

Keyword(s):

Abstract:

©

Web Page Layout Via Visual Segmentation

Ayelet Pnueli, Ruth Bergman, Sagi Schein, Omer Barkol

HP Laboratories
HPL-2009-160

Layout understanding, Layout analysis, Web page segmentation, HTML, DOM

Web page segmentation is required for any application that observes, manipulates, interacts, summarizes or
does anything with web content or web services. Although segmentation is a non-trivial task, until recently
it could be performed reasonably by analyzing the HTML structure. Today, the dynamic content of web
pages does not fit the assumptions made by those algorithms. The HTML structure does not contain enough
information to extract the important regions. Yet, visually, the page itself remains understandable to the
human user. Thus, we believe it contains all the information that is needed to understand its content. We
propose adding methods of computer vision for the analysis of the page. When the HTML does not contain
the needed object hierarchy information, one may use the visual information. Moreover, visual
segmentation allows us to correct the HTML structure or to simplify its hierarchy which in many cases is
not semantic. We perform top-down segmentation, yielding first the large scale layout of the page, down to
the required degree of detail.

External Posting Date: July 21, 2009 [Fulltext] Approved for External Publication
Internal Posting Date: July 21, 2009 [Fulltext]

Copyright 2009 Hewlett-Packard Development Company, L.P.

Web Page Layout Via Visual Segmentation

Ayelet Pnueli
HP Labs

Technion City
Haifa, Israel

++97248231237
ayelet.pnueli@hp.com

Ruth Bergman
HP Labs

Technion City
Haifa, Israel

++97248231237
ruth.bergman@hp.com

Sagi Schein
HP Labs

Technion City
Haifa, Israel

++97248231237
sagi.schein@hp.com

Omer Barkol
HP Labs

Technion City
Haifa, Israel

++97248231237
omer.barkol@hp.com

Abstract
Web page segmentation is required for any application that
observes, manipulates, interacts, summarizes or does
anything with web content or web services. Although
segmentation is a non-trivial task, until recently it could be
performed reasonably by analyzing the HTML structure.
Today, the dynamic content of web pages does not fit the
assumptions made by those algorithms. The HTML structure
does not contain enough information to extract the important
regions. Yet, visually, the page itself remains understandable
to the human user. Thus, we believe it contains all the
information that is needed to understand its content. We
propose adding methods of computer vision for the analysis
of the page. When the HTML does not contain the needed
object hierarchy information, one may use the visual
information. Moreover, visual segmentation allows us to
correct the HTML structure or to simplify its hierarchy
which in many cases is not semantic. We perform top-down
segmentation, yielding first the large scale layout of the
page, down to the required degree of detail.

Categories and Subject Descriptors
I.4 [IMAGE PROCESSING AND
COMPUTER VISION]: I.4.6 Segmentation,
I.4.9 Applications, I.5.2 Design Methodology,.
I.7 [DOCUMENT AND TEXT
PROCESSING]: I.7.5 Document Capture/
J. [Computer Applications].

General Terms
Algorithms, Theory,

Keywords
Layout understanding, Layout analysis, Web page
segmentation, HTML, DOM

Introduction
As the amount of information and services available via the

web increases, the use of web for accessing information,
shopping, and communicating is increasing, and,
simultaneously, web-centric business models are evolving.
These changes have resulted in a more sophisticated
presentation of content on the web. A web page typically
displays a number of different messages to the user, which
are usually visually distinct. For example, a web page might
contain advertisements and links to other relevant pages in
addition to the main content of the page. Thus, an
application that intends to re-use content on the web, such as
a search engine or a web-to-print application, needs to
identify the regions of the page that contain distinct
information. Other applications, such as web automation
applications, need to identify user-interaction (UI)
components, such as buttons and links. Until recently, it has
been possible to identify these regions and components from
the HTML code that generated the page. The recent trend
toward dynamic web technologies implies that the HTML
not longer contains sufficient information on the content of
the page. Sometimes it contains almost no information, e.g.,
in the case of flash presentations. To the user, on the other
hand, the page remains perfectly understandable. In other
words, the page itself contains all the information that is
needed to understand its content. We therefore conjecture
that by analyzing an image of the page it is possible to
extract the needed information. This paper describes an
algorithm that segments a web page recursively to segment
the layout of the page and the UI components using the
page’s rendered image.

