classification module where image segments are
tagged, e.g., button, text box, radio button, etc. The first
step in most classification algorithms is to represent each
object in a compact manner that is also robust to certain
image transformations. One effective approach, Scale Invari-
ant Feature Transform (SIFT) [14, 15, 16] detects features
that are invariant to uniform image scaling and can be gen-
erated efficiently. A different approach, shape contexts [7],
tries to capture the intrinsic shape of an object. More re-
cently, [19] proposed local descriptor which analyzes the self
similarity structure of the input image. Once object rep-
resentation is decided, there are many available approaches
for object classification. Non-parametric methods such as
nearest-neighbor algorithms utilize a database of tagged ex-
amples. [8] suggests that nearest-neighbor classifiers can be
effective for visual object recognition. Unfortunately, when
large databases are used, they could become too slow. In
such cases, parametric approaches (e.g. Neural-Networks
and support vector machines [11]) may yield superior per-
formance. Again, the recognition problem for GUI objects
is significantly different from recognition of natural objects.
The objects are categorized to a small number of well known
groups, which reoccur in all GUIs. On the other hand, the
variability within a group is large. For examples, buttons
can come in any color combination, whereas zebras are al-
ways black and white. Section 2.2 describes the algorithm
for GUI object recognition.

Structural analysis results in a collection of objects which
are tagged with some known attributes, such as location,
type, and text value. It also gives the overall layout of the
UI which is used to construct a hierarchy in a top-down fash-
ion, as described in Section 2.1. The semantic analysis step
uses this information and the spatial relationships between
objects to construct the semantic hierarchy. UI constructs
are identified in a bottom up fashion using Graph Grammar
and parsing. Graph grammars [18] are a two-dimension (2D)
extension of formal grammars [17]. One dimensional gram-
mars describe legal strings (words) in a language, and have
been used to capture semantics of programming language
as well as natural language. The two dimensional extension
of grammars describes diagrams, rather than strings. The
current theoretic understanding about the power of graph
grammars and parsing complexity is less developed com-
pared with the understanding of string grammars. It seems
obvious, in the spectrum of visual languages, that GUIs are
a relatively simple diagrams. In analogy to parsing stan-
dard (1D) languages, we believe that the task of describing
GUIs with graph grammars is more complex than describing
strictly formal languages as programming languages, but less



complex than describing loosely formal languages as natu-
ral languages. To best exploit our merit of looking at the
image, we adopted the direction of Spatial Graph Gram-
mars (SGG) [12]. For these graph grammars, the arcs hold
the spatial relation between pairs of adjacent nodes. In ad-
dition, since web pages present high degree of variability,
we adopt a combination of a top-down hierarchy construc-
tion based on layout and a bottom-up hierarch construction
which is based on a best-effort parsing strategy [22]. Graph
Grammars have been suggested as a mean to extract the
semantics from HTML forms in the presence of a Document
Object Model (DOM) [12, 22]. In that case, the layout and
DOM hierarchy were used to understand the actual seman-
tic hierarchy. However, the reconstruction of such hierarchy
from the images is completely novel. Section 3 describes the
visual parser.

The first target application for this work is automated soft-
ware testing. This domain is a natural one for new au-
tomation technology, because there are already a number of
widely used automated software testing tools on the mar-
ket [1, 2, 4] which use automation technology. While the
benefit of this automation technology may be even greater
in other aspects of IT managements, it is more difficult to
realize this benefit because those applications do not exist
today. In automated testing, a semantic automation engine
using screen capture is a departure from the existing tech-
nology. It can enable software testing tools that can be used
to test every GUI application. This is in contrast with exist-
ing automated software testing tools that use the run-time
object hierarchy of the application and, therefore, depend on
a deep model of the technology used to build the test appli-
cation. In fact, a number of automated testing tools already
use screen capture for synchronization, but this capability is
limited to very simple pattern matching of a fixed template
[?, 3]. The proposed image analysis technique is independent
of the technology used to build the test application. It im-
proves the reliability of tests for technologies where objects
are not labeled accurately (Web 2.0), or object hierarchy is
not available (e.g., Adobe Flash R©), or testing protocol does
not enable transfer of run-time information (e.g., RDP). We
point out that, in a final application, if there is partial in-
formation available about objects, e.g., from the DOM, it
makes sense to combine the image analysis with this infor-
mation. This paper, however, focuses on image analysis.

