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Abstract 

Patch management of networks is essential to mitigate the risks from the exploitation of vulnerabilities 

through malware and other attacks.  However, by setting the patching policy for network devices, the IT 

security team often creates burdens for IT operations or disruptions to the business operations. Different 

patch deployment timelines could be adopted with the aim of reducing this operational cost, but care must 

be taken not to substantially increase the risk of potential emergency disruption from exploits and attacks. 

In this paper we explore how the IT security policy choices regarding patching timelines can be made in 

terms of economically-based decisions, in which the aim is to minimize the expected overall costs to the 

organization from patching-related activity. We introduce a simple cost function that takes into account 

costs incurred from disruption caused by planned patching and from expected disruption by an emergency. 

We apply a system modelling and simulation approach to produce results that show disruptions caused 

under changing patch deployment timelines, and use the results together with the cost function to identify 

the optimal patching timelines. The results from this work can be easily applied by IT security policy 

decision makers to choose the network patching policy that is optimal for their organization and reflects 

their risk appetite and network emergency tolerance level. 

1. Introduction 

Security decisions often involve trade-offs: a security policy choice that optimizes time spent by the 

security team might create burdens (cost) for IT operations or the business; and a decision to spend 

money defending one risk means reduced resources for another.  

One of the main tasks faced by the security operations team is vulnerability and patch management.  

The reasoning behind applying patches to remove system vulnerabilities and so reduced security risk is 

well understood. The longer the systems stay unpatched the bigger the risk that a vulnerability may be 

exploited by malicious attacks or fast spreading malware.  

However, applying patches to network devices such as routers and switches, especially on critical 

infrastructures, usually has many undesirable implications, mainly in terms of business disruptions. First, 

it requires dedicated staff who allocate specific amounts of time for patching an individual device. 

Second, patches and especially network level ones are bound to introduce disruptions, at the minimum 

level by taking the device offline at the time a patch is applied. Furthermore, any time a piece of network 

equipment is patched, there is a risk of something going wrong:  if the patch fails, or results in unexpected 

interaction with other devices or current configurations, the disruptions caused can have significant 

impact on the business, which relies on the network infrastructure. For example, Cisco’s devices cannot 

be patched in the same way as Windows servers: usually the whole network device’s operating system 

has to be replaced with a new one. After patching, it is could easily turn out that the existing configuration 

does not work with the new OS version, or a routing protocol might end up being broken. Thus, 

deploying patches across all of these systems in a timely manner is not simple.  In addition to the time 

spent for patch assessment and patch testing, the security operations team often faces restrictions on 

deploying the patches placed by business in terms of allowed system downtime.  

So it is easy to see why network support staff are reluctant to rush in to deploy new patches.  At the 

same time, the effects of an attack on unpatched network devices can be devastating, as many modern 



 

businesses would be crippled if they were to lose their network entirely.  Even the announcement of a 

significant new exploit or piece of malware can cause the emergency escalation of patching, causing 

significantly increased disruption to the business as parts of the network are taken out of action outside of 

agreed maintenance windows. 

When deciding on the appropriate patching policy, the IT security team in an organization needs to 

consider if the adopted practice for patch deployment is not exposing the organization to an unacceptable 

risk of potential exploitation, and to explore any improvements that can be made in the process. To 

properly manage the vulnerability exploit risk, the security operations team has to try to choose the patch 

management policy or strategy that optimally addresses those two objectives: minimize business 

disruptions from planned patches and upgrades, and minimize the time and the number of devices that 

remain exposed due to being unpatched for a long time.  

These two objectives present a conflict, however. To reduce the number of planned disruptions due to 

patching the operations staff would prefer to adopt patching strategies that span longer periods of time, as 

more time can be spent on thoroughly testing each patch and also due to the fact that several patches may 

be released by the vendor when waiting longer and so several patches can be batched together and applied 

at the same time, reducing the level of disruption from patching.  However, from a threat perspective the 

longer policy would increase the exposure of network devices to potential exploits and attacks due to 

many devices remaining vulnerable for long periods of time.  

From what we have observed, beyond examining historical data, security operations staff have few 

tools to help them understand such trade-offs or test different vulnerability mitigation strategies before 

putting them in practice. In the past, patching policies have tended to be treated as “compliance” 

decisions, e.g., an IT team might choose the longest patch deployment time allowed within guidelines set 

by audit requirements, or the quickest (i.e., lowest risk) policy that there are enough staff to implement.   

The purpose of this paper is to provide analysis of different patching policies using a system model and 

simulation approach that helps decision makers in organizations to better understand the trade-offs. By 

using this approach, and factoring in the relative costs to the business of planned and unplanned 

disruptions, we can change IT security policy choices into economically-based decisions, in which the 

aim is to minimize the expected overall costs to the organization, while taking into account the extra risks 

incurred, e.g., by delaying patching. 

We show, based on the experimental simulations, how changes in various parameters of the model, 

such as in the rate of exploits in the threat environment or in the longer patch deployment timeline, affect 

the planned and unplanned disruption levels, and how these results can help choose an optimal policy that 

minimizes the overall cost of business disruption due to patching, based on an organization’s tolerance of 

disruption and risk.  By investigating different network device patching policies, we will calculate the 

amount of disruption due to patching that a policy would result in and will estimate the associated 

increase in risk level. Since the threat environment is ever changing, as demonstrated by recent off-

schedule Cisco Security Advisory announcing multiple vulnerabilities [5], we will use the simulations to 

predict the exposure level under different threat conditions. 

The predictive modelling approach provides the advantage of enabling IT security professionals 

naturally to explore, via experimental results, the dependencies among different decisions in the patch 

management process and the impact of changes in vulnerability and exploit rates. The approach requires 

first constructing a model of the dynamics of the operational environment, such as the patching process, 

which are explored empirically using executable models, such as discrete event simulation, to derive 

probability distributions of potential outcomes. If the behaviour of the model correctly matches the 

relevant behaviour characteristics of the underlying environment, we are able to draw inferences about the 

effects of proposed policy changes from experiments and thus provide support for adopting specific 

policies.  

