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Abstract: 
Direct products (a.k.a. Cartesian products) are familiar: Given linear spaces  and  of 
dimensions  and , their direct product  is the linear space of dimension  consisting 
of all ordered pairs , , for  in  and  in ; and direct products of smooth manifolds are an 
analogous story.  Fiber products (a.k.a. pullbacks) are a less familiar generalization.  Given three 
linear spaces , , and  of dimensions , , and  and given linear maps :  and :

, their fiber product  is that subspace of the direct product  on which the maps  
and  agree, that is, the set of ordered pairs ,  with  in .  When the image 
spaces  and  together span all of , the maps  and  are said to be transverse, and the 
dimension of the fiber product is then .  Fiber products make sense also for manifolds: 
Given smooth manifolds , , and  of dimensions , , and  and given smooth maps :  
and :  that are transverse in the appropriate sense, it is a standard result that the fiber 
product  is itself a smooth manifold of dimension . 
 
But what if the input manifolds , , and  are oriented?  Is there then some natural rule for 
orienting the fiber-product manifold ?  Such a rule is needed for an application of fiber 
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boundary of a Minkowski sum from the boundaries of its summands.  We show that there is a 
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Extended Abstract

There is a mathematical operation called a “fiber product”, where the word “fiber”
here comes from “fiber bundle” — nothing to do with fiber optics, textiles, or
constipation. Given setsA, B, andSand given mapsf : A→ S andg : B→ S,
as in the diagram

BA

S
(∗)@

@R
�

�	f g

thefiber productof A andB overS, written A×S B, is that subset of the Cartesian
productA× B on which the mapsf andg agree:

A×S B := {(a, b) | a ∈ A, b ∈ B, and f (a) = g(b)}.

Note that the fiber product depends upon the mapsf and g; when we want to
make that dependence explicit, we shall include the maps in the formula for the
fiber product, using the nonstandard notationA[ f ] ×S [g]B.

Fiber products arise in computing the boundary of a Minkowski sum from
the boundaries of its summands. LetA andB be two regions in the plane (or in
3-space). TheirMinkowski sumis the regionA ⊕ B := {a+ b | a ∈ A, b ∈ B },
wherea+ b here denotes the sum of the pointsa andb as vectors. Each point
on the boundary of the Minkowski sumA ⊕ B is the vector sum of a pair of
points, one on the boundary ofA and the other on the boundary ofB, where the
tangent lines (or tangent planes) are parallel. Finding allsuch pairs of parallel
tangents turns out to be an example of a fiber product: The setsA and B are the
boundary curves (or surfaces) of the regionsA andB, the setS is the unit circle
(or unit sphere), and the mapsf andg are the Gauss maps, the maps that take
each boundary point to the outward-pointing unit normal vector at that point.

Where do Minkowski sums arise? Given a region in the plane (orin 3-space),
taking its Minkowski sum with a disk (or a ball) corresponds to offsettingthe
boundary curve (or surface) of that region — that is, to moving the boundary a
fixed distance orthogonal to itself. Such offsetting arisesfrequently in computer-
aided geometric design (CAGD). Minkowski sums arise also infont design, where
one summand models the shape of a brush or pen while the other models the
trajectory along which that brush is translated. And Minkowski sums arise in
robotics, when computing the configuration space for an object under translation.
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iv EXTENDED ABSTRACT

In all of these situations, it is common practice to represent the regions involved by
specifying their boundaries. So carrying out a Minkowski sum requires computing
the boundary of that sum, which involves a fiber product.

Fortunately, there is a standard theory of fiber products that almost suffices.
If A, B, andS are smoothd-manifolds and if we rule out various degeneracies
by requiring that the smooth mapsf andg be transverse, then the fiber product
A[ f ] ×S [g]B is itself a smoothd-manifold.

That standard theory doesn’t deal with orientation, however. People doing
CAGD or robotics typically orient the boundaries of their regions, to help them
distinguish inside from outside. Thus, given the oriented boundaries of regionsA
andB, they need the boundary of the Minkowski sumA⊕ B also to be oriented.
To meet that need, we show how to orient a fiber-product manifold A[ f ]×S [g]B,
given orientations on the manifoldsA, B, andS as input (and always assuming
that the mapsf andg are transverse). In particular, given pointsa in A andb in
B with f (a) = g(b), we orient the fiber productA[ f ] ×S [g]B at the point(a, b)
by working with the Jacobian matrices off at a and ofg at b.

In the fiber productsA ×S B that arise in computing Minkowski sums, the
three input manifoldsA, B, and S always have the same dimension. We also
tackle the harder problem of orienting the manifoldA×S B when the dimensions
of A, B, andS differ, though we don’t know of any practical applications where
it is important to orient such fiber products. While such a manifold A ×S B is
clearly orientable, it is no longer at all clear which of its two possible orientations
is the proper one — that is, which orientation rule for this more general situation
satisfies the most compelling collection of identities. We argue that the proper
choice is the unique rule that satisfies(A×S B)×T C = A×S (B×T C), a mixed
flavor of associativity in which the two fiber products involved on each side are
taken over different base manifolds. More precisely, givensmooth manifolds and
smooth maps of the form

CBA
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�	
@
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theAxiom of Mixed Associativityrequires that
(

A[ f ] ×S [g]B
)

[h′] ×T [k]C = A[ f ] ×S [g′]
(

B[h] ×T [k]C
)

,

where the auxiliary mapsh′ : A×S B→ T andg′ : B ×T C → S are defined by
h′(a, b) := h(b) andg′(b, c) := g(b). This axiom is so powerful that, together
with a few other, more obvious axioms, it determines a uniqueorientation rule for
transverse fiber products.
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Chapter 1

Alice and Bob

Fiber products are not well known. One way to introduce them is through the
story of Alice and Bob, the sweethearts with the neutrino radios.

1.1 Using neutrino radios

Alice has just rowed her boat east, along the Equator, to the western beach of
Example Island, whose equatorial cross section is shown in Figure 1.1. Bob has
just rowed west to the island’s eastern beach. Since they areeager to rendezvous,
they shoulder their packs and prepare to walk inland.

Their top priority, though, is to stay in constant contact. They are equipped
with the latest in high-tech radios, rumored to operate by transmitting a beam
of neutrinos. These radios allow them to stay in constant contact, even when
separated by kilometers of solid rock, as long as they remainat the same altitude.
(They must also remain over the Equator; they can’t wander off north or south.)

They are in contact at the start, since they are both at sea level. By carefully
controlling their rates of climb, they manage to stay in contact until the state shown
in Figure 1.2. At this point, Alice has to stand still while Bob walks west across
his plateau. Then Alice retreats toward the western beach for a while, so that Bob
can advance into the valley that next confronts him. Once Bobpasses the bottom
of his valley, Alice can resume her forward progress, leading to the state shown in
Figure 1.3. Bob is almost at his goal — the peak of Mount Tryst,where they hope

A B

Figure 1.1: Example Island with Alice and Bob at their beaches

1
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A B

Figure 1.2: Bob reaches the east edge of his plateau

A B

Figure 1.3: Alice at the top of her first hill

to rendezvous soon.
But now it is Bob’s turn to retreat, so that Alice can advance into the valley

that she now faces. Bob backs up to the bottom of his valley once again. At this
point, Alice and Bob have a worried consultation; they decide that their best hope
is for both of them to retreat for a while. So Alice climbs westward while Bob
climbs eastward, ending as in Figure 1.4. Alice then stands still while Bob retreats
across his plateau. Then Bob retreats almost to the eastern beach, allowing Alice
to advance to the bottom of her first valley.

Continuing in this fashion, Alice and Bob do eventually manage to rendezvous
at the peak of Mount Tryst.

The tilted rectangleW T×ET in Figure 1.5 represents the state space in which
Alice and Bob have their adventure. The lower-left-to-upper-right coordinate of
a point in that rectangle represents Alice’s west-to-east position in her mountain
range — from the western beachW to Mount TrystT . Thus, starting at any
state in the rectangle, we find the corresponding position ofAlice by moving
diagonally up and left to the boundary of the rectangle and then straight up to
Alice’s mountain range. The story for Bob is similar: The lower-right-to-upper-
left coordinate of a state represents Bob’s east-to-west position, from the eastern

A B

Figure 1.4: Alice and Bob have both been retreating
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Figure 1.5: The state space of the adventure on Example Island
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beachE to Mount TrystT . Starting at any state in the rectangle, we find the
position of Bob by moving diagonally up and right to the boundary of the rectangle
and then straight up to Bob’s mountain range.

The states in the gray portion of the rectangleW T × ET are those in which
Bob is higher than Alice, while the states in the white portion have Alice higher
than Bob. Gray is separated from white by a black path of states in which Alice
and Bob are at the same altitude. During their adventure, Alice and Bob follow
this black path from the initial state(W, E) to the final state(T, T).

Note that, while the black path goes mostly upward on the page, it winds
around enough to include one segment that goes straight down. Alice and Bob
had their worried consultation when starting along that segment of the black path.

Note also that there is a little square of white, Alice-higher states sitting in the
midst of the gray, Bob-higher region. The boundary of that square is a closed loop
of black path, not connected to the long black path that Aliceand Bob follow on
the way to their rendezvous. This loop arises because Alice’s mountain range has
a peak that sticks up above the floor of a valley in Bob’s range.If Alice is near the
top of that peak and Bob is near the bottom of that valley, theycan be at the same
altitude; and they can climb around a bit while keeping theiraltitudes equal. But,
without losing contact — or tunneling or flying — there is no way for them to get
from one component of black path to another.

You may be surprised that the black path can have multiple components in this
way. Indeed, multiple components couldn’t happen if eitherof the two mountain
ranges were monotonic; but they can happen in the general case, and they do
happen in our applications to CAGD and robotics, as we discuss in Section 3.7. In
fancier language, a fiber product of connected manifolds mayfail to be connected.

1.2 Introducing the fiber product

To model this mathematically, letA := W T denote the set of possible east-west
positions of Alice; letB := ET be the same for Bob; and letS denote the set
of possible altitudes of either Alice or Bob. We model the topography of Alice’s
mountain range by an altitude functionf : A→ S, while we model Bob’s range
by g : B → S. The rectangle of possible states is the direct (a.k.a. Cartesian)
product A × B = W T × ET. The black pathP — which may have multiple
components — is the set of pairs(a, b) in A× B for which the altitudes are equal:

P := {(a, b) ∈ A× B | f (a) = g(b)}.

This setP is called thefiber productof the mapsf andg.
The term “fiber” comes from a mathematical structure called a“fiber bundle”,

by the way. Given two fiber bundles over the same base spaceS, the appropriate
way to multiply them is to take their fiber product overS, which will be another
fiber bundle overS. Fiber products arise also in category theory, where they are
often calledpullbacks.
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Fiber products can be defined in many contexts, as we discuss in Section 4.4.
We shall typically assume that the spacesA, B, andSare compact smooth mani-
folds without boundary and that the mapsf : A→ Sandg : B→ Sare smooth.
But the situation that Alice and Bob face is somewhat different.

For one thing, Alice’s mountain rangeA is the closed segmentW T. This
segment is a smooth 1-manifold and is compact, but it does have boundary points:
to wit, the endpointsW andT . The story for Bob’s rangeB = ET is similar.
Boundary points can cause trouble, as we discuss in Section 1.5.

A second thing that is different about Alice and Bob’s situation is that the
altitude functionsf andg in Figure 1.5 are piecewise affine1, rather than smooth.
But we don’t change anything essential if we round off the peaks and valleys
slightly, so as to make them smooth. When we do so, the cornersof the fiber
product P also get rounded off, convertingP itself into a smooth 1-manifold.
(There is no need to round off Mount Tryst; that is, the derivative of f from the
west atT need not agree with the derivative ofg from the east atT . Indeed, it is
better not to round off Mount Tryst, for reasons that we discuss below.)

We can define an altitude functionh : P → S on the fiber productP by
lettingh(a, b), for any state(a, b) on the black path, denote the common altitude
h(a, b) := f (a) = g(b) of Alice and Bob in that state. When taking the fiber
product of smooth mapsf : A→ Sandg : B→ S, the resulting maph : P→ S
is also smooth. To be precise, it is actually the smooth maph that is thefiber
productof the smooth mapsf andg, written h = f ×S g. That is, the objects
that really get multiplied, when we take a fiber product over asmooth manifoldS,
are smooth maps from smooth manifolds toS. We shall hence refer to the maps
f andg as thefactor mapsof the fiber product.

The fiber-product manifoldP is the domain of the fiber-product maph =
f ×S g. In this monograph, we shall writeP using the nonstandard notation
P = A[ f ] ×S [g]B. It will often be clear from the context, however, which
smooth mapsf : A → S andg : B → S are intended. We then abbreviate the
manifold P by writing simply P = A×S B, which is the standard notation. But
keep in mind that the manifoldA×S B depends upon the factor mapsf andg,
even when their names are elided.

1.3 Transversality

Figure 1.6 illustrates some phenomena that didn’t arise in Figure 1.5.
First, Alice’s and Bob’s mountain ranges have peaks, atU and atV , that are at

the same altitude. Suppose that Alice and Bob are in the blackstate(U, V). When
they leave that state, each of them can decide independentlywhether to descend
to the west or to the east. Thus, there are four black paths that lead away from the
state(U, V) in Figure 1.6, rather than only two.

1Functions likef andg are often called “piecewise linear”, rather than “piecewise affine”; but
I prefer to reserve the word “linear” for things that are homogeneous, as well as of degree 1.
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Figure 1.6: An island whose mountain ranges are not transverse

The solid black rectangles in Figure 1.6 are an even more obvious sign of a
new phenomenon. They arise because these two mountain ranges have plateaus at
the same altitude. Alice and Bob can wander around freely andindependently on
such a pair of plateaus while staying in constant contact. Thus, the fiber product
P — the black region that separates gray from white — includes entire solid
rectangles. Such rectangles can have black paths attached either to all four of
their corners, to two adjacent corners, to two opposite corners, or to none of their
corners, depending upon whether each of the two plateaus involved is a mesa, a
bench, or a playa. (A mountain peak is a zero-length mesa, while a valley is a
zero-length playa. Thus, the state(U, V) in Figure 1.6, which is a zero-by-zero
black rectangle with black paths attached to all four of its corners, results from
Alice’s and Bob’s ranges having equal height, zero-length mesas atU and atV .)

The fiber product in Figure 1.6 is not a 1-dimensional manifold, both because
of what happens in the neighborhood of the state(U, V) and because it includes
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solid rectangles. There is a standard technical condition,calledtransversality, that
outlaws the degeneracies in Figure 1.6, hence guaranteeingthat the fiber product
will be a manifold. In particular, whenever the mapsf andg aretransverse, the
fiber productP = A[ f ] ×S [g]B is a smooth manifold of dimension dim(P) =
dim(A)+ dim(B)− dim(S), as we discuss in Section 4.7.

We also discuss in Section 4.7 what it means for the two mapsf andg to be
transverse, which is a bit subtle in higher dimensions. Roughly speaking, some
combination of moving the pointa around inA and movingb around inB must
cause eitherf (a) or g(b) to cover all of the dimensions ofS. In the case of Alice
and Bob, where the manifoldsA, B, andS are all 1-dimensional, this boils down
to a simple condition: There is only one dimension inS to cover, and Alice covers
it by herself unless she is at a flat spot, that is, unlessf ′(a) = 0. Bob covers it
by himself unless he is at a flat spot, withg′(b) = 0. So trouble arises only when
Alice and Bob are simultaneously at flat spots. Avoiding trouble means arranging
that none of the flat spots on Alice’s range are at the same altitude as any of the
flat spots on Bob’s range. Thus, two factor mapsf andg are transverse in the
1-dimensional case just when2 there are no equal-height flat spots, that is, just
when there are no points(a, b) in the state spaceA× B with f (a) = g(b) and
f ′(a) = g′(b) = 0. Recall that we are rounding off all corners (except for Mount
Tryst); so the bad state(U, V) in Figure 1.6 does havef ′(U) = g′(V) = 0. (If
we rounded off the peak of Mount Tryst, the resulting flat spotat T would, all
by itself, cause transversality to fail at the destination state(T, T). That is why it
is better not to round off Mount Tryst — although losing transversality only at a
boundary point of the state space might be tolerable.)

1.4 Which way to go?

Let’s return to the transverse case: either to the Example Island in Figure 1.5 or
to some other island on which Alice’s and Bob’s mountain ranges have no equal-
height flat spots. The fiber productP is then a 1-dimensional manifold. We now
consider the problem of orientingP.

To clarify the problem, suppose that Alice and Bob made camp last night.
They just woke up this morning. They can talk to each other on their radios,
they can look around at their local terrain, and they can tell— say, from where
the sun is rising — which way is east. But they can’t remember which way they
were walking when they stopped to make camp last night. (Suchconfusion is
not unreasonable, since each of them may have walked back andforth past their
current location many times already — although there was no single time in the
past when they were both in their current locations simultaneously.) Is there some
rule by which Alice and Bob can figure out which way to start walking today?

To put that question another way, consider the arrowheads inFigure 1.7. The

2I use the phrases “just when” and “precisely when” to mean “ifand only if”.
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Figure 1.7: The black path for Example Island, correctly oriented
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solid arrowheads onA = W T, B = ET, andS indicate the preferred orientations
on those 1-manifolds, while the open arrowheads on the fiber-product 1-manifold
P indicate the way that Alice and Bob should walk. Is there somelocal rule that
computes the open arrowheads from the solid ones? A rule islocal when its deci-
sions are based solely on the slopes where Alice and Bob are currently standing,
without exploiting global information about the topography of the island.

Note that there are open arrowheads also on the border of the little white square
in the middle of the gray region. Rules that orient fiber products typically orient
every component of them, even though Alice and Bob follow only one of those
components. Different components could be oriented independently, in principle.
But we are studying local orientation rules, rules that are based solely on the
slopes. Any local rule must orient the left edge of the littlewhite square in the
same way that it orients the vertical segment above the starting point (W, E),
since the states along those two segments look locally just the same: In all of
them, Alice’s terrain slopes up to the right, while Bob’s slopes up to the left.

It turns out to be convenient to measure the slopes on Bob’s mountain range
backwards. In particular, Alice and Bob agree that

advancing means moving toward Mount Tryst, following the horizontal,solid
arrowheads in Figure 1.7, while

retreating means moving back toward your own beach.

So Alice advances by moving east, while Bob advances by moving west. Alice
and Bob then measure the slope of their local terrain as the rate of change in their
altitude that would result from a small advance. So the slopeof Alice’s terrain is
just the slope of the graph of her altitude functionf , as in a calculus class; but the
slope of Bob’s terrain is the negative of the slope ofg. Each segment of terrain in
Figure 1.7 is marked withU, D, or F according as that terrain is upward-sloping,
downward-sloping, or flat — that is, according as Alice or Bobmeasures the slope
to be positive, negative, or zero.

1.4.1 The Greedy-Alice Rule

We are going to discuss two local rules that compute the correct open arrowheads.
But before we do that, let’s briefly discuss one that doesn’t,theGreedy-Alice Rule:

Alice should advance — unless Bob’s terrain is flat, in which case
Alice must stand still and Bob should advance.

Figure 1.8 shows the open arrowheads generated by the Greedy-Alice Rule.
The difficulty is that they are inconsistent; they don’t agree with each other about
the direction in which the black path should be oriented. (The isolated little square
of black path has four open arrowheads on it, and they don’t agree either.) Such in-
consistencies aren’t allowed on an oriented manifold, as wediscuss in Section 5.6.
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The problem with the Greedy-Alice Rule — the reason that it can generate
open arrowheads that are inconsistent — is essentially a lack of continuity. The
Greedy-Alice Rule bases its decisions on the slopes of Alice’s and Bob’s terrains,
so it is local. But a tiny change to those slopes can cause the Greedy-Alice Rule
to suddenly reverse its recommended open arrowhead. For example, suppose that
Alice’s slope is+1 while Bob’s slope is approximately zero. If Bob’s slope is
slightly positive, then Bob should advance at a sprightly pace, so that his altitude
will increase, hence allowing Alice to advance a trifle. On the other hand, if
Bob’s slope is slightly negative, then he should retreat at asprightly pace, again
so that Alice can advance a trifle. So a tiny change in Bob’s slope causes a drastic
change to his recommended motion. It is this lack of continuity that leads to
the inconsistent open arrowheads in Figure 1.8. We define a notion of continuity
for local orientation rules in Section 6.2 that we callstability; and we show, in
Section 6.3, that any local orientation rule that is stable always generates open
arrowheads that are consistent.

Once the open arrowheads are consistent, they are either consistently correct
or consistently incorrect, since the black path has only twoorientations: the one
that we want, which goes from the point(W, E) toward(T, T), and its opposite.

1.4.2 The Partner’s-Slope Rule

To develop a rule that is both consistent and correct, let’s retrace the first few steps
along the black path. At the starting point(W, E) in Figure 1.7, both Alice and
Bob are on upward slopes and they should both advance. When Bob reaches his
plateau, as was shown back in Figure 1.2, Alice has to stand still. And when Bob
moves onto his downward slope, Alice starts to retreat. Thus, Alice’s direction of
motion seems to be controlled by the slope of Bob’s terrain. Symmetry suggests
that Bob’s motion should be controlled by Alice’s slope. That is, both Alice and
Bob should employ the followingPartner’s-Slope Rule:

• If your partner’s terrain slopes upward, you advance.

• If your partner’s terrain slopes downward, you retreat.

• If your partner’s terrain is flat, you stand still.

The first step in analyzing this Partner’s-Slope Rule is to check that it gives
compatible instructions to Alice and to Bob: Whenever Aliceis instructed to go
uphill, Bob had better be instructed to go uphill also, and the same for going
downhill and for staying at the same altitude. To verify compatibility, it suffices
to consider the eight possible cases for Alice’s and Bob’s slopes, as shown in
Figure 1.9. (Seven of those eight cases occur in Figure 1.7, the missing case being
the one in which Alice’s terrain is flat and Bob’s slopes downward.) Why are there
only eight possible cases, instead of nine? The case that is ruled out is for Alice
and Bob to be simultaneously at flat spots. If they ever found themselves in such
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Figure 1.9: The eight cases of the Partner’s-Slope Rule

a state, the Partner’s-Slope Rule would instruct them both to stand still, so they
would be stuck. But such states are forbidden by our assumption of transversality.

The second step in the analysis is to check stability. Since our formal definition
of stability is still some chapters away, let’s here argue informally that the open
arrowheads will be consistent. The danger of inconsistencyarises when we move
from one of the eight cases in Figure 1.9 to an adjacent case. For example, as we
move down the leftmost column, Alice first advances, then stands, then retreats.
But we move down that column because Bob’s slope changes signfrom positive to
negative. If Bob’s slope is only slightly positive, then Alice can advance only quite
slowly. Thus, if Bob’s slope subsequently changes to becomeslightly negative,
Alice’s conversion to a slow retreat constitutes a continuous change in her velocity,
not a sudden and discontinuous reversal of orientation. Note that Bob continues
to advance at a sprightly pace throughout this process; we don’t get the sudden
reversal from a sprightly advance to a sprightly retreat that we saw in the Greedy-
Alice Rule. The other three sides of the square in Figure 1.9 are similar.

Once we have convinced ourselves that the Partner’s-Slope Rule gives open
arrowheads that are consistent, it is easy to see that they are consistently correct.
We simply check that we get the correct answer in the startingstate, when Alice
and Bob are at their beaches. They are then both on upward slopes, and we do
want them both to advance, as the Partner’s-Slope Rule specifies.

Exercise 1-1 Here is a simple rule that tells Alice and Bob, not only the direction
in which to walk, but precisely how fast: They each set their own signed velocity
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to be their partner’s signed slope. ThisVelocity Variantof the Partner’s-Slope Rule
unifies the eight separate cases of Figure 1.9 through the magic of multiplying
signed numbers. Unfortunately, this clever idea does not generalize to higher
dimensions, for reasons discussed in Exercise 2-8.

In detail, Alice’s slope is the rate of change of her altitudef (a) with respect
to her positiona, which isd f/da. Bob’s isdg/db. Suppose that Alice controls
her positiona, as a function of timet , so as to makeda/dt = dg/db, while Bob
makesdb/dt = d f/da. Show that their rates of climb will then be identical.

Hint: By the Chain Rule, Alice’s rate of climbdf/dt is then given by

df

dt
=

df

da
da
dt
=

d f

da
dg

db
.

1.4.3 The Gray-Region Rule

If Alice and Bob are willing to reason about their 2-dimensional state space, that
is, about the rectangleA× B = W T× ET in Figure 1.7, then they can compute
the correct open arrowheads by using the followingGray-Region Rule:

Proceed along the black path in the direction that causes thegray
region to lie to your left.

This Gray-Region Rule is simpler than the Partner’s-Slope Rule in several
ways. For one thing, it unifies the eight separate cases in Figure 1.9: Alice and
Bob always leave the gray region to their left, regardless ofwhether their slopes
are upward, downward, or flat. Also, the Gray-Region Rule is obviously stable:
As we move along the boundary of the gray region, keeping it always on our left,
the open arrowheads that we produce are obviously consistent.

But is the Gray-Region Rule local? That is, can Alice and Bob implement it
without having global knowledge about their altitude functions f : A → S and
g : B→ S? Yes, they can. Suppose that they are currently at some point(a, b) on
the fiber product, so thatf (a) = g(b). Alice and Bob can measure the slopes of
their local terrains. By conferring over their radios, theycan combine those slopes
to determine, to first order, which points(X,Y) near(a, b) have f (X) < g(Y)
and which havef (X) > g(Y). A first-order sketch of the neighborhood of the
point (a, b) in the direct productA× B will look like one of the eight sketches
in Figure 1.10. In each sketch, the origin represents the point (a, b); moving to
the right means that Alice advances, while moving up means that Bob advances.
The gray region is the set of states(X,Y) for which f (X) < g(Y). For example,
consider the upper-left sketch, in which both Alice and Bob are on upward slopes.
Any combination of Bob advancing and Alice retreating leadsto states(X,Y)
with f (X) < f (a) = g(b) < g(Y); so the entire second quadrant is gray, along
with portions of the first and third quadrants. The other sketches are similar. Given
any such local sketch, the Gray-Region Rule tells Alice and Bob which way to go;
so the Gray-Region Rule is indeed local.
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Of course, we must still avoid the non-transverse case, the central case in
Figure 1.10, in which both Alice and Bob are at flat spots. It makes sense for
Alice and Bob to leave the gray region to their left only if they are on a segment of
black path that separates gray from white. It wouldn’t make sense, for example, if
they were in the middle of the one of the solid black rectangles in Figure 1.6.

The stability of the Gray-Region Rule is geometrically evident in Figure 1.10.
As we transition among the eight cases, say cycling clockwise around the figure,
the black path rotates continuously — also clockwise, as thefigure happens to
be drawn. And the arrowheads that the Gray-Region Rule recommends for that
black path also rotate continuously, with no sudden reversals. That continuity is
the property that we formalize in Section 6.2 asstability. Note that the central,
non-transverse case has to be outlawed in order to allow thiscontinuity; there are
pairs of slopes arbitrarily close to(0, 0) for which the recommended arrowhead
points in any specified direction.

By comparing Figure 1.10 to Figure 1.9, we find that the Partner’s-Slope Rule
and the Gray-Region Rule give the same answers in all eight cases. Of course, it
was clear from the start that they must, since they both give the correct answers.

1.4.4 The Intrinsic Gray-Region Rule

Warning: The Gray-Region Rule as stated above would fail if Alice and Bob chose
to draw their state space in a different, but equally valid, way. Figure 1.11 shows
Example Island again, but with the state spaceA × B drawn above the island,
rather than below it. The state space in Figure 1.11 is the mirror image of the one
in Figure 1.7, reflected in the horizon. Because of this reflection, Alice and Bob
should leave the gray region to their right in Figure 1.11, rather than to their left.

We can rephrase the Gray-Region Rule more intrinsically, sothat it gives the
correct answers in both figures. Letα be a vector (technically speaking, in the
tangent spaceT(a,b)(A× B) to the manifoldA× B at the point(a, b)) that points
in the Alice-advance direction; and letβ point in the Bob-advance direction. Ro-
tating fromα to β defines an orientation on the 2-dimensional state spaceA× B.
That orientation is counterclockwise in Figure 1.7, but clockwise in Figure 1.11.
Let ϕ be a vector that points along the fiber productP = A×S B in the direction
in which Alice and Bob should walk. And letδ be a vector that points somewhere
into the gray region; that is, the vectorδ should point toward some nearby state
(X,Y) for which f (X) and g(Y) are distinct points in the manifoldS and for
which the motion inS from f (X) to g(Y) agrees with the given orientation onS.
TheIntrinsic Gray-Region Rulethens tells us:

The vectorϕ orients the fiber productA×S B correctly just when the
orientation on the direct productA× B given by rotating fromα to β
is the same as that given by rotating fromϕ to δ.