2. STRUCTURAL ANALYSIS
The structural analysis phase starts with a single image, I,
depicting a screen capture, where I(row, col) is the value of
the pixel at the row row and column col. The output of
this phase is a classified hierarchical tree, TI , which includes
layout hierarchy segments, L = {Li}, in its internal nodes
and a set of classified objects, O = {Oi}, with attributes in
its leafs. Each object is defined as a triple Oi = (Ri, C, V ),
where Ri is a rectangle containing the location of the ob-
ject, class C ∈ C, (the set of classes C includes, e.g., button,
text box, list box, text, etc.), and V is a vector of auxiliary
information whose contents depend on the class (e.g., object
color, text value and size or other attributes). The construc-
tion of this hierarchy relies on spatial inclusion relations only
— in a sense, this is analogous to the division of natural lan-
guage text into paragraphs and sentences based on spaces
and full stops.

Figure 2: First (red) and second (blue) levels of the
hierarchical layout.

2.1 GUI Segmentation
The first task toward semantic analysis of the input GUI
image I is to divide it to its components. Because GUIs are
designed to make it easy to comprehend by a user, objects
are easily detectable, e.g. objects have sharp edges or color
transitions with limited variability. These are the visual
cues used by the algorithm for segmentation approaches.
We start by inferring the layout of the GUI and continue
recursively level by level up to the point GUI elements are
segmented out.

To infer the top level of the layout, the algorithm uses edge
analysis on the GUI image. Edge points are detected by
applying a linear line-detector filter. Then, long edges di-
rected in the horizontal and vertical directions are consid-
ered. Pairs of parallel edges are aggregated to identify rect-
angles. Finally, rectangles that do not lie within any other
rectangle in the GUI image are selected as candidates for the
top-most level. These are added to the tree and marked with
their locations Li ∈ L. Following the above procedure all
the framed rectangles on the page have been identified. In
Figure 2, for example, the only framed layout object at the
highest level is the main content area. The remaining com-
ponents at the top and the bottom of the page are grouped
by a second processing step which seeks areas that contain
dense visual information, and groups them into distinct lay-
out elements. This step identifies, in Figure 2 the title and
bottom navigation area. By recursively applying the above
procedure, the algorithm finds the next levels of the layout.
This recursion terminates when it gets to the individual GUI
objects O = {Oi}.



(a) Section of GUI image

(b) Filtered image

(c) Segmented image

Figure 3: (a) is a section from the GUI image, and (b)
shows the directional edges: vertical edges (green),
horizontal edge (red), multi-directional edge (yel-
low), and no edge areas (black). Image (c) shows
the complete segmentation marking radio buttons
(blue), text (magenta), and rectangles (red).

Edge detection effectively identifies both frames for layout
analysis and object boundaries. Figure 3 illustrates the
use of edge detection to detect rectangles. To infer verti-
cal lines with one pixel width, for example, a kernel K =
(−1, 2,−1) is convolved with the image (I ∗ K) (row, col) =
∑3

i=1 I(row, col+i−2)·K(i). Additional kernels are used to
detect horizontal lines, and thicker lines. Figure 3(b) shows
vertical and horizontal lines detected for the image in Fig-
ure 3(a) by applying linear line-detector filter, and combin-
ing the output of the filter into horizontal and vertical line
segments. Based on the typical sizes of GUI objects, thresh-
olds on the length of line segments can be reliably set and
eliminate small edges. In Figure 3(b) we see pairs of vertical
and horizontal line segments that are then used to define
rectangular shapes in the image which often correspond to
real GUI objects, shown in Figure 3(c).