Our paper is organized as follows. Section 2 describes the network patching problem and introduces 

the cost functions that would be used for choosing the optimal patching timeline. In section 3, we present 

the model, constructed to capture the patch management process in the network environment.  Section 3 



 

 

also describes how we model the external threat environment. In section 4 we describe results and 

analysis from a set of simulation experiments based on the constructed model. The analysis shows the 

changing levels of planned patching and emergency disruptions under different patch deployment 

timelines, and suggests some optimal timelines that depend on the specific organization’s emergency 

tolerance level. Section 5 describes results from another set of experiments with changing threat 

environment, and looks at how this affects the optimal timeline choice. In section 6 we discuss the 

implications of our analysis and some future work. Section 7 reviews related work in this area. Our paper 

finishes with some final conclusions. 

2. Optimal Policy for Patching Network Devices 

The cost of applying patches across a network of potentially thousands of routers and switches is 

usually very high.  So that the installation of patches is done in a consistent manner based on available 

resources and business needs such as allowed device downtime windows, IT organizations develop a 

centrally enforced network device patching policy that attempts to balance the benefits and 

inconveniencies of patching vulnerabilities across network devices. This patching policy includes 

guidelines for time that should be taken to test patches and the ultimate deadline by when patches have to 

be applied across all vulnerable network devices. 

Due to the complexity of patches for network devices, the testing itself often takes up to 90 days, in 

practice, which includes an assessment of potential patch failure, and might also include waiting time for 

a second round of patch releases from the vendor. Because of the high risk of failure when deploying 

patches that are not properly tested, the security team is often reluctant to expedite patch testing.  

Once the patches have been tested, patch deployment takes place. It is during this stage that the security 

team can be more tactical in choosing how long to set the deadlines in the policy for patch deployment 

across vulnerable systems. Depending on the size of an organization and on the prevalence of the 

vulnerable devices, the deployment stage up to the time that most systems are patched can take from half 

a year to a full year, mainly due to the manual nature of installing patches on network devices. Some 

organizations that have especially tight limits on possible downtime take even longer to patch or choose 

not to patch network devices at all.    

In this paper we examine several patching policies that differ in the time deadlines set for how long 

patch deployment should take across the network environment. The network administrators then have to 

comply with these policies, by scheduling time to patch individual devices. In cases when the deadlines 

are not met, exceptions have to be raised, requiring authorization and approval for an appropriate delay, 

thus further increasing the amount of work associated with patching. 

By setting a patching policy that allows longer patch deployment deadlines the security team is 

allowing network administrators more time to schedule patching, and so are potentially reducing the 

number of exceptions that have to be raised.  But one of the main savings in setting the longer timelines 

for patching is the reduced amount of device downtime due to patching as administrators are able to 

batch more patches together and apply them in one shot. This is especially true for patches on network 

devices, where patches are usually full OS upgrades, and so each new upgrade generally includes several 

vulnerability fixes from previous upgrades. These time-based policies have to be set with carefully timed 

intervals so that new patches are released by the vendor within the set time period and can be batched 

with previous patches or applied as part of the same upgrade.  Below we will examine a wide range of 

patching deadlines and using model-driven simulations calculate how much operational disruption each 

would cause.  

However, we must remember that the main objective of the patching process is to reduce the risk of 

network devices being attacked and exploited due to the existing vulnerabilities. The delays in patch 

deployment usually increase the risk of potential attacks on unpatched, vulnerable devices. The cost of 



 

emergency procedures across these devices in case of the emergence of a successful exploit or root kit is 

much higher than the operational disruption caused by patching. These emergency procedures could  

encompass expedited patching, deployment of workarounds, or actual attacks. And so the savings in 

reduced operational disruption achieved with longer patch deployment timelines have to be weighed 

against the potential increase in emergency disruption.  

 

2.1. Reducing the business disruption caused by patching 

 

To help determine the appropriate timelines for patch deployment, we first need to define the cost 

function related to the two forms of business disruption: planned disruption due to patching and 

unplanned disruption due to emergencies.  

We will use the following notation: 

 cpatch is the cost of applying a patch to a device (or upgrading the OS of a device), which for 

the purpose of this paper is mainly the disruption caused to the business because the device is 

offline and not usable; 

 cemergency is the cost of applying an expedited fix or a workaround to a device in case of exploit 

or actual breach/attack; this again is mainly the disruption caused to the business because the 

device is not usable; 

 pemergency(t)δt  for small δt is the probability that an exploit will emerge during the interval 

[t,t+ δt], raising the need for an emergency. 

Since an individual organization has hundreds or thousands of devices that might be vulnerable to the 

same vulnerability and require patching, the overall cost of patching is multiplied across the population of 

devices, and so the overall cost of one patch is the sum of disruption across the population of devices that 

require application of this patch: dpatch= cpatch dev. 
We assume that the cost of applying a patch does not fluctuate significantly across different types of 

network equipment or from one patch to another1. The cost of an emergency, however, is incurred only if 

a breach is imminent due to the emergence of an exploit or the detection of an actual attack, and so the 

emergency disruption is dependent on the number of vulnerable (unpatched) devices at time of emergency 

t2: demergency(t)= cemergency dev_unpatched(t). 

Since the arrival of an emergency event is modelled by the probability pemergency(t)δt, we have an 

expected value of emergency disruption:  

𝑑𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦 = 𝑐𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦  𝑝𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦  𝑡 𝑑𝑒𝑣_𝑢𝑛𝑝𝑎𝑡𝑐ℎ𝑒𝑑(𝑡)𝑑𝑡
∞

−∞
 . 

Combining the two types of disruption together, the overall disruption caused by vulnerability 

management through patching is the patching cost plus the expected cost of emergency: 

D = dpatch+demergency      (1) 

The cost of disruption from patching or in case of emergency is obviously organization- and patch-

specific, but for our analysis we need to make some simplifications. We can assume that the disruption 

cost per device caused by emergency procedures is α times greater than the disruption caused by applying 

a patch.  This allows us to state that: cemergency= α cpatch. By substituting this into equation (1) we have3 

𝐷 = 𝑐𝑝𝑎𝑡𝑐 ℎ 𝑑𝑒𝑣 + 𝛼  𝑝𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦  𝑡 𝑑𝑒𝑣_𝑢𝑛𝑝𝑎𝑡𝑐ℎ𝑒𝑑
∞

−∞
(𝑡)𝑑𝑡 . 