Exercise 1-2 The next day, Alice and Bob explore Example Island again, but
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with Alice walking in from the east this time, while Bob walksin from the west.
Explain why the Intrinsic Gray-Region Rule gives the correct answer in this case.

Answer: One way to draw the state space for the second day’s adventure is to
take Figure 1.7, to swap the labels “Alice” and “Bob” wherever they appear, and
to swap the colors of the gray and white regions. Using primesto indicate the
vectors on the second day, we then haveα′ = β, β ′ = α, andδ′ = −δ; so we get
ϕ′ = ϕ. Thus, the fiber productB×S A gets the same orientation asA×S B.

1.5 Farewell to Alice and Bob

We discussed Alice and Bob to develop our intuitions about fiber products. We
are about to move on, to consider fiber products of manifolds of higher dimension.
But we owe Alice and Bob some closing remarks. In particular,can they always
rendezvous, regardless of the topography of their island?

1.5.1 Valleys below sea level

Even in the transverse case, they can fail to rendezvous if one of their mountain
ranges, say Alice’s, has a valley that dips below sea level. In that case, Alice
and Bob will end their adventure with Alice stuck at sea levelon the west side of
that valley, unable to advance because Bob has retreated allthe way to the eastern
beach — and he has no scuba gear. In the analog of Figure 1.5, the black path
that starts at the initial state(W, E) will leave the rectangleW T × ET at some
point interior to its lower-right side. To avoid this problem, we henceforth assume
that every point interior to the island lies strictly above sea level. (We could allow
interior points precisely at sea level, but it simplifies things to forbid them.)

Note that this scuba problem arises because Alice and Bob arewalking on
1-manifolds with boundary; in particular, the eastern beach E is a boundary point
of Bob’s manifold. Fortunately, in our applications of fiberproducts to CAGD
and robotics, the manifolds involved are manifolds withoutboundary.

1.5.2 Guaranteed success

By combining all of our explicit and implicit assumptions, we have arrived at
a flavor of island on which Alice and Bob are guaranteed to succeed. Suppose
that all interior points of the island are above sea level; that the peak of Mount
Tryst is the single highest point on the island; that the altitude function f : A→
S of the portion of the island west of Mount Tryst isC1, that is, continuously
differentiable; similarly, for the altitude functiong : B → S of the portion east
of Mount Tryst; and that the two altitude functionsf andg are transverse — that
is, there are no states(a, b) in A× B with f (a) = g(b) and f ′(a) = g′(b) = 0.
Then, Alice and Bob are guaranteed to succeed, and here is why.
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Consider the boundary of the state-space rectangleA × B, as in Figure 1.5.
The vertices(W, E) and(T, T) are black. The states(a, E) for a > W are all
white, since all interior points of Alice’s range are above sea level. The states
(T, b) for b < T are also white, since Mount Tryst is the single, highest peak.
So the two right-facing sides of the state-space rectangle are entirely white. By a
similar argument, the two left-facing sides are entirely gray. Thus, the only two
points where a black path can reach the boundary of the state-space rectangle are
at its bottom and top corners, the points(W, E) and(T, T).

It follows from transversality that the white and gray regions are separated
by a 1-dimensional manifold of classC1, possibly with multiple components. A
component of that black manifold is either a closed loop or anarc diffeomorphic
to a closed interval; in the latter case, both endpoints of the arc must lie on the
boundary of the rectangle. Thus, there is precisely one component in the black
manifold of the latter type: aC1 black arc that leads Alice and Bob from the
initial state(W, E) to the final state(T, T).

By the way, we are exploiting the assumption that Mount Trystis the single
highest peak in a way that might not be obvious. Because of that assumption, we
can restrict Alice to walk only west of Mount Tryst, while Bobwalks only east
of it — and those restrictions are crucial for achieving transversality. It would be
more straightforward to let both Alice and Bob walk anywhereon the entire island
WE := W T∪TE, hence using the full squareWE×WE as our state space, rather
than just the rectangular subsetW T × TE. But then any flat spot on the entire
island would be enough to destroy transversality, since Alice and Bob could stand,
arm in arm, at that flat spot.

1.5.3 The horrors of nontransversality

The assumptions in Section 1.5.2 arguably make things too easy for Alice and
Bob. They are walking along an unbranched path in the state space, so it is always
obvious what they should do next. To make their adventure more challenging, it is
tempting to allow nontransversality. Unfortunately, thatopens the door to various
monsters from real analysis, one of which is shown in Figure 1.12. Note first that
the altitude functionsf andg in that figure are not transverse; the left endpoint
of the bumpy region on Bob’s range is a flat spot that is at the same altitude as
the plateau on Alice’s range. While the functionsf andg are not transverse, they
areC1 — and might even beC∞, if the bumpy region in Bob’s mountain range
behaves like the functionx 7→ e−1/x2

sin(1/x) behaves on the interval [0. . 1].
Alice has to be east of her plateau in order for Bob to advance over any one of
the hills in his bumpy region, while Alice has to be west of herplateau in order
for Bob to advance through any of the dales. Since Bob faces aninfinite sequence
of alternating hills and dales, Alice has to cross her plateau infinitely often before
they can rendezvous. (Figure 1.12 is a smoothed version of a bad example in
Whittaker [16]. Huneke [7] later showed that this example is, in a sense, the only
bad thing that nontransversality allows.)



1.5. FAREWELL TO ALICE AND BOB 19

Figure 1.12: An island on which Bob’s range is monstrously bumpy

To avoid this type of monstrous behavior without requiring transversality, we
would have to require that our altitude functions be even nicer thanC∞, in some
way. For example, Whittaker [16] analyzed altitude functions whose graphs can
be partitioned into a finite number of strictly monotonic segments. A different
way to achieve much the same effect is to require that the altitude functions be
piecewise real analytic. These cases are more challenging for Alice and Bob,
since their “black path” can have the bad features that appear in Figure 1.6. But
Whittaker showed that Alice and Bob can still rendezvous.

Unfortunately, it is not at all clear how to generalize beyond the transverse
case in a fiber productA[ f ] ×S [g]B of higher dimension. To avoid requiring
that the mapsf andg be transverse, we must require that they be nicer thanC∞,
in some sense. But in what sense? Pierre Schapira [15] has done exciting work
in this area, exploiting the notion of asubanalytic stratification. Very briefly, a
semianalytic setis a set that can be described by finitely many equalities and in-
equalities among real-analytic functions, just as asemialgebraic setis one that can
be described by finitely many equalities and inequalities among polynomials [2].
While semialgebraic sets behave nicely under projections (the Tarski-Seidenberg
Theorem), semianalytic sets do not. Asubanalytic setis a more subtle and more
permissive notion than a semianalytic set, and this extra permissiveness restores
nice behavior under projections [2]. Perhaps monstrous behavior can be ruled out
without insisting on transversality by requiring that the graphs of the factor maps
f andg be subanalytic sets.

We leave such questions as topics for future research. In this monograph, we
take the coward’s way out and simply require that the factor maps f andg in our
fiber productsA[ f ]×S[g]B be transverse. This guarantees that our fiber products
will be smooth manifolds, which we take it as our challenge toorient.

Exercise 1-3 Sketch the state space of the monstrous island in Figure 1.12.
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Chapter 2

Fiber products in higher dimensions

Convention: We shall often be analyzing a smooth map from one
smooth manifold to another. In the neighborhood of any givenpoint,
such a map is approximated to first order by a linear map between the
tangent spaces. From now on, let’s use boldface letters to name the
smooth manifolds and smooth maps, while using italic letters to name
the approximating linear spaces1 and linear maps.

It is a standard result that the transverse fiber products of smooth manifolds
are themselves smooth manifolds. We are looking for a local rule that orients
the output of such a fiber product, given orientations on its inputs. If we were
willing to restrict ourselves to those fiber productsA[f ] ×S [g]B in which the
three manifoldsA, B, andS are all 1-dimensional, we could stop now. In that
1-dimensional case, both the Partner’s-Slope Rule and the Gray-Region Rule are
local rules that compute the correct open arrowheads, so we are already done twice
over. But we want to tackle several generalizations: the

equidimensional case,where dim(A) = dim(B) = dim(S), but that common
dimension can be any nonnegative integer; and the

any-dimensional case,where the three dimensions are unconstrained — though
the problems of most interest have dim(A) + dim(B) ≥ dim(S), since the
only way to achieve transversality when dim(A) + dim(B) < dim(S) is
vacuously, resulting in an empty fiber product.

The equidimensional case is the one that arises when computing Minkowski sums
in CAGD and robotics. It is intriguing to consider the any-dimensional case also,
even though we have no practical applications of that case inmind. So what
happens when we try to generalize our two rules from the 1-dimensional case to
the equidimensional and any-dimensional cases?

1Linear spaces are often called “vector spaces”. I prefer thename “linear space” because the
elements of such a space are often covectors, tensors, matrices, or functions, rather than vectors.

21
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2.1 Local orientation rules

The Partner’s-Slope Rule and the Gray-Region Rule are localrules; given any
point (a, b) on the smooth manifoldA[f ] ×S [g]B, they tell us how that fiber
product should be oriented in the neighborhood of(a, b) based solely on the local
behavior of the mapsf andg, that is, based solely on Alice’s slopef ′(a) and Bob’s
slopeg′(b). We want our rules for higher dimensions to be local as well. But, once
the dimensions of the smooth manifoldsA andS exceed 1, the local behavior of
a smooth mapf : A→ Snear a pointa in A can no longer be described by giving
a single real number, the slopef ′(a). Instead, we need an entire matrix, called the
Jacobian. We next review some standard facts about tangent spaces, differentials,
and Jacobian matrices.

2.1.1 Tangent spaces and differentials

A smooth manifold can be approximated to first order near any of its points by a
linear space called thetangent space. We denote the tangent space to the manifold
A at the pointa asTaA.

A smooth map between smooth manifolds can be approximated tofirst order
by a linear map between the appropriate tangent spaces. Letf : A → S be a
smooth map between smooth manifolds, and suppose that the point a in A is
carried, byf, to the points := f(a) in S. The behavior off near the pointa is then
approximated, to first order, by a linear map fromTaA to TsScalled thedifferential
of f at a. We denote the differential asTaf : TaA → TsS; the notations(df )a and
f ′(a) are also used. TheJacobianof f at a is the matrix of the differentialTaf,
expressed in terms of chosen bases for the two tangent spacesthat it relates.

We shall often usea ands to denote the dimensions of the smooth manifolds
A andS. So the tangent spaceTaA is ana-dimensional linear space, whileTsS is
s-dimensional. The Jacobian off at a is thus ans-by-a matrix. In the special case
a = s= 1, this matrix reduces to a single number: Alice’s slopef ′(a).

Abusing notation even further, we shall often useA to denote the tangent space
A := TaA itself, when the context makes clear which manifoldA and pointa in
that manifold are intended. We similarly abbreviateS := TsS. And we usef
to denote the differentialf := Taf of the smooth mapf at a. Thus, the smooth
mapf : A → S is approximated to first order near the pointa by the differential
Taf : TaA→ TsS, which we abbreviate as the linear mapf : A→ S. The Jacobian
of f ata is the matrix of this linear mapf , with respect to chosen bases forA and
S; and we denote that matrix as [f ].

2.1.2 Orientation

We also need to review briefly what it means to orient a manifold; for more details,
see Chapter 5.
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Orienting a smooth manifold makes sense in any dimension. For 1-manifolds,
the issue is forward versus backward; for 2-manifolds, it isclockwise versus coun-
terclockwise; for 3-manifolds, it is right-handed versus left-handed. We orient a
manifold by orienting all of its tangent spaces in some locally consistent manner.
(Local consistency isn’t always possible; some manifolds,such as the Möbius
strip, are not orientable.) And we orient a linear space, such as a tangent space, by
assigning a sign to each ordered basis in one of the two possible globally consis-
tent ways. Consistency means that two ordered bases for the same space must be
assigned the same sign just when the square matrix that expresses the first basis
in terms of the second (or vice versa, it doesn’t matter) has positive determinant.
Otherwise, the determinant of the change-of-basis matrix will be negative, and the
two bases must be assigned opposite signs.

Let f : A → S be a smooth map between smooth manifolds, and suppose
that f is a local diffeomorphism between some neighborhood of the point a in A
and some neighborhood of the points := f(a) in S. This requires that the two
manifoldsA andS be of the same dimensiona = s. If the manifoldsA andSare
also oriented, the local diffeomorphism provided byf neara must either preserve
or reverse orientation. Let’s set

sense(f, a) := +1 or sense(f, a) := −1

according asf preserves or reverses orientation ata. It is a standard result that
the smooth mapf is a local diffeomorphism ata just when its differential there,
the linear mapTaf, is invertible. Recall that we are abbreviating that linearmap
Taf : TaA → TsS as the mapf : A → S. We set sgn( f ) := ±1 according as
the linear bijectionf : A→ S preserves or reverses orientation, so that we have
sgn( f ) = sense(f, a).

We can concretely test the sign of a linear map by consideringits matrix. Let
[ f ] be the matrix of the differentialf , which is the Jacobian off at a. And let’s
suppose that, in writing out the matrix [f ], we have chosen bases for the tangent
spacesA and S that are positively oriented. We can then determine whetherf
preserves or reverses orientation ata by testing the sign of the determinant of its
Jacobian: sense(f, a) = sgn( f ) = sgn(det([ f ])).

2.1.3 The maps of a smooth-manifold fiber product

Figure 2.1 sets up some notation for the various maps associated with the smooth-
manifold fiber productA[f ] ×S [g]B. The two bottom sides of the diamond are
the factor mapsf : A → S and g: B → S. In the Alice-and-Bob case, they
measured altitude. The two top sides of the diamond are projections, the maps
u : A×SB→ A given byu(a, b) := a andv : A×SB→ B given byv(a, b) := b.
Note that the fiber productA×SB is the largest subset of the direct productA×B
on whichf◦u(a, b) = g◦v(a, b), that is, on whichf(a) = g(b). So the diamond in
Figure 2.1 commutes. The diagonal of the diamond, the mapf×Sg: A×SB→ S,
is a symmetric name for the common compositionf ◦ u = g ◦ v.
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Figure 2.1: Five maps associated with the fiber productA[f ] ×S [g]B

We abbreviate the dimensions of the manifoldsA, B, andS asa, b, ands.
So it takesa coordinates to describe the position of Alice, a pointa in A, and
b coordinates to describe a pointb in B. As Alice and Bob vary their positions,
they want to remain at the same altitude, where it now takess coordinates to
describe an altitude. That is, they constrain their joint motion so as to preserve
the altitude equalityf(a) = g(b), which in turn encodess scalar equalities. The
transverse case is the case in which thoses scalar equalities are independent, so it
costs a fulls degrees of freedom to preserve them all. The transverse fiberproduct
A[f ] ×S [g]B therefore has dimensiona+ b− s.

Exercise 2-1 Consider the fiber-productA[f ] ×S [g]B in Figure 2.1. If the factor
mapg is injective, show that the projectionu is also injective. Similarly, ifg is
surjective, show thatu is also surjective. The mapsf andv are related similarly.
(By the way, this has nothing to do with smooth manifolds; it holds equally well
whenA, B, andSare arbitrary sets andf andg are arbitrary set maps.)

Answer: For injectivity, consider two points(a, b1) and (a, b2) in the fiber
product that project to the same pointa underu. We havef(a) = g(b1) = g(b2).
If g is injective, it follows thatb1 = b2, and henceu is injective.

For surjectivity, leta be any point inA. If g is surjective, there must existb in
B with g(b) = f(a). The point(a, b) then lies in the fiber product and projects to
a, so the mapu is surjective.

2.1.4 The maps of a linear-space fiber product

Consider the behavior of the fiber product shown in Figure 2.1near some point
(a, b), wheref(a) = g(b); and lets denote that common points := f(a) = g(b)
in S. The manifoldsA, B, andS are approximated, near the pointsa, b, ands,
by the tangent spacesTaA, TbB, andTsS, which we abbreviate asA, B, andS.
Figure 2.2 shows the linear maps relating these spaces — the spaces and maps
that approximate Figure 2.1 to first order near(a, b).

The factor mapf : A → B is approximated to first order, near the pointa,
by its differential, the linear mapTaf : TaA → TsS, which we abbreviate as
f : A → S. In a similar way, we abbreviate the differentialTbg: TbB → TsS
simply asg : B → S. Note that the mapf = Taf is invertible just whenf is a
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Figure 2.2: The behavior of the fiber productA[f ] ×S [g]B near(a, b)

local diffeomorphism ata, mapping some neighborhood ofa diffeomorphically
onto some neighborhood ofs.

When the smooth mapsf andg are transverse, it is a standard theorem that the
fiber productA[f ] ×S [g]B is itself a manifold. And the tangent space to that fiber
product, at the point(a, b), is simply the fiber product of the tangent spaces; that
is, we have the canonical isomorphism

T(a,b)(A[f ] ×S [g]B) ∼= TaA[Taf ] ×TsS [Tbg]TbB.

Leaving the factor maps implicit, we haveT(a,b)(A ×S B) ∼= TaA ×TsS TbB; or,
using our italic-letter convention, we have simplyT(a,b)(A ×S B) ∼= A×S B.

Finally, consider the projection mapu : A ×S B→ A from Figure 2.1, which
is given byu(a′, b′) := a′. Near the point(a, b), this mapu is approximated to
first order by its differential, which is a linear mapT(a,b)u : T(a,b)(A ×S B)→ TaA
that we shall abbreviate asu : A ×S B → A. This linear mapu is simply the
projection of linear spaces, the map given byu(α, β) := α, for all vectorsα in A
andβ in B with f (α) = g(β). In a similar way, the differential of the projection
v : A×SB→ B at(a, b) is the projectionv : A×S B→ B given byv(α, β) := β.

Thus, if we start with the fiber product of smooth manifolds and smooth maps
shown in Figure 2.1 and we consider that fiber product to first order near the point
(a, b), what we end up with is the fiber product of linear spaces and linear maps
shown in Figure 2.2. When we say that an orientation rule for fiber products
of smooth manifolds islocal, we require that it decide on an orientation for the
manifold A ×S B near the point(a, b) solely by working with the linear spaces
and linear maps in Figure 2.2. Thus, any local rule for orienting smooth-manifold
fiber products uses some rule for linear-space fiber productsas a subroutine; the
smooth-manifold rule works by applying that subroutine, independently, to the
tangent spaces and differentials at each point.

2.2 Generalizing the Partner’s-Slope Rule

With those concepts added to our toolkit, let’s try to generalize the Partner’s-Slope
Rule so that it can handle at least some transverse fiber productsA[f ] ×S [g]B in
which the manifoldsA, B, andS are not all 1-dimensional.
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2.2.1 Upward slopes versus downward slopes

What does the concept “Alice’s terrain slopes upward” correspond to, in our new,
multidimensional situation? The slope of Alice’s terrain is one aspect of the local
behavior of her altitude mapf : A → S, say near the pointa in A. Using our
standard abbreviations, the Jacobian off ata is the matrix [f ], with a columns and
s rows. In the special case thats= a, that Jacobian is square, so it makes sense to
compute its determinant. When that determinant is positive, so that sense(f, a) =
+1, we say that Alice’s terrainslopes upwardat a; when det([ f ]) < 0, so that
sense(f, a) = −1, her terrainslopes downwardata; when the Jacobian matrix [f ]
is square but det([ f ]) = 0, then her terrain isflat, in at least some direction —
that is, there is some direction in which Alice can move without changing any of
thes coordinates of her altitude to first order; and, when the Jacobian [ f ] is not
square, it doesn’t make sense to talk about the slope of Alice’s terrain.

In a similar way, it makes sense to talk about the slope of Bob’s terrain only
when s = b, so that the Jacobian [g] of Bob’s altitude mapg will be square.
Bob’s terrain atb is then upward sloping, downward sloping, or flat according as
det([g]) is positive, negative, or zero.

2.2.2 Advancing versus retreating

What does the advice “Alice should advance” correspond to, in our new situation,
where Alice hasa dimensions to move around in? Consider Alice’s projection
mapu : A ×S B → A, the map defined byu(a′, b′) := a′. At the point(a, b)
in the fiber productA ×S B, the differential of the mapu is the linear projection
u : A×S B→ A. The Jacobian ofu at(a, b) is the matrix [u], which hasa+b−s
columns (by transversality) anda rows. In the special cases = b, this Jacobian
is square and might be invertible. When it is invertible, themap u provides a
diffeomorphism between some neighborhood of(a, b) in the fiber product and
some neighborhood ofa in A. We can use that diffeomorphism to compare some
proposed orientation onA ×S B with the given orientation onA. When we advise
Alice to advance, we choose to orient the fiber product so thatsense(u, (a, b)) =
sgn(u) = +1, that is, so thatu preserves orientation near(a, b); when we advise
Alice to retreat, we choose the opposite orientation, the one that makesu reverse
orientation there. (Warning: Oncea > 1, we can no longer interpret Alice’s
advancing or retreating by thinking of Alice changing her position as a function
of time. Time is inherently 1-dimensional — at least, in our universe! — while
the fiber productA ×S B has dimensiona+ b− s= a.)

In a similar way, it makes sense to advise Bob to advance or retreat only when
s = a, so that the Jacobian [v] of his projection mapv : A ×S B → B is square,
and only at a point(a, b) on the fiber product where that Jacobian [v] is actually
invertible. By advising Bob to advance or retreat, we are choosing our orientation
on the fiber productA ×S B so as to make the mapv either preserve or reverse
orientation at the point(a, b).



2.2. GENERALIZING THE PARTNER’S-SLOPE RULE 27

2.2.3 The Invertible Factor Laws

What do we get when we generalize the Partner’s-Slope Rule? Let’s first discuss
how Alice controls her motion, based on the slope of Bob’s terrain.

Note that we must haves = b if we intend to measure Bob’s slope as either
upward or downward. Fortunately, that same condition is theone that is required
if we intend to advise Alice to advance or retreat.

More precisely, we can measure Bob’s slope as upward or downward at a
point (a, b) on the fiber product just when Bob’s altitude mapg is a local diffeo-
morphism atb. Let’s suppose this to be the case. If we want to advise Alice to
advance or retreat, Alice’s projection mapu must be a local diffeomorphism at
(a, b). To see that this will also be the case, note that we can locally express the
inverse ofu in terms of the local inverse ofg by settingu−1(a′) := (a′, g−1(f(a′)),
wherea′ is close toa and hencef(a′) is close tof(a) = g(b). In particular, the
pointu−1(a′) lies on the fiber product because applyingf toa′ gives the same result
as applyingg to g−1(f(a′)). (Another way to prove this is to apply Exercise 2-1
to the differential maps in Figure 2.2, thereby deducing that the bijectivity of the
differentialg = Tbg implies the bijectivity of the differentialu = T(a,b)u.)

We thus arrive at the following law:

• If Bob’s altitude mapg is a local diffeomorphism atb that preserves ori-
entation there (that is, if Bob’s terrain slopes upward atb), then Alice’s
projection mapu will be a local diffeomorphism at(a, b) and we should
orient the fiber productA ×S B so thatu preserves orientation there (that is,
Alice should advance).

• Symmetrically, ifg is a local diffeomorphism atb that reverses orientation
(Bob’s terrain slopes downward atb), thenu will again be a local diffeo-
morphism at(a, b), but we should orient the fiber productA ×S B so thatu
reverses orientation there (Alice should retreat).

When Bob’s altitude mapg is not a local diffeomorphism atb — either because
s 6= b, so that the Jacobian [g] is not even square, or because the Jacobian is
square but singular — then this law does not apply, and we gainno insight into
the question of how to orient the fiber productA ×S B. This law tells us how to
orient the fiber product whenever the right-hand factor mapg is locally invertible,
so we shall refer to it as theRight Invertible Law.

The equation

sense(u, (a, b)) = sense(g, b)(2-2)

is a more concise way to express the Right Invertible Law. Whenever the mapg is
a local diffeomorphism, and hence the right-hand side is defined, the mapu will
also be a local diffeomorphism and we should orient the fiber product — which is
the domain of the mapu — to make the left-hand side agree with the right.
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TheLeft Invertible Lawis symmetric, using Alice’s slope to tell Bob whether
to advance or retreat:

sense(v, (a, b)) = sense(f, a).(2-3)

We’ll refer to these two guidelines as theInvertible Factor Laws.
There is good news: Whenever both the Left and Right Invertible Laws apply,

the advice that they give is always consistent. For both factor maps to be locally
invertible, we must haves= a ands= b, so we are in the equidimensional case.
All four of the manifolds in Figure 2.1 then have the same dimensiona = b = s=
a+b−s. Furthermore, we must be at a point(a, b) at which both of the mapsf and
g are local diffeomorphisms. At such a point, both of the projection mapsu andv
are also local diffeomorphisms. The Left Invertible Law tells us to orient the fiber
productA ×S B so that sense(v, (a, b)) = sense(f, a), while the Right Invertible
Law tells us to make sense(u, (a, b)) = sense(g, b). To see that those two pieces
of advice are consistent, note thatf ×S g = f ◦ u = g ◦ v and hence we have
sense(f×S g, (a, b)) = sense(f, a) sense(u, (a, b)) = sense(g, b) sense(v, (a, b)).
So our two pieces of advice boil down to the same thing, which we christen the
Both Invertible Law:

sense(f ×S g, (a, b)) = sense(f, a) sense(g, b).(2-4)

This simple and compelling identity tells us how to orient the fiber product at any
point where both of the factor maps are locally invertible. Of course, at such a
point, the Left Invertible Law by itself would also tell us what to do, as would the
Right Invertible Law; but the Both Invertible Law tells us more elegantly, without
our having to think about the projection mapsu or v.

But there is also bad news: Back in the 1-dimensional case of the original
Alice and Bob, it followed from transversality that Alice and Bob could not be
simultaneously at flat spots. Once the common dimension of the manifoldsA,
B, and S exceeds 1, however, simultaneous flat spots can happen, evenwhen
the factor mapsf andg are transverse. Indeed, there exist nonempty, transverse,
equidimensional fiber products on which Alice and Bob are always at flat spots;
see Exercise 7-1. No matter what point(a, b) we consider in such a fiber product
A[f ] ×S [g]B, the factor mapsf andg are transverse at(a, b) and the Jacobians
[ f ] of f at a and [g] of g at b are both square, but det([ f ]) = det([g]) = 0. The
Invertible Factor Laws give us no advice at all about how to orient such a fiber
product, no matter where on it we try to apply them.

By the way, since the Invertible Factor Laws are local, they make perfect sense
also in the context of linear spaces and linear maps, as in Figure 2.2. Given such
a fiber product of linear spaces, the Invertible Factor Laws tell us to set

sgn(u) = sgn(g)(2-5)

sgn(v) = sgn( f )(2-6)

sgn( f ×S g) = sgn( f ) sgn(g)(2-7)
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In each of these laws, if the maps on the right-hand side are invertible, so the signs
on the right are well-defined, then the map on the left will also be invertible (as
we saw in Exercise 2-1); and we should orient the fiber productA×S B, which is
the domain of the left-hand map, so as to make the equality hold.

In summary, generalizing the Partner’s-Slope Rule to higher dimensions leads
to the Invertible Factor Laws. They specify how to orient many fiber products, and
they never contradict each other. But they do not constitutea complete orientation
rule, even for the equidimensional case.

Exercise 2-8 Exercise 1-1 discussed the Velocity Variant of the Partner’s-Slope
Rule in the 1-dimensional case. Explain why that variant does not generalize to
the equidimensional case.

Answer: The core idea in Exercise 1-1 is for Alice to restrictthe choice of the
local coordinate system on the fiber productA ×S B so as to make the Jacobian
matrix [u] of Alice’s projection mapu coincide with the Jacobian matrix [g] of
Bob’s altitude mapg. Similarly, Bob restricts the choice to make his projection
matrix [v] coincide with Alice’s altitude matrix [f ]. Are those two restrictions
consistent? The commutativity of Figure 2.2 tells us thatf ◦u = g◦v, from which
we deduce the matrix equality [f ][u] = [g][v]. Thus, we can arrange that [u] =
[g] and [v] = [ f ] only when [f ][g] = [g][ f ] — that is, only when the Jacobian
matrices off andg commute. Of course, 1-by-1 matrices are simply scalars; they
all commute. Once the common dimension ofA, B, andS exceeds 1, however,
we typically have [f ][g] 6= [g][ f ], so there won’t be any local coordinate system
on the fiber productA ×S B that makes both [u] = [g] and [v] = [ f ]. Thus, the
idea that underlies the Velocity Variant typically isn’t achievable.

2.3 Generalizing the Gray-Region Rule

The Gray-Region Rule generalizes more successfully than the Partner’s-Slope
Rule; but the process of generalization is a bit subtle. Indeed, as the first step in
that process, I have a confession to make: The notion of the “gray region” doesn’t
always make sense, even in the 1-dimensional case — and hencethe Gray-Region
Rule, as we discussed it in Chapter 1, was a bit over-simplified.