There are some GUI components with a very distinct ap-
pearance, e.g, radio buttons and check buttons. For this
kind of components, we apply custom detectors. The detec-

Figure 4: Primary color components of the web
page.

tor analyze the morphological edges in the image (a mor-
phological edge is the difference between the maximal and
the minimal pixel values in a given neighborhood, usually
3x3 or 5x5 pixels). It looks for symmetrical and small edge
blobs. Circular blobs are detected as radio buttons, and
square blobs are detected as check boxes.

Text segments can be highly beneficial for object classifi-
cation and for the semantic grouping phase. For example,
the meaning of an edit control can be more easily under-
stood by interpreting the text to its left. Moreover, text
segments might also have an adverse effect on the perfor-
mance of our line detection algorithms since text segments
produce many short edges with high contrast, (as can be
seen in Figure 3(b)). To detect and extract text we use
known Optical Character Recognition (OCR) methods.

Additionally, many objects have uniform color and high con-
trast with their background. Figure 4 shows the web page
from Figure 2 transformed to the space of primary colors
(red, blue, green, magenta, yellow and black). Using this
observation, even in the absence of sharp edges, basic ob-
jects within the screen image can be identified. The current
algorithm relies mainly on edge information, and uses the
primary colors to enhance the segmentation when needed.
Future work will use color information more extensively.

2.2 GUI Object Recognition
The output of the segmentation is a partially classified hier-
archical tree TI representing the GUI image, I, by a tree with
non-overlapped image segments as its leafs, we call objects
{Oi}, such that each segment contains at most a single GUI
element. Note that part of the recognition has taken place as
part of the segmentation and thus some objects, such as text,



are classified. The task, in this section, is to classify each
segment, Oi, into either one of the known classes, C ∈ C, of
GUI objects or decide that it is not a GUI object. The main
challenge here is that a pair of GUI objects might look very
similar but play very different roles. Figure 5 shows two
GUI objects that appear very similar. Their shading seems
identical and both contain text at about the same position.
The only differentiating visual cue is a small triangle in the
right side of (a) which identifies it as a list-box. Note that a
human observer might classify object (b) as a push-button,
which would be wrong in this case since it is a grid header,
as seen in (c).

(b)

(a)

(c)

Figure 5: Two objects (a) and (b) are extracted from
a complete image GUI. (c) shows a small cutout from
the same GUI.

We employ a three-step approach for GUI element recogni-
tion,

1. Represent each element as a vector in a high dimen-
sional feature space.

2. Define a metric to compare the distance between pairs
of elements.

3. Search a database of tagged examples for the nearest-
neighbor to classify a query object into a specific class.

Feature Vector
Selecting the proper object representation is crucial in any
object recognition system. Features should be discrimina-
tive, two different objects should be represented as two dif-
ferent feature vectors, but they should also be robust to
uninformative differences. For example, in the case of GUI
objects color is usually regarded as an uninformative trait.
We represent objects using three types of features which are
concatenated into a single vector: (1) basic geometric data
related, (2) projection related, and (3) shape related. The
first part represent the geometric shape of the object, e.g.
width and height. The second part of the feature vector
is based on the notion of projection. This feature is illus-
trated in Figure 6. We start by computing the Laplacian
of Gaussian LoG(I) = ∇Gσ ◦ I, where G is a zero-mean
Gaussian kernel with variance σ and ∇ is the Laplacian op-
erator. By representing the image in the LoG domain linear
color changes across each GUI object are eliminated. For
each object, Oi of size n × m, we project the value of its
pixels along the rows and columns to produce two object

signatures Svert(Oi) =
(

1
n

∑n

y=1 LoG(I)(row, y)
)

row∈r(Oi)

and Shoriz(Oi) =
(

1
m

∑m

x=1 LoG(I)(x, col)
)

col∈c(Oi)
, where

(b)

(a)

(c)

Figure 6: A one-dimensional projection-based fea-
ture vector. (a) is the original GUI element I, (b)
shows LoG(I), (c) shows the feature vector signa-
ture Shoriz(Oi) which results from averaging along
the columns.

r(Oi) and c(Oi) are the set of rows and columns Oi resides
in, respectively. Figure 6 demonstrates the construction of
the vertical projection signature.