Since cpatch is constant, the overall disruption cost depends mainly on the number of devices requiring a 

patch and the expected number of devices that remain unpatched at the time of an emergency. 

                                                           
1 This is a simplification as patch quality may vary, and some network devices have a more critical role and cause more disruption when offline. 
2 This definition of emergency cost is a simplification, as emergency disruption is really a function of the unpatched population. However, in 

practice most emergency patching of network equipment happens when an exploit is known about, but before an actual attack takes place 

(attacks are rare).  The resulting disruption is similar in kind to that caused by planned patching, but of greater severity, so we believe this is a 
reasonable simplification. 

3 In this formula we are assuming that there’s no discounting of future cost (emergency or later patching) versus cost incurred today (immediate 

patching). 



 

 

This cost is incurred for each patch or batch of patches released by the vendor, so if, for example, a 

vendor releases 3 patches in a year that apply across the same population of devices, the cost D triples. In 

one year an organization usually has to apply hundreds of patches across its various systems and 

applications. For network devices, the number of patches released by vendors is considerable smaller, 

usually in tens rather in hundreds per year, which is still quite a large number, considering that a typical 

large organization might have hundreds or thousands of network devices.  

As we said before, the security team can reduce the cost of disruption by being tactical about patch 

deployment timelines and using these timelines with patch batching capabilities to bundle several patches 

together and apply them in one shot. For example, by bundling two patches together the administrator 

would cause half as much disruption, as each device has to be touched once instead of twice. The number 

of patches that can be bundled together is dependent on the vendor’s patch release lifecycle, but in order 

to meet the deadlines set in the patch deployment policies the administrators would usually start applying 

one patch across the first set of devices, and once another patch is released will batch it with the previous 

patch and apply them together across the next set of devices.  

Looking at our cost functions the aim with the batching of patches is to reduce dpatch. for each patch by 

reducing the number of devices that the patch has to be applied to individually. By incorporating the patch 

batching effect for each patch we can subtract from the total population of devices the population for 

which this patch was batched with the next or a superseding patch4:  

dpatch = cpatch (dev-devbatched) 

By choosing the appropriate patch deployment deadlines that correlate with vendor patch release 

schedules the aim of the security team would be to increase the size of population within devbatched, and 

thus achieve lower overall patch disruption costs. If dpatch was the only cost within D the biggest reduction 

of cost would be waiting for as many patches of possible and applying them together5.  

The other cost within D, the cost of emergency disruption demergency, however, increases with longer 

patch deployment timelines, as the population of devices unpatched at the time of an emergency grows. 

The aim would be to identify the appropriate patch deployment deadline that decreases dpatch (the patch 

has to be applied across minimum number of devices) while not increasing considerably demergency 

(minimum number of devices remaining unpatched in case of emergency), and thus minimizes the overall 

disruption D caused by patching. 

 

3. Model of Patch Deployment Process 
 

To explore the effect of different patching policies on the cost of disruption, we use a systems 

modelling and simulation approach. This approach allows us to accurately capture the characteristics and 

behaviour of the vulnerability disclose-exploit-patch lifecycle [1, 3, 14], including the patch testing and 

patch deployment stages. We use a systems modelling methodology based on process algebra and 

queuing theory [12] that has been developed as a powerful computer simulation modelling technique for 

framing and exploring complex systems and processes. Within this approach the processes, such as patch 

deployment, are captured stochastically and events that cause changes in the process, such as vulnerability 

exploit or patch release, as discrete events whose occurrence is specified with probability distributions or 

as time-based cycles. 

Figure 1 shows pictorially the model that was created of the patch management process in the network 

environment. The main trigger for this process is the release of a patch or a batch of patches by a vendor. 

                                                           
4 We made a simplification by assuming that the disruption caused when applying the batch of patches is the same as when 

applying a single patch.  If the batch includes many complex patches, this might not be exactly the case. However, it’s 

common within the network context that the next set of network patches is actually a full upgrade that supersedes or includes 

any previous patches, and so the cost of applying a new upgrade is the same or is increased only by small delta. 
5 Usually patches are released by the vendor until the end of product lifecycle, and so this would result in the best option being to 

upgrade a device with the next product without applying any of the patches released before that.  



 

Most major vendors have recently adopted regular patch release cycles, and so we decided to include this 

in our model, but also recognize that off-cycle patches might be released in between.  

From Secunia reports [19] we have examined historical data regarding the patch release frequency by 

the three major network device vendors adopted across large enterprises: Cisco, HP ProCurve, and 

Juniper. From these three only Cisco has adopted a regular patch release policy with the main patches 

being released at 6 months intervals [4], in March and September, and some critical patches in between. 

Many fewer patches are released by HP ProCurve and Juniper, usually only 1 or 2 per year. Since Cisco 

networking equipment is by far the most prevalent across large organizations, we decided to use the six-

monthly cycle as the patch release frequency in our model. We model the arrival of off-cycle patch 

releases as a Poisson process with an inter-arrival time based on an exponential probability distribution 

with the mean time of occurrence set at once per year. The exponential probability distribution was 

chosen here because of the memoryless property it offers. 
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Figure 1. Activity diagram of a typical patch management process. 



 

 

The process steps taken internally within an organization consist of the previously described stages of 

patch preparation and deployment. Based on interviews with the network administrators, we decided to 

have a fixed patch preparation time of 90 days. For the patch deployment stage we needed to determine if 

during a given time period for patch deployment across a number of devices, these devices are patched 

individually in regular intervals or in groups. By examining the patch deployment practices in several 

large organizations, we decided to make some generalizations by assuming that in most cases the network 

devices would be patched individually at regular intervals so that to meet the deadlines set by the policy. 

This would result in the linear patch uptake during patch deployment across the vulnerable systems, as is 

illustrated in graphs on the right hand side within figure 1.  

We also assumed that the patch uptake has the same characteristics no matter what length the patching 

policy is set to; e.g., the devices would be patched at equally spaced intervals when the policy deadline is 

set at 6 months or at 18 months.  Based on the lack of automated tools for patching network devices, and 

the limited number of allowed downtime periods set by the business, we believe that these two 

assumptions are not far off the actual network device patching practices. 

When we run the experiments with the model, the patch deployment deadlines will be gradually 

increased with an interval of one month starting with a policy where patches are applied immediately 

(within one month) and finishing with a deadline for applying patches set to two years.   