2.3.1 The Gray-Side Rule

Consider a transverse fiber productA×S B in which all three manifoldsA, B, and
Sare 1-dimensional and oriented, but the manifoldS is a closed loop. Let(a, b) be
a point in the direct productA×B at whichf(a) 6= g(b); so(a, b) is not in the fiber
product. Alice and Bob colored the state(a, b) either gray or white, according as
they hadf(a) < g(b) or f(a) > g(b) in S. But the ability to discriminate between
those two cases presupposes that the manifoldS is totally ordered. IfS is a closed
loop, we can get from the pointf(a) to the distinct pointg(b) by moving either
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way around the loop, forward or backward. So it is no longer clear that there is
such a thing as a “gray region”.

Indeed, when the manifoldS is a loop in this way, removing the black path
A×S B from the state spaceA×B may fail to disconnect the latter manifold. The
black path may behave like one of the circles that goes arounda torus; removing
such a circle from the torus leaves a cylinder, which is stillconnected. Thus,
purely on topological grounds, there may be no hope of partitioning what is left
into a “gray region” and a “white region”.

The fix for this difficulty is to work locally. Rather than defining the “gray
region”, we define thegray sideand thewhite sideof the black path locally by
looking at what tiny motions of Alice or Bob would do to their relative altitudes.
Indeed, this is what we actually did; what Figure 1.10 actually shows, for example,
are the gray and white sides of a tiny segment of the black path. Alice and Bob
can figure out which direction to walk once they know which side of the black
path is gray locally; they have no need even to think about theentire gray region.
We refer to this clarification of the Gray-Region Rule as theGray-Side Rule.

Note that, given a circle that goes around a torus, we can makea consistent
convention about the gray side and the white side of that circle, even though we
cannot partition the cylinder that remains after removing the circle into a “gray
region” and a “white region”. Note also that the open arrowheads generated by the
Gray-Side Rule will always be locally consistent, even in cases where no “gray
region” can be globally defined. To verify this local consistency, it suffices to
check that nearby applications of the Gray-Side Rule will agree about which side
of the black path is the gray side.

2.3.2 Orienting direct products and quotients

At this point, we need some observations about orienting thedirect products and
quotients of linear spaces. The key point is that arbitrary choices are involved.

Given oriented linear spacesV andW, we can always put an orientation on
their direct productV ×W. We typically do so by concatenating a positive basis
for V and a positive basis forW, with the basis forV going first, and specify-
ing that the resulting concatenation constitutes a positive basis forV × W. But
choosingV to go first in this concatenation is arbitrary, since the direct product
V × W is isomorphic toW × V . For example, suppose thatV andW are both
copies of the real numbersR, each oriented so that(+1) is a positive basis. Their
direct productV ×W is a plane. We can orient that plane so that rotation from
the positiveV axis to the positiveW axis is either clockwise or counterclockwise.
The choice is arbitrary, as we saw by contrasting Figure 1.7 with Figure 1.11.

A similar issue arises for quotients. Suppose thatU is a linear subspace of a
linear spaceV . Given any basis forU , we can extend that basis into a basis for
V . And the vectors that we add, in doing that extension — more precisely, their
equivalence classes moduloU — form a basis for the quotient spaceV/U . If we
choose the basis forU to be positive and we extend it so as to form a positive basis
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for all of V , we can orient the quotientV/U by specifying that the vectors added
during this extension constitute a positive basis forV/U . But this construction
also involved an arbitrary choice: We chose to put the basis for U first and the
basis forV/U second, in assembling the basis forV , when the other order would
have been just as good. Thus, in orienting the quotientV/U , we are forced to
make an arbitrary choice betweenV ∼= U × (V/U) andV ∼= (V/U)×U .

Such quotients often arise from linear maps. Letm: V → W be a linear map
between linear spaces, let Dom(m) := V be the domain ofm, let Ker(m) :=
m−1({0}) be the kernel ofm in V , and let Im(m) := m(V) be the image ofm in
W. It is a basic theorem of linear algebra that the image is canonically isomorphic
to the domain modulo the kernel: Im(m) ∼= Dom(m)/Ker(m). Hence, given
orientations on any two of those three spaces, we can orient the third. But doing
so also involves making an arbitrary choice; roughly speaking, we must choose
between realizing Dom(m) as Ker(m)× Im(m) or as Im(m)× Ker(m).

2.3.3 The Delta Rule

The Gray-Side Rule generalizes quite successfully into a rule that handles the full,
any-dimensional case. But doing so involves making arbitrary choices, which will
come back to haunt us.

Consider some any-dimensional, transverse fiber productA[f ] ×S [g]B, and
consider the neighborhood of some point(a, b) in A×S B. We adopt our standard
abbreviations: So the points in S is the common values := f(a) = g(b). We
denote byA the tangent spaceA := TaA and similarly forB := TbB andS := TsS.
The differential off ata is the linear mapTaf : TaA→ TsS, which we abbreviate as
f : A→ S. And similarly forg : B→ S. The linear mapsf andg are themselves
transverse, and the tangent space to the fiber product is the fiber product of the
tangent spaces:T(a,b)(A ×S B) ∼= A×S B. Our challenge is to orient this tangent
spaceA×S B, given orientations on the tangent spacesA, B, andS.

Note that this challenge, because it is local, involves onlylinear spaces and
linear maps. To meet the challenge, we define a linear map1 : A× B → S by
subtracting, setting

1(α, β) := g(β)− f (α),

for any point(α, β) in the direct productA× B. If Alice moves from the point
a to some nearby pointa′, a certain vectorα describes, to first order, how she has
moved. Similarly, a certain vectorβ describes how Bob has moved fromb to b′.
If Alice and Bob both move in this way, the vector1(α, β) tells us, to first order,
the discrepancy that arises between the pointsf(a′) andg(b′). The kernel of1
is the space of all directions in which Alice and Bob can move away from (a, b)
while preserving the relationshipf(a) = g(b) to first order. Thus, that kernel is
precisely the linear-space fiber product Ker(1) = A×S B that we want to orient.

This map1 is the key to our generalized Gray-Side Rule. We are given ori-
entations on the manifoldsA, B, and S and hence on their tangent spacesA,
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B, and S. By concatenation, we can put an orientation on the direct product
A × B = Dom(1). Because we are restricting our attention to transverse fiber
products, it turns out that Im(1) is the entire tangent space Im(1) = S, for which
we have a given orientation. Putting together those orientations on Dom(1) and
Im(1), we get an orientation on Ker(1) = A×S B, which was our goal. We refer
to this orientation technique as theLinear-Space Delta Rule.

The Smooth-Manifold Delta Ruleworks in the obvious way; it orients each
tangent spaceA×S B to the fiber-product manifoldA×SB by applying the Linear-
Space Delta Rule to that tangent space. The resulting orientations on the tangent
spaces always fit together in a locally consistent manner, thereby orienting the
manifoldA×S B itself; we prove this local consistency in Section 7.3 by showing
that the Linear-Space Delta Rule has the continuity property calledstability, which
we define in Section 6.2.

So the good news is that the Smooth-Manifold Delta Rule is powerful enough
to orient all transverse fiber products, even the any-dimensional ones. The bad
news is that we are forced to make various arbitrary choices of convention in
implementing the Delta Rule. Which basis goes first,A or B, in concatenating
a basis forA× B? Which goes first, Ker(1) or Im(1), in concatenating a basis
for Dom(1)? For that matter, why did we set1(α, β) := g(β) − f (α), rather
than1(α, β) := f (α) − g(β)? Because of those arbitrary choices, we have no
guarantee that the orientations produced by any particularvariant of the Delta
Rule will be natural and hence have good mathematical properties. Instead, the
orientations that we get will depend upon the arbitrary choices that we have made.
Thus, we must add an explicit fudge factor to the Delta Rule inorder to “calibrate”
it, that is, to arrange that it gets the “proper” orientations as its answers.

2.4 Defining the Proper Orientations

But which orientations of transverse fiber products are “proper”? That question
turns out to be quite easy in the 1-dimensional case, fairly easy also in the equidi-
mensional case, but rather subtle in the any-dimensional case. All three of those
cases arise in two different problem domains: linear spacesand smooth manifolds.
But any orientation rule for smooth manifolds that is local reduces to an rule for
linear spaces; so the linear-space problem is the fundamental one.

2.4.1 Linear-space orientation rules as subroutines

Our overarching goal is an orientation rule for transverse fiber products of smooth
manifolds. But we have decided up front that this rule must belocal; that is, it
must operate by using some orientation rule for transverse fiber products of linear
spaces as a subroutine and applying that subroutine to each tangent space of the
manifold independently. The answers given back from the smooth-manifold rule
are completely determined by the answers from its linear-space subroutine. So, in
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considering issues of “propriety”, it suffices to focus on the subroutine, that is, to
consider orientation rules for transverse fiber products oflinear spaces.

Not any linear-space rule will do, of course. The orientations on the various
tangent spaces returned by the linear-space subroutine must be locally consistent,
so that they fit together to give an orientation on the manifold. To guarantee
that all of our linear-space rules behave well in this regard, we require that they
be stable, in the sense defined in Section 6.2. We prove in Section 6.3 that any
stable linear-space rule will always orient the tangent spaces in a locally consistent
manner and will hence lift to give a smooth-manifold orientation rule. Requiring
stability thus addresses the issue of local consistency, leaving us free to focus on
the linear-space question: Given a transverse fiber productof linear spaces, which
orientation of that fiber product is “proper”?

2.4.2 The easy cases

In the 1-dimensional case of Alice and Bob, choosing the proper orientation is
quite easy. When both Alice and Bob are on upward slopes, we were never in any
doubt that they should both advance; so theproperopen arrowhead in the upper-
left cell in Figure 1.10 points toward the upper right. The other seven cases are
then determined by stability: As the black line rotates, theopen arrowhead must
rotate with it, in order to avoid any sudden reversals.

The equidimensional case turns out to be almost as easy. We consider first an
equidimensional fiber productA[ f ] ×S [g]B in which both of the factor mapsf
andg are invertible. The Both Invertible Law 2-7 then convincingly states that
theproper orientationon the fiber product is the one that makes sgn( f ×S g) =
sgn( f ) sgn(g). We show in Section 7.5 that all other equidimensional casesare
determined from this by stability.

We could use a similar argument, based on stability and the Left Invertible
Law, to define the proper orientation for fiber products in which a = s 6= b. And
the Right Invertible Law would handle the ones in whicha 6= s= b. But the full,
any-dimensional case is quite a different story. Whena 6= s 6= b, so that neither
factor map can possibly be invertible, it isn’t at all clear which of the two possible
orientations is the proper one.

2.4.3 Axioms for the proper orientations

The way to investigate that question is to invent axioms thatconstrain the behavior
of a linear-space orientation rule for the any-dimensionalcase. Indeed, each of
the Invertible Factor Laws is essentially such an axiom: theIdentity Axioms in
Sections 9.1.4 through 9.1.6. We succeed in this axiomatic strategy if we can
invent a compelling collection of axioms that is both consistent and complete.
“Consistent” here means that there is some orientation rulethat satisfies all of
our axioms. “Complete” means that there is at most one such rule. So, if we
find an axiom system that is both consistent and complete, there will be a unique



34 CHAPTER 2. FIBER PRODUCTS IN HIGHER DIMENSIONS

orientation rule that satisfies all of our axioms. We can thendefine theProper
Orientationsto be the orientations produced by that unique rule. And we can
calibrate the Delta Rule so that it produces those Proper Orientations.

Associativity is one obvious axiom to try for. LetA, B, C, andS be oriented
linear spaces and letf : A→ S, g : B → S, andh : C → S be linear maps that
are transverse in the appropriate sense. The two linear spaces(A×S B)×S C and
A×S (B ×S C) are then canonically isomorphic, and we surely want to require
that our rule orients them so that the canonical isomorphismpreserves orientation.
That is, we want to have(A×S B) ×S C = A×S (B ×S C), rather than having
(A×S B)×S C = −

(

A×S (B×S C)
)

. Unfortunately, all of the obvious axioms,
including associativity, are not enough to narrow down the space of orientation
rules for the any-dimensional case to a single, proper rule.

The key to finding an axiom system that is complete is to insiston a stronger
form of associativity:

(A×S B)×T C = A×S (B×T C).

In thisAxiom of Mixed Associativity, the two fiber products are over different base
spacesS and T . The implicit maps that are really being multiplied, in sucha
mixed fiber product, have the zigzag form:

CBA

TS

@
@@R

@
@@R

�
��	

�
��	f g h k

Note that this zigzag involves two factor maps fromB, a “forward” one toT
and a “backward” one toS. By adding this Axiom of Mixed Associativity to our
more straightforward axioms in Chapter 9, we produce a collection of axioms that
is both consistent and complete, thereby defining the ProperOrientations for the
any-dimensional case.

2.5 Overview

Now is perhaps a good time for an overview of this monograph.
In Chapter 1, we familiarized ourselves with fiber products by climbing moun-

tains with Alice and Bob. We came up with two rules for orienting 1-dimensional
fiber products: the Partner’s-Slope Rule and the Gray-Region Rule.

Our overall goal is to orient the smooth manifolds that result when we take
transverse fiber products of oriented smooth manifolds. We want to do so, not only
in the 1-dimensional case of Alice and Bob, but also in the equidimensional and
any-dimensional cases. In the current Chapter 2, we have considered the extent
to which the Partner’s-Slope Rule and the Gray-Region Rule can be generalized.
The Partner’s-Slope Rule generalizes into the Invertible Factor Laws, which are
essentially axioms about how an orientation rule for fiber products should behave.
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Those axioms do specify the Proper Orientation of many fiber products — but
not all of them, not even all of the equidimensional ones. TheGray-Region Rule
generalizes into the Delta Rule, a framework that is powerful enough to handle
the full any-dimensional case. Unfortunately, building this framework involves
making some arbitrary choices. So the resulting Delta Rule needs to be calibrated
with an explicit fudge factor, before it will assign the Proper Orientations.

Chapter 3 completes the introduction by providing some motivation for all
this. We discuss a problem of practical interest, arising inCAGD and robotics,
where it is important that the fiber products of oriented manifolds themselves be
oriented. In particular, we discuss computing the Minkowski sums and convolu-
tions of regions that are described by specifying their boundaries.

Our mathematical work begins in earnest in Chapter 4, where we study the
direct products and fiber products of sets, linear spaces, and smooth manifolds.
For linear spaces and smooth manifolds, where the concept ofdimension makes
sense, we discuss the standard notion of transversality.

In Chapter 5, we study what it means to orient a linear space ora smooth man-
ifold. While our definitions here are also essentially standard, we must take care
to arrange that all linear spaces end up with two possible orientations, even linear
spaces of dimension zero (such a space having the empty sequence of vectors as
its only basis). We discuss how orientation interacts with direct products and with
quotient spaces. Given a linear map between two spaces that are each direct prod-
ucts, we discuss how to represent that linear map as a matrix whose entries are
themselves linear maps. We can perform elementary row and column operations
on the resulting matrices, just as if they were matrices of numbers; but we must
be careful to “multiply” by composing from the correct side.

Stability is the key concept in Chapter 6. We want our orientation rule for
smooth manifolds to be local, meaning that it must operate byusing an orientation
rule for linear spaces as a subroutine and applying that subroutine to each tangent
space independently. For this to work, the linear-space rule must have a certain
continuity property that we christenstability. In Chapter 6, we define stability, and
we prove that any stable linear-space rule will orient the various tangent spaces of
a smooth manifold in a locally consistent manner, hence giving us an orientation
rule for smooth manifolds. In the remainder of the monograph, we can hence
focus on stable orientation rules for linear-space fiber products.

Chapter 7 presents our initial, uncalibrated version of theDelta Rule for linear
spaces and proves that it is stable. We use the Both Invertible Law and stability
to define the Proper Orientation for any transverse, equidimensional fiber prod-
uct, and we demonstrate that even the Uncalibrated Delta Rule assigns the Proper
Orientations in the equidimensional case. Recall that the Left and Right Invertible
Laws apply also to some transverse fiber products that are notequidimensional.
We find that the Uncalibrated Delta Rule assigns orientations to some of those
cases that violate the Left Invertible Law. This is convincing evidence that the
Delta Rule must be explicitly calibrated in order to get the Proper Orientations,
once we leave the equidimensional case.
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The key to defining the Proper Orientations in the any-dimensional case is the
Axiom of Mixed Associativity. Chapter 8 returns to the basicdefinitions from
Chapter 4, generalizing them so that they can handle mixed fiber products, where
a different base space is involved for each adjacent pair of factor spaces. In the
process, we define azigzagto be a particular structure in linear algebra: a sequence
of linear spaces in which adjacent spaces are related by linear maps that alternate
in direction.

Everything comes to a head in the Chapter 9. We present a list of axioms that
contains the Axiom of Mixed Associativity. We demonstrate that those axioms are
both consistent and complete, so the orientations that theydescribe are the unique
Proper Orientations. We then calculate the fudge factor needed to calibrate the
Delta Rule so that it produces those Proper Orientations.

In Chapter 10, we discuss the freedom that we would acquire toadopt other
orientation rules if we were to abandon certain of our axioms. We also discuss
several formulas that bundle together subsets of our axioms. The fanciest of these
is theBinary Full Formula,

(L × N × Q)×(M×N×Q) (M × N × R) = L × N × R,

a single identity that is free of fudge factors and yet is powerful enough, all by
itself, to capture the Proper Orientation for every transverse fiber product of linear
spaces. The subtle point about the Binary Full Formula is theorder of the factors
in each of its ternary direct products.

As part of understanding why the Binary Full Formula is compatible with
mixed associativity, we also write out a Ternary Full Formula in Chapter 10. And
we show that it would be possible to write out ann-ary Full Formula, for anyn.
Unfortunately, thesen-ary Full Formulas forn ≥ 3 are unavoidably asymmetric,
and hence are not as pretty as the Binary Full Formula. To see why these higher
full formulas have the universality implied by the adjective “full”, we need to
appeal to an intriguing theorem of linear algebra about the structure of zigzags
— a theorem that follows, fortunately, from Gabriel’s Theorem in the theory of
quiver representations.



Chapter 3

Minkowski sum and convolution

Recall that our goal in this monograph is to orient the smoothmanifolds that
result when we take transverse fiber products of oriented smooth manifolds. In
this third and final introductory chapter, we motivate that problem by discussing
an application area in which it arises:Minkowski sumsandconvolutionsin CAGD
and robotics. For more details about these issues, see [1, 6,13].

3.1 The oriented boundaries of paintings

It often works well to represent a region ind-space by specifying its boundary,
since that boundary has dimension only(d − 1). For this reason, representation
schemes based on boundaries are common in CAGD and robotics.

In such schemes, the boundaries are typically taken to be oriented. Perhaps the
clearest justification for that decision comes from examples like Figure 3.1. Think
of the planar region in that figure as the letter alpha from a Greek font (drawn by
a type designer who is far too enamored of circles and straight lines).

In Figure 3.1(a), the boundary of the alpha is an unoriented curve. Without an
orientation to provide guidance, the only local rule for distinguishing the inside
from the outside asserts that every crossing of the boundarytakes us either from
inside to outside or vice versa. By that rule, unfortunately, the diamond where the
alpha crosses itself ends up being outside — which would never do.

We could restructure the boundary as shown in Figure 3.1(b).Note that the
boundary now consists of two separate loops, the outer of which has three sharp

(a) (b) (c)

1
2

0

Figure 3.1: A letterα, drawn three different ways

37
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corners, while the inner has one. But it may be expensive to compute the four self-
intersections and to restructure the boundary in that way. Furthermore, it would be
delicate to edit this two-loop version of the boundary whilepreserving the illusion
of a single brush stroke that crosses itself.

Orienting the boundary, as shown in Figure 3.1(c), providesa better solution.
We then make the convention that crossing the boundary, say,from its right to its
left, means moving from outside to inside. Under this convention, the diamond
of self-intersection lies inside the alpha twice. This makes some intuitive sense,
since the points in that diamond would be passed over twice asa brush painted the
alpha. In computer graphics and in complex analysis, this situation is described
by saying that thewinding numberof the oriented boundary around points in that
diamond is 2.

Once some points are to lie inside the alpha with multiplicity 2, we can no
longer view the alpha simply as a region, that is, as a subset of the plane. Rather, it
is at least a multiset. In fact, we want to allow our winding numbers to be negative,
as well as positive, since reversing the orientation on the boundary should negate
all of the resulting winding numbers. So the alpha has becomea function from the
plane to the integers whose regions of constancy are well-behaved, in some sense
yet to be specified. That concept reminds me of painting by number, so let’s refer
to such an integer-valued function as apainting. The alpha in Figure 3.1(c) is a
painting in the plane that takes on the values 0, 1, and 2, as encoded by the colors
white, light gray, and dark gray.

Warning: While we use the concept of a “painting” in this chapter, we don’t
define that concept precisely. In particular, we don’t specify how well-behaved
the regions of constancy have to be. That sloppiness is permissible because this
chapter provides only motivation, not mathematics; paintings are just one example
of a practical situation that needs oriented fiber products.The best candidate that
I know of for a precise notion of “painting” is Schapira’s notion of aconstructible
function[15]. Under Schapira’s definition, the regions of constancyof a painting
are the strata of a subanalytic stratification.

One final remark about the graphical conventions used in Figure 3.1(c): The
standard way to draw an orientation on a smooth manifoldM involves some sort of
tangential graphical structure, something that indicatesan orientation on sample
tangent spaces. For example, we draw an orientation on a 1-manifold by drawing
arrowheads pointing along it, forward or backward. When themanifoldM sits, as
a submanifold, inside an oriented manifold of some larger dimension, we have the
option of drawing some sort of normal structure instead, something that indicates
an orientation on sample complements of tangent spaces. Forexample, whenM
is a 1-dimensional submanifold of an oriented 2-manifold, we can indicate our
choice of orientation onM by drawing, say, outward-pointing unit normal vectors
alongM. In Figure 3.1(c), we have redundantly used both schemes, both arrow-
heads alongM and short, headless, outward-pointing vectors normal toM. We
refer to the latter vectors aswhiskers. We introduce these two different schemes
for indicating the orientation ofM because, in later examples, we shall be deal-
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A B A⊕ B

Figure 3.2: The Minkowski sum of two orthogonal rods

ing with two orientations that don’t always agree. In this example, however, the
whiskers and the arrowheads always do agree; that is, the whiskers always point
toward the right-hand barb1 of the arrowhead.

3.2 Minkowski sums of convex regions

Given two regionsA andB in the plane, theirMinkowski sumis the region

A⊕ B := {a+ b | a ∈ A andb ∈ B},

where the plus ina+ b denotes vector sum. For example, the Minkowski sum of
the horizontal rodA and the vertical rodB in Figure 3.2 is the rounded rectangle
A⊕ B on the right. Its boundary consists of four line segments, each of which is
a translate of a flat side of one of the two rods, together with four quarter circles,
each with twice the radius of the semicircles at the ends of the rods.

Given the boundaries of the two regionsA andB, how can we compute the
boundary of their Minkowski sumA⊕ B?

If we start with a pointa in the interior ofA, then every point of the form
a+ b, for b in B, will lie in the interior of the Minkowski sum. Thus, the only
way to get out to the boundary of the Minkowski sumA ⊕ B is to add a pointa
that lies on the boundary ofA to a pointb that lies on the boundary ofB.

But we need more. If the tangent line to the regionA ata is not parallel to the
tangent toB at b, then we can combine tiny motions along the boundaries ofA

andB to nudge the suma+ b an infinitesimal distance in any direction; so, once
again, we can’t possibly be out on the boundary of the Minkowski sum. To get out
to the boundary of the sumA⊕ B, we must add pointsa andb on the boundaries
of A andB where the tangent lines are parallel.

Even requiring the tangents to be parallel is not restrictive enough. Consider
all of the boundary points of the regionsA andB in Figure 3.2 at which the
tangent is horizontal. Each point along the top edge of the Minkowski sumA⊕B

1By the “right-hand barb”, we mean the barb on your right when you face in the direction that
the arrow points; the nautical term would be “starboard barb”.
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is the vector sum of a point along the top edge ofA and the unique point at the
middle ofB’s top semicircle; and the same is true if we replace “top” throughout
with “bottom”. But adding a top boundary point ofA to the middle ofB’s bottom
semicircle leads to a point ofA ⊕ B that is not on the boundary. Thus, all of the
points on the boundary of the Minkowski sumA⊕ B have the forma+ b where
a andb are points on the boundaries ofA andB at which the tangent lines match
both in slope and in orientation.

Beware! We are now starting to use the orientations on our boundaries for
two different purposes. We continue to use the orientation on the boundary of
any painting to compute the values of that painting, that is,to determine which
side of the boundary has the larger winding number. But now, when forming the
boundary of a Minkowski sumA ⊕ B, we also compare the orientations on the
boundaries ofA andB in order to decide which of the tangents ofA should be
added to which of the tangents ofB. To avoid confusion in what follows, let’s
make an association between these two different uses of the orientation and our
two different graphical conventions for drawing that orientation. We’ll use the
arrowheads that point along the boundary to compute windingnumbers, under
the convention that crossing a boundary from its right to itsleft increases the
winding number by 1. When matching up tangents to compute theboundary of
a Minkowski sumA ⊕ B, we’ll use the whiskers instead; we’ll look for pairs of
pointsa andb on the boundaries ofA andB at which the whiskers are equal as
vectors — not only parallel, but also with the same sense.

We now have a glimmer of why fiber products arise in computing Minkowski
sums. LetA andB be two regions in the plane whose boundariesA and B are
smooth 1-manifolds. LetS1 denote the unit circle, the set of all unit-length vectors
in the plane. We can mapA to S1 by taking each boundary point to the whisker
at that point; call that mapwA : A → S1 the whisker map(or Gauss map), and
define the whisker mapwB : B → S

1 in a similar way. The boundary of the
Minkowski sumA ⊕ B then corresponds toA[wA] ×S1 [wB]B, the fiber product
of the boundaries of the two summands taken over the circleS1, where the factor
maps fromA andB to S1 are the whisker maps.

But we don’t yet have any clear motivation for orienting the fiber products of
oriented manifolds. While the boundariesA, B, and A×S1 B of the regionsA,
B, andA ⊕ B are in fact oriented manifolds, there is no reason as yet why we
need to keep track of that orientation as a separate concept.Since we know the
whisker maps, we can compute the correct arrowhead at any point on any of these
boundaries by rotating the whisker vector 90 degrees counterclockwise.

Exercise 3-1 Given two regionsA andB in the plane with smooth boundariesA
andB, suppose that we want the whisker mapswA : A→ S1 andwB : B→ S1 to
be transverse. What geometric condition must we impose?

Answer: The analog of a plateau on Alice’s mountain range is asegment of the
boundaryA that is straight; along such a segment, the whisker map is constant.
The analog of a peak or a valley is a point onA where the boundary switches
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A B A⊕ B

Figure 3.3: Sliding the brushB along the trajectoryA

between curving to the left and curving to the right. Such points are calledpoints
of inflectionorflexes; at a flex, the whisker map has a local extremum. Technically,
the points along a straight segment also count as flexes. So, if we want the whisker
mapswA andwB to be transverse, what we must avoid is having flexes, one on
A and the other onB, whose whiskers are equal as vectors — that is, are parallel
and have the same sense.

3.3 1-dimensional regions as trajectories

By the way, there was no reason why the two rods in Figure 3.2 had to be the
same thickness. Figure 3.3 shows the degenerate situation in which the rodA has
shrunk to have zero width. Thus, the upper and lower boundaries ofA run along,
one right on top of the other.

When one of the summands of a Minkowski sum is 1-dimensional in this
sense, we can reinterpret the summation as a dynamic process. We view the
1-dimensional summand as a trajectory and the other summandas a brush, and
we translate the brush along the trajectory. In Figure 3.3, we get the strokeA⊕B

by translating the rod-shaped brushB along the trajectoryA (which happens to be
straight, but wouldn’t have to be). Indeed, Minkowski sums are used in graphics
to model brush strokes in precisely this way. But note that the motion of the brush
must be limited to pure translation. If the brush were to rotate or to change shape
as it moved along the trajectory, then we would be dealing, not with a Minkowski
sum, but with a more general problem in differential geometry.

When two segments of boundary run along right on top of each other, as do
the top and bottom boundaries of the regionA in Figure 3.3, our conventions for
drawing orientations can become ambiguous. In particular,there’s nothing in the
picture to indicate that the rightward-pointing arrowheadalongA goes with the
downward-pointing whiskers, while the leftward-pointingarrowhead goes with
the upward-pointing whiskers. We trust to context to resolve such ambiguities.