For our purposes, a segment on the web page is a region that
a user would identify as distinct from the rest of the page in
some way. Prior approaches to the web-page segmentation
problem [Cai03, ChakrabartiEtAl2008] view a segment as
corresponding to a fragment of HTML. These solutions
analyze the HTML Document Object Model (DOM), extract
information about the appearance of objects on the page, and
group HTML objects based on this information. While these
solutions work well in traditional HTML pages, they fail in
dynamic HTML applications. Likewise, web automation
tools, such as HP Quick Test Pro, Selenium and Chickenfoot
often fail in dynamic HTML applications.

In dynamic HTML pages, it is often the case that the object
hierarchy is available, but it does not describe the layout and
components semantically, e.g., a button is made up of three
distinct elements each of which is comprised of a DIV
element containing an image element. The behavior of the
button is obtained by javascript code. Similarly the layout of
the page is masked by superfluous elements. This
cumbersome HTML structure arises because HTML pages
are produced automatically from toolkits, e.g., the Google
Web Toolkit (GWT). Other scenarios, such as pages
containing Adobe Flash objects, there is virtually no
information about the content in the HTML DOM. Thus, we
sometimes have to understand the relevant segments and
objects in the application using screen images only, or screen
images combined with partial information.

In this paper, we propose a top-down algorithm for obtaining
a layout of a web page from its rendered image. The layout
is a segmentation of the page to meaningful, large, objects.
When we apply the layout algorithm successively, we divide
the page to smaller and smaller components, according to the
natural visual hierarchy. At the lowest level it segments
multimedia content, such as text, images, and videos, and UI
components, such as buttons and edit boxes.

Previous Work
There is a large body of prior solutions on segmentation of
natural images. There are many good algorithms for general
segmentations, including watershed [Vincent91], mean-shift
[Comaniciu02], region growing methods [Zhu95], spectral
graph methods, such as normalized cuts [Shi97], and self-
similarity methods [Bagon08]. Other algorithms segment a
specific object type, e.g., faces, sky, and foliage
[Bergman09]. Segmentation algorithms depend heavily on

the statistics of natural images, or natural images of a given
type. They look for edges or large gradients in the image and
attempt to combine the edges into coherent blocks.

GUI images are very different from natural images. The
variety is limited, and we can make the assumption that the
GUI is designed to be easy to understand. This assumption
means both that the objects are categorized to well known
groups, so that when a person gets to a new application his
prior experience will enable him to understand it quickly,
and that graphically the objects are easily detectable (e.g.,
because they have sharp edges or color transitions).

Prior work is found on layout segmentation for Web
applications. In this work, the HTML DOM is assumed to be
available. The layout of the document is completely
described by the DOM, and there are several good solutions
for extracting the layout, most notable the VIPS algorithm
[Cai03]. The DOM information, however, does not always
results in the correct semantic inclusion relationship. In
addition, this solution fails if the DOM does not contain all
the GUI information. For example, if the GUI was formed
using one flash object the DOM contains only one element.

Our Work Via an Example
In Figure 1 we see the image of “Travelocity” website, with
the highest level layout drawn in red. This layout was found
using edge analysis. Many times, the main objects are

outlined so that there is a border between them and the area
around them. This allows the user, and also a computer
program, to easily find the main components of the
application.