 

3.1. Modelling the threat environment 

 

We include threat environment events in the model that cause an emergency when an exploit appears 

related to the vulnerability being patched. In choosing how to represent the threat environment in our 

model we have examined previously-announced cases of network exploits.  As we have noted before, 

exploits on network devices are much less frequent compared to the Wintel environment due to the fact 

that network devices have many different CPU architectures and multiple ranges of platforms, thus 

preventing effective automatic exploit development. Up to now the attacks and exploits that have been 

publicly announced have targeted specific versions of architecture and platform, making the likelihood of 

widespread attacks very low. Within the 4 years 2002-2006 we have found two publicly-announced 

instances of exploits of Cisco vulnerabilities.6 Both exploits related to vulnerabilities for which the patch 

had been released over a year earlier by the vendor. This small number of exploit publications together 

with anecdotal evidence from the hacker community [7, 8, 9, 11] suggests that exploitation of IOS 

vulnerabilities is generally difficult, with working exploits taking significant time to be developed after 

the patch publication by the vendor.  

When representing the threat environment within our system model, we concentrated on two factors, 

the rate of arrival of exploits, and how long after patch publication the exploit appears—which represents 

the time it takes for attackers/hackers to develop good quality, working exploit code.  In the model, the 

exploit arrival rate is used to determine the likelihood of success in a Bernoulli trial which is conducted 

after each patch is published, to determine whether an exploit will be developed for this patch. Exploit 

development time is more complex. It could be represented using mean development time and an 

exponential distribution, but this doesn't fit the historical or anecdotal evidence. The evidence is better 

represented by a Weibull distribution, which has 2 parameters, shape and scale, which between them 

determine the mean and standard deviation of exploit development time. 

Therefore, our overall model of the threat environment has 3 parameters: arrival rate of exploits, mean 

development time of exploit code as measured from patch publication time, and shape parameter of the 

development time probability distribution.  When we come to choose a patch deployment policy, we must 

estimate these three parameters to determine our model of the prevailing threat environment.  Based on 

the evidence described earlier, our estimate was: 1 emergency (significantly threatening exploit) per year, 
                                                           

6 March 2004 toolkit exploited vulnerabilities from 2002-2003 [20], Nov 2006 SNMP exploit exploited vulnerability with patch 

available in 2004-2005 [21]. 



 

2 years mean development time from patch publication until exploit, and a shape corresponding to 

standard deviation of 1 year for exploit development time. The shape of this distribution is plotted in 

figure 2.  

 

 

Figure 2. Weibull PDF of an emergency arrival event. 

 

The above parameters will be used in what we call the core simulation experiments, the results of 

which will be described in section 4. To reflect potential changes in the threat environment such as 

increased exploit development rate, or in internal patching processes, we will make various changes in the 

parameters for additional experiments. These will be described in section 5, with further experiments 

described in the appendices.   

 

3.2. Measuring operational and emergency disruption 

 

During the simulations across different patch deployment schedules, we will be measuring the overall 

disruption caused by normal patching and emergency procedures. We will be measuring the total 

disruption caused per year, rather than per individual patch, as this seems as a more practical measure that 

can be used by the security teams in their policy decisions, since many security policies and budget are 

determined on yearly basis.  

As noted in section 2.2 the disruption from patching mainly depends on the size of the device 

population that requires a patch to be applied individually. During the simulations, we will measure the 

relative proportion of the population rather than the exact number of devices, as comparisons across 

different patching policies will be done based on the relative increase or decrease in disruption with 

different patching timelines, rather than the exact number. The same approach will be applied for 

emergency disruption, where we will record the proportion of the population remaining unpatched at the 

time of an exploit appearing. 
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4. Results from Simulations with Core Model Settings 

 
In the first set of simulation experiments we look at how disruption changes with increasingly longer 

patch deployment timelines, with timelines being increased by one month and with the maximum 

deployment timeline for a patch being 24 months. The result of these simulations is plotted in figure 3. It 

shows the mean operational disruption from patching per year dpatch, and the mean emergency disruption 

demergency as longer patch deployment timelines are being adopted by the security operations team. 

 

 

Figure 3. Operational patching disruption and emergency disruption across changing deployment timeline. 

 
As can be seen from these plots, with longer timelines the operational disruption decreases quite 

substantially, while the increase in the emergency disruption is more gradual and smaller. The savings are 

even bigger after the 6 month timeline. This point corresponds with the 6 month lifecycle when the 

vendor releases a new patch. For example, when the patch deployment time is set at 8 months the 

expected operational disruption is half that when patching policy requires patches to be applied 

immediately, corresponding to the timeline set at 0 months. However, for policies with timelines longer 

than 15 months the operational disruption improvements are smaller with each longer timeline. 

Since the disruption cost per device caused by emergency procedures is certainly bigger than the 

operational disruption caused by applying a patch, we decided to scale the emergency disruption by 

choosing α=10. The green line in the same graph shows this. This time we get a crossover point at a 

timeline of 9 months where dpatch=10 demergency. This represents the patching policy for which the overall 

disruption is caused by equal measures of operational patching disruption and emergency disruption.  
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Figure 4. Changes in the overall disruption (operational+emergency) under different values of α. 

 

As we recall from our cost functions described in section 2, the optimal patch deployment deadline 

would be the one where the overall disruption, D = dpatch + αdemergency, is minimal for a certain value of α.  

As the value of α is dependent on a particular organization, its capabilities for dealing with an emergency 

(such as redundancies across network devices), and its risk appetite, we plotted the overall disruption D 

under different timelines for several values of α. This can be seen in figure 4.  

When α=10 the optimal policy is 9 months and this corresponds to the previous crossover point. If α is 

larger than that, the optimal policy deadline is much shorter, with α=15 this being at 3 months and with 

α=20 this being at 2 months. This means that for organizations where emergency disruption is regarded as 

being more than 10 times worse than the operational disruption caused by normal patch application, the 

policy should be adopted with patches required to be deployed immediately across vulnerable devices. 

If, however, emergency disruption is regarded as similar to or just slightly worse than operational 

disruption7, the longer timelines would be more cost effective. For example, when α=5, the lowest overall 

disruption is achieved when the patch deployment deadline is set at 13 months. But even with timelines 

longer than that, the overall disruption increases only very slightly. 