It is important to note the significance of text to successful
object recognition. In some cases, classification of GUI ob-
jects based on words or text patterns can be highly effective
feature in others text can be misleading. If the word ”OK”
is found inside an object, this object is most likely an OK
button. On the other hand, projection-based features tend
to blur small details, such as text, from the signature, which
can be beneficial when the text is less informative. The ex-
plicit handling of text-based detection is part of our future
plans.

Since projection-based features can not always distinguish
between certain GUI elements, we propose a third part for
the feature vector, which is based on the notion of Shape
Context [7]. Shape context operates on a binary edge im-
age, currently the zero-crossings of LoG(I). Given an object
Oi, let {Pj} be the set of edge points considered. We com-
pute the set of vectors emanating from it to all other edge
points, ~Vj(k) = Pk − Pj . Finally, these vectors are rep-
resented in a log-polar domain and their histogram hi(j)
is computed (two-dimensional histogram based on direction
and log-partitioned distance). This histogram is denoted
the shape context of object Oi relative to edge point j.
Hi = {hi(j)} is added to the feature vector.

Distance Measure
In order to classify GUI objects, we need to be able to com-
pare the distance between pairs objects. Since we have three
different types of features in a single unified vector, we also
need three different comparison measures. The dimension-
based distance measure corresponds to the amount of devi-
ation between the dimensions of the objects. Let Oi and Oj

be two objects of dimensions ni × mi and nj × mj respec-
tively. We define our geometric distance measure to be

M1(Oi, Oj) = 1 −
min(mi, mj)

max(mi, mj)
·

min(ni, nj)

max(ni, nj)
,

note that M1(Oi, Oj) ∈ [0, 1].

To compare two projection-based feature vectors, (Svert(Oi),
Shoriz(Oi)) and (Svert(Oj), Shoriz(Oj)) we compute their
edit-distance [13] as the second measure M2(Oi, Oj). Edit
distance is defined as the minimal number of insertions and
deletions of characters that are needed to turn one string
into another. We adapt a dynamic programming algorithm



Figure 7: Cascade classifier for GUI object compar-
ison. Each object Oj is yields three types of features
which are compared against all the objects, Oi, in
the database. The shape feature compares objects
based on their dimensions.Projection-based features
is computed for the surviving objects. Lastly, shape
context, which is the most expensive feature, is con-
sidered to help discriminate between a small number
of candidate objects.

for string alignment [13] for our case where values are not
taken from a fixed alphabet but are floating point numbers.
The main rational behind the use of this algorithm is that
it enables this measure to be robust to non-uniform scaling
of GUI objects (e.g. button can have different width and
height).

For shape context, we first consider the χ2 distance between
histograms [7] (Given histograms h and h′ on ℓ bins it is de-

fined to be 1
2

∑ℓ

k=1

[h(k)−h′(k)]2

h(k)+h′(k)
). Now, for each two objects

Oi and Oj we produce a best match algorithm between Hi

and Hj , that is find the most similar histograms in the two
sets, based on the above-mentioned distance. Finally, our
shape distance function M3(Oi, Oj), is set to be the mini-
mal distance in the best match found. (Note, this measure is
different from the smallest distance between two histograms
in the sets because we first apply best match).

Classification Process
To save execution time we employ a cascading approach
where each distance function filters the database so that
more expensive features are computed for smaller number
of database objects. First the database is scanned to find
all objects which are closer than a threshold T1 relative to
the shape measure M1, then these objects are compared us-
ing the projection measure M2 relative to a threshold T2.
Lastly, the surviving objects are compared using the shape
context measure M3 and those objects that are closer than
T3 are picked (see Figure 7 for an illustration of the process).
The small set of candidates is compared to the test object,
and the class C ∈ C of the database object which minimizes
the weighted sum is selected as the nearest neighbor class.