Minkowski sums of higher dimension arise in robotics. For example, consider
translating a sofa around in a living room — but only translating, not rotating. If
we Minkowski-subtract the sofa from the living room, we are left with the set of
collision-free positions for the sofa under translation.
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Figure 3.4: Offsets of a parabolic arc

3.4 Concave boundaries with tight turns

To prepare for our next example of a Minkowski sum, let’s lookat some offsets
of a parabola. The darker curve in Figure 3.4, the middle one of the seven, is
that portion of the graph of the standard parabolay = x2 that lies over thex
interval [−3/2 . . 3/2]. The three curves on either side are the curves that result
from offsetting that parabola by a distance of±2/5,±4/5, and±6/5. We could
imagine drawing Figure 3.4 by building a beam with seven pens, spaced 2/5 apart,
and then sliding that beam along the parabola. We keep the beam centered on
the parabola and normal to it at all times — like a tightrope walker carrying a
beam for balance. The surprising features of the result are the swallowtails that
appear in the paths traced by the two innermost pens. A swallowtail results when
the forward motion of a pen that arises from our progress along the parabola is
overwhelmed by the backward motion that arises from our rotation of the beam.
The farther a pen sticks out toward the inside of the turn, themore likely that pen
is to experience such retrograde motion.

Exercise 3-2 Let r be a distance large enough so that the inner offset to the
parabola at distancer has a swallowtail. (For the standard parabolay = x2,
that meansr > 1/2.) Where are the two cusps of that swallowtail located?

Answer: The two cusps are the centers of the two circles of radius r that
osculate the parabola, that is, that match it in position, slope, and curvature.

With swallowtails in mind, consider the Minkowski sum in Figure 3.5. The
regionA is the same parabolic arc that we saw in Figure 3.4, but now viewed
as a 1-dimensional region. SinceA is 1-dimensional, we can interpret the sum
A ⊕ B as translating the brushB along the trajectoryA, where the brushB is a
circular disk of radius 6/5. If we compute the boundary of the strokeA ⊕ B by
adding pairs of boundary points with equal whiskers, we get the painting shown
in Figure 3.5 — complete with the swallowtail in its upper boundary.
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Figure 3.5: A parabolic trajectory with a tight turn
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Such swallowtails can’t arise in Minkowski sums whose summands are both
convex, like those shown in Figures 3.2 and 3.3. The whisker map of a convex
region is weakly monotonic; that is, advancing along that region’s boundary may
cause the whisker to rotate counterclockwise or may leave the whisker’s azimuth
unchanged, but it never causes the whisker to rotate clockwise. Borrowing some
terminology from Alice and Bob, all of the terrain on such a mountain range is
either upward-sloping or flat; none of it slopes downward. Ifboth mountain ranges
have this character, then Alice and Bob can traverse the fiberproduct without
either ever needing to retreat, so no retrograde motion arises.

But retrograde motion can arise in a Minkowski sum, like thatin Figure 3.5,
in which one of the summands fails to be convex. Note that the upper boundary
of the trajectoryA is concave, since forward motion along that boundary, from
right to left, causes the whisker to rotate clockwise. It is this clockwise rotation
of Alice’s whisker that forces Bob to retreat along the upper, circular boundary of
the brush, leading to the retrograde motion and the swallowtail.

3.5 From Minkowski sums to convolutions

A Minkowski sum is simply a set — a subset of the plane, in the case of Figure 3.5.
So the boundary of the Minkowski sumA ⊕ B does not include the swallowtail.
Instead, to construct the upper boundary of the setA ⊕ B, we must compute the
point of self-intersection of the upper boundary and clip off the swallowtail rooted
there, replacing it with a sharp turn.

But the points inside the swallowtail do have a special property that could
justify our viewing them as lying inside the sum twice. As we translate the disk-
shaped brushB along the parabolic trajectoryA, the points in that swallowtail are
precisely the points that get two coats of paint. Given any such pointp, the brush
moves overp and then off ofp twice, once while the brush is heading down and
again while it is heading back up. This could justify retaining the swallowtail as
part of the boundary — in which case the object that it bounds must be a painting,
rather than a region. The painting that results when we include the entire offset
curve as part of the boundary, retaining the swallowtail, iscalled theconvolution
of the regionsA andB, writtenA ∗ B. Note that the values of the convolution
paintingA ∗ B in Figure 3.5 count coats of paint, just as do the values of the
alpha-shaped painting in Figure 3.1.

When winding numbers greater than 1 arise, so that the convolution differs
from the Minkowski sum, it is the convolution that is more closely related to fiber
products. Note that, as we move along the boundary of the convolutionA ∗ B,
the whisker vector changes continuously. On the boundary ofthe Minkowski sum
A ⊕ B, on the other hand, at the throat of the swallowtail, the whisker vector
jumps discontinuously. So we shall switch our attention, inwhat follows, from
Minkowski sums to convolutions.

There is another way to count the coats of paint that a pointp receives, and this
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helps to explain why the name “convolution” is appropriate.Instead of translating
the brushB along the trajectoryA and watching what happens at the pointp
during this process, we center a copy of the brushB at p, intersect that copy
with the trajectoryA, and count the number of closed segments in the resulting
intersection. Note that each such closed segment corresponds to a time interval
during which one coat of paint gets applied.

That recipe actually exploits a symmetry of this particularbrush; to get the
right answer for an arbitrary brush shapeB, it turns out that we must invert the
brushB through the origin before translating it top and then intersecting it with
the trajectoryA. (Recall that inversion through the origin, in the plane, isthe same
as rotating around the origin by 180 degrees; but inversion through the origin in a
space of odd dimension is a rotary reflection, rather than a rotation.)

In symbols, this new way of counting coats of paint can be written

(A ∗ B)(p) =
∫

A(q)B(p− q) dq.(3-3)

The paintingB(p − · ) is the result of invertingB through the origin and then
translating the result top. We multiply that painting pointwise by the painting
A( · ), this multiplication generalizing the notion of intersection in the description
above. We then reduce the resulting product painting to a single integer by using
an appropriate reduction map, written here as integration.

Formula 3-3 helps to explain why the name “convolution” is appropriate. If
(an)n≥0 and(bn)n≥0 were, say, two sequences of real numbers, their convolution
a ∗ b would be defined by the analogous formula

(a ∗ b)n =
∑

i

ai bn−i .

In both cases, we invert one factor through the origin, translate it to the point of
interest, multiply it by the other factor pointwise, and then reduce the result to a
single value using some linear operator. Thus, it makes goodsense to view the
variant of Minkowski sum that retains the swallowtail as a kind of convolution.

It doesn’t matter, by the way, which operand gets inverted and translated. It
would work equally well to invert the trajectory through theorigin, translate it to
the pointp, and then multiply that by the original brush:

(A ∗ B)(p) =
∫

A(p− q)B(q) dq.

For more details about the reduction operation for paintings, the operator that
we are writing as integration, see Schapira [15]. In brief, what that operator counts
is the topological degree of the whisker map. Thus, given a painting P, say in the
plane, we compute the integer

∫

P by walking around the entire boundary ofP
once and counting the net number of counterclockwise full turns that that whisker
vector makes during this process. If a paintingP is the characteristic function of a
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= + − −

Figure 3.6: Decomposing an annulus into four compact, contractible chunks

set that is both compact and contractible, then the whisker vector will make a net
rotation of precisely one full turn, as we move around the boundary of that set; so
the integral will be

∫

P = 1. When we apply Formula 3-3 to count coats of paint,
the paintingsA(q)B(p−q) dq that we integrate are the characteristic functions of
unions of closed segments of the trajectoryA. Since each such closed segment is
compact and contractible, the resulting integral is simplythe number of segments,
which is the number of coats of paint.

Exercise 3-4 Contractibility is important. Let the paintingP be the characteristic
function of a closed annulus in the plane; what is

∫

P?
Answer: The whisker vector rotates through one positive full turn as we trace

the outer boundary of the annulus; but it rotates through onenegative full turn
as we trace the inner boundary. So we have

∫

P = 0. To see this another way,
Figure 3.6 expresses the annulusP as an integral linear combination of four paint-
ings, each of which is the characteristic function of a compact and contractible set.
Each summand has integral 1, so the integral ofP is 1+ 1− 1− 1= 0.

3.6 Open versus closed boundaries

Something new happens along the bottom edge of the swallowtail in Figure 3.5:
The orientation of that curved edge as encoded by the arrowheads differs from its
orientation as encoded by the whiskers. In particular, the whiskers along that edge
point toward the left-hand barb of the arrowhead. Everywhere else in all of our
examples so far, the whiskers have pointed toward the right-hand barb.

Did we screw up somehow? Is the arrowhead along the bottom edge of the
swallowtail correct as drawn? Recall that we are using arrowheads to compute
winding numbers. The arrowheads on the other portions of theboundary already
imply that the winding number inside the swallowtail must be2. As a result, the
arrowheads along the bottom edge of the swallowtail must point from left to right,
to orient that segment of boundary with the higher winding number to its left.

What about the whiskers along the bottom edge of the swallowtail? Are they
correct as drawn, pointing upwards? That bottom edge is generated by sums of the
form a+ b, wherea is advancing slowly leftward along the middle of the upper
boundary of the trajectoryA, while b is retreating quickly rightward around the
upper boundary of the brushB. The whiskers at the pointsa andb both point up,
so it would certainly be simplest if the whiskers generated along the bottom edge
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of the swallowtail pointed up as well. Indeed, we can argue that they must point
up by comparing the various offsets of the parabola shown in Figure 3.4. Letting
Br denote a circular brush of radiusr , we certainly want to have

A ∗ B6/5 = A ∗ (B4/5 ∗ B2/5) = (A ∗ B4/5) ∗ B2/5;

that is, thickening the trajectory first by 4/5 and then by an additional 2/5 should
give the same result as a single thickening by the overall distance of 6/5. For that
to hold, the whiskers along the bottom edge of a swallowtail must point up, so
that those points are available to be added to points along the top of a subsequent
brush, thereby filling in the bottom edge of a larger, higher-up swallowtail.

So we have made no mistake: The orientations on the boundary of a painting
that come from the arrowheads and from the whiskers, while they often agree,
can sometimes disagree. It follows that we must allow for boundary segments of
two different types in our paintings: segments along which the angle between the
arrowhead and the whisker is−90 and segments along which that angle is+90.
The sign of that angle constitutes, in some sense, one additional bit of information
that is associated with each segment of the boundary.

That additional bit can be used to encode useful information; and that insight
seems worth discussing here briefly, even though it is peripheral to our current
purposes. In particular, we can use that bit to distinguish between segments of
boundary that are open versus closed. That is, the bit can tell us whether the
points that lie precisely on a segment of boundary have the larger or the smaller
of the two adjacent winding numbers. Under the simplest encoding scheme, the
whiskers point toward the right-hand barb along closed boundaries, but toward
the left-hand barb along open boundaries. Most of our paintings have had most
of their boundaries closed. For example, the disk-shaped brushB in Figure 3.5
has winding number 1 along its circular boundary, as well as inside that circle.
This convention corresponds to the following rule for computing winding numbers
along a boundary:

To compute the winding number at a pointp that lies precisely on
the boundary, perturb the boundary everywhere slightly by pulling
on all of its whiskers, and then compute the winding number ofthat
perturbed boundary aroundp.

For the disk-shaped brushB in Figure 3.5, the whiskers point outward. Pulling
on those whiskers moves the boundary slightly out, increasing its radius; so the
points lying precisely on the original boundary get the samewinding number as
the points inside it.

Under this convention, Figure 3.1(c) shows a closed alpha and Figure 3.2
shows two closed rods whose Minkowski sum is a closed, rounded rectangle.
The first segment of open boundary that arises in our figures isthe bottom edge
of the swallowtail in Figure 3.5. Since the whiskers along that curved edge point
up, pulling on the whiskers lifts that segment of boundary slightly; so the points



48 CHAPTER 3. MINKOWSKI SUM AND CONVOLUTION

along that curve get winding number 1, rather than 2. Note that this is consistent
with counting coats of paint. A pointp along that bottom edge receives just one
coat of paint as the disk-shaped brushB slides along the parabolic trajectoryA.
The brush first coversp, then almost uncoversp — moving so as to bringp under
some point of the bounding circle ofB — but then coversp again, before finally
uncoveringp definitively. So, overall, just one coat of paint.

This talk of open versus closed boundaries, while interesting, is peripheral to
our current purpose. The key point for us is that left-barb segments of boundary
do arise, as well as right-barb segments. Hence, when computing convolutions,
we must keep track of the arrowheads on our boundaries as a separate structure,
independent from the whiskers. The natural way to keep trackof those arrowheads
is to treat our boundaries as oriented manifolds. So the boundariesA andB of the
regionsA andB will come to us with preferred orientations. We want the fiber
product A ×S1 B, which is the boundary of the convolutionA ∗ B, to inherit a
preferred orientation as well. Thus, convolutions are one application where it is
important that the transverse fiber products of smooth, oriented manifolds should
themselves be oriented in some natural way. That is the topicof this monograph.

Note that the fiber products that arise from convolving paintings are always
equidimensional. If we are dealing with paintingsA andB in d-space, then their
boundary manifoldsA and B have dimensiond − 1, while the base manifold
is simply the sphereSd−1 of all possible whisker vectors. Thus, readers who
are motivated purely by their desire to implement convolution can focus on our
equidimensional results, ignoring the large chunk of this monograph that tackles
the subtleties of the any-dimensional case.

By the way, we want convolution to be both associative and commutative: to
satisfy bothA ∗ (B ∗ C) = (A ∗ B) ∗ C andA ∗ B = B ∗A, for all paintingsA,
B, andC. So whatever rule we come up with for orienting fiber productsshould
also be both associative and commutative, at least in the equidimensional case.
Once we leave the equidimensional case, it turns out that commutativity becomes
hopeless; but our final orientation rule will be associative, without any restrictions
on the dimensions — indeed, associative even for mixed fiber products.

The convolution operation also has an identity element: thepaintingI that
interprets the origin ofd-space as ad-ball of radius zero. The boundaryI of this
paintingI is a(d − 1)-sphere whose whisker mapwI : I → Sd−1 is the identity.
To arrange thatI ∗A = A ∗ I = A for any paintingA, we want the boundaries
to satisfyI ×Sd−1 A = A×Sd−1 I = A. Our final orientation rule will be required
to achieve this by the Left and Right Identity Axioms 9.1.5 and 9.1.6.

3.7 Boundaries with more than one component

Way back in Chapter 1, while we were studying Alice and Bob, wediscovered
that the fiber products of connected manifolds need not be connected. Figure 3.7
shows an example of this phenomenon: two check marks,L andR, each a non-
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L R L ∗R

Figure 3.7: The convolution of two non-convex quadrilaterals

convex quadrilateral, whose convolution looks something like a stealth airplane.
To help clarify what is going on in this example, the convolution is shown four
more times underneath, with the origin of the right-handed checkR aligned, in
turn, with each of the four vertices of the left-handed checkL.

Suppose that we start off with Alice at the origin ofL and Bob at the origin
of R, at the whiskers that point straight down. As they turn and move, advancing
or retreating as specified by the Partner’s-Slope Rule, the sums of their locations
trace out the wings of the airplane: a non-convex octagon. That octagon forms
part of the boundary of the convolutionL ∗R, but not all of it. We can also start
out with Alice at the leftmost vertex ofL and Bob at the rightmost vertex ofR, at
the whiskers that point straight up. As they turn and move starting from there, the
sums of their locations trace out the tail of the airplane: a rhomb. The boundary
of the convolutionL ∗R includes both the octagon and the rhomb.

The region where the rhomb overlaps the octagon has winding number 2 in the
convolutionL ∗R. There is a good geometric reason for this; but, since neither L
norR is 1-dimensional, we can’t treat either of them as a trajectory, so we can’t
justify that winding number by counting coats of paint. Instead, we have to apply
Formula 3-3 directly:

(L ∗R)(p) =
∫

L(q)R(p− q) dq.
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Figure 3.8: Both upper pointsp satisfy(L ∗R)(p) = 2.

Figure 3.8 shows what happens when we use this formula to compute the
winding number of the convolutionL ∗R around two different pointsp, each of
which lies in the region of winding number 2, the region wherethe rhomb overlaps
the octagon. In each case, we take the right-handed checkR, we invert it through
the origin, and we translate the result to bring the origin tothe pointp. The
intersection of the inverted and translatedR with the original, left-handed check
L then has two connected components, shown shaded in each halfof Figure 3.8.
Both of those components are compact and contractible, so the integral is 2.

Note that the two lower edges of the rhomb are segments of openboundary,
segments where the whiskers point toward the left-hand barbof the arrowhead, so
the points on the boundary have the lower of the two adjacent winding numbers.
This openness also makes good geometric sense. If we invert the right-handed
checkR and translate it to some pointp along one of those bottom rhomb edges,
the intersection of the result with the original, left-handed checkL will have just
one connected component. That intersection will have a cut-point — a single
point whose removal would disconnect what remained; but, with the cut-point in
place, the intersection is a single component, both compactand contractible.



Chapter 4

Fiber products

Enough, already, of introductions; it is time to start studying fiber products in
earnest. The fiber product is most easily thought of as a certain subset of the
direct product. So we begin by reviewing the direct productsof sets.

4.1 Direct products of sets

When taking direct products of sets, we can keep track of which factor is which in
two different ways: by the position of that factor or by an associated index value.
Let’s first consider the positional approach.

4.1.1 The positional approach

Given two setsA andB, their direct productA× B is defined, positionally, as the
set of all ordered pairs(a, b), with a in A andb in B. More generally, givenn
setsA1 throughAn, then-ary direct productA1×· · ·× An is the set of all ordered
n-tuples(a1, . . . , an), with ai in Ai , for i from 1 ton.

This positional direct-product operator is almost associative, but not quite.
From three setsA, B, andC, we can form three different direct products: the
left-associated, nested binary product(A × B) × C, the right-associated analog
A× (B×C), and the ternary productA×B×C. Those three sets are distinct; but
the reparenthesizing maps((a, b), c) ↔ (a, (b, c)) ↔ (a, b, c) give us obvious
one-to-one correspondences between them. Hence, it is generally safe to ignore
the distinctions between those three sets and to treat the direct-product operator as
if it were associative.

What about commutativity? Unless the setsA and B are equal, the set of
ordered pairsA × B is different from the setB × A, which suggests that the
direct-product operator is not commutative. But we have just agreed to ignore
the distinction between the sets(A × B) × C and A × (B × C), because of
the natural one-to-one correspondence between them. Should we also, perhaps,
ignore the distinction betweenA× B and B × A, exploiting the swapping map

51



52 CHAPTER 4. FIBER PRODUCTS

(a, b) ↔ (b, a) as our one-to-one correspondence? But doing that would leadto
confusion when the setsA and B intersect. Ifp andq are distinct elements of
the intersectionA ∩ B, we must distinguish between the pairs(p, q) and(q, p);
indeed, that is why we adopted ordered pairs in the first place.

4.1.2 The indexed approach

Commutativity causes confusion in the positional approachbecause position is a
poor way to keep track of which component is which; indices are better. We start
with setsAi , for eachi in some index setI . We then define the direct product
∏

i∈I Ai to be the set of all functionsa with domain I and whose valueai lies
in Ai , for all i in I . Note that an ordered pair is essentially the same thing as a
function on the domain{1, 2}; so the indexed approach is not that different from
the positional approach. The key advantage of the indexed approach is that we use
the same index, sayi in I , to name both the factor setAi and the corresponding
componentai of an elementa of the direct product.

In the indexed approach, how close is the direct-product operator to being
associative? Suppose that we have some partitionI =

⋃

k∈K Ik of the index
set I into disjoint subsetsIk, for k in another index setK . The direct-product
operator is almost associative in the sense that the nested product

∏

k∈K

(∏

i∈Ik
Ai

)

is essentially the same as the overall product
∏

i∈I Ai . An element of the overall
product is a function onI whose value ati lies in Ai , while an element of the
nested product is a function onK whose value atk is a function onIk whose value
at i lies in Ai . Those two concepts aren’t identical, but we can freely convert any
element of either product into a corresponding element of the other product. So it
is generally safe to ignore the distinction between the two.

As for commutativity, the indexed approach makes it clear that the direct-
product operator is commutative, in the sense that it doesn’t matter how the index
set I is ordered. Indeed, there is no reason for the index setI to be ordered at all.

Another advantage of the indexed approach is that it extendsto handle index
setsI that are infinite, even uncountably infinite. But that particular advantage
isn’t relevant for this monograph, since all of the index sets in our direct products
— and in our fiber products — are going to be finite. By restricting ourselves
to finite index sets, we avoid various set-theoretic subtleties; note that the Axiom
of Choice is equivalent to the claim that every direct product of nonempty sets is
nonempty, no matter how large the index set of that direct product might be.

4.2 Fiber products of sets

A simple and concrete way to think of the fiber product is as a certain subset of
the direct product.

Let S be a fixed set, which we call thebase set, and let I be any nonempty
index set. (Eventually, we want to allow the index set to be empty. But that leads
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to complications, as we discuss in Section 4.3. For now, let’s requireI to be
nonempty.) For eachi in I , let Ai be a set and letfi : Ai → S be a map; we call
Ai the i th factor setand fi the i th factor map. Taking the fiber product involves
constructing a certain setP and a certain maph : P→ S.

Let D :=
∏

i∈I Ai be the direct product of the factor sets, which, under the
indexed approach to the direct product, is a set of functionswith domainI . The
fiber product is the subsetP of D consisting of those functionsa that satisfy
fi (ai ) = f j (aj ), for all i and j in I . That is, the fiber product is that subset of the
direct product on which all of the factor maps agree. We call this setP thefiber
productof the sets(Ai ) over S, and we write

P =
∏

S
i∈I

[ fi ] Ai .

When the factor maps( fi ) are clear from the context, we shall abbreviate this
formula by eliding them, writing simply

P =
∏

S
i∈I

Ai .

The fiber-product maph : P → S is then defined by settingh(a) := fi (ai ),
for eacha in P and for somei in I . Which i in I we choose doesn’t matter, since
all of the factor maps agree onP. Furthermore, there is somei to choose, because
we are requiring the index setI to be nonempty. We callh thefiber productof the
maps( fi ), and we write

h =
∏

S
i∈I

fi .

Is this fiber-product operator associative? The answer is essentially yes, as
for the direct product. But we must be careful to avoid havingany of the index
sets that arise be empty. Suppose that the nonempty index setI is partitioned into
disjoint, nonempty subsetsIk, so that we haveI =

⋃

k∈K Ik; note thatK will
automatically be nonempty, sinceI is. We compare the nested fiber product

∏

S
k∈K

[hk]
( ∏

S
i∈Ik

[ fi ] Ai

)

to the overall fiber product
∏

S
i∈I

[ fi ] Ai ,

where the factor maphk in the nested case is the fiber-product map associated
with the inner fiber product:

hk :=
∏

S
i∈Ik

fi .
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In the nested case, the relationsfi (ai ) = f j (aj ) with i and j in the same subsetIk

are enforced when the inner fiber product
∏

S
i∈Ik

[ fi ] Ai

is formed, while the relations withi and j in different subsets are enforced as
part of forming the outer fiber product. In the overall case, all of the relations are
enforced simultaneously. But the two end results are the same.

The fiber-product operator is also commutative, in the same sense as the direct-
product operator: There is no need for the index setI to be ordered.

4.3 The nullary fiber product

One unfortunate aspect of defining the fiber product to be a subset of the direct
product, as we did in Section 4.2, is that we get the wrong answer in thenullary
case, the case in which the index setI is empty. In this section, we discuss an
alternative definition of the fiber product, one that gets thecorrect answer in the
nullary case without treating that case specially. But thisalternative definition is
more complicated. In the end, we choose to fix up the nullary case simply by
treating the caseI = ∅ as special.

Note that the nullary fiber product overS is unique. When the index setI is
empty, there are no factor setsAi and no factor mapsfi : Ai → S. So the nullary
fiber product overS is some definite setP0 and some definite maph0 : P0→ S.

What would happen if we tried to apply our original definitionin the nullary
case? We would first construct the nullary direct productD0. That set is a single-
ton, its single element being the unique function whose domain is empty. Since
there are no constraintsfi (ai ) = f j (aj ) to enforce, we would take the nullary fiber
productP0 to be all of D0. We would then get stuck trying to define the nullary
fiber-product maph0, there being no obvious way to choose one element inS to
whichh0 should map the single element ofP0.

The correct answer, it turns out, is to take the nullary fiber product P0 over S
to be simplyP0 = S, while the associated maph0 : P0 → S is the identity map
1: S→ S. That answer is correct because the setS, mapped toSvia the identity
map, acts as an identity element for the fiber-product operation. To see this, letI
be a nonempty index set and suppose thate is not an element ofI . Letting Ae be
another name forSand letting fe : Ae→ Sbe another name for the identity map
1: S→ S, we claim that the augmented fiber product

∏

S
i∈I∪{e}

[ fi ] Ai

is essentially the same as the plain fiber product
∏

S
i∈I

[ fi ] Ai .
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Of course, the two sets are not identical. But, given any element of either set,
we can produce the corresponding element of the other in a natural way. Given
a pointa′ in the augmented fiber product, we construct the corresponding plain
point a by settingai := a′i for all i in I , simply ignoring the valuea′e. Given a
plain pointa, we construct the corresponding augmented point by settinga′i := ai

for all i in I and settinga′e := fi (ai ) for somei in I , where there is somei to
choose and whichi we choose doesn’t matter.

That argument shows whyP0 = S is the proper answer for the nullary fiber
product overS. It also indicates how our definition of the fiber product could be
altered, if we wished, in order to get the correct answer in the nullary case. We
could simply augment all of our fiber products with one additional factor ofS.
That augmentation would convert ann-ary product into a product of arityn+ 1,
after which nullary products would no longer arise.

Here is how that augmentation would work in detail. Let the base setS,
the index setI , the factor sets(Ai ), the factor maps( fi ), and the direct product
D :=

∏

i∈I Ai be as before. Consider the augmented direct productĎ := S× D.
We would define the fiber product to be the subsetP̌ of Ď consisting of those pairs
(s, a) in which fi (ai ) = s, for all i in I . It follows from this that fi (ai ) = f j (aj ),
for all i and j in I . The fiber-product map̌h : P̌ → S is then simply the projec-
tion ȟ(s, a) := s. When I is nonempty, the plain and augmented fiber products
P and P̌ are naturally isomorphic. WhenI is empty, however, the augmented
construction shines by getting the correct answersP̌ = Sandȟ = 1S→S.

The augmented definition gets the nullary case correct, but it prevents us from
thinking of the fiber product as a subset of the direct product. So we shall stick
with the plain definition of Section 4.2, fixing up the nullarycase by treating
it specially. From now on, therefore, we exclude the nullarycase unless it is
particularly mentioned.

4.4 An aside about category theory

In category theory, direct products and fiber products are almost the same notion:
Fiber products overS in a given categoryC are simply direct products in the
new categoryCS whose objects areC-morphisms from someC-object toS. We
review those ideas here briefly, since the perspective of category theory can be
enlightening [11]. But some readers might prefer to skip this section.

We first review how direct products are defined in a categoryC. For eachi
in some index setI , let Ai be an object ofC. We consider structures of the form
(P, (ei )), whereP is an object ofC andei : P→ Ai is a morphism ofC, for each
i in I . Such a structure(P, (ei )) is called adirect productof the objects(Ai )when
the following universal mapping property holds: Given any other such structure
(P′, (e′i )), there exist a unique morphismu : P′ → P that satisfiesei ∘ u = e′i ,
for all i in I . Direct products may not exist. When they do exist, however,a
straightforward argument shows that they are unique, up to aunique isomorphism;
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so it is generally safe to talk about them as if they were uniquely defined.
For example, consider the category whose objects are sets and whose mor-

phisms are maps between sets. In that category, direct products always exist. We
could prove this by showing that the concrete direct productdefined in Section 4.1
satisfies the universal mapping property and hence qualifiesas an abstract direct
product — that is, as a direct product in the sense of categorytheory.

Associativity works out more neatly in this abstract approach. Recall that our
concrete direct-product operator on sets is only almost associative: The two sets
(A× B) × C and A× (B × C) are different, although we generally ignore the
distinction between them. In category theory, direct products are defined from the
start only up to a unique isomorphism. So the extra mechanismneeded to ignore
the distinction between(A× B)× C andA× (B× C) comes built in.

What happens when the index setI is empty? The resulting nullary direct
product exists just when the categoryC has aterminal or universally attracting
object — an objectP such that, for all objectsP′ in C, there exists a unique
morphismu : P′ → P. If a categoryC has terminal objects, any two of them are
uniquely isomorphic, and the nullary direct product has that common structure. In
the category of sets and set-maps, a singleton set is a terminal object. So a nullary
direct product of sets is a singleton set.

Fiber products are simply direct products in a different category. LetSbe any
fixed object of the categoryC; we callS thebase object. We build a new category
CS whose objects areC-morphisms from someC-object toS. If f : A → S and
g : B→ Sare two objects of the new categoryCS, a morphism fromf to g in CS

is simply a morphismh : A→ B in C that satisfiesg ∘ h = f . A fiber product
overS in the categoryC is then just a direct product in the categoryCS.