When we run experiments with even longer timelines, with maximum deployment time corresponding 

to 5 years, the results of which can be seen plotted in figure 5, a point is reached where the amount of 

emergency disruption exceeds the operational disruption. This is when the timelines are set to longer than 

33 months. It suggests that at the current exploit development level even organizations that do not regard 

emergency disruption as considerably worse than operational disruption should consider patching their 

network equipment by 33 months after the patch release date or upgrading it with a newer version, in 

order to reduce the risk of the network being significantly impacted by an attack or malware. 
 

                                                           
7 This is quite likely the case within the current threat environment, where past exploits on network equipment have mostly 

resulted in denial of service (DoS) attacks, rather than attacks that give a complete access to the router or switch. The DoS 

attacks are usually not regarded as having big impact due to the redundancies that are commonly built in to the network 

architecture.  

0

1

2

3

4

5

6

7

0 3 6 9 12 15 18 21 24

Patch deployment timeline in months

alpha=5

alpha=10

alpha=15

alpha=20



 

 

 

Figure 5. Operational and emergency disruption with long patch deployment timelines. 

 

5. Changing The Threat Environment 
 

The results described in the previous section have been generated from simulations in which the threat 

environment was described by the Weibull probability distribution as specified in section 3, 

corresponding to a mean exploit development time after patch publication of 1 year, and an arrival rate of 

exploits of one every 2 years.  

With some of the vendors of network equipment aiming to adopt more uniform OS architectures across 

their range of network devices, developing exploits that impact network devices might become much 

easier [10], and so the frequency of exploits may increase and the time for an exploit to be developed may 

decrease [15].  

In the next set of simulation experiments we decided to explore how emergency disruption changes 

under a worsening threat environment, and how the policy deadlines should be adjusted so that to achieve 

minimal disruption costs.    

 

5.1. Increased arrival rate of exploits 

 

First we increased the arrival rate of exploits, leaving the exploit development time the same as before 

set at 1 year.  The changes in increased emergency disruption for various emergency arrival rates are 

plotted in figure 6. As can be seen in the chart, the emergency disruption increases considerably as the 

arrival rate increases, with the highest increase when an exploit appears every 6 months. 
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Figure 6. Emergency disruption for different exploit arrival rates, with exploit development time held 

constant at 1 year. 

When we plot the overall disruption with α=10, we can see that with a worsening threat environment 

the previously optimal policy of 9 months no longer applies. Although with exploit frequency going up 

from 2 to 1.5 and 1 per year, we don’t see a substantial increase in the overall disruption, with the 

frequency at 2 per year the increase is much bigger. The best option in such a case would be to patch 

immediately.  
 

 

Figure 7. Overall disruption when α=10 and exploit development time is 1 year for different exploit arrival 

rates. 
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5.2. Faster exploit development 

 

When we change the mean exploit development time from the initial value of 1 year to 6 months or 3 

months, the changes in overall disruption are quite significant, as seen in figure 8. This is particularly 

noticeable for mean development time of 3 months, which is the same length as patch testing time, so in 

this case an emergency often occurs before patch deployment has even started. Under such threat 

environment conditions, both the vendors and the organizations need to re-think the patch release and 

testing lifecycles and timelines or consider additional mitigation mechanisms. 
 

 

Figure 8. Overall disruption when α=10 and emergency frequency is every 2 years, varying exploit 

development time after patch publication. 

5.3. Increasing exploit frequency under different values of α 

Since neither α nor the threat environment is under the control of the security operations team, it is 

useful to show the impact on our results of changes in both of these parameters.  Changes in α may 

correspond to changes in business conditions, or changes in how the business is run.  We represent 

changes to the threat environment by changes to a single parameter, emergency arrival rate, both to keep 

the number of axes to two in our analysis, and because increasing emergency arrival rate leads to a 

smooth and more intuitive increase in the threat level, compared to changes in the exploit development 

time.  

Figure 9 takes as a starting point the patching policy of 9 months, the optimal choice based on the core 

settings of α=10 and one emergency every 24 months.  It shows the difference between the disruption 

given a 9 month patching policy and that which could be achieved at the optimal policy for a range of 

values of α and emergency arrival rate.  We can see that for small changes in α or a small worsening of 

the threat environment, there is little difference between disruption at a policy of 9 months and that at the 

"correct, optimal" policy, i.e., it wouldn’t matter too much to the organization if either of these parameters 

changed a bit or if the estimates of them weren't perfect. 
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Figure 9. Changes in total disruption at policy of 9 months compared to optimal policy as threat 

environment and α change. 

Figure 10 shows the changing optimal policy under the same varying parameters, and gives a picture of 

the problem space being explored. In the plot, we can see a number of distinct “regions” of policy: for 

large α or a high emergency arrival rate, the best policy is to patch as quickly as possible; when α is very 

small, emergency disruption isn’t so important, and the best policy is to patch slowly; then we can see a 

range of parameter values where the best policy is somewhere in between, with the policy shortening as α 

increases (more significance for emergency disruption) and the threat environment gets worse (more 

emergencies).  

 

Figure 10. Choosing policy that minimizes total disruption under different threat environment conditions 

and with varying values of α. 
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6. Discussion 

Our analysis explored the trade-off between operational and emergency disruption by recognizing that 

normal patching does introduce disruption, which is not negligible, and this disruption can be reduced 

with longer patching deadlines, that in turn would potentially increase the risk of a security emergency or 

breach. This analysis was done under certain assumptions about the parameters in the model. The results 

are most sensitive to the changing threat environment conditions, and that is why we explored the impact 

of these changes in detail in the previous section. As the threat environment gets worse, with exploits 

appearing frequently and soon after patch publication, the trade-off between operational and emergency 

disruption changes, until eventually the only option is to patch immediately. This would be the case for 

the Wintel environment, and the disruption from patching in such cases is small compared to emergency 

disruptions from the constant flow of malware and attacks. The reductions in overall disruption in such 

cases have to be achieved in different way, maybe by implementing faster and less disruptive mitigation 

approaches. We have explored this in our other work [3]. And so the analysis in this paper is best suited to 

the context of vulnerability management for the network environment, or other types of environment 

where exploits and attacks are less frequent (e.g., some server environments). 