Thus, finally, the hierarchical tree TI is fully classified with
each leaf labelled with a triplet Oi = (Ri, C, V ) where Oi is
the object location, C is its class, and V includes auxiliary
information, and each inner node includes a layout rectangle
Li.

3. SEMANTIC ANALYSIS
In the semantic analysis phase the classified objects, or to-
kens, and their layout, are used to identify the higher level
constructs of the GUI visual language and to assign seman-
tics to these constructs. The semantic analysis module,
which is equivalent to the parser for standard languages,
receives as inputs the classified hierarchical tree TI , and a
graph grammar G. This section describes the three compo-
nents of the parsing the input to be parsed, namely the host
graph, the grammar, and the parsing algorithm.

The Host Graph
The host graph is constructed from the layout components,
{Li}, and the GUI tokens {Oi}, in the input tree TI using
the spatial information. We define the host graph HI(V, E),
with nodes V = O∪L, and labelled arcs. The arcs can repre-
sent the spatial relation, and other relations of interest, such
as the relationship between the objects in the DOM. For ex-
ample, two adjacent radio buttons will have an arc between
them specifying their spatial relation in the labelling (close,
North-South direction, aligned on the horizontal axes and
with no other object in between them) and indicating there
are at the same level in the DOM hierarchy, if applicable.
In general, every two nodes vi, vj ∈ V have some spatial re-
lation and thus have an arc between them. To reduce the
complexity, we prune the graph to include only arcs that
might be significant in the parsing stage. In particular, each
node keeps an arc to its closest neighbor in each direction.
For some applications, it may be beneficial to retain more
of the arcs.

The Grammar
The graph grammar, unlike the tree input, can be designed
off-line. Similar to standard grammars, it is defined as a
tuple G = (C,N , N,R), where C is the set of object classes
acting as the set of terminals, N is a set of non-terminals,
N ∈ N is a starting non-terminal and R is a set of produc-
tion rules. Such a grammar can be based on a general set
of production rules for general classes of forms and can be
manually augmented with per-application grammar rules.
Figure 8(b) shows a simple example of grammar produc-
tions. A production rule consist of a left and a right side.
Generally speaking, the right side specifies a sub-graph that
should be found in the host graph, and the left side specifies
the sub-graph that should replace it. In this work, we con-
centrated on rules where the left side has a single node. In
addition to the sub-graph replacement, each rule might hold
some action code. This allows maintaining the spatial infor-
mation and also extracting the meaning of a form-object
in terms of the business process. E.g., a title of a certain
component of a form might indicate its purpose.

The construction of a set of grammar productions that cap-
tures the semantics of GUIs is a complicated task. There
are many of reoccurring constructs in GUIs, e.g. sets of ra-
dio buttons, that can be described using pre-written set of
production. On the other hand, many other constructs have
too many variants to be predicted in advance. Yet, they
may obey a more general form such as a list of complex el-
ements. For example, for the interface in Figure 8(c), one
could define titled date-and-time construct as a list element.
In this case, the Depart and Return parts would be com-
bined together as list of dates and times by a list template.



Figure 8: Example of the parsing procedure on a frame in a web form (e). Part of the classified hierarchy
tree TI given as the initial input to the parser is shown in (a) where all tokens within the frame are siblings
at first. (b) and (c) are concentrating on the parsing of the “Search for” radio button set. The relevant
sub-graph of the host graph that is built out of the input is shown in (c) at the top. Then, Rule 1 of (b)
is applied on the radio button and the “Roundtrip” text to its left based on their spatial relationship as
implies from the host graph (c). Same is done with the radio button to their right. Later they are combined
together using Rule 2, and finally combined with the “Search for” title using Rule 4 to get the hierarchy
appears in (c) bellow (The recursive Rule 3 is required for larger radio button sets, such as the “Search by”
radio button set). The final hierarchy tree for the whole frame with semantic diffused up appears in (d).
This parsing required both standard production such as radio button sets, but also special rules such as for
date-and-time recognition. Note that although the “search” button was not matched to any production rule,
in this example, its semantics can be understood just by the fact it resides within the “Flight” frame.