This perspective provides additional evidence about the correct way to define
the nullary fiber product overS. That nullary fiber product should be the terminal
object of the categoryCS. It is easy to check that the identity morphism 1:S→ S
of the categoryC is the terminal object of the categoryCS.

By the way, binary fiber products arise frequently in category theory, where
they are also calledpullbacks.

4.5 Specializing the indices to be1 through n

In this monograph, we are restricting the index sets in our direct products and
fiber products to be finite. Our goal is to orient the fiber products of oriented
manifolds, and orientation is a fundamentally finite-dimensional concept. Hence,
the only products that we are going to need are those of finite arity — those in
which the index setI is finite.

Given that our index sets are always finite, it is convenient to take, as our
standard index set for ann-ary product, the particular set{1, . . . , n}, consisting of
the firstn positive integers. This has several advantages.

One advantage is notational. When we haveI = {1, . . . , n}, we can write the
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direct product
∏

i∈I Ai in a simpler way, asA1×· · ·× An. Similarly, we can write
the fiber-product

set
∏

S
i∈I

[ fi ] Ai =
∏

S
i∈I

Ai and map
∏

S
i∈I

fi

asA1[ f1] ×S · · · ×S [ fn] An = A1×S · · · ×S An and f1×S · · · ×S fn.
For fiber products, takingI = {1, . . . , n} as our standard index set has an

additional advantage: It makes it easy to select a nonredundant set of constraints.
Recall that the fiber productA1×S · · ·×S An is that subsetP of the direct product
D := A1 × · · · × An consisting of elementsa that have fi (ai ) = f j (aj ), for
all i and j in I . Oncen exceeds 2, these constraints are redundant. But when
I = {1, . . . , n}, we can focus on the adjacent constraintsfi (ai ) = fi+1(ai+1), for
i from 1 ton− 1, which are nonredundant.

For these reasons, we henceforth takeI = {1, . . . , n} as our standard index
set for ann-ary product. (As discussed in Section 4.3, we are allowing the nullary
caseI = ∅ only when that case is being explicitly discussed. So we typically
require thatn ≥ 1.)

One disadvantage of takingI = {1, . . . , n} is that the set{1, . . . , n} has too
much structure: In addition to being a set of cardinalityn, it is also ordered. Worse
yet, we have already exploited that order. We exploited it when we adopted the
notationsA1×· · ·× An andA1×S · · ·×S An as ways to write down the direct and
fiber products — notations in which the factor sets are ordered from left to right.
We exploited it in another way when, for ann-ary fiber product, we selected a
nonredundant set of constraints by focusing on the adjacentpairs of factor maps.

Exploiting the total order on the setI = {1, . . . , n} is bad because it raises the
possibility that the resulting product operator might not be commutative — that
the product might depend, in some important way, on which ordering of the index
set I we choose. Indeed, we shall discuss a product operation in Section 5.2, the
oriented direct product of oriented linear spaces, in whichthe ordering onI does
matter. Until then, however, our only uses of the ordering onI = {1, . . . , n} will
be unimportant. For example, changing the ordering would change which of the
constraintsfi (ai ) = f j (aj ) we chose to focus on as the nonredundant ones; but
that change wouldn’t affect the resulting fiber product.

4.6 Fiber products of linear spaces

Suppose that the base setS and all of the factor setsA1 through An are linear
spaces, say over the real numbers. So the direct productD := A1 × · · · × An is
also a linear space; we shall denote an element of that product as(α1, . . . , αn),
using Greek letters for the elements of the factor spaces, which we think of as
vectors. Suppose also that the factor mapsfi : Ai → S, for i from 1 ton, are all
linear. Since the constraintsfi (αi ) = fi+1(αi+1), for i from 1 ton − 1, are then
linear equations, the fiber productA1 ×S · · · ×S An will be a linear subspace of
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the direct productA1× · · ·× An. The fiber-product mapf1×S · · · ×S fn will also
be linear. So we can view the fiber product as an operation in the world of linear
spaces and linear maps (more precisely, in that category).

There is another way in which we can exploit linearity. When the base spaceS
has a linear structure, we can measure the extent to which thetwo adjacent factor
maps fi and fi+1 fail to agree by forming the differencefi+1(αi+1) − fi (αi ), that
difference being a vector in the base spaceS — a vector that we hope is zero.
If we take such a difference for eachi , from 1 ton − 1, we end up with a map
1 : A1 × · · · × An → Sn−1 that we shall call thedifference map. (Don’t confuse
Sn−1, the Cartesian product ofn−1 copies ofS, with Sn−1, the(n−1)-dimensional
sphere.) That is, we define the difference map1 by

1(α1, . . . , αn) :=
(

f2(α2)− f1(α1), . . . , fn(αn)− fn−1(αn−1)
)

.

Note that the fiber product subspaceA1×S · · ·×S An is precisely the kernel of the
difference map1; we haveA1×S · · · ×S An = Ker(1).

4.7 Transversality

While the fiber product of linear spaces is always a linear space, its dimension
depends upon the way in which the factor maps( fi ) interact. For example, if all
of the factor maps are identically zero, then each constraint fi (αi ) = fi+1(αi+1)

is satisfied trivially, so the fiber product coincides with the direct product. We are
particularly interested in the opposite extreme: thetransverse case, the case in
which the fiber product has the smallest possible dimension.

It is convenient to restrict ourselves to linear spaces whose dimension is finite.
The notion of transversality can be extended to infinite-dimensional spaces, but
doing so requires topological concepts, such as Banach spaces and continuous
linear maps, that don’t arise in the finite-dimensional case. Since our eventual
goal is to study orientation and orientation is a purely finite-dimensional concept,
we henceforth restrict ourselves to finite-dimensional spaces.

What will the finite dimension of the fiber productA1 ×S · · · ×S An then be?
Let’s denote dim(Ai ) by ai and dim(S) by s; by convention, we use an upper-
case italic letter for a linear space, the matching lower-case italic letter for its
dimension, and the corresponding Greek letter for an element of it. For the direct
productD = A1 × · · · × An, we have dim(D) = d = a1 + · · · + an. We cut
out the fiber productP, inside ofD, with the constraintsfi (αi ) = fi+1(αi+1), for
i from 1 ton − 1. Each of these constraints is an equality between elementsof
S, and can hence remove at mosts degrees of freedom. The fiber product is as
small as possible just when those constraints are independent, jointly removing
(n−1)s degrees of freedom and leaving dim(P) = p := a1+· · ·+an− (n−1)s.
Transversality is the property of the factor maps( fi ) that makes those constraints
be independent.
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Definition 4-1 Let n be a positive integer, letS and A1 through An be finite-
dimensional linear spaces, and letfi : Ai → S be a linear map, fori from 1 ton.
Let1 : A1× · · · × An→ Sn−1 be the difference map, defined by

1(α1, . . . , αn) :=
(

f2(α2)− f1(α1), . . . , fn(αn)− fn−1(αn−1)
)

.

The maps( f1, . . . , fn) are calledtransversejust when the difference map1 is
surjective. Note that this can happen only when dim(A1×· · ·× An) ≥ dim(Sn−1),
that is, whena1+ · · · + an ≥ (n− 1)s.

Consider a fiber productP := A1[ f1] ×S · · · ×S [ fn] An of linear spaces. It
is precisely when the factor maps are transverse that the dimension ofP is as
small as possible — in particular, that dim(P) = a1 + · · · + an − (n − 1)s.
To see why, recall thatP = Ker(1). By elementary linear algebra, we have
dim(P) = dim(Ker(1)) = dim(A1× · · · × An)− dim(Im(1)). And the map1
is surjective just when dim(Im(1)) = dim(Sn−1) = (n− 1)s.

By the way, it is often helpful to think of the minimum possible dimension of
the fiber productP as beings+ (a1− s)+ · · · + (an − s).

Exercise 4-2 In the context of Definition 4-1, define theaugmented difference
mapto be the map̌1 : S× A1× · · · × An→ Sn given by

1̌(σ, α1, . . . , αn) :=
(

f1(α1)− σ, . . . , fn(αn)− σ
)

.

Show that the map̌1 is surjective just when1 is surjective, that is, just when the
maps( f1, . . . , fn) are transverse. Note that this augmentation adds a new factor
spaceA0 := S whose factor mapf0 : A0 → S is the identity map onS, just as
we saw in Section 4.3 when studying nullary fiber products. Indeed, this exercise
makes it clear that the proper way to extend Definition 4-1 to the nullary case
n = 0 is to make the convention that the empty sequence of maps is transverse.

Exercise 4-3 If the sequence( f1, . . . , fn) of linear maps is transverse, show that
any subsequence, taken in any order, is also transverse. (This follows easily from
the previous exercise.)

Exercise 4-4 Show that the linear maps( f1, . . . , fn) are always transverse when
all but one of them, say all butfk, are surjective.

Answer: To show1̌ surjective, it suffices to start with an arbitrary point
(σ1, . . . , σn) in Sn and to construct a point(σ, α1, . . . , αn) in S× A1 × · · · × An

with 1̌(σ, α1, . . . , αn) = (σ1, . . . , σn). We start by fixingαk arbitrarily and then
choosingσ to arrange thatfk(αk) − σ = σk. For i different fromk, we can then
exploit the surjectivity offi to find someαi with fi (αi )− σ = σi .

Transversality is particularly simple in the binary case. The difference map
1 : A1×A2→ S is then given by1(α1, α2) := f2(α2)− f1(α1), so1 is surjective
just when the images off1 and f2, together, span all ofS — that is, just when
Im( f1)+ Im( f2) = S. Note that the maps( f1, f2) will be transverse, in particular,
when either Im( f1) = Sor Im( f2) = S, as we saw in Exercise 4-4.



60 CHAPTER 4. FIBER PRODUCTS

Exercise 4-5 Let A, B, andSeach be the(x, y) plane, let the factor mapf : A→
S be the projectionf (x, y) := (x, 0) on thex-axis, and letg : B → S be the
projectiong(x, y) := (0, y) on the y-axis. Show that the mapsf and g are
transverse, even though neither of them is surjective.

Answer: The image off is thex-axis, the image ofg is they-axis, and those
two subspaces, together, span the entire planeS.

Exercise 4-6 Generalize the Invertible Factor Laws, 2-5 through 2-7, from the
binary case to then-ary case.

Answer: The Left and Right Invertible Laws generalize to become theAll-but-
One Invertible Law, which says, fork from 1 ton, that

sgn(uk) = sgn( f1) · · · sgn( fk−1) sgn( fk+1) · · · sgn( fn),(4-7)

whereuk : A1 ×S · · · ×S An → Ak is the projection from the fiber product to the
kth factor space. That is, if all of the factor maps but thekth are invertible, then the
fiber product is transverse, thekth projection mapuk is invertible, and we should
orient the fiber product to make that equality hold.

When alln of the factor maps are invertible, we have the less general but more
elegantAll Invertible Law,

sgn( f1×S · · · ×S fn) = sgn( f1) · · · sgn( fn).(4-8)

This law, like the Both Invertible Law 2-7 from the binary case, doesn’t need to
mention any of the projection maps.

4.7.1 The associativity of transversality

Exercise 4-3 showed that the condition of transversality iscommutative; it is also
associative, in the following sense. Suppose that we have anoverall fiber product
whose factor maps may or may not be transverse. We can consider computing
that same fiber product in two steps: We first combine some of its factors in an
inner fiber product and then combine that inner result with the remaining factors
in an outer fiber product. Since the fiber-product operator itself is associative, this
two-step process will get the same result as the one-step, overall fiber product. We
claim, as well, that the overall product is transverse just when both the inner and
outer products are transverse.1 By commutativity, we can assume that the factors
that get combined in the inner fiber product are an initial substring of the factors.

Proposition 4-9 Let n be a positive integer, letS and A1 through An be finite-
dimensional linear spaces, letfi : Ai → S be a linear map, fori from 1 to n, and
let k be an integer with1 ≤ k ≤ n. Let P denote the inner fiber product, the
product P := A1 ×S · · · ×S Ak of the firstk factor spaces, and leth : P → S

1The phrase “inner product” here is simply an abbreviation of“inner fiber product”; we are not
talking about the type of inner product that takes two vectors and returns a scalar.
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be the associated fiber-product maph := f1×S · · · ×S fk. The sequence of maps
( f1, . . . , fn) associated with the overall fiber productA1×S· · ·×S An is transverse
just when

• the sequence of maps( f1, . . . , fk) associated with the inner fiber product
P = A1×S · · · ×S Ak is transverse

• and the sequence of maps(h, fk+1, . . . , fn) associated with the outer fiber
productP ×S Ak+1×S · · · ×S An is also transverse.

Proof Let ak := dim(Ak) for k from 1 to n and lets := dim(S). The overall
fiber productA1 ×S · · · ×S An has its minimum possible dimension, which is
s+ (a1− s)+ · · · + (an− s), just when the maps( f1, . . . , fn) are transverse. On
the other hand, suppose that we compute that same product in two steps. The inner
product has its minimum possible dimension,pmin := s+(a1−s)+· · ·+(ak−s),
just when the maps( f1, . . . , fk) are transverse. And the outer product has its
minimum possible dimension,s+(p−s)+(ak+1−s)+· · ·+(an−s), just when the
maps(h, fk+1, . . . , fn) are transverse, wherep here denotes the dimension of the
inner fiber product. Substitutingpmin for p in this expression gives the minimum
possible overall dimension; so the overall product is transverse just when both the
inner and outer products are transverse.⊔⊓

4.7.2 Transversality viewed geometrically

The algebraic notion of transversality that we have just defined is closely related
to the geometric notion of transverse intersections. LetS be a linear space and
let A1 throughAn be subspaces ofS. The subspacesA1 throughAn are said to
intersect transverselywhen the codimension of their intersection is the sum of
their codimensions:

s− dim(A1 ∩ · · · ∩ An) = (s− a1)+ · · · + (s− an).(4-10)

For example, the three planesx = 0, y = 0, andz= 0 in (x, y, z)-space intersect
transversely; each plane has codimension 3− 2 = 1, while their intersection,
which is just the origin, has codimension 3− 0= 3= 1+ 1+ 1.

To relate this concept to fiber products, we view each subspace Ai as a factor
space by equipping it with the identity injectionfi : Ai → S as its factor map. A
point (α1, . . . , αn) in the direct productD = A1 × · · · × An then belongs to the
fiber productP just whenα1 = · · · = αn, so the fiber product is essentially the
intersection. This fiber product is transverse just when

dim(A1×S · · · ×S An) = dim(A1 ∩ · · · ∩ An) = s+ (a1− s)+ · · · + (an − s),

which, by Equation 4-10, is just when the subspaces intersect transversely.
Note that, by a standard convention, intersecting zero subspaces ofSgives us

back simplyS itself. This is further evidence that we did the right thing when we
defined the nullary fiber product overS to beS.



62 CHAPTER 4. FIBER PRODUCTS

Now is a convenient time to point out that the transversalityof an n-tuple
of maps( f1, . . . , fn) is a stronger condition than the transversality of all pairs
( fi , f j ). Consider the three planesx = 0, y = 0, andx = y in (x, y, z)-space.
Each plane has codimension 1, and each pair of planes intersect transversely in
a line, of codimension 2. But all three planes also intersectin the entire line
x = y = 0, so the three planes do not intersect transversely.

4.8 Fiber products of smooth manifolds

A smooth manifold looks everywhere locally like a linear space, so it is not hard
to extend the theory of fiber products from linear spaces to smooth manifolds.

A topological d-manifoldis a Hausdorff topological space in which every
point has a neighborhood homeomorphic to an open subset ofRd. If M is a
topologicald-manifold, a homeomorphismϕ : U → Rd from an open setU ⊆ M
to the open setϕ(U) ⊆ R

d is called alocal coordinate systemor chart on U . A
family of charts that cover the entire manifoldM is called anatlas.

(A mathematical fine point: We are going along with most authors in requiring
that our topological manifolds be Hausdorff spaces. But Lang [9] points out that
this assumption plays no role in the bulk of the arguments involving manifolds.
Consider the real line with its origin doubled. Viewed as a topological space, this
space isT1, but is not Hausdorff: Each of the two origins has a neighborhood that
does not contain the other; but we can’t find neighborhoods ofthe two origins
that are disjoint. Lang considers this space to be a smooth 1-manifold, while most
authors do not. This monograph supports Lang’s position, inthe sense that none
of our arguments that involve manifolds require the Hausdorff property. Thus, if
you so choose, you are free to follow Lang in allowing non-Hausdorff manifolds.)

A smooth d-manifoldis a topologicald-manifold together with an atlas in
which, for every pair of chartsϕ : U → Rd andψ : V → Rd, the composite
homeomorphismψ ∘ ϕ−1 : ϕ(U ∩ V) → ψ(U ∩ V), called thechange of coor-
dinates mapon the intersection of the two charts, is infinitely differentiable. If
M is a smoothd-manifold andN is a smoothe-manifold, then a continuous map
f : M → N is calledsmoothat the pointm in M when, for some chartϕ : U → Rd

on a neighborhoodU of m in M and for some chartψ : V → Re on a neighbor-
hoodV of f(m) in N, the composite map

ψ ∘ f ∘ ϕ−1 : ϕ(U ∩ f−1(V))→ ψ(V)

is infinitely differentiable, as a map from an open set inRd to Re. This condition
doesn’t depend upon which chartsϕ andψ we choose. The mapf : M → N
is smoothwhen f is smooth at all pointsm in M . (We are being lazy in taking
“smooth” to mean infinitely differentiable, that is,C∞. For our purposes,C1

would probably be smooth enough; but it is convenient not to have to keep track
of the number of continuous derivatives.)
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So we consider smooth manifolds and smooth maps between them; what about
products in this category? Direct products always exist; but fiber products are
more subtle. If we don’t impose any restrictions, it might happen, for smooth
manifoldsA, B, andS and for smooth mapsf : A → S and g: B → S, that
the local dimension of the set-theoretic fiber productA ×S B varies from point
to point, as a consequence of the local behaviors off andg. Indeed, we saw an
example of essentially this phenomenon in Figure 1.6, wherethe local dimension
of a non-transverse fiber product is sometimes 1 and sometimes 2. We are going
to rule out this bad phenomenon in the standard way by requiring, at every point
on the set-theoretic fiber product, that the linear approximations to the factor maps
f andg be transverse. This forces the local dimension of the fiber product to be
everywhere minimal — and hence to be everywhere the same.

We recall some notation. LetM andN be smooth manifolds, letf : M → N
be a smooth map, and letm be a point inM . We denote byTmM the tangent
space to the manifoldM at the pointm. And we denote byTmf : TmM → Tf(m)N
the differential off at m, which is the linear map from the tangent spaceTmM to
the tangent spaceTf(m)N that approximatesf to first order nearm. The notations
(df )m andf ′(m) are also used for the differentialTmf.

Definition 4-11 Let n be a positive integer and letSandA1 throughAn be finite-
dimensional smooth manifolds. Fori from 1 to n, let f i : A i → S be a smooth
map. The maps(f1, . . . , fn) are calledtransversewhen, for every points in S and
for everyn-tuple of points(a1, . . . , an) with ai in A i andf i (ai ) = s for i from 1
to n, the differentialsTai f i : Tai A i → TsS, viewed as a sequence of linear maps
(Ta1f1, . . . , Tanfn), are transverse.

We shall often abbreviate the linear-space fiber product that represents the
local behavior of a smooth-manifold fiber product by using italic letters, rather
than boldface. That is, we shall abbreviate the tangent space Tai A i as Ai , the
tangent spaceTsS as S, and the linear mapTai f i as fi : Ai → S, leading to the
linear-space fiber productA1[ f1] ×S · · · ×S [ fn] An.

When the smooth-manifold fiber productA1[f1]×S · · ·×S [fn]An is transverse,
the linear-space fiber productA1[ f1] ×S · · · ×S [ fn] An that represents the local
behavior at any point is always transverse. It follows that the local dimension of
the fiber productA1 ×S · · · ×S An, at every point on it, is the minimum possible,
that minimum dimension being(a1+ · · · + an)− (n− 1)s. As a result, the fiber
productA1×S · · · ×S An is again a smooth manifold.

Proposition 4-12 With the same notations as in Definition 4-11, suppose that the
smooth factor maps(f1, . . . , fn) are in fact transverse. The set-theoretic fiber
productP := A1[f1] ×S · · · ×S [fn]An is then a smooth manifold, of dimension
(a1 + · · · + an) − (n− 1)s. Also, the fiber-product mapf1 ×S · · · ×S fn : P→ S
and the projection mapsui : P→ A i , for i from 1 to n, are smooth maps.
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Proof This is a standard result, for which we appeal to standard texts, such as
Lang [10] — but beware that the proof given in Lang consists ofthe single word
“Obvious.” ⊔⊓

Beware also: It can easily happen that the fiber productA1×S · · ·×S An is the
empty set, that is, that there are no pointss in Sandn-tuples of points(a1, . . . , an)

with ai in A i andf i (ai ) = s, for i from 1 ton. In this case, the maps(f1, . . . , fn)

are transverse vacuously. Indeed, whena1 + · · · + an < (n − 1)s, the only way
that the maps(f1, . . . , fn) can be transverse is vacuously, since we know that we
must havea1 + · · · + an ≥ (n − 1)s in order for any linear-space fiber product
with those dimensions to be transverse.

Suppose that the maps(f1, . . . , fn) are transverse vacuously. Proposition 4-12
then tells us that the fiber productA1 ×S · · · ×S An = ∅ is a smooth manifold
and that it has dimensiond := (a1 + · · · + an) − (n − 1)s. That’s fine when
d ≥ 0; everyone agrees that the empty set is a perfectly valid smooth manifold of
any nonnegative dimensiond. But what about negative dimensions? To avoid a
special case in Proposition 4-12, we make the convention that the empty set is a
smooth manifold of dimensiond also whend < 0. Of course, there are no linear
spaces of negative dimension; but an empty manifold has no tangent spaces, so
this convention is defensible.

Proposition 4-12 tells us that fiber products do exist in the category of smooth
manifolds, as long as we restrict ourselves to the transverse case. Much of the
theory then carries over from linear spaces to smooth manifolds. For example, the
associativity of the fiber-product operator and the associativity of the condition of
transversality both carry over from linear spaces to smoothmanifolds.

Geometers distinguish certain sequences of submanifolds(A1, . . . ,An) of a
smooth manifoldSasintersecting transversely. The relationship of this geometric
notion to the map-based notion of transversality in Definition 4-11 is the same for
manifolds as for linear spaces: We let the factor maps be the identity injections
f i : A i → S. Two smooth surfaces in a smooth 3-fold intersect transversely just
when, at each point of intersection, the two tangent planes do not coincide. A
curve and a surface intersect transversely in a 3-fold just when, at each point of
intersection, the tangent line to the curve does not lie in the tangent plane to the
surface. Two curves can intersect transversely in a 3-fold only by being skew —
that is, by having no points of intersection.

If A andB are two smooth curves that lie skew in a smooth 3-foldS, then
the intersectionA ×S B is an example of a transverse fiber product of negative
dimension; we have dim(A×SB) = dim(A)+dim(B)−dim(S) = 1+1−3= −1.
There is no contradiction here, because the intersectionA ×S B is empty.

Exercise 4-13While we shan’t prove Proposition 4-12 in this monograph, we
should know how to construct charts on the fiber-product manifold. For notational
simplicity, let’s consider a binary fiber productA[f ] ×S [g]B, which we assume
transverse. Letp = (a, b) be a point in the fiber product, so thatf(a) = g(b)
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is some points in S. There is some neighborhood of the pointa in the manifold
A that is homeomorphic to an open subset ofR

a. Since we are interested only
in what happens nearp, let’s assume for simplicity that the manifoldA actually
coincides with an open subset of the linear spaceRa; and let’s also translate, if
necessary, to geta = 0. Similarly, let’s assume thatB is a neighborhood of the
origin b = 0 in Rb and thatS is a neighborhood of the origins = 0 in Rs.
Construct a chart on a neighborhood of the pointp = (0, 0) in the fiber product.

Sketch: Given our simplifying assumptions, the fiber product A[f ] ×S [g]B is
a submanifold of the linear spaceRa × Rb = Ra+b. The tangent space to that
submanifold at the origin is the linear-space fiber productT(0,0)(A[f ] ×S [g]B) =
Ra[T0f ] ×Rs [T0g] Rb, which has dimensiona + b − s by transversality. LetC
be some complement of that tangent space inRa+b, and note that dim(C) = s.
Convince yourself that the linear-space quotient map fromRa+b to Ra+b/C, when
restricted to the fiber productA[f ] ×S [g]B, will be a chart on some sufficiently
small neighborhood of the origin in the fiber product.
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Chapter 5

Orientation

Orientation is the property that, for a curve, distinguishes forward from backward;
for a surface, clockwise from counterclockwise; and for a 3-fold, right-handed
from left-handed. We first review the concept of orienting linear spaces and then
move on to orienting smooth manifolds.

5.1 The sign of an ordered basis

Orienting finite-dimensional linear spaces over the real numbersR is a standard
topic; but we have to be careful here to make sure that every space — including a
space of dimension zero — ends up with two possible orientations.

If M is a real linear space whose dimensionm := dim(M) is finite, anorien-
tation of M is a rule that assigns a sign to each ordered basis ofM in one of the
two globally consistent ways. We can encode an orientation of M as a pair(b, β)
consisting of some ordered basisb := (µ1, . . . , µm) for M and a single bitβ, say
encoded as an element of the set{+1,−1}. We interpret the pair(b, β) as declar-
ing that the ordered basisb = (µ1, . . . , µm) has the signβ. Once one basis for
M has been assigned a sign, every other basis inherits a uniquesign by the con-
sistency constraint: The basisc has the same sign asb just when the matrix that
transforms fromb to c — or back again, it doesn’t matter — has positive determi-
nant. Anoriented linear spaceis a linear space together with a chosen orientation.
If M is an oriented linear space, we use−M to denote the same underlying linear
space, but equipped with the opposite orientation; so a basis is positive for−M
just when it is negative forM.

If b is an ordered sequence of linearly independent vectors in some linear
space, let’s write〈b〉 to denote the span of those vectors, oriented so as to make
the sequenceb a positive basis for the space〈b〉. So, if b is a basis for the entire
oriented linear spaceM, we have either〈b〉 = M or 〈b〉 = −M, according as the
basisb is positive or negative.

A linear spaceM of dimension zero is special in that it has only one basis: the
empty sequence of vectors. Such a spaceM still has two possible orientations,

67
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under our definition, since that unique basis can be either positive or negative, so
we have eitherM = 〈〉 or M = −〈〉. Be warned that people sometimes talk,
informally, as if orienting a linear space meant specifyinga positive basis. But, if
that were the case, then a zero-dimensional space would haveonly one possible
orientation. The existence of two possible orientations turns out to be essential in
what follows, since a fiber productA[ f ] ×S [g]B can be zero-dimensional even
when the input spacesA, B, and S all have positive dimension. Reversing the
orientation on any one ofA, B, or S (while leaving the mapsf andg unchanged)
should reverse the induced orientation on the fiber productA×S B; to make this
possible, even a zero-dimensional space must have two possible orientations.

While a zero-dimensional space is just like a space of positive dimension in
having two possible orientations, there is still somethingspecial about a zero-
dimensional space: Its two orientations are intrinsicallydistinguishable. Any
oriented linear space of positive dimension has both positive bases and negative
bases. Indeed, if we negate any vector in any positive basis,the result is a negative
basis, and vice versa; so there are “just as many” positive bases as negative ones.
It doesn’t make sense to ask whether such a space is itself positively oriented or
negatively oriented, in any intrinsic sense. But letM be an oriented linear space
with dim(M) = 0. The spaceM has exactly one basis: the empty sequence. And
that basis is either positive or negative. There are no vectors in that basis to negate,
to convert it from one sign to the other. We have eitherM = 〈〉 or M = −〈〉, and
we can tell which of those two cases pertains. Given an oriented linear spaceM
of dimension zero, we’ll say thatM is positively orientedor negatively oriented
according asM = 〈〉 or M = −〈〉.

Let’s adopt the symbol♦ as a prettier way to write〈〉, the oriented linear span
of the empty sequence. So the space♦ is positively oriented, while the space
−♦ is negatively oriented. (More precisely, the symbol “♦” denotes the zero-
dimensional subspace of the current linear space, where that containing space
must be determined from context. This is similar to the way that the symbol “0”
is used to denote the zero element of the current linear space, where that space
is determined from context. When confusion might arise, we shall write ♦U to
denote the zero-dimensional subspace of the linear spaceU .)

Exercise 5-1 True or false: Any two oriented linear spaces of the same dimension
are isomorphic.

Answer: True when their common dimension is positive; but the spaces♦ and
−♦ are not isomorphic. There is precisely one bijection between them, the zero
map; but that map does not preserve orientation. This is one aspect of what it
means for the orientation of a zero-dimensional oriented space to be an intrinsic
aspect of that space.