 

Sensitivity Analysis 

In addition to being dependent on the threat environment, the results from the model could also depend 

on other assumptions we made, such as linear uptake of patches across the vulnerable population, patch 

release schedule and so on. The suggestions regarding the optimal policy for patching should be taken in 

the context of these assumptions. We felt that it is important to do sensitivity analysis, and explore how 

much results would change under different choices of certain parameters in the model. The results of such 

sensitivity analysis can be found in Appendixes A to D.   

Appendix A explores the effects of using some alternative probability distribution shapes for modelling 

the exploit arrival time. Appendix B analyses the effects of changing the uptake curve in the model. 

Currently a linear patch uptake was assumed, which might be too idealistic, and so we ran the 

experiments with a more realistic 80-20 patch uptake. The results show that although the different patch 

uptake does cause changes, these changes are quite small. For example, the optimal policy moves from 9 

months to 11 months, but the difference in reduced disruption is only at 0.01.  

In Appendix C we investigate the effects of "patch coverage"; the proportion of the population of 

devices that must be patched each time a patch is released.  The current assumption is that each released 

patch would applicable across 100% of population, but with hundreds of different OS architectures for 

network devices this might not always be the case. The results from these experiments seem to suggest 

that if the patch coverage is generally low, the reductions in operational disruption from delaying patching 

will not be as great, and quicker patching policies may be better. 

Finally, in Appendix D we explore the effects of different patch release rates. Currently, the 6 monthly 

patch release rate within the model was based on the patch release lifecycle adopted by Cisco, but we 

recognize that patch release rate is dependent on vulnerability discovery rate and so may not necessarily 

be a regular cycle. The results indicate that for deployment policies of less than 6 months, there is 

difference in increased operational disruption if there are more off-schedule patches. But as soon as 

deployment policy is >= 6 months, there is no change in operational disruption as any extra off-schedule 

patches can be batched with one of the other patches. 

 

Cost Function 

To help determine the appropriate timelines for patch deployment we chose to minimize the cost 

function that was defined in terms of disruption. In turn, we decided to simplify the definition of 

disruption so that it was mainly dependent on the size of the population of devices that would be impacted 

by the specific task: patching or emergency fix. Both of these can be predicted by running the simulations 



 

on the system model of the patch management process. To apply the cost function within the context of a 

specific organization the security team would need to choose only one parameter α, which is an 

estimation of how much worse the emergency fix is to the operations of the business than the planned 

patching.  

This definition of cost function was deliberately kept simple enough, so that it could be easily applied 

by the security team in various organizations. The more parameters the cost function depends on that 

cannot be easily predicted or identified based on historical data, the more difficult for the security team to 

give the correct estimates, and the more reluctant they would be to rely on the analysis and results when 

choosing the appropriate patching policy. 

We recognize that in some cases this cost function might be too simplistic. For example, the extent of 

emergency disruption might be different depending on the type of vulnerability being exploited, and in 

such case α should be defined as a function that is dependent on the criticality of exploits or emergencies. 

Also our current interpretation of an emergency deals with an expected value that is only dependent on 

the number of devices unpatched and vulnerable at the time of the emergency. This might be too simple 

as the threats to networks become more sophisticated, and impact not only network devices, but critical 

business applications and transactions. So a more complex definition of emergency disruption might need 

to be developed, that takes into account the organization’s risk appetite and ability to tolerate 

emergencies. This might also require a more complex system model that captures how an organization 

reacts to an emergency, including the effect of various processes and security mechanisms that are 

deployed to deal with the emergency. 

 

Dealing with Non-quantifiable Risks 

When describing the threat environment in the network space we quantified it using probability 

distributions, assuming that the likelihood of network exposures can be estimated with some accuracy. 

However, we acknowledge that until recently widespread network exploits and attacks have occurred too 

rarely to get a handle on their statistics, and in general these are non-random events because network 

attacks are usually targeted by some adversary that is causing them to occur at his/her convenience. Such 

exposures are often referred to “non-quantifiable risks” [18].   

Since the probability of such events cannot be accurately taken into account, an important additional 

factor is estimating the consequences of such events. Impact analysis [17] can help here in understanding 

if even a rare event can cause severe damage to an organization. To properly manage non-quantifiable 

risks the overall network security defense measures should not only depend on the network device 

patching policy, but also on exposure detection and efficient defence and recovery at the time of the 

actual attack.  

7. Related Work  

In recent years there has been some work examining the trade-offs involved in different patching 

policies, but none that specifically address the patching of network devices. Beattie, et al. [2] were the 

first to explore the factors affecting the best time to apply patches so that organizations minimize 

disruptions caused by defective patches. Their results indicate that patching during the period of 10 to 30 

days after first patch release date is the optimal period for minimizing the disruption caused by defective 

patches. In our work, rather than looking just at a single patch and adjusting a single point in time to start 

patch deployment, we analyse the overall patch management process that also takes into account the time 

taken to apply the patches across all the vulnerable network devices in an organization; this can be 

considerable for a large organization.  

Radianti, et al. [13] explore proactive and reactive patching policies using system dynamics modelling. 

Although their approach of modelling and simulation is similar to ours, the main difference is in the type 



 

 

of policies that are chosen to explore. Radianti, et al. explore generic patching policies, whereas we aimed 

specifically at exploring patching of network devices, as these represent a very special case. 

The work by Zhang, Tan and Dey [16] provides an analytical framework for cost-benefit analysis of 

different patching policies. They assume that patching lead time (the time taken to apply a patch across 

the systems) is negligible or very small comparing to the overall patching lifecycle, which we argue is not 

the case in large organizations with thousands of systems requiring the same patch. The authors also 

assume that the costs associated with vulnerability exploitations can be estimated with relative ease by an 

organization, which in reality is very difficult to determine with any accuracy. We believe that our 

proposed simulation-based approach allows an organization more naturally and flexibly to explore the 

pragmatic outcomes from different patching policies than a purely analytical framework would allow.  