To cover these cases, we introduce templates of productions.
These templates allow the parsing of general constructs such
as a list. A user can then enhance the existing grammar by
specifying instances of the the template. Future work will
generalize this and will allow to automatically discover such
sets using preprocessing of the host graph and searching for
similar sub-graphs. In general, induction of production rules
should enable better parsing, see [5].

The Parsing Algorithm
Given the input grammar G, the input classified hierarchical
tree TI , and the pre-processed host graph HI the parsing
algorithm produces a semantic hierarchy tree also called the
parsing tree PTI . At first PTI = TI . The algorithm then
performs recursive parsing on the this tree PTI , which is
traversed in a post-order manner. At each stage only the
sub-graph of the host graph which relates to a node and its
children (in the hierarchy tree) are considered. This way,
we divide parsing of the complete graph into several parsing
tasks on the smaller sub-graphs. Since backtracking might
be required to properly parse the graphs, this optimization
greatly improves the running time of the algorithm.

At each parsing stage, the algorithm finds a production rule
in R that is applicable and applies it to both the host graph
HI and the hierarchical parsing tree PTI . The host graph
is changed by replacing the sub-graph that relates to some
right-hand-side of a production rule with the left hand side
of the rule. The hierarchy tree is changed by adding another
level in the tree.1

Another issue one should be aware of is the variability of
GUIs and the fact that there is not likely to be a reasonably-
sized grammar that could produce every GUI. Thus, within
each layout section, parsing is performed in a best-effort
manner. This means that we do not assume that each ele-
ment can be matched to some production rule in the gram-
mar. Rather parsing begins at the leaves and terminates
when it cannot find another rule to apply. The visual anal-
ysis that was done in the first phase to produce the initial
hierarchy ensures that the location of each layout compo-
nent in the hierarchy tree provides semantics. The benefit
of this approach is demonstrated by parsing result for the
search button in the example in Figure 8(d).

To summarize, we produce a semantic parse tree PTI that is
based on the initial tree TI . While the initial tree was built
top to bottom, parsing starts from the leafs, and continues
to the top-most layout object for which some grammar rule
applies. The parsed elements are arranged in a hierarchi-
cal manner, diffusing up the semantic of their construct to
the semantics of their ancestors. In particular, the role of
each segment of the layout can be recognized according the
semantic of its ingredients. We currently produce semantic
understanding based on titles and of types of the constructs
only. Based on specific constructs in specific topic, more
refined methods can be applied, e.g., inferring the ”flight lo-
cations” topic of a section that includes ”from” and ”to” edit
boxes in a flight reservation form, as appears in Figure 8.

1In order not to create strings, in the case of recursive rules
(like Rule 3 in Figure 8), the tree might be “flattened” by
adopting a new sibling instead of adding another parent.

Figure 9: Results of segmentation on the Northwest
Airlines Reservation Center page. Shown above are
the results of the current suite of detection algo-
rithms, including rectangles, radio buttons and text.

Figure 10: Results of object classification. The red
”Search”button was matched to the database object
on the left.

4. RESULTS
We demonstrate the feasibility of the proposed system for
image-based GUI analysis with an end-to-end example. The
system renders the Northwest Airlines Reservation Center
page (www.nwa.com/travel/reser/main.html) and stores the
rendered image. In the structure analysis phase, the image
is first segmented using the suite of layout and object detec-
tion algorithms from Section 2.1. These include rectangle
detection and radio button detection. Text detection and
recognition complete this set of algorithms. At this point,
we have a partially classified hierarchical tree, as depicted
in Figure 9. In the figure, each object is displayed as a rect-
angle. Objects are coded by type, where blue indicates a
radio button or check box, magenta indicates text, and red
indicates a rectangle of unknown type.