Exercise 5-2 (For people who know about alternating tensors) LetM be a real
linear space of finite dimensionm := dim(M). Themth exterior powerof M is
the space

∧mM of all alternating,m-contravariant tensors onM, and we have
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dim(
∧mM) =

(m
m

)

= 1. One simple example of such a tensor isµ1 ∧ . . . ∧ µm,
where(µ1, . . . , µm) is a basis forM. Show that orientingM is equivalent to
distinguishing one of the two rays leaving the origin in

∧mM as the positive ray.
In the special case whereM is zero-dimensional, note that

∧mM = R; and thus,
in this framework also, the two possible orientations of a zero-dimensional space
are intrinsically distinguishable.

Comment: People integrating over manifolds deal with a related space, the
space

∧m
(M∗) of all alternating,m-covariant tensors onM. If (dµ1, . . . , dµm)

is the basis for the dual spaceM∗ that is dual to the basis(µ1, . . . , µm) for M,
thendµ1 ∧ . . . ∧ dµm is a simple example of an alternating,m-covariant tensor,
sometimes called avolume form. Orienting a linear spaceM is equivalent to
orienting its dualM∗; but we won’t have any occasion to exploit dual spaces in
this monograph.

If f : K → L is a linear bijection between two oriented linear spacesK and
L, then the orientations onK and L are related byf . We denote byf (K ) the
spaceL, but with the orientation carried forward fromK via f . That is, we have
f (K ) = L or f (K ) = −L, according as the bijectionf : K → L preserves or
reverses orientation. So we always havef (K ) = sgn( f )L.

More generally, wheneverf : K → L is injective, we usef (K ) to denote
Im( f ) with the orientation carried forward fromK . Note that every injective map
f preserves orientation whenf is interpreted as a bijection fromK to f (K ).

Still more generally, if f : K → L is any linear map, the expressionf (U)
makes sense as an oriented linear subspace ofL wheneverU is an oriented sub-
space ofK with U ∩ Ker( f ) = {0}. We use f (U) to denote the image of the
subspaceU under f , with the orientation carried forward fromU .

Exercise 5-3 If M is an oriented linear space of dimensionm, let ¬ : M → M
denote the negating map, the map that takes each vectorµ in M to its negative:
¬(µ) := −µ. Show that¬(M) = (−1)mM; that is, negating allm coordinates of
a space reverses the orientation of that space precisely when m is odd. It follows
that we must distinguish carefully between¬(M) and−M.

5.2 Direct sums and direct products

Suppose thatK and L are linearly independent subspaces of some larger space.
Given a signed, ordered basis((κ1, . . . , κk), β) for K and one((λ1, . . . , λl ), γ )

for L, the obvious way to orient the direct sumK ⊕ L is with the signed, ordered
basis

((κ1, . . . , κk, λ1, . . . , λl ), βγ ).

That is, we concatenate the two bases with the basis ofK going first, and we
multiply the two signs. This rule combines the given orientations onK and L
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to produce an orientation on the direct sumK ⊕ L, an orientation that does not
depend upon which signed, ordered bases we choose forK andL. We shall refer
to this rule for orienting a direct sum of oriented subspacesas theConcatenate
Rule. Roughly speaking, we form a positive basis forK ⊕ L by concatenating
positive bases forK and for L, in that order — the only roughness about that
recipe being that a negatively oriented, zero-dimensionalspace doesn’t have any
positive bases.

The Concatenate Rule behaves well with respect to reversingorientation: IfK
andL are linearly independent, oriented subspaces of some larger space, we have

(−K )⊕ L = K ⊕ (−L) = −(K ⊕ L).

But the order of the direct summands is important; we have

K ⊕ L = (−1)kl(L ⊕ K ).

Thus, which basis goes first,K or L, in building an oriented basis for the direct
sumK⊕L, makes a difference precisely when bothK andL are odd-dimensional.

Suppose now thatK and L are any two oriented spaces, not subspaces of
some common, larger space. We shall use the Concatenate Rulealso to orient
the direct productK × L in the obvious way. That is, we decompose the direct
productK × L as the direct sumK × L = (K , 0) ⊕ (0, L) of the K -axis, the
set(K , 0) := {(κ, 0) | κ ∈ K }, and the analogousL-axis, and we then apply the
Concatenate Rule for direct sums.

Warning: This is the first situation that we have come across,in computing
either direct products or fiber products, where the order of the factors is critical.
Given two linear spacesK1 and K2, we have so far been thinking of the direct
productsK1× K2 andK2× K1 as two ways of viewing the same space: the space
of all functionsκ defined on the index set{1, 2} for whichκ1 lies in K1 andκ2 lies
in K2. That is, we have been exploiting the ordering on the index set {1, 2} only
in unimportant ways, such as deciding which factor to write to the left of the “×”.
But the Concatenate Rule exploits that ordering in a critical way, to determine
which basis goes first. If we use the swapping map(κ, λ) 7→ (λ, κ) to identify
K × L with L × K , we have, as oriented spaces:

K × L = (−1)kl(L × K ).

Thus, when taking direct products of odd-dimensional oriented linear spaces, the
order of the factors is critical.

Exercise 5-4 Let ξ andη be unit vectors in the directions of the positivex andy
axes, so that the linear space〈ξ, η〉 is the(x, y)-plane with its standard orientation.
Mathematicians generally draw the plane〈ξ, η〉 so that the 90-degree rotation that
takesξ to η is counterclockwise. Adopting both that convention and theConcate-
nate Rule, consider Figures 1.7 and 1.11. Which of them illustrates the state space
A× B and which illustratesB× A = −(A× B)?

Answer: Figure 1.7 illustratesA× B.
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5.3 Quotient spaces

Let L be a linear subspace of a linear spaceM, and consider the quotient space
M/L. Given any basis forL, we can extend that basis into a basis forM. And
the vectors in that extension — more properly, their equivalence classes modulo
L — constitute a basis for the quotient spaceM/L. If we start with a positive
basis forL and we extend it so as to form a positive basis forM, we can orient
the quotient spaceM/L by taking the extending vectors, in that same order, as a
positive basis forM/L. This is roughly the same as using the Concatenate Rule
on the direct productL× (M/L) (which is isomorphic toM, but not canonically).
Unfortunately, it would be equally reasonable to concatenate in the other order, as
in the direct product(M/L) × L, putting the extending vectors first. There is no
compelling reason to prefer one order over the other.

The same need for a choice arises if we deal with complements,which are
sometimes more convenient than quotient spaces. Note that orienting the quotient
spaceM/L is equivalent to orienting any (and hence every) complementC of L
in M. Indeed, if we extend a basis forL into a basis forM, the linear span of the
extending vectors will be a complementC of L in M. Thus, instead of relating
the orientations onM, L, andM/L, we can relate the orientations onM, L, and
C, using one of the direct sumsM = C ⊕ L or M = L ⊕ C. But we still have to
choose one of those two.

Returning from complements to quotient spaces, note that the unfortunate
need to choose between(M/L)× L andL× (M/L) arises only whenL andM/L
might both be odd-dimensional. Suppose, for example, thatL = ±M. The quo-
tient spaceM/L is then zero-dimensional. Since the integer 0 is definitely even,
the order of the two factors does not matter in this case; the orientations onL and
on M determine the orientation on the zero-dimensional spaceM/L uniquely. In
particular, we haveM/L = ♦ when L = M, and we haveM/L = −♦ when
L = −M.

It is sometimes convenient to use the two linear spaces♦ and−♦, rather than
the two integers 1 and−1, to encode the two possible signs of a bijection. If the
map f : K → L is a linear bijection, we can then denote sgn( f ) simply as the
quotient spacef (K )/L.

Exercise 5-5 Let f : K → L be any linear map and letC1 andC2 be two oriented
complements of Ker( f ) in K . Fixing arbitrary orientations onK , Ker( f ), and
Im( f ), we have Ker( f )⊕C1 = ±K and f (C1) = ± Im( f ), and similarly forC2,
though possibly with different signs. Show that(Ker( f )⊕C1)/(Ker( f )⊕C2) =
f (C1)/ f (C2); that is, either both quotients are+♦ or both are−♦.

Hint: Let q : K → K/Ker( f ) be the quotient map. We haveq(C1) =
±(K/Ker( f )), and similarly forC2. Show that both of the quotients above are
equal toq(C1)/q(C2).
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5.4 Matrices of maps

We are going to be dealing with direct products of linear spaces and with linear
maps that have such direct products as their domains or codomains. In doing
computations with such a map, it can be helpful to represent it as a matrix whose
entries are themselves maps, rather than scalars. Indeed, the theory of matrices
can be generalized even further by letting the matrix entries be morphisms from
any additive category [12]. But linear maps are general enough for us. Let’s settle
on a consistent set of conventions for that case.

Suppose thatA, B, K , and L are linear spaces. LetfK←A be some linear
map fK←A : A → K , and similarly for fL←A, fK←B, and fL←B. (We write these
subscripts in the order “codomain← domain” rather than “domain→ codomain”
because, in this monograph, we are writing our maps and theirmatrices as prefix
operators.) We can combine these maps in various ways.

• The operation of direct product is the most general way to combine two
maps, and it does not require any special properties of the maps being com-
bined. For example, the direct productfK←A× fL←B is the linear map from
A× B to K × L given by

( fK←A× fL←B)(α, β) := ( fK←A(α), fL←B(β)).

Note that this same combining operation is often described as a direct sum.
If A andB are linearly independent subspaces of some larger domain space,
while K andL are linearly independent subspaces of some larger codomain
space, then the mapfK←A × fL←B can also be described as the direct sum
fK←A⊕ fL←B : A⊕ B→ K ⊕ L.

• Given two linear maps defined on the same domain, we can combine them
in a tighter way by sharing the argument. For example, the twomaps
fK←A and fL←A share the domainA; we can combine them to get the map
( fK←A, fL←A) : A→ K × L given by

( fK←A, fL←A)(α) := ( fK←A(α), fL←A(α)).

• Given two linear maps that share the same codomain, we can combine
them in a tighter way by adding the results. For example, we combine
the mapsfK←A and fK←B, which share the codomainK , to get the map
fK←A =‖ fK←B : A× B→ K given by

( fK←A =‖ fK←B)(α, β) := fK←A(α)+ fK←B(β).

The exotic symbol “=‖ ” warns that this binary operator is something fancier
than simple addition.
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Suppose that we start off with four mapsfK←A, fK←B, fL←A, and fL←B. We can
assemble those four into a single map8 : A×B→ K×L by putting the latter two
combining operations together in several different ways: We can either set8 :=
( fK←A, fL←A)=‖ ( fK←B, fL←B) or we can set8 := ( fK←A=‖ fK←B, fL←A=‖ fL←B).
Either way, we end up with the same map

8(α, β) =
(

fK←A(α)+ fK←B(β), fL←A(α)+ fL←B(β)
)

.

Perhaps the clearest way to write this map8 is as a 2-by-2 matrix. Adopting
the conventions for matrices in which matrices are prefix operators, we write the
application8(α, β) = (κ, λ) as

(

fK←A fK←B

fL←A fL←B

) (

α

β

)

=

(

κ

λ

)

.

Note that, under these conventions, the maps with the same domain form a column
of the matrix, while the maps with the same codomain form a row. In particular,
using [g] to denote the matrix of the linear mapg, we have

[( fK←A, fL←A)] =

(

[ fK←A]
[ fL←A]

)

,(5-6)

while

[ fK←A =‖ fK←B] =
(

[ fK←A] [ fK←B]
)

.(5-7)

Equation 5-6 combines two maps with the same domain by pasting their matrices
together, one above the other. Equation 5-7 combines two maps with the same
codomain by pasting their matrices together, side by side.

Exercise 5-8 How does the direct-product operator combine matrices? That is,
what is the analog of Equations 5-6 and 5-7 for the mapfK←A × fL←B?

Answer: The direct-product operator assembles blocks downthe diagonal:

[ fK←A × fL←B] =

(

[ fK←A] 0
0 [ fK←B]

)

5.5 Elementary operations on matrices of maps

Suppose that we are dealing with a linear map whose domain andcodomain are
direct products of smaller spaces. We just adopted conventions for representing
such a map as a matrix whose entries are themselves maps. One advantage of
this representation is that we can perform elementary row and column operations
on the resulting matrix; for example, we can add a multiple ofany row to any
other row without affecting the overall determinant. This is just what happens in
standard linear algebra, where the entries in the matrices are scalars. When the
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matrix elements are maps, however, things are more subtle, since the composition
operator on functions is not commutative. Thus, when we “multiply” the maps in
one row by a constant mapc, we have to compose byc on the proper side — as
it turns out, for a row operation, we compose withc on the left. We here review
the theory of elementary row and column operations to see howit extends to the
noncommutative case.

To see the general pattern, it suffices to consider a linear map8 : A× B →
K × L whose matrix representation

[8] =

(

fK←A fK←B

fL←A fL←B

)

is 2-by-2. We first consider performing an elementary columnoperation on the
matrix [8], say adding some multiple of the second column to the first column.
To achieve that goal, we introduce the map9 : A× B→ A× B whose matrix is

[9] =

(

1A←A 0A←B

gB←A 1B←B

)

.

The lower-left entry here is an arbitrary linear functiongB←A : A→ B, which is
going to play the role of the arbitrary scalar by which we multiply in a standard
column operation. Performing the column operation involves replacing the matrix
[8] with the matrix product [8][9] = [8 ∘9], as follows:

[8][9] =

(

fK←A fK←B

fL←A fL←B

) (

1A←A 0A←B

gB←A 1B←B

)

=

(

fK←A + fK←B gB←A fK←B

fL←A + fL←B gB←A fL←B

)

.

To move from the matrix [8] to [8][9], we compose the second column on the
right by the functiongB←A and add the result to the first column. That process
constitutes anelementary column operation. Note that the matrix [9] is lower-
triangular with 1’s on the diagonal, no matter what bases we choose for the spaces
A andB. Hence, we have det([9]) = 1, from which it follows that det([8][9]) =
det([8]). Thus, performing an elementary column operation does not affect the
determinant.

Dually, we can also performelementary row operationson a matrix without
affecting its determinant: We compose some row on the left byan appropriate
function and add the result to some other row. For example, for any linear map
hL←K : K → L, we can transform [8] like this:

(

1K←K 0K←L

hL←K 1L←L

) (

fK←A fK←B

fL←A fL←B

)

=

(

fK←A fK←B

hL←K fK←A + fL←A hL←K fK←B + fL←B

)

.

These elementary row and column operations will be one of ourtools when
we need to prove things about bijections between spaces thatare direct products.
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5.6 Orienting a smooth manifold

Roughly speaking, we orient a smooth manifold by orienting each of its tangent
spaces, with the proviso that the orientations on the tangent spaces must be chosen
in a locally consistent manner. But there are some subtleties. First, there are some
manifolds that simply cannot be oriented; their global geometry does not permit
the required local consistency to hold everywhere. Second,for those manifolds
that can be oriented, the number of possible orientations depends upon the number
of connected components: An orientable manifold withk connected components
has precisely 2k possible orientations.

In more detail, letM be a smooth manifold, of dimensionm. At each pointm
in M , the tangent spaceTmM is a linearm-space. Suppose that we choose one of
its two possible orientations, for each pointm in M , in some arbitrary way. Let’s
refer to the result as apseudo-orientationof the manifoldM .

In order for a pseudo-orientation of a manifoldM to qualify as an orientation,
it must be locally consistent; what does that mean? Considera chartϕ : U → Rm

on some open subsetU of M . At each pointm in the domainU of the chartϕ,
we can use the tangents to them coordinate axes ofRm, in numeric order, to get a
reference orientation on the tangent spaceTmM . We say that a pseudo-orientation
of M is consistentwith the chartϕ : U → Rm when, for all pointsm in U , the
pseudo-orientation orients the tangent spaceTmM in agreement with the reference
orientation provided byϕ. A pseudo-orientation ofM is locally consistent at a
point m in M when there is some chart on some neighborhood ofm with which
the pseudo-orientation is consistent. Finally, we say thata pseudo-orientation of
M is locally consistentwhen it is locally consistent at every pointm in M .

There are manifolds, callednon-orientable, on which this local consistency
simply cannot be achieved. The Möbius strip and the Klein bottle are simple
examples of non-orientable 2-manifolds. Fortunately, thedirect products and the
fiber products of orientable manifolds are always orientable; we shall prove that
result for direct products in a moment and for fiber products in Section 7.3. So,
if we start with manifolds that are orientable and we build new manifolds only by
taking direct and fiber products, the problem of non-orientability never arises.

Each connected component of an orientable manifold is itself orientable and
has precisely 2 possible orientations. A manifold withk connected components,
thus, has a total of 2k possible orientations. The casek = 0 is worth noting.
Since 20 = 1, an empty manifold has only one possible orientation. So orienting
an empty manifold is trivial; there are no choices involved,because there are no
tangent spaces to orient.

5.7 Orienting direct products of manifolds

We saw, in Section 5.2, that the Concatenate Rule gives us a way to orient the
direct products of oriented linear spaces. By using the Concatenate Rule as a
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linear-space subroutine, independently at each point, we can get an analogous
rule for orienting the direct products of oriented manifolds.

Consider some direct productD = A1 × · · · × An of oriented manifolds,
and suppose that the factor manifoldsA1 throughAn have been given to us in a
specified order. Standard theory tells us that, at each point, the tangent space to
the direct product is canonically isomorphic to the direct product of the tangent
spaces; that is, for any pointd = (a1, . . . , an) in D, we have

TdD ∼= (Ta1A1)× · · · × (TanAn).

So, at each pointd in D, we can produce a basis for the tangent spaceTdD by
concatenating, in the specified order, positive bases for the factor tangent spaces
Ta1A1 throughTanAn. The Concatenate Rule for Manifoldsorients the tangent
spaceTdD so that a basis constructed in this way is positive.

Why does this rule give an orientation of the manifoldD, and not just a pseudo-
orientation? That is, why is the Concatenate Rule locally consistent, say at the
point d = (a1, . . . , an)? For eachi from 1 to n, by the local consistency in the
factor manifoldA i , we can find a chartϕi : Ui → Rai on some neighborhood
Ui of ai with which the given orientation onA i is consistent. The direct product
U1×· · ·×Un is then an open neighborhood of the pointd in D, and we can define
a chartψ : U1×· · ·×Un → Rd on that neighborhood by concatenating sequences
of coordinates, setting

ψ(a′1, . . . , a
′
n) :=

(

ϕ1(a′1), . . . , ϕn(a′n)
)

.

The pseudo-orientation specified by the Concatenate Rule isconsistent with this
chartψ over the entire neighborhoodU1 × · · · × Un of d and is hence locally
consistent. Thus, the Concatenate Rule does indeed orient the direct products of
oriented manifolds. It follows that such direct products are always orientable, as
we claimed in Section 5.6.



Chapter 6

Stability

In this monograph, we are going to develop a compelling rule for orienting the
transverse fiber products of oriented linear spaces. Given such a rule for linear
spaces, we then intend to produce an analogous rule for manifolds by applying
our linear-space rule, as a subroutine, to each tangent space independently. That
approach is an obvious one, and the side condition of transversality is no obstacle.
But we must require a certain continuity property of our linear-space rule, lest
we end up with pseudo-orientations of some fiber product manifolds that are not
locally consistent. Thinking back to Alice and Bob, the Greedy-Alice Rule in
Figure 1.8 gives an example of what could go wrong were our linear-space rule
to lack the required continuity. In this chapter, we define the required continuity
property — which we christen “stability”.

How does this subroutine stuff work, in detail? LetS andA1 throughAn be
smooth, oriented manifolds. Suppose thatf i : A i → S is a smooth map, fori
from 1 to n, and that the maps(f1, . . . , fn) are transverse. By Proposition 4-12,
the fiber productP := A1 ×S · · · ×S An is again a smooth manifold. Let’s view
that fiber productP as a subset — actually, a submanifold — of the direct product
A1 × · · · × An, and letp = (a1, . . . , an) be a point inP. So there exists a point
s in S with f i (ai ) = s, for i from 1 to n. By standard theory once again, the
tangent space to the fiber product is naturally isomorphic tothe fiber product of
the tangent spaces; that is, we have

TpP∼= (Ta1A1)[Ta1f1] ×TsS · · · ×TsS [Tanfn](TanAn).

We shall often abbreviate this asP = A1[ f1]×S · · · ×S [ fn] An. We can orient the
tangent spaceP on the left by using our assumed linear-space rule, as a subroutine,
to orient the fiber productA1 ×S · · · ×S An on the right. The linear spacesA1

through An and S come to us oriented, because they are tangent spaces to the
oriented manifoldsA1 throughAn and S. Furthermore, from Definition 4-11,
what it means for the smooth maps(f i ) to be transverse is that their differentials
( fi ) are transverse linear maps at every pointp = (a1, . . . , an) in the fiber product
P. So we are in fine shape to invoke our subroutine, that is, to orient the tangent
spaceP = TpP as a transverse fiber product of oriented linear spaces.
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But what about local consistency? As the pointp = (a1, . . . , an) moves
around in the fiber productP, the orientations on the varying tangent spacesS
andA1 throughAn will be locally consistent. Also, the factor maps( fi ) will vary
continuously and will remain transverse. Does this ensure that the orientations
that we assign to the tangent spacesP = A1[ f1] ×S · · · ×S [ fn] An by repeatedly
calling our linear-space subroutine will also be locally consistent?

Fiber products of smooth manifolds are subtle to think about, since so many
things vary simultaneously. As the pointp = (a1, . . . , an) varies over the fiber
productP = A1 ×S · · · ×S An, the tangent spacesAi := Tai A i and S := TsS
vary, along with the factor mapsfi : Ai → S. It would be simpler if the linear
spaces involved stayed fixed and only the maps relating thosespaces varied — for
example, if there were a single, fixed linear spaceA1, rather than separate linear
spaces associated with each of the pointsa1 in A1. We show in Section 6.3 that
we can convert to that simpler situation by restricting the point p to move only in
a small region, a region small enough so that the pointai remains within a local
coordinate system on the manifoldA i , for i from 1 ton, while the points remains
within a local coordinate system on the manifoldS. In Sections 6.1 and 6.2, we
study the simpler situation in which the spaces stay fixed.

Remark: There are well-developed mathematical techniquesfor dealing with
all of the tangent spaces to a smooth manifold at once, without limiting ourselves
to a portion of the manifold that has a local coordinate system. All of the tangent
spaces together form thetangent bundleof the manifold. Tangent bundles are an
important example ofvector bundles, which, in turn, are an important example
of fiber bundles— the area of mathematics where the name “fiber product” came
from. But we can do what we need to do in this monograph workinglocally,
without recourse to tangent bundles.

6.1 Varying only the factor maps

In this section and the next, we take the linear spacesA1 throughAn andS to be
fixed, and we allow only the factor mapsfi : Ai → S to vary. What does the
fiber-product operator itself correspond to, in this simpler situation?

Definition 6-1 If A and B are linear spaces, let Lin(A, B) denote the set of all
linear maps fromA to B. Each such linear map corresponds to a matrix witha
columns andb rows, and we equip the space Lin(A, B) with the topology ofRab.

Definition 6-2 If A1 throughAn andSare linear spaces, let Trans(A1, . . . , An; S)
denote that subset of the direct product Lin(A1, S)× · · · × Lin(An, S) consisting
of n-tuples of maps( f1, . . . , fn) that are transverse.

Given anyn-tuple of maps( f1, . . . , fn) in Trans(A1, . . . , An; S), we can form
the fiber product

P( f1, . . . , fn) := A1[ f1] ×S · · · ×S [ fn] An.
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This fiber productP( f1, . . . , fn) is some linear subspace of the direct product
D := A1 × · · · × An, and its dimension isp := a1 + · · · + an − (n − 1)s. The
set of all linear subspaces of a fixed spaceD that have a fixed dimensionp is a
well-known manifold called aGrassmannian.

Definition 6-3 If K is a linear space of dimensionk and we have 0≤ d ≤ k, the
set of all linear subspaces ofK of dimensiond has a natural structure as a smooth
manifold G(d, K ), called theGrassmannian of d-dimensional subspaces of K.
We could express any particular basis for such a subspace as ak-by-d matrix;
but multiplying this matrix on the right by any invertibled-by-d matrix would
produce another basis for the samed-dimensional subspace. Thus, the dimension
of the manifoldG(d, K ) is kd− d2 = d(k− d).

For example, whend = 1, consider all of the lines through the origin of the
linear spaceK . Those lines form a projective space of dimensiond(k−d) = k−1;
so the Grassmann manifoldG(1, K ) is simply projective(k− 1)-space.

The fiber-product operatorP discussed above can hence be viewed as a map

P : Trans(A1, . . . , An; S)→ G(p, D).

Note that this mapP is continuous: Small changes to the factor mapsf1 through
fn cause only small changes in the resulting linear subspaceP( f1, . . . , fn).

Exercise 6-4 Let A, B, and S be linear spaces of dimensionsa, b, ands with
a+ b ≥ s, and consider the fiber-product operator

P(A,B;S) : Trans(A, B; S)→ G(a+ b− s, A× B).

What is the dimension of the domain ofP(A,B;S)? Of its codomain? Account for
the discrepancy between the two dimensions.

Answer: The product space Lin(A, S)× Lin(B, S) has dimensionas+ bs=
(a + b)s. Whena + b ≥ s, most pairs of maps( f, g) in Lin(A, S) × Lin(B, S)
are transverse, so the subset Trans(A, B; S) has that same dimension. But the
Grassmann manifoldG(a+ b− s, A× B) has dimension only

(a+ b− s)
(

(a+ b)− (a+ b− s)
)

= (a+ b− s)s.

The former exceeds the latter bys2. This discrepancy arises because, for any
invertible linear mape: S→ S, the pair of factor maps(e ∘ f, e ∘ g) gives the
same fiber product as the pair( f, g); and there ares2 degrees of freedom in the
choice of the mape.

Exercise 6-5 The previous exercise works out quite neatly, in part because the
binary fiber-product mapP(A,B;S) is surjective; that is, every linear subspace of
A× B of dimensiona+ b− s can arise as a fiber productA[ f ] ×S [g]B. Once
n exceeds 2, then-ary case is not so simple. For example, consider ternary fiber
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products in whichA, B, andC are copies of the planeR2, while S is the lineR.
So a transverse fiber product of the formA[ f ]×S [g]B×S [h]C is 4-dimensional.
What is the dimension of the domain Trans(A, B,C; S) of the fiber-product map
P(A,B,C;S)? Of its codomainG(4, A× B× C)? Account for the discrepancy.

Answer: The factor mapf : R
2→ R has two degrees of freedom in it, and the

same forg andh; so the triple of maps( f, g, h) has six degrees of freedom. For
generic choices of those three maps, the difference map1 : A× B × C → S2 is
surjective; so the transverse subset Trans(A, B,C; S) is also 6-dimensional. But
one of those dimensions is crushed out by the fiber-product map P(A,B,C;S), since
the triple of maps(e∘ f, e∘ g, e∘ h) gives the same fiber product as( f, g, h), for
any invertible linear mape: R→ R. So we expect the image of the fiber-product
mapP(A,B,C;S) to be 5-dimensional.

As for the full Grassmann manifoldG(4, A × B × C) of all 4-dimensional
linear subspaces of a linear 6-space, it has dimension 4(6 − 4) = 8. So there
remains a discrepancy of 8− 5= 3.

To see why a typical 4-dimensional subspace ofA×B×C can’t arise as a fiber
product, consider the factor mapf : A→ S. Since dim(A) = 2 > 1 = dim(S),
there must exist a nonzero vectorα in A with f (α) = 0. And the vector(α, 0, 0) in
A× B×C then belongs to the fiber product. Thus, every 4-dimensionalsubspace
of the 6-spaceA×B×C that arises as a fiber product has a nontrivial intersection
with the fixed subspaceA× 0× 0. But a typical 4-subspace of 6-space intersects
a fixed 2-subspace only in the origin. It costs one degree of freedom to insist that
our 4-subspace intersectA×0×0 in an entire line. It costs two additional degrees
of freedom to insist that it similarly intersect 0× B× 0 and 0× 0× C.

6.2 Stability defined

We continue to restrict ourselves to the simpler situation in which the linear spaces
A1 through An and S stay fixed, while only the factor mapsfi : Ai → S are
allowed to vary. Our next goal is to define what it means, in that simpler situation,
for an orientation rule to bestable.

Eachd-dimensional linear subspace of ak-dimensional linear spaceK can be
given two possible orientations. Suppose that we distinguish between them. If
we assemble together all of the resulting orientedd-subspaces ofK , the result is
a smooth manifold that is, in some sense, “twice as big” as thestandard Grass-
mannianG(d, K ). This larger manifold is called theGrassmannian of oriented
d-dimensional subspaces of K, and we shall write itEG(d, K ). For example, in the
cased = 1, the GrassmannianEG(1, K ) consists of all oriented lines through the
origin of K , which form simply the sphereSk−1.