Another stream of research relevant to our work here is the analysis of the vulnerability life-cycle, and 

their past and future trends. The earlier work by McHugh and Arbaugh [1] introduces a life-cycle model 

for system vulnerabilities. Looking at CERT data on attacks related to specific vulnerabilities, McHugh 

and Arbaugh noted that many systems were still being attacked months or even years after the patches 

became available for the vulnerabilities exploited in those attacks. Since then, security operations teams in 

many organizations have streamlined their patch management processes so that fewer systems remain 

vulnerable for so long. However, the rate at which new vulnerabilities are discovered and exploited is 

constantly increasing, thus requiring regular reassessment of existing patching practices. The work by 

Frei et al [6] is important here for helping understand past and current trends of how vulnerabilities have 

been exploited and how mitigations have been handled by software vendors. This work looked at the 

generic set of vulnerabilities as disclosed by CERT, Security Focus, and others. However as we noted 

before, for network device vulnerabilities the incidents of actual exploits are rare, and so the same 

probability distributions functions as for generic vulnerabilities cannot be applied. We believe that more 

analysis would be beneficial to assess the appropriate probability distributions in the network 

vulnerability space. 

8. Conclusions 

In this paper we explored how IT security policy choices regarding patching timelines for network 

equipment can be made in terms of economically-based decisions, in which the aim is to minimize the 

expected overall costs to the organization from patching-related activity. We introduced a simple cost 

function that takes into account costs incurred from disruption caused by planned patching and from 

expected disruption by an emergency when an exploit or malware emerges. By lengthening the required 

patch deployment timelines, the IT security policy decision makers can reduce the disruption caused by 

planned patching as more patches can be batched together, but this would increase the expected 

emergency disruption as the devices would remain unpatched for longer. We applied a system modelling 

and simulation approach to explore the disruptions caused by changing patch deployment timelines within 

the range of 0 to 24 months, and used the results together with the cost function to identify the optimal 

patching timeline. When modelling the network vulnerability management process we tried to capture 

current network patch management practices used across large organizations, and modelled the network 

threat environment based on historical (though sparse) data on network exploits over the past 4 years. The 

resulting optimal patch deployment policy of 9 months should be viewed as optimal under these 

assumptions. By increasing the frequency of exploits in the next set of experiments we saw that this 9 

month timeline soon stops being an optimal policy, with the best option being to patch immediately. 
We believe that the results from this work can be easily applied by the IT security policy decision makers in their 

respective organizations to choose the network equipment patching policy that is optimal for their organization and 

reflects their risk appetite and network emergency tolerance level. It is our hope that this approach may one day 

form best practice to follow not just in choosing patching policy but in other areas of security decision-making.  
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Appendix A. Alternative Probability Distribution Shapes. 
 

One of the assumptions we made about the threat environment was the shape of the PDF for exploit 

development time after patch publication.  How much difference does this assumption make to our 

analysis and can we justify the choice?  This section looks at some of the alternative distributions that 

could be used.  

 

 

Figure 11. Alternative PDFs of exploit development time 

The figure above shows a graph of PDFs of a selection of Weibull distributions with different shape 

parameters, scaled so they all have a mean of 1.8 Shape 2.10 is the distribution we chose to use in our 

current model settings for the emergency arrival.  Shape 1.00 corresponds to a "standard" exponential 

distribution.  We rejected it for this model because too high a proportion of exploits arrive a short time 

after patch publication, and this does not match either the small number of observed cases, or the 

anecdotal evidence that suggests there are good reasons why exploits take significant time to develop for 

network devices.  Shapes 1.35 and 4.54 illustrate alternative choices we might have made, with greater 

and lesser standard deviations. 

To explore the effect of the distribution shape on the overall disruption, we substituted each of the 

above distributions for the exploit development time distribution in the model, and ran it over a range of 

patch deployment policies from 0 to 24 months in 1 month intervals, keeping other parameters of the 

threat environment, exploit arrival rate and mean development time, fixed at 1 per year and 1 year 

respectively.  The graph below shows how expected emergency disruption varies with deployment policy 

for each choice of distribution.  

We can see that the choice of shape parameter makes a significant difference to the expected level of 

emergency disruption, especially for deployment policies shorter than 12 months, and this is reflected in 

the graphs of total disruption below.  This is enough to change the optimal choice of patching policy, 

most obviously for a shape of 4.54.   

 

                                                           
8 The ratio of the standard deviation to the mean is determined by the shape parameter. 
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Figure 12. Emergency disruption for different values of shape parameter 

One feature in particular, which is clear from the graph of emergency disruption, is that for shape of 1.0 

(exponential distribution) and shape of 1.35 there is significant expected emergency disruption even if 

patch deployment takes zero time. This, however, does not match the history of real network equipment 

exploits or the experience of network management professionals that we have spoken to, which suggests, 

at least, that these would not be realistic choices.  

 

 

Figure 13. Overall disruption with α=10, for different values of shape parameter 

As we don't have enough historical evidence accurately to pin down the shape of the distribution for 

emergency arrival time, we need an approximation, and the one used in the model seemed to reflect the 

currently observed threat environment for network equipment. However, the threat environment is ever 

evolving, and so the appropriate shape might be adjusted in the future. So, as with an emergency arrival 

rate and mean emergency arrival time, the network security team needs to choose a policy that isn't too 

brittle with respect to the distribution shape. 
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Appendix B. Alternative Patch Uptake 

 
Linear uptake of patches across device population is a natural "default" for the current model. It also 

reflects an ideal target for keeping an even workload on a dedicated network support team, and for 

keeping all equipment up to date on a regular rolling schedule. From the point of view of the analysis in 

this paper, it also provides excellent potential for reductions in operational disruption through batching of 

patches. 

However in practice across many organizations the rate and pattern of patch deployment won't be 

exactly linear and time to patch is certainly is not distributed evenly across the population of network 

devices, as network administrators usually choose the best time to patch based on their workload and 

allowed system downtime schedule, but within the boundaries set by the security policy. A common 

pattern of deployment is that a majority of the population gets patched relatively quickly, and then the 

remainder gets patched gradually with the proportion reaching close to 100% near the policy deadline. 

We use this as an example to illustrate the effects of changing the uptake curve in the model. 

In particular, we have run experiments with a simple "80-20" uptake curve, in which 80% of the 

vulnerable population gets patched in the first 20% of the allowed deployment time, and the remaining 

20% gets patched during the following 80% of the deployment period.  It is assumed that if the patch 

deployment policy is lengthened, the patch uptake continue to follow an 80-20 curve, but taking a 

proportionally longer time. 