Next, the GUI object recognition algorithm from Section 2.2
classifies each of the rectangles marked in red in Figure 9.
We created a database of classified objects which included a
variety of GUI objects, including GUI objects with a typical
web look and feel, as well as some objects taken from other
pages from the Northwest Airline web application. On this
page all the text boxes, list boxes and buttons were classified
correctly. Figure 10 shows the nearest match found for the
”Search” button.



Figure 11: A section of the host graph for the ob-
jects identified on the Northwest Airlines Reserva-
tion Center page.

Structural analysis is now complete, and we have a fully
classified hierarchical tree which includes set of layout seg-
ments and objects: their location on the page, with associ-
ated type, text value and other attributes. With this input
we begin the semantic analysis phase, using the visual parser
from Section 3. First the host graph is constructed based on
the spatial relationships of the objects. Note that out of the
potential complete graph, many arcs where eliminated, such
as arcs between objects inside the frame to objects outside
the frame.

The grammar used in this example includes about 20 pro-
duction rules with 8 terminal objects and 10 non-terminals.
Most of the rules are generic visual rules, like the rules de-
scribed in Figure 8 for radio buttons or rules for templates
such as vertical and horizontal sets of elements. We defined
2 template assignments for the Northwest Airlines web ap-
plication, including a template assignment for the date-and-
time elements which form a vertical set (“Depart” and “Re-
turn”). Figure 12 shows one view of the parse tree for this
page. In the figure, nodes are shown as filled blue rectangles.
Semantic information that was extracted from the image by
the parsing process is shown as text on the node. Note that
each of the navigation areas, such as the ”Flight Search”
and ”Manage My Reservation” sections, are identified with
an associated semantic tag. These nodes are internal nodes
in the parse tree, meaning that we would have to traverse
down the tree to get to UI component. Other nodes in the
view shown in Figure 12 are leaf nodes, e.g., the components

Figure 12: Results of parsing the Northwest Airlines
Reservation Center page. This image shows a view
of the parse tree. In this view some nodes are in
the middle of the tree, e.g., the ”Flight Search” and
”Manage My Reservation” sections. Other nodes
are leaves, such as the components making up the
”From” and ”To” user input area.

of the ”from” and ”to” user input area. These nodes corre-
spond directly to a UI component. Overall, the grouping
of objects in the parse tree, and the semantic tags assigned
to the internal nodes correspond very well to the way peo-
ple perceive this page. Thus, the parse tree constitutes a
semantic hierarchy of the page.

5. SUMMARY AND FUTURE WORK
This paper presented a system for inferring GUI semantics
from screen images. The system is modelled after the no-
tion of programming language compilers. The structural
analysis module corresponds to the lexical analyzer (Lex)
and the semantic analysis module corresponds to the parser
(Yacc). Structural analysis uses image analysis tools and
techniques, whereas semantic analysis uses graph grammars
and visual parsing. This paper describes a set of algorithms
for each task, and demonstrates feasibility of the proposed
algorithms for the task at hand.

We identify future work for each task. In the structural
analysis module we are considering more robust segmenta-
tion schemes based on the notion of self-similarity and more
powerful object classification algorithms, e.g., Support Vec-
tor Machines (SVM). In addition, we do not believe we can
use a single database for all web applications. Rather, for
each application, we can use some common components, and
some components that have been modelled from the appli-
cation under analysis. We are building a tool that assists
a user of the system to efficiently and effectively create a
classification database for any application.

We also do not believe that there is a single graph grammar
for all web applications. We plan to explore several direc-



tions to simplify the creation of a grammar. We already use
grammar templates, and we are building a tool that helps a
user construct template rules. We plan to explore the pos-
sibility of inferring template rules from a single page based
on repetition, alignment and rhythm. We also have a more
ambitious goal to infer grammar rules from web crawling.

In addition to improving each component of the system, fu-
ture work includes creating an automation engine that uses
this vision system as the basis for recording and replaying
automation scripts.
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