Forgetting about the orientation of an orientedd-subspace ofK leaves us with
an unorientedd-subspace. So we have a natural map from the big Grassmannian
to the standard one, fromEG(d, K ) to G(d, K ). This map is precisely two-to-one.
In fact, every neighborhood inG(d, K ) that is small enough not to include both
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a d-subspace and its negative has two isomorphic pre-images inEG(d, K ); one
says thatEG(d, K ) is a double coverof G(d, K ). For example, whend = 1, the
(k− 1)-sphereSk−1 is a double cover of projective(k− 1)-space.

Let S and A1 throughAn be fixed linear spaces. We saw in Section 6.1 that
taking fiber products gives us a continuous map

P : Trans(A1, . . . , An; S)→ G(p, A1× · · · × An),

wherep := a1 + · · · + an − (n− 1)s is the dimension of such a transverse fiber
product. Suppose now that the spacesS and A1 throughAn are oriented and that
we have some rule in mind for orienting the resulting fiber products. By exploiting
that rule, we get a map

EP : Trans(A1, . . . , An; S)→ EG(p, A1× · · · × An).

We are particularly interested in those orientation rules for which this more refined
map EP is also continuous, so that small changes to the factor mapsf1 through
fn cause the oriented linear subspaceEP( f1, . . . , fn) to slew around slightly, but
without any sudden reversals of its orientation.

Definition 6-6 A rule for orienting the transverse fiber products of oriented linear
spaces isstablewhen, for all oriented linear spacesA1 throughAn andS, the map
that it defines from

Trans(A1, . . . , An; S)→ EG(a1+ · · · + an − (n− 1)s, A1× · · · × An)

taking the transversen-tuple of maps( f1, . . . , fn) to the oriented fiber product
A1[ f1] ×S · · · ×S [ fn] An is continuous.

Definition 6-6 is global and elegant; but we couldn’t actually use it in a proof
unless we took the time to define the Grassmann manifold precisely — that is, to
construct explicit charts for it. Instead, we shall view Definition 6-6 as motivation
and define stability in the following more concrete and localway. Readers who
know about Grassmann manifolds will be able to verify that the two definitions
are equivalent.

Definition 6-7 A rule for orienting transverse fiber products of oriented linear
spaces isstablewhen, for all such spacesA1 throughAn andS, for all transverse
sequences of maps( f1, . . . , fn) in Trans(A1, . . . , An; S), and for any oriented
complementC of the fiber productEP( f1, . . . , fn) := A1[ f1] ×S · · · ×S [ fn] An

in the direct productD := A1 × · · · × An, there is some neighborhoodU of the
point ( f1, . . . , fn) in Trans(A1, . . . , An; S) small enough so that, for all points
(h1, . . . , hn) in that neighborhoodU , we have

EP(h1, . . . , hn)⊕ C = EP( f1, . . . , fn)⊕ C.(6-8)
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Note that the validity of Equation 6-8 combines two claims: first, that the fiber
product EP(h1, . . . , hn) = A1[h1] ×S · · · ×S [hn] An is also a complement of the
fixed linear subspaceC in the direct productD = A1 × · · · × An; and second,
that using the Concatenate Rule to combine the orientationson EP(h1, . . . , hn)

andC gives the same orientation to the direct productD as does combining the
orientations onEP( f1, . . . , fn) andC.

Exercise 6-9 Using Definition 6-7 to determine what stability means, showthat
the Greedy-Alice Rule in Figure 1.8 is not stable.

Answer: Let the spacesA, B, and S all be copies of the real numbersR,
let f : A → S be the identity, and letg : B → S be the zero map. The maps
( f, g) = (1, 0) are transverse, and the fiber productA[1] ×S [0]B is the B-axis
of the product spaceA× B, oriented upward — because Alice is on an upward
slope, so Bob should advance. We can take our complementC to be theA-axis,
say oriented rightward. But any neighborhood of the point( f, g) = (1, 0) in
Trans(A, B; S) will include points of the form(h, k) := (1, ǫ), for small ǫ of
both signs. Whenǫ is positive, the fiber productA[1] ×S [ǫ]B has high positive
slope and is oriented upward; but, whenǫ is negative, the productA[1]×S[ǫ]B has
high negative slope and is oriented downward. In the latter case, the Greedy-Alice
Rule does not achieve(A[1] ×S [ǫ]B)⊕ C = (A[1] ×S [0]B)⊕C.

6.3 Lifting from linear spaces to manifolds

Consider some rule for orienting those linear spaces that result as the transverse
fiber products of oriented linear spaces. We hope to lift thisrule to an analogous
rule for fiber products of smooth manifolds. In order for thislifting process to
succeed, we have argued that the linear-space rule had better be stable, in the
sense of Definition 6-7. In this section, we show that any linear-space rule that is
stable in that sense does lift to a smooth-manifold rule.

There is actually a second requirement, in addition to stability; but it almost
goes without saying. It is the general mathematical principal that isomorphic
inputs should produce isomorphic outputs. In particular, the orientation that our
linear-space rule chooses for a transverse fiber productA1[ f1] ×S · · · ×S [ fn] An

should depend only upon the dimensions and orientations of the spacesA1 through
An and S and the input-output behavior of the factor mapsf1 through fn. It
shouldn’t involve flipping a coin. It shouldn’t depend upon irrelevant details, such
as the colors that the vectors in the various spaces might happen to be colored. We
shall formalize this requirement in Section 9.1.1 as theIsomorphism Axiom. For
now, we argue less formally, referring to an orientation rule that is well-behaved
in this sense asrespecting isomorphisms.

Proposition 6-10 Any rule for orienting the transverse fiber products of linear
spaces that both respects isomorphisms and is stable lifts to a rule for orienting
the transverse fiber products of smooth manifolds.
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Proof For notational simplicity, let’s focus on the case of binaryfiber products.
Handling then-ary case would make the notation more complex without raising
any additional mathematical issues.

Fix some linear-space orientation rule that both respects isomorphisms and
is stable; and then consider a transverse fiber product of smooth manifoldsP =
A[f ] ×S [g]B. At any pointp = (a, b) in P, the tangent space to the fiber product
is the fiber product of the tangent spaces:

TpP∼= (TaA)[Taf ] ×TsS [Tbg](TbB).(6-11)

We orient the tangent spaceTpP on the left by applying our assumed linear-space
rule to the fiber productTaA ×TsS TbB on the right. This lifting pseudo-orients the
fiber productP; but is this pseudo-orientation locally consistent? We investigate
that local consistency in the neighborhood of some particular point, sayp0 =
(a0, b0) in P. To demonstrate the local consistency nearp0, we construct a chart
on some neighborhood ofp0 in P with which our pseudo-orientation is consistent;
and we construct that chart as in Exercise 4-13.

Since we are interested in the structure of the fiber product only nearp0, we
can restrict our varying pointp = (a, b) to vary only within some neighborhood
of p0. We can similarly restricta to remain neara0, b to remain nearb0, and
s := f(a) = g(b) to remain nears0 := f(a0) = g(b0). Choosing charts on those
neighborhoods, we might as well assume, as in Exercise 4-13,that the manifoldA
actually coincides with an open set in the fixed linear spaceRa; we also assume,
by translation, thata0 = 0. We treat the manifoldsB andS similarly. The fiber
productP is then realized for us as a submanifold of the direct productR

a×R
b =

Ra+b, and we are interested in what happens on that submanifold near the origin
p0 = (0, 0). Enforcing these simplifying assumptions formally would involve
converting from our initial situation to a different but isomorphic situation. We
won’t formalize the details of that isomorphism here. Note,however, that our
assumed linear-space orientation rule will get the same answer in the simplified
situation as in the original situation, since we assume it torespect isomorphisms.

As the pointp varies, the linear spacesTaA, TbB, andTsS on the right-hand
side in Equation 6-11 vary. But now that we are viewing the manifold A as an
open subset ofRa, all of the tangent spacesTaA can be naturally identified with the
tangent space toRa, which we shall denotẽA; that is, we haveÃ = TaR

a for all
pointsa neara0 = 0. Similarly, the tangent spacesTbB andTsS are all identified
with B̃ andS̃, the tangent spaces toRb andRs. With these identifications, we can
rewrite Equation 6-11 as

TpP∼= Ã[Taf ] ×S̃ [Tbg] B̃.

Note that, on this right-hand side, only the factor maps vary.
At the originp0 = (0, 0), we have the tangent spaceTp0P∼= Ã[T0f ]×S̃[T0g] B̃.

Let C denote some oriented complement of this tangent spaceTp0P in the product
spaceÃ× B̃. We saw in Exercise 4-13 that the quotient map fromR

a+b toR
a+b/C,
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when restricted to the fiber productP = A[f ] ×S [g]B, serves as a chart on some
neighborhoodU of the originp0 in the fiber product. Let’s refer to that chart as
ϕ : U → Ra+b/C.

As the pointp = (a, b) varies nearp0, the pair of maps(Taf, Tbg) varies away
from (T0f, T0g); but the pair(Taf, Tbg) remains transverse. Our assumed linear-
space orientation rule is stable. Hence, there is some neighborhood of the point
(T0f, T0g) in Trans(Ã, B̃; S̃) small enough so that, for every point(h, k) in that
neighborhood, we have

(

Ã[h] ×S̃ [k] B̃
)

⊕ C =
(

Ã[T0f ] ×S̃ [T0g] B̃
)

⊕ C.

For all pointsp that are close enough top0, the pair of maps(Taf, Tbg) will belong
to that small neighborhood, so we will have

(

Ã[Taf ] ×S̃ [Tbg] B̃
)

⊕ C =
(

Ã[T0f ] ×S̃ [T0g] B̃
)

⊕C.

Thus, if we orient the quotient spaceRa+b/C so that our pseudo-orientation is
consistent with the chartϕ at the origin, that consistency will extend throughout
some neighborhood of the origin in the fiber product.⊔⊓

So the key to an orientation rule for smooth-manifold fiber products is an
orientation rule for linear-space fiber products that both respects isomorphisms
and is stable. From now on, we focus on the search for a linear-space rule that
has those two properties and is otherwise compelling. In particular, we shall work
almost entirely with linear spaces and linear maps from now on; smooth manifolds
will get mentioned only occasionally.



Chapter 7

The Uncalibrated Delta Rule

Recall that Alice and Bob had two methods for orienting their1-dimensional fiber
productA ×S B: the Partner’s-Slope Rule and the Gray-Side Rule.

We generalized the Partner’s-Slope Rule to higher dimensions in Section 2.2,
getting the Invertible Factor Laws. But those laws are not a complete answer,
because there are equidimensional transverse fiber products A ×S B about which
the Invertible Factor Laws tell us nothing; here is an example.

Exercise 7-1 Consider the torusS1 × S1, which is a compact smooth manifold.
Let A, B, andSeach be a copy of the torus. Viewing each torus as the unit square
[0 . . 1] × [0 . . 1] with edges appropriately identified, define the smooth map
f : A → S to be projection on thex axis,f(x, y) := (x, 0), and defineg: B→ S
to be projection on they axis,g(x, y) := (0, y). Show thatf andg are transverse
and describe the fiber product manifoldA ×S B. But note that neitherf nor g is
invertible anywhere.

Answer: At each point in the fiber productA ×S B, the tangent spaces and
differentials look locally like the example in Exercise 4-5; so the mapsf andg are
transverse, although neither is invertible. The fiber product is another torus, which
we can think of as the direct product of they axis ofA with thex axis ofB.

We had better luck when we generalized the Gray-Side Rule in Section 2.3:
We sketched out the Delta Rule, a rule that handles every transverse case, regard-
less of the dimensions of the spaces involved, and that is easily seen to be stable.
In this chapter, we flesh out the simplest version of the DeltaRule, the version
without an explicit fudge factor. We also define what the Proper Orientation is for
any equidimensional transverse fiber product, and we show that our Uncalibrated
Delta Rule assigns those Proper Orientations.

7.1 The Delta Rule abstractly

The Gray-Side Rule tells Alice and Bob to walk along the blackpath so as to
keep the gray, Bob-higher side of it to their left. We now generalize that rule
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to transversen-ary fiber products in which the dimensions of the various spaces
involved are arbitrary. While our overarching goal is an orientation rule for fiber
products of smooth manifolds, we focus here on a rule for linear spaces — but we
require that rule to be stable, so that it will lift to smooth manifolds.

Consider oriented linear spacesA1 through An and S and transverse linear
maps( f1, . . . , fn), with fi : Ai → S. We want to choose an orientation on the
fiber productP := A1[ f1]×S· · ·×S[ fn] An, which is a linear subspace of the direct
productD := A1 × · · · × An. From the given orientations on the factor spaces
A1 throughAn, we can use the Concatenate Rule to orient the direct productD.
Let C denote some complement ofP in D. If we had a way to orientC, we could
combine our orientations onD = P ⊕ C andC to get an orientation onP.

The key to orientingC is the difference map1 : D→ Sn−1 given by

1(α1, . . . , αn) :=
(

f2(α2)− f1(α1), . . . , fn(αn)− fn−1(αn−1)
)

.

Recall that the fiber productP is the kernel of the difference map1. Furthermore,
Definition 4-1 tells us that the maps( f1, . . . , fn) are transverse just when the map
1 is surjective. Hence, the map1 will carry any complement ofP = Ker(1)
in D bijectively onto all ofSn−1. SinceC is such a complement, we can use the
equation1(C) = Sn−1 to relate an orientation onC to an orientation onSn−1. As
for orientingSn−1, we are given a preferred orientation onS and the Concatenate
Rule does the rest.

Definition 7-2 (The Uncalibrated Delta Rule) Let n be positive; letS and A1

throughAn be oriented linear spaces. Fori from 1 ton, let fi : Ai → Sbe a linear
map, and assume that the maps( f1, . . . , fn) are transverse. LetP be the fiber
productP := A1[ f1]×S · · ·×S [ fn] An, viewed as a subspace of the direct product
D := A1× · · · × An. Let the difference map1 : D→ Sn−1 be defined by

1(α1, . . . , αn) :=
(

f2(α2)− f1(α1), . . . , fn(αn)− fn−1(αn−1)
)

.

By transversality, the difference map1 is surjective. IfC denotes any oriented
complement ofP = Ker(1) in D, it follows that1 carriesC bijectively onto
Im(1) = Sn−1. The Uncalibrated Delta Rule orients the fiber productP so that

(P ⊕ C)/D = 1(C)/Sn−1.(7-3)

In this formula, the denominatorsD = A1× · · · × An andSn−1 are to be oriented
using the Concatenate Rule, and the same for the numeratorP ⊕ C.

Note that which complementC we choose doesn’t matter in Equation 7-3,
except for its orientation; and even the orientation ofC doesn’t affect the resulting
orientation on the fiber productP, sinceC appears once in each numerator.

Note also that we have made various arbitrary choices in setting up the Delta
Rule. We chose to write the left-hand numerator in Equation 7-3 asP⊕C, rather
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thanC ⊕ P. In defining the difference map1, we chose to subtractfi (αi ) from
fi+1(αi+1), rather than the reverse. Because we have made those choiceswith
some care, Equation 7-3, even though it has no fudge factor, turns out to assign
the Proper Orientation toP in all equidimensional cases. But getting the Proper
Orientations in any-dimensional cases turns out to requireexplicit calibration.

Exercise 7-4 Consider the unary casen = 1. If P is the fiber product of the
single spaceA1, does the Delta Rule giveP = A1 or P = −A1? (The latter
would lead to horrible confusion, since our notationA1 ×S · · · ×S An for a fiber
product reduces, in the unary case, toA1.)

Answer: In the unary case, Equation 7-3 reads(P⊕C)/A1 = 1(C)/S0. The
difference map1 : A1 → S0 is the zero map. The empty direct productS0 is
zero-dimensional, and the Concatenate Rule orients it positively; that is, we have
S0 = ♦. The complementC is zero-dimensional, and we can choose it to be
positively oriented as well, givingC = ♦ and1(C) = ♦. Equation 7-3 then
reduces toP/A1 = ♦/♦ = ♦; thus, the Delta Rule givesP = A1.

7.2 The Delta Rule in matrix form

To ensure that we understand precisely what the Delta Rule means, let’s discuss
how we would apply it in practice. Which matrices would we construct and which
determinants would we compute?

We begin by choosing a basis for each of the linear spacesA1 throughAn and
for S. For simplicity, let’s choose those bases to be positively oriented. (Of course,
an oriented linear space isomorphic to−♦ has no positive bases; but correcting
for that glitch is straightforward.) For eachi , we then compute the matrix [fi ] of
the mapfi , with respect to our chosen bases.

Our next task in implementing the Delta Rule is to assemble these matrices
to form the matrix of the map1 : A1 × · · · × An → Sn−1. To get a basis for
the domain of1, the direct productA1 × · · · × An, we do the obvious thing,
concatenating our chosen bases forA1 throughAn, in that order. To get a basis for
the codomain

Sn−1 = S× · · · × S
︸ ︷︷ ︸

n−1

,

we again do the obvious thing, taking our chosen basis forSand repeating itn−1
times, viewed first as a basis for the leftmostSfactor, then as a basis for the second
S factor, and so forth. Adopting those bases, it is straightforward to check that the
matrix of1 is

[1] =










−[ f1] [ f2] 0 . . . 0 0
0 −[ f2] [ f3] . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . [ fn−1] 0
0 0 0 . . . −[ fn−1] [ fn]
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The i th column in this formula actually represents a block ofai columns, while
each of then− 1 rows represents a block ofs rows. So the overall matrix [1] has
d := a1 + · · · + an columns and(n − 1)s rows. We next check the rank of the
matrix [1]. We expect to get rank([1]) = (n − 1)s; any lesser rank implies that
we do not have transversality.

The fiber productP := A1×S · · ·×S An is the kernel of1. So our next task is
to compute some basis for that kernel. Letp denote whatever basis we compute;
we shall figure out in a moment whether the basisp is positive or negative, that
is, whetherP = 〈p〉 or P = −〈p〉. The basisp will consist ofd − rank([1]) =
d − (n− 1)s vectors inD = A1× · · · × An. Representing each such vector as a
column of numbers, the ordered basisp corresponds to a matrix [p] with d rows
andd − (n− 1)s columns. Note that [1][p] = 0.

Next, we compute some complementC of P in D. That is, we compute some
matrix [c] with d rows and(n−1)s columns and with the property that the pasted-
together matrix

([

p
][

c
])

,

which isd-by-d in size, has nonzero determinant. The columns of the submatrix
[c] then form a basis for a complementC of P in D. Furthermore, on the left-hand
side of Equation 7-3, the quotient(P ⊕ C)/D is ♦ or−♦ according as the sign
of the determinant of this pasted-together matrix is positive or negative.

To evaluate the quotient1(C)/Sn−1 on the right-hand side, we form the matrix
product [1][c]. This product will be square of size(n − 1)s, and will have full
rank by transversality. The sign of its determinant tells uswhether the quotient
1(C)/Sn−1 is ♦ or−♦.

If the signs that we have computed for the left-hand and right-hand sides of
Equation 7-3 agree, then our basisp for P was positive; else it was negative.

Exercise 7-5 Equation 7-3 works whenC is chosen to be any complement ofP
in D. In computational practice, however, it would be attractive to chooseC by
setting the matrix [c] to be the transpose of the matrix [1]. That is, we choose our
complementC to be the linear span of the rows of [1], interpreting each row as
a column vector by transposing it. Why is this attractive? What does this choice
correspond to geometrically?

Answer: This choice is attractive because the matrix product that arises on the
right-hand side is then [1][c] = [1][1]t . That product is a positive semidefinite
matrix and hence has nonnegative determinant automatically; so we know the sign
of the determinant without computing it. Geometrically, this strategy corresponds
to equipping the spaceD with the unique Euclidean structure under which our
chosen, concatenated basis forD is orthonormal. We then chooseC to be the
orthogonal complement ofP in D — orthogonal under that Euclidean structure.
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7.3 Stability of the Delta Rule

A prime virtue of the Delta Rule is its stability, in the senseof Definition 6-7.

Proposition 7-6 The Uncalibrated Delta Rule is stable. Furthermore, were weto
recalibrate the Delta Rule by adding a fudge factor of±1 that depended only upon
the dimensions of the input manifolds, the resulting rule would also be stable.

Proof Let P( f1, . . . , fn) := A1[ f1] ×S · · · ×S [ fn] An be some transverse fiber
product and letC be some oriented complement of the fiber productP( f1, . . . , fn)

in the direct productD := A1×· · ·× An. The spaceC will also be a complement
of the fiber productP(h1, . . . , hn) := A1[h1] ×S · · · ×S [hn] An, for every point
(h1, . . . , hn) in Trans(A1, . . . , An; S) that is close enough to( f1, . . . , fn), say, for
those points(h1, . . . , hn) in some neighborhoodU of the sequence( f1, . . . , fn).
The neighborhoodU might not be connected; but the space Trans(A1, . . . , An; S)
is locally connected, so we will be able to find a smaller neighborhoodU ′ of
( f1, . . . , fn) that is included inU and is also connected.

For each point(h1, . . . , hn) in this neighborhoodU ′, the Uncalibrated Delta
Rule tells us to orient the fiber productP(h1, . . . , hn) so that

(

P(h1, . . . , hn)⊕C
)

/D = 1(h1,...,hn)(C)/S
n−1.

In particular, we orientP( f1, . . . , fn) so that
(

P( f1, . . . , fn)⊕ C
)

/D = 1( f1,..., fn)(C)/S
n−1.

For any point(h1, . . . , hn) in U ′, the image1(h1,...,hn)(C) is all of Sn−1, oriented
one way or the other. Since the neighborhoodU ′ is connected, we must have either
1(h1,...,hn)(C) = Sn−1 for all (h1, . . . , hn) in U ′ or else1(h1,...,hn)(C) = −Sn−1 for
all such(h1, . . . , hn). It follows thatP(h1, . . . , hn)⊕C = P( f1, . . . , fn)⊕C for
all (h1, . . . , hn) in U ′, which establishes stability.

The same result holds if we recalibrate the Delta Rule by adding a fudge factor
of the form(−1)κ(a1,...,an;s), whereκ is any functionκ : N

n×N→ Z/2Z. We then
orient the fiber productP(h1, . . . , hn) so that

(

P(h1, . . . , hn)⊕ C
)

/D = (−1)κ(a1,...,an;s)1(h1,...,hn)(C)/S
n−1;

but the added fudge factor doesn’t vary as the point(h1, . . . , hn) varies, so it
doesn’t affect stability. ⊔⊓

Because the Delta Rule is stable, Proposition 6-10 says thatwe can lift it from
the category of linear spaces to the category of smooth manifolds — which is what
we intend to do.

Corollary 7-7 Any transverse fiber productA[f ] ×S [g]B of orientable smooth
manifoldsA, B, andS is itself orientable.
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7.4 The Invertible Factor Laws revisited

The Uncalibrated Delta Rule assigns some orientation to every transverse fiber
product. But are those orientations the Proper Orientations? As a first stab at that
issue, let’s analyze whether or not the orientations assigned by the Uncalibrated
Delta Rule obey the Invertible Factor Laws. It turns out thatthey do obey the
Right Invertible Law, but they sometimes violate the Left Invertible Law.

7.4.1 The Right Invertible Law

We begin with the Right Invertible Law, which applies only when the dimensions
b and s of the linear spacesB and S are equal and the right-hand factor map
g : B→ S is invertible. In such cases, the mapu : A×S B→ A that projects onto
the first coordinate is a bijection, and the Right InvertibleLaw tell us to orient
A ×S B so that sgn(u) = sgn(g), that is, so thatu(A ×S B)/A = g(B)/S =
sgn(g)♦. Does the Uncalibrated Delta Rule concur?

Wheng is invertible, the fiber productP := A×S B consists of all pairs of
the form(α, g−1( f (α))), for α in A. As a complementC for P in D = A× B,
it is convenient to choose all pairs of the form(0, β), for β in B. That is, we set
C := (0A←B, 1B←B)(B) as an oriented linear space.

We now guess an orientation forP itself, settingP′ := (1A←A, g−1 ∘ f )(A).
By testing whether or not(P′ ⊕ C)/D = 1(C)/S, as in Equation 7-3, we can
then determine whether the Uncalibrated Delta Rule setsP := P′ or P := −P′.
For future reference, note thatu(P′) = A, sou(P′)/A = +♦.

We haveP′ ⊕ C = 8(D) = 8(A× B), where8 : A× B → A× B is the
linear map

8 =

(

1A←A 0A←B

g−1 ∘ f 1B←B

)

,

here expressed as a matrix of maps, as discussed in Section 5.4. Note that our
recipe forP′ = (1A←A, g−1 ∘ f )(A) has become the first column of this 2-by-2
matrix, while our recipe for the complementC = (0A←B, 1B←B)(B) has become
its second column. Each column gets formed using Equation 5-6, and the two
columns then get pasted together using Equation 5-7. We can easily zero out the
entry g−1 ∘ f in this matrix, either by subtracting an appropriate multiple of the
second column from the first or by subtracting an appropriatemultiple of the first
row from the second. So we have(P′ ⊕ C)/D = sgn(8)♦ = +♦.

What about the quotient1(C)/S on the right-hand side of Equation 7-3? As
a matrix of maps, we have

1 =
(

− f g
)

.

So we find that

1(C) =
(

− f g
)
(

0A←B

1B←B

)

(B) = g(B),
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which means that1(C)/S= g(B)/S= sgn(g)♦. The Uncalibrated Delta Rule
thus insists that(P ⊕ C)/D = sgn(g)♦. Since(P′ ⊕ C)/D = ♦, we conclude
that P = sgn(g)P′ and hence thatu(A×S B)/A= u(P)/A = sgn(g) u(P′)/A =
sgn(g)♦, just as the Right Invertible Law requires.

7.4.2 The Left Invertible Law

Symmetrically, the Left Invertible Law applies whena = s and the factor map
f : A→ S is invertible. In such cases, the projectionv : A×S B → B onto the
second coordinate is a bijection, and the Left Invertible Law tell us to arrange that
sgn(v) = sgn( f ), that is, thatv(A×S B)/B = f (A)/S = sgn( f )♦. Does the
Uncalibrated Delta Rule concur with this? Sadly, not always.

The fiber productP := A×S B is the set of pairs( f −1(g(β)), β), for β in B.
We setP′ := ( f −1 ∘ g, 1B←B)(B), noting for future reference thatv(P′)/B = ♦.

As our complementC for P in A × B, we take all pairs of the form(α, 0).
That is, we setC := (1A←A, 0B←A)(A). We then haveP′⊕C = 9(B× A), where
9 : B× A→ A× B is the map

9 =

(

f −1 ∘ g 1A←A

1B←B 0B←A

)

.

The entry f −1 ∘ g is easy to zero out; but the map that remains is the swapping
isomorphism fromB × A to A× B, which has determinant(−1)ab. So we have
(P′ ⊕ C)/D = (−1)ab♦.

On the right-hand side, we have

1(C) =
(

− f g
)
(

1A←A

0B←A

)

(A) = ¬( f (A)),

where¬ is the negating map introduced in Exercise 5-3. Since the dimension
of S = f (A) is s = a, we end up with1(C) = (−1)a f (A) and hence we
have1(C)/S= (−1)a f (A)/S= (−1)a sgn( f ). The Delta Rule thus insists that
(P ⊕C)/D = (−1)a sgn( f )♦. Since(P′ ⊕ C)/D = (−1)ab♦, we conclude that
P = (−1)a−ab sgn( f )P′ and hence that

v(A×S B)/B = v(P)/B = (−1)a−ab sgn( f ) v(P′)/B = (−1)a(1−b) sgn( f )♦.

When eithera is even orb is odd, this concurs with the Left Invertible Law. But
whena is odd andb is even, it does not concur. Moral: The Delta Rule must be
recalibrated to get the Proper Orientations in the any-dimensional case.

Exercise 7-8 Peeking ahead to Section 9.3, the factor that recalibrates the Delta
Rule for the binary, any-dimensional case turns out to be(−1)s(b−s). Whens= a,
verify that this agrees with the(−1)a(1−b) that we just computed.

Hint: An integer, its negation, and its square always have the same parity.
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7.5 Equidimensional propriety

The equidimensional case is a happier story: Even the Uncalibrated Delta Rule
assigns the Proper Orientation to every equidimensional transverse fiber product.
To flesh out this claim, we first have to define what the Proper Orientations are in
the equidimensional case, which turns out to be uncontroversial. We then verify
that the Uncalibrated Delta Rule produces those Proper Orientations.

7.5.1 The all-invertible case

Before we tackle the full equidimensional case, let’s analyze theall-invertible
case, the subcase in which all of the factor maps are invertible.

Consider an equidimensional fiber productP := A1[ f1] ×S · · · ×S [ fn] An of
linear spaces. When all of the factor maps( fi ) are invertible, we shall refer to
the fiber product asall-invertible. Note that most equidimensional fiber products
are all-invertible. If we think of the entries in the matrices of the factor maps as
independent variables, those variables have to satisfy a certain algebraic relation
in order for det([ fi ]) to be zero; so the failure of all-invertibility is already a form
of degeneracy. The failure of transversality is even more degenerate, since at least
two of the determinants must be zero before the maps( f1, . . . , fn) can become
non-transverse, as we saw in Exercise 4-4.