Intuitively, we would expect the new uptake curve to result in smaller reductions in operational 

disruption, as during the time when 80% of devices are being patched, more quickly than before, there are 

fewer devices needing other outstanding patches that can be applied in a single batch. At the same time 

we would expect reduced levels of emergency disruption because of the quicker patch uptake early in the 

policy period.   

Results from running the experiments are shown across the graphs below. We can see that the change 

in uptake curve makes a noticeable difference in both operational and emergency disruption, with these 

differences increasing as the patch deployment deadline increases.  The graph comparing overall 

disruption, with α=10, shows that there is a significant difference here too, and in fact the change in 

uptake curve can affect the optimal choice of deployment policy, e.g., for α=10 above, it changes from 9 

months to 11 months.  However, the difference in overall disruption between policies of 9 and 11 months 

is quite small (2.89 v. 2.88). 

 Overall, with an 80-20 uptake curve, and with α=10, changing the deployment policy has much less 

effect on expected levels of overall disruption than with the linear uptake.  Depending on other 

conditions, this could be seen as an advantage, e.g., moving to a more relaxed deployment deadline may 

be beneficial in terms of staff workload, and in terms of effect on total disruption it is a relatively safe 

move. 
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Appendix C. Patch Coverage 
 

In this section we investigate the effects of "patch coverage": the proportion of the population of 

devices that must be patched each time a patch is released.  For our main analysis, we assumed a coverage 

of 100%, however the alternative would be to select the patch coverage from the interval (0, 1], or sample 

from a distribution over this interval.   

When patch releases are done half-yearly, rather than on a more frequent but ad hoc schedule, it is 

reasonable to assume that a large proportion of devices will need to be patched each time (Cisco has 

adopted this policy, but not for long enough to confirm this).  However other network equipment vendors 

do not have this policy, so it is important that we explore alternatives, including different expected 

coverage levels. 

We designed a set of experiments to explore the effect of varying patch coverage. We kept the threat 

environment parameters fixed at 1 emergency per 2 years, with a mean exploit development of 1 year 

from patch publication, and executed the model with mean patch coverage of 1, 0.75, 0.5 and 0.25.  For 

coverage of 0.75, 0.5 and 0.25 we experimented with fixed values for coverage and uniform distributions 

centered on these mean values.  The results showed that changes in the mean coverage make a significant 

difference to the overall disruption, and to the resulting choice of deployment timeline, while changes in 

the standard deviation of coverage makes very little difference (<1% to overall disruption for values of α 

between 1 and 30).  Thus, the graphs below concentrate on changes in the mean value of coverage.  
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The figures above show how operational disruption varies with deployment policy for different values 

of patch coverage, first absolute values of disruption, and then disruption divided by coverage, to show 

the relative effects of changes in coverage.  We can see that operational disruption is reduced, but not in 

proportion to patch coverage, an effect which becomes more marked as patch deployment time increases.  

(Intuitively this can be explained as, for example, if only half of devices require one patch, and only half 

require another, then only one quarter of devices require both patches, reducing the relative gain from 

applying patches in batches.)  Emergency disruption is simply reduced in proportion to the mean patch 

coverage, so we do not show the graphs here.  

 

 
 

The impact of coverage on operational disruption is reflected in the graph of overall disruption above, 

plotted here for α=10, which results in different choices of policy to minimize overall disruption, as 

follows: 

 

patch coverage 1 0.75 0.5 0.25 

deployment policy in months 9  9 2 0 

  

 In conclusion, these experiments demonstrate that it is worth having a good estimate of the expected 

value of patch coverage, as it may affect the best choice of deployment policy.  If the patch coverage is 

generally low, the reductions in operational disruption from delaying patching will not be so great, and 

quicker patching policies may be better.  For the 6-monthly patch release schedule, we think it is 

reasonable to assume the coverage will be close to 1, and we have used this for our main analysis, lacking 

detailed data to make a more precise estimate. 
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Appendix D. Variations in the patch publication rate and release schedule 
 

In this section we investigate the effects of different patch release schedules (currently it was set at 

every 6 months), and, in particular, changes in frequency of off-schedule patches. Since emergency 

disruption is not affected by the rate of off-schedule patches (as the rate of emergencies is controlled by 

an independent parameter, and doesn't increase automatically with the number of patches published), we 

will explore the effects on overall disruption of the patch publication rate, while the threat environment 

remains the same. 

For deployment deadlines of less than 6 months, operational disruption increases when there are more 

off-schedule patches, because with these short deployment times there is less opportunity for applying 

patches in batches.  When deployment policy reaches 6 months, the curves for operational disruption 

converge, because with the two regularly scheduled patch publications per year, there is now at least one 

regularly scheduled patch undergoing deployment at any point during the year, and any off-schedule 

patches can be batched with one of these. 

We can also see that when there are no off-schedule patches at all, for deployment policies below 6 

months operational disruption remains constant, as each patch is completely deployed before the next one 

arrives and there is no opportunity for batching.   

 

 
 

When we look at the graph of overall business disruption, with α=10, we can see that as expected, it is 

not affected by the off-schedule patch rate for policies of 6 months or greater, but is significantly different 

for policies below 6 months, to the extent that if there are no off-schedule patches at all the best policy 

seems to be to patch as quickly as possible, and if there are 2 or more off-schedule patches per year, a 

deployment policy of 9 months clearly leads to less disruption overall than any policy below 6 months. 

 
  



 

 

In the graphs above we assumed a regular schedule of 2 patch publications per year, with some rate of 

publication of further patches at irregular intervals. We also investigate what happens if we keep the same 

average rate of patch publication, but without the regular schedule.  For this experiment, we ran the model 

with the time interval between patch publications sampled from an exponential distribution, mean 1/3 

year, i.e., on average 3 patches per year as before. 

 

 
 

 

  

Looking at the graphs of operational disruption and overall business disruption, we can see that the 

regular schedule makes a significant difference to expected levels of operational disruption.  (As before, 

expected emergency disruption is not affected by the patch publication schedule.)  This shows up 

particularly for deployment policies in the region of 6 months, and without the regularly schedule the 

deployment policy which minimizes business disruption is 6 months rather than 9 months (which suggests 

that the regular patch publication schedule was a detail worth including in the model). 
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