Figure 1 - Highest Level Layout

Figure 2 - Second Level of the Layout (in Blue)

To get this layout, the algorithm uses edge analysis on the
GUI image (or a transformation of it), looks for long edges
directed in the horizontal and vertical directions, and then

selects the rectangles that do not lie within any other
rectangle in the GUI image. After this stage, the algorithm
seeks for areas containing information, and groups them into
distinct layout elements. This technique gives us the high
level layout, thereby segmenting the page to its main
components. In the Travelocity example, the highest level
layout separates the main content from the title and bottom
navigation area. Note that all we use is visual information –
at this stage we do not apply any semantic analysis to group
or ungroup elements.
Next, the algorithm finds the next level of layout, by
recursively computing the outer-most rectangles within each
layout element. The second level of recursion for our
example is shown in Figure 2 in blue. This recursive process
may continue until down to the level of individual elements,
which may be text areas, images, videos, buttons, edit boxes,
etc. Alternatively, the user may terminate the recursion
earlier, depending on the application at hand. The third level
of recursion is shown in green in Figure 3.

As we go deeper in the hierarchy, this task becomes more
difficult because the objects we separate become smaller.
Thus, the edges are denser and tend to merge. To solve this
problem we use additional properties of the image, including
color, brightness and text detection, to improve the
segmentation.

Additionally, to accurately segment GUI components, such
as radio buttons and check boxes, which are not typically
rectangular, we use custom detectors. These detectors are
tailored to the distinct appearance of these specialized
components, via a template matching approach. The result of
applying radio buttons and text detectors is shown on Figure
4. Radio buttons and check boxes are marked in blue, and
text in magenta. Note that this is the highest level of layout
one may wish to achieve.

Following the text detection, we apply OCR, which can also
give us information about the meaning of a layout object.
The text information is important for later semantic analysis
of the page content.

Future Work
In the future, we intend to combine the DOM information
with the GUI image information, which we expect to
improve the segmentation over using one type of
information. Using image analysis techniques we will find
areas or details where the DOM information is not complete,
and use the information from the image to correct it. In areas
where there is no DOM information (e.g., a flash object), we
would use only the information from the image. This
approach yields additional semantic information for each
object, in addition to better segmentation.

Figure 3 - Third Level of the Layout (in Green)

Figure 4 - Radio Buttons Segmentation

References
[Cai03] Deng Cai, Shipeng Yu, Ji-Rong Wen and Wei-Ying Ma, “VIPS: a Vision-based Page Segmentation
Algorithm” MSR-TR-2003-79
[ChakrabartiEtAl2008] Deepayan Chakrabarti, Ravi Kumar and Kunal Punera, ”A Graph-Theoretic Approach to
Webpage Segmentation” WWW 2008, Beijing, China
[Comaniciu02] Dorin Comaniciu and Peter Meer, “Mean Shift: A robust approach Toward Feature Space Analysis”,
Transactions on Pattern Analysis and Machine Vision, Vol 24 No 5 2002.
[Shi97] Jianbo Shi, Jitendra Malik, ” Normalized Cuts and Image Segmentation”, IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol 22, No 8, Pages 888-905, 1997
[Vincent91] Lee Vincent and Pierre Soille,”Watersheds in digital spaces: An efficient algorithm based on immersion
simulations”, Transactions on Pattern Analysis and Machine Vision”, Vol 13 No 6, pages 583—598, 1991.
[Zhu95] S.C. Zhu and T.S. Lee and A. Yuille, Region competition: unifying snakes, region growing and mdl for
image segmentation, ICCV, vol 25, pg. 416-425, 1995.
[Bagon08] Shai Bagon and Oren Boiman and Michal Irani, What is a Good Image Segment? A unified Approach to
Segment Extraction}, Computer Vision -- ECCV 2008, David Forsyth and Philip Torr and Andrew Zisserman Editors,
pg. 30-44, Springer, 2008.
[Bergman09] Ruth Bergman, Hila Nachlieli and Gitit Ruckenstein, Perceptual Segmentation: Combining Image
Segmentation with Object Tagging, submitted to IEEE Transactions on Image Processing, 2009.
[Selenium] Selenium web application testing system. http://seleniumhq.org/
[Chickenfoot] Chickenfoot: rewrite the web. http://groups.csail.mit.edu/uid/chickenfoot/publications.html