The all-invertible case, in addition to being the most common, is particularly
easy to analyze, since we can appeal to the All Invertible Lawfrom Exercise 4-6:

sgn( f1×S · · · ×S fn) = sgn( f1) · · · sgn( fn).

Writing our quotients with numerator atop denominator to save space, this law
becomes

( f1×S · · · ×S fn)(P)

S
=

f1(A1)

S
× · · · ×

fn(An)

S
.(7-9)

The left-hand side makes sense because, when all of the factor maps are invertible,
the fiber-product mapf1×S · · ·×S fn : P→ S is also invertible, its inverse taking
a vectorσ in S to the point( f −1

1 (σ ), . . . , f −1
n (σ )) in the fiber productP.

The All Invertible Law tells us that the sign of the fiber-product map should be
the product of the signs of the factor maps. That seems elegant and compelling, so
we use it to define the Proper Orientation of any fiber product that is all-invertible.

Definition 7-10 When a fiber productA1[ f1]×S · · ·×S [ fn] An of linear spaces is
all-invertible, itsProper Orientationis that given by the All Invertible Law 7-9.

Exercise 7-11Consider an all-invertible fiber productA1[ f1] ×S · · · ×S [ fn] An.
Show that reversing the orientation of any single factor space Ai reverses the
Proper Orientation of the fiber product. But show that reversing the orientation
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of the base spaceS reverses the Proper Orientation of the fiber product just when
n is even.

Answer: The first claim is clear, sinceAi appears just once on the right-hand
side of Identity 7-9. For the second claim, note that there aren copies ofSon the
right-hand side and one on the left-hand side, for a total ofn + 1 copies. When
n is even,n + 1 is odd, so reversing the orientation ofS forces us to reverse the
orientation of the fiber product. Whenn is odd, on the other hand, the orientation
of the fiber product is independent of the orientation ofS.

Note that the second claim continues to hold in the casesn = 0 andn = 1.
The orientation of the nullary fiber product overS, which isS itself, does indeed
depend upon the orientation ofS, while the orientation of the unary fiber product
A1 overS, which is simplyA1, does not.

We next verify that the Uncalibrated Delta Rule gives the Proper Orientation
to every fiber product that is all-invertible.

Theorem 7-12 Consider any fiber product of linear spaces in which the factor
maps are all invertible. The Uncalibrated Delta Rule orients such a fiber product
in accord with the All Invertible Law 7-9 and hence gives thatfiber product its
Proper Orientation.

Proof Let P := A1[ f1] ×S · · · ×S [ fn] An be a fiber product in which all of the
factor maps are invertible. We first use an easy generalization of our analysis of
the Right Invertible Law in Section 7.4.1 to show that

u1(P)

A1
=

f2(A2)

S
× · · · ×

fn(An)

S
,(7-13)

where the mapu1 : P→ A1 is the projection from the fiber product to the leftmost
factor spaceA1. For this portion of the proof, we won’t need the assumption that
f1 is invertible. Note that Equation 7-13 is the casek = 1 of the All-but-One
Invertible Law 4-7, discussed in Exercise 4-6.

Since f2 through fn are invertible, the fiber productP consists of all tuples
of the form(α1, f −1

2 ( f1(α1)), . . . , f −1
n ( f1(α1))), for α1 in A1. As a complement

C for P in D = A1 × · · · × An, it is convenient to choose all tuples of the form
(0, α2, . . . , αn), for αi in Ai . More precisely, we setC := 8(A2× · · ·× An) as an
oriented linear space, where8 : A2× · · · × An → A1 × · · · × An is the obvious
injection, the map with matrix

[8] =










0 0 . . . 0
1 0 . . . 0
0 1 . . . 0
...
...
. . .

...

0 0 . . . 1










.
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We now guess an orientation for the fiber productP itself, settingP′ :=
(1A1←A1, f −1

2 ∘ f1, . . . , f −1
n ∘ f1)(A1). By testing whether or not(P′ ⊕ C)/D =

1(C)/Sn−1, as in Equation 7-3, we can then determine whether the Uncalibrated
Delta Rule setsP := ±P′. For future reference, note thatu1(P′)/A1 = ♦.

We haveP′ ⊕ C = 9(D) = 9(A1× · · · × An), where9 is the linear map

[9] =










1 0 0 . . . 0
f −1
2 ∘ f1 1 0 . . . 0

f −1
3 ∘ f1 0 1 . . . 0
...

...
...
. . .

...

f −1
n ∘ f1 0 0 . . . 1










obtained by pasting the recipe forP′ as a new column at the left of [8]. So we
have(P′ ⊕ C)/D = sgn(9)♦. We can easily zero out the subdiagonal entries in
the matrix for9; so we have sgn(9) = 1 and hence(P′ ⊕ C)/D = ♦.

What about the quotient1(C)/Sn−1 on the right-hand side of Equation 7-3?
The difference map1 : D→ Sn−1 has the matrix

[1] =










− f1 f2 0 . . . 0 0
0 − f2 f3 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . fn−1 0
0 0 0 . . . − fn−1 fn










,

as we saw in Section 7.2. So we have1(C) = 1(8(A2× · · · × An)), where

[1][8] =










f2 0 . . . 0 0
− f2 f3 . . . 0 0
...

...
. . .

...
...

0 0 . . . fn−1 0
0 0 . . . − fn−1 fn










.

Again, we can zero out the subdiagonal entries. So the Uncalibrated Delta Rule
insists that

P ⊕ C

D
=
1(C)

Sn−1
=

[1][8](A2× · · · × An)

Sn−1
=

f2(A2)

S
× · · · ×

fn(An)

S
.

Sinceu1(P′)/A1 = (P′ ⊕ C)/D = ♦, we conclude that

u1(P)

A1
=

u1(P′)

A1

P

P′
=

P′ ⊕ C

D

P

P′
=

P ⊕ C

D
=

f2(A2)

S
× · · · ×

fn(An)

S
,

just as Equation 7-13 requires.
We now suppose that the factor mapf1 is also invertible. We can then rewrite

the left-hand quotientu1(P)/A1 as f1(u1(P))/ f1(A1). Since the fiber-product
map f1 ×S · · · ×S fn agrees onP with fi ∘ ui for everyi , we can further rewrite
this as( f1 ×S · · · ×S fn)(P)/ f1(A1). Multiplying both sides byf1(A1)/S then
gives us the All-Invertible Law 7-9.⊔⊓
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7.5.2 Extending by continuity

The all-invertible case is now well under control. The All Invertible Law tells
us which orientation is the Proper Orientation. And the Delta Rule, even in its
current uncalibrated form, computes that Proper Orientation.

On the other hand, the any-dimensional case is still quite anopen challenge.
In particular, consider a fiber productA[ f ] ×S [g]B in which the factor mapsf
andg are transverse, but neither of them is invertible. The Invertible Factor Laws
then don’t apply. So it isn’t clear how to settle upon one of the two orientations of
A×S B as the proper one.

Continuity provides a way to settle this question in the equidimensional case.
In this section, we show that every transverse, equidimensional fiber product is
the limit of all-invertible fiber products. We can define the Proper Orientation of
the limit to be the limit of the Proper Orientations, once we have shown that the
latter limit is well-defined.

Fix oriented linear spacesA1 through An and S, all of the same dimension,
which we shall refer to ass; and consider what happens as we vary the factor
maps f1 through fn, but keep them always transverse. The point( f1, . . . , fn) then
varies in the space Trans(A1, . . . , An; S), which we can think of as an open subset
of Ra1s+···+ans = Rns2

. Recall that we can view the fiber-product operator as a map
P : Trans(A1, . . . , An; S)→ G(s, A1×· · ·×An). If we choose a rule for orienting
each fiber product, we get a mapEP : Trans(A1, . . . , An; S)→ EG(s, A1×· · ·×An);
and our chosen orientation rule is stable just when this latter map EP is continuous.
Let’s settle on the Uncalibrated Delta Rule as our orientation rule, lettingEP denote
the continuous map associated with that stable rule.

Let Inv(A1, . . . , An; S) denote the subset of Trans(A1, . . . , An; S) consisting
of those sequences( f1, . . . , fn) in which all of the mapsf1 through fn are invert-
ible. Claim: The set Inv(A1, . . . , An; S) is dense in Trans(A1, . . . , An; S).

Exercise 7-14Let ( f1, . . . , fn) be any point in the space Trans(A1, . . . , An; S),
where we are assuming that the dimensions ofA1 throughAn andS all coincide.
Show, by an explicit construction, that the point( f1, . . . , fn) lies on a line segment
in the space Trans(A1, . . . , An; S) ⊆ R

ns2
all of whose points are all-invertible,

with the possible exception of( f1, . . . , fn) itself.
Answer: For eachi from 1 ton, there exist lots of linear bijections fromAi to

S, since those spaces have the same dimension. Lethi : Ai → Sbe one such. We
then introduce a real parametert and we setfi,t := fi+ thi . This makes det([ fi,t ])
a polynomial int with leading term(det([hi ]))ts; so we will have det([ fi,t ]) = 0
for at mosts different values oft . Thus, alln of the mapsf1,t through fn,t will be
bijective for all nonzerot with |t | sufficiently small.

The map EP associated with the Uncalibrated Delta Rule assigns the Proper
Orientations to all of the fiber products in Inv(A1, . . . , An; S), by Theorem 7-12.
Since the mapEP is continuous on the larger set Trans(A1, . . . , An; S) in which
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Inv(A1, . . . , An; S) is dense, it is natural to use continuity in defining the Proper
Orientation for this wider class of fiber products.

Definition 7-15 If A1 throughAn andS are linear spaces of the same dimension
and the maps( f1, . . . , fn) are transverse but not all invertible, we define the Proper
Orientation of the fiber productA1[ f1]×S· · ·×S[ fn] An to be the unique orientation
that satisfies

A1[ f1] ×S · · · ×S [ fn] An = lim
t→0

A1[ f1,t ] ×S · · · ×S [ fn,t ] An,(7-16)

where( f1,t , . . . , fn,t) denotes any parameterized sequence of maps that satisfies
limt→0( f1,t , . . . , fn,t) = ( f1, . . . , fn) and that is all-invertible for all nonzerot
with |t | sufficiently small.

The continuity of the mapEP implies that the limit on the right-hand side in
Equation 7-16 will exist, as an oriented linear space, and that it won’t depend upon
which parameterized sequence( f1,t , . . . , fn,t) we choose.

Corollary 7-17 The Uncalibrated Delta Rule assigns the Proper Orientationto
every transverse, equidimensional fiber product.

Note that transversality remains crucial; we can’t use continuity to extend even
further, to a sequence of maps( f1, . . . , fn) that is not transverse. In such a case,
the dimension of the fiber productA1[ f1] ×S · · · ×S [ fn] An is larger than the
minimum possible, which isa1+ · · · + an − (n− 1)s = s. We may well be able
to realize such a sequence( f1, . . . , fn) as the limit of all-invertible sequences
( f1,t , . . . , fn,t) in such a way that the limit of the fiber products on the right in
Equation 7-16 is well defined. But that limit is then a proper subspace of the fiber
product on the left, and hence doesn’t help us to orient the latter. Indeed, every
s-dimensional subspace of the fiber product on the left, with either orientation,
can then be realized as one of the limits on the right.



Chapter 8

Mixed fiber products

The Uncalibrated Delta Rule gives an orientation to every transverse fiber product
of linear spaces, whether equidimensional or not. But we were forced to make
various arbitrary choices in setting up the Delta Rule, so the answers that it gets
aren’t always the proper ones. Indeed, we saw in Section 7.4.2 that its answers
sometimes violate the Left Invertible Law — a clear sign of impropriety. So we
are going to have to recalibrate the Delta Rule, in order to fixup the answers that
it gives in the any-dimensional case.

The recalibration itself is easy: We just insert the proper fudge factor. The hard
part is deciding what the Proper Orientation of a transversefiber product ought to
be, in general. We hope to find a compelling collection of axioms and a unique
orientation rule that satisfies those axioms. If so, we can define the orientations
produced by that unique rule to be the Proper Orientations, and we can then adjust
the fudge factor in the Delta Rule to produce them.

One obvious axiom to try for is commutativity:A ×S B = B ×S A. Once
we leave the equidimensional case, however, commutativitybecomes hopeless.
Indeed, we argue in Section 9.1.8 that commutativity is hopeless even for direct
products, and direct products are a special case of fiber products: the case in
which the base spaceS = ♦ is zero-dimensional. The best that we can hope
for, when orienting the direct products of oriented linear spaces, is the identity
A × B = (−1)abB × A. The analogous rule for the more general case of fiber
products turns out to beA×S B = (−1)(a−s)(b−s)B×S A.

While we can’t require commutativity, we are going to require associativity.
In fact, we can actually achieve something stronger than theobvious notion of
associativity. The obvious axiom requires(A×S B)×S C = A×S (B×S C). We
are going to require the stronger identity(A×S B)×T C = A×S(B×T C), where
the fiber products aremixed, meaning that the base spacesS andT may differ.
Generalizing to mixed fiber products in this way makes the axiom of associativity
significantly more powerful, and that extra power turns out to be just what is
needed to narrow down the field of possible orientation rulesto a unique, proper
choice. In this chapter, we generalize our underlying framework to deal with
mixed fiber products.
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Figure 8.1: The factor sets and factor maps of a pure fiber product
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Figure 8.2: The factor sets and factor maps of a mixed fiber product

8.1 Multiple base spaces

Cast your mind back to Section 4.5 where, in defining the fiber products of sets
and set maps, we adopted the particular setI = {1, . . . , n} as our standard index
set for ann-ary fiber product. We were then able to switch from writing

∏

S
i∈I

[ fi ] Ai

for the fiber product to writingA1[ f1]×S· · ·×S[ fn] An. And we were able to select,
from among all of the fiber-product constraintsfi (ai ) = f j (aj ), the nonredundant
constraintsfi (ai ) = fi+1(ai+1), for i from 1 ton−1. AdoptingI = {1, . . . , n} as
our standard index set also opened the door to a generalization of our underlying
framework that we didn’t exploit back in Section 4.5:mixedfiber products.

Consider Figures 8.1 and 8.2. The fiber products that we have been discussing
so far, which we shall henceforth callpure, start off with then factor setsA1

through An and with a single base setS, the i th factor setAi being equipped
with a factor mapfi : Ai → S. In contrast, ann-ary mixedfiber product starts
off with the n factor setsA1 throughAn and withn − 1 different base sets, say
S1 throughSn−1. The i th factor setAi comes equipped with two different factor
maps, aforward factor map fi : Ai → Si to the succeeding base set and also a
backward factor map gi : Ai → Si−1 to the preceding base set. In this way, each
of the n − 1 nonredundant constraints above becomes associated with its own
base set. The constraint that we wrote above asfi (ai ) = fi+1(ai+1) now becomes
fi (ai ) = gi+1(ai+1), an equality between elements of the base setSi . The mixed
fiber product

A1[ f1] ×S1 [g2] A2[ f2] ×S2 · · · ×Sn−1 [gn] An

is that subset of the direct productA1 × · · · × An consisting of those elements
(a1, . . . , an) for which fi (ai ) = gi+1(ai+1), for i from 1 ton−1. When the forward
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and backward fiber maps are clear from the context, we shall often abbreviate a
mixed fiber product simply asA1×S1 · · · ×Sn−1 An.

While the first and last factor spaces of a mixed fiber product have only one
associated factor map, each of the remaining, interior factor spaces is the domain
of two factor maps, one backward and one forward, which we write just before
and just after that space. This is in contrast to the pure case, where the interior
factor spaces have only one factor map, and we have our choiceabout whether to
write that map just before or just after. (In this monograph,that issue arose only
in Exercise 6-5, where we wrote the mapg beforeB in A[ f ] ×S [g]B×S [h]C.)

For binary fiber products, there is no distinction between the pure and mixed
cases: Figures 8.1 and 8.2 become indistinguishable whenn = 2, modulo the
choice of names. For unary fiber products, there is technically a distinction, but it
makes little difference. In a unary, pure fiber product, the single factor spaceA1

is equipped with a factor mapf1 : A1 → S; but the behavior of that map doesn’t
affect the result. In a unary, mixed fiber product, there are no factor maps.

Most of the theory of fiber products generalizes in a straightforward way from
the pure case to the mixed case. We discuss here only those areas where something
new happens.

8.2 The fiber-product maps

In the pure case, the fiber-product operation produces, as its outputs, both a set
and a map: the setA1×S · · · ×S An and the mapf1×S · · · ×S fn from that set to
S. In the mixed case, we again get a set:A1 ×S1 · · · ×Sn−1 An. But there are now
n−1 different base sets, so there aren−1 different fiber-product maps. Thei th of
these, fori from 1 ton−1, takes a point(a1, . . . , an) in the fiber-product set to the
common valuefi (ai ) = gi+1(ai+1) in the base setSi . In the rare situations when
we need a name for this map, we’ll refer to it ashi : A1×S1 · · · ×Sn−1 An→ Si .

8.3 The nullary case

In studying pure fiber products, we decided to treat the nullary case specially,
but at least it was clear what the nullary pure fiber product over S should be —
namely, the spaceS itself. Once we generalize to mixed fiber products, however,
it turns out that there is no natural way to handle the nullarycase.

Given a mixed fiber product

A1[ f1] ×S1 [g2] A2[ f2] ×S2 · · · ×Sn−1 [gn] An,

let g1 : A1 → T be any map from the factor setA1 to any nonempty setT , and
consider augmenting the product by addingT as an additional factor set and base
set on the left, as follows:

T [1] ×T [g1] A1[ f1] ×S1 [g2] A2[ f2] ×S2 · · · ×Sn−1 [gn] An.
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This augmentation leaves the fiber product essentially unchanged; each point
(a1, . . . , an) in it is simply augmented to become(g1(a1), a1, . . . , an). Setting
n = 0 in this augmented product suggests thatT might be a natural value for
the nullary mixed fiber product. But the setT was arbitrary, except for being
nonempty. If the base sets(S1, . . . , Sn−1) came from some natural sequence and
that sequence had a zeroth elementS0, then one might argue that the nullary mixed
fiber product should beS0. But it would make equal sense to augment from the
right, which would argue forSn instead. And, when the base sets(Si ) are arbitrary,
there is no reason to prefer any particular set forT . Therefore, when dealing with
mixed fiber products, we flatly outlaw the nullary case.

In almost all respects, mixed fiber products are more generalthan pure fiber
products. Indeed, we can restrict ourselves from the mixed case to the pure case
by constraining all of the base spaces to be equal:S1 = · · · = Sn−1; and by
constraining the forward and backward maps defined on any common factor space
to coincide: fi = gi for 1< i < n. The nullary case is the lone exception. When
we restrict ourselves to pure fiber products overS, we are limiting ourselves to a
world in which S is the only permissible base space; soS then becomes a natural
value for the nullary fiber product. It is precisely the fact that the mixed case is
more general, allowing lots of different base spaces, that forces us to abandon the
notion of a nullary fiber product.

8.4 Commutativity and associativity

In the pure case, the operator that takes fiber products over afixed base spaceS
is both commutative and associative. In the mixed case, on the other hand, each
fiber product involves a sequence of base spaces, each of which is related to the
factor spaces on either side of it by forward and backward factor maps. So there
is no hope for commutativity in general; the left-to-right order of the factor spaces
and of the base spaces is encoded in the factor maps.

What about associativity, in the mixed case? It takes a moment’s thought to
see that mixed fiber products can even be nested. Given indices i and j with
1 ≤ i ≤ j ≤ n and given then-ary mixed product

A1[ f1] ×S1 · · · ×Si−1 [gi ] Ai [ fi ] ×Si · · · ×Sj−1 [gj ] Aj [ f j ] ×Sj · · · ×Sn−1 [gn] An,

suppose that we want to compute the product fromAi throughAj first, as an inner
fiber productP := Ai [ fi ]×Si · · ·×Sj−1 [gj ] Aj . Roughly speaking, this corresponds
to adding in a pair of parentheses, getting

A1[ f1] ×S1 · · · ×Si−1 [g′i ]
(

Ai [ fi ] ×Si · · · ×Sj−1 [gj ] Aj

)

[ f ′j ] ×Sj · · · ×Sn−1 [gn] An,

or, equivalently,

A1[ f1] ×S1 · · · ×Si−1 [g′i ] P [ f ′j ] ×Sj · · · ×Sn−1 [gn] An.
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For this remaining, outer product to make sense, however, the setP must come
equipped with a backward factor map toSi−1 and a forward factor map toSj ,
the maps that we have written above asg′i and f ′j . To define those maps, we
exploit the fact that the inner fiber productP is a subset of the direct product
D := Ai × · · · × Aj . Let ui : D → Ai anduj : D → Aj be the projections of
D onto its first and last components. We then define the backwardfactor map
g′i : P→ Si−1 by settingg′i := gi ∘ ui and the forward factor mapf ′j : P→ Sj by
setting f ′j := f j ∘ uj . With this understanding, it is easy to check that mixed fiber
products can be nested and that the mixed-fiber-product operator is associative.

8.5 Linear spaces

We now specialize to the category of linear spaces and linearmaps. The input
data for a mixed fiber product in that category is two sequences of linear spaces,
connected by maps in the pattern of Figure 8.2. We shall referto such a structure
as azigzag. When we need to write a zigzag down in text, it saves space to collapse
all of its spaces and maps down onto a single line, like this:

A1
f1
−→ S1

g2
←− A2

f2
−→ · · ·

fn−1
−→ Sn−1

gn
←− An.

We could allow zigzags to end either on the top or on the bottom, that is,
to end either at a factor spaceAi or at a base spaceSi . But it is easy to pad a
zigzag, at either end, by adjoining zero-dimensional linear spaces and identically
zero linear maps; so it doesn’t matter too much where the zigzag officially ends.
Since we here use zigzags mostly as input to the mixed-fiber-product operator,
we’ll require our zigzags to have both their left and right ends on top. We refer to

A1
f1
→ S1

g2
← A2

f2
→ · · ·

fn−1
→ Sn−1

gn
← An as ann-ary zigzag, the input data for an

n-ary fiber product. So a unary zigzag consists of a single factor spaceA1, with no
base spaces and no factor maps. (And there is no such thing as anullary zigzag.)

Just as for pure fiber products, the linearity of thei th base spaceSi in a mixed,
n-ary fiber product lets us do a subtraction to measure the extent to which thei th

of the nonredundant constraints fails to hold. We define thedifference mapfor the

zigzagA1
f1
→ S1

g2
← A2

f2
→ · · ·

fn−1
→ Sn−1

gn
← An to be the map1 : A1×· · ·×An→

S1× · · · × Sn−1 given by

1(α1, . . . , αn) :=
(

g2(α2)− f1(α1), . . . , gn(αn)− fn−1(αn−1)
)

.

As in the pure case, we define a zigzag to betransversejust when the associated
difference map is surjective. It is precisely in the transverse case that the mixed
fiber productA1 ×S1 A2 ×S2 · · · ×Sn−1 An = Ker(1) has the minimum possible
dimension, which is(a1+ · · · + an)− (s1+ · · · + sn−1).

Note that generalizing from pure to mixed simplifies some parts of the theory.
The difference map in the mixed case takes its values in the spaceS1×· · ·×Sn−1,
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which is the direct product of all of the base spaces. In the pure case, because
S1 = · · · = Sn−1 = S, that product collapses toSn−1, which is more mysterious.
Similarly, the formula(a1 + · · · + an) − (s1 + · · · + sn−1) for the dimension
of a transverse, mixed fiber product is more enlightening than the corresponding
formula(a1+ · · · + an)− (n− 1)s in the pure case.

In the pure case, we can think of transversality as a propertyof a sequence
of S-valued linear maps. In the mixed case, however, if we want tothink of
transversality as a property about maps, we have to start with a sequence of pairs
of maps, the two maps in each pair being the forward and backward factor maps
whose values lie in a common base space. For example, the transversality of the
n-ary zigzag above, if we think in terms of maps, is the transversality of the maps
(( f1, g2), ( f2, g3), . . . , ( fn−1, gn)).

Proposition 4-9 showed that the property of transversalityis associative, in
the pure case. That associativity carries over to the mixed case, and for the same
reason: Suppose that we compute an overall fiber product in a nested fashion, first
combining some of the factor spaces in an inner fiber product and then combining
that result with the remaining factor spaces in an outer fiberproduct. The overall
product is transverse just when both the inner and outer products are transverse,
since both of those events happen just when the final fiber-product space has the
minimum possible dimension.

To ensure that this is clear, let’s state the mixed-case analog of Proposition 4-9.
The proof for the mixed case is essentially the same as for thepure case.

Proposition 8-1 Let A1
f1
→ S1

g2
← A2

f2
→ · · ·

fn−1
→ Sn−1

gn
← An be ann-ary zigzag,

and leti and j be integers with1 ≤ i ≤ j ≤ n. Let P denote the inner, mixed
fiber productP := Ai [ fi ] ×Si [gi+1] Ai+1[ fi+1] ×Si+1 · · · ×Sj−1 [gj ] Aj of the factor
spaces fromAi throughAj . The overall,n-ary zigzag is transverse just when

• the zigzagAi
f i
→ Si

gi+1
← Ai+1

fi+1
→ · · ·

f j−1
→ Sj−1

gj
← Aj associated with inner

fiber productP is transverse

• and the zigzagA1
f1
→ · · ·

fi−1
→ Si−1

g′i
← P

f ′j
→ Sj

gj+1
← · · ·

gn
← An associated

with the outer fiber product is transverse. The spaceP is a single factor
space of this outer fiber product, and its forward and backward factor maps
are the mapsf ′j andg′i defined in Section 8.4.

Exercise 8-2 Consider a ternary zigzagA
f
→ S

g
← B

h
→ T

k
← C. If we compute

the mixed fiber productA[ f ] ×S [g]B[h] ×T [k]C in one step, the associated
difference map will be the map1 : A× B×C→ S× T given by1(α, β, γ ) :=
(g(β)− f (α), k(γ )−h(β)). If we compute that same product in the nested fashion
(

A[ f ]×S[g]B
)

[h′]×T [k]C, the inner and outer fiber products have the difference
maps1I : A× B→ Sand1O : (A[ f ] ×S [g]B)× C→ T given by

1I (α, β) := g(β)− f (α)

1O((α, β), γ ) := k(γ )− h′(α, β) = k(γ )− h(β).
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Proposition 8-1 tells us that the overall difference map1 will be surjective just
when both the inner and outer difference maps1I and1O are surjective. Verify
this directly.

Answer: Suppose first that1 is surjective. To see that1I is surjective, for any
σ in S, chose an arbitraryτ in T ; there exists(α, β, γ ) with 1(α, β, γ ) = (σ, τ ),
from which it follows that1I (α, β) = σ . To see that1O is surjective, for anyτ
in T , there exists(α, β, γ ) with 1(α, β, γ ) = (0, τ ). From this, it follows that
the pair(α, β) lies in the fiber productA[ f ]×S [g]B and that1O((α, β), γ ) = τ .

Conversely, suppose that both1I and1O are surjective, and let(σ, τ ) be any
point in S× T . There exists(α1, β1) with 1I (α1, β1) = σ . And then there exists
((α2, β2), γ2) with f (α2) = g(β2) and1O((α2, β2), γ2) = τ +h(β1). From these,
it follows that1(α1+ α2, β1+ β2, γ2) = (σ, τ ).

Exercise 8-3 Generalize the Invertible Factor Laws from then-ary pure case, as
in Exercise 4-6, to then-ary mixed case.

Answer: In the mixed fiber product

P := A1[ f1] ×S1 [g2] A2[ f2] ×S2 · · · ×Sn−1 [gn] An,

let hi : P → Si denote thei th fiber-product map, fori from 1 ton − 1. And let
ui : P→ Ai denote thei th projection, fori from 1 ton. So we havehi = fi ∘ui =
gi+1 ∘ ui+1, for i from 1 ton− 1. And we then have

sgn(ui ) = sgn( f1) · · · sgn( fi−1) sgn(gi+1) · · · sgn(gn)

sgn(ui+1) = sgn( f1) · · · sgn( fi ) sgn(gi+2) · · · sgn(gn)

sgn(hi ) = sgn( f1) · · · sgn( fi ) sgn(gi+1) · · · sgn(gn).

In any of these formulas, when all of the maps on the right-hand side are invertible,
then the map on the left will also be invertible, and we shouldorient the mixed
fiber productP so as to make the equality hold.

8.6 Stable orientation rules

If we fix the factor spacesA1 through An and the base spacesS1 throughSn−1,
what is still needed to specify a mixed fiber product are the forward factor maps
( f1, . . . , fn−1) and the backward factor maps(g2, . . . , gn). Let’s define

Trans(A1, . . . , An; S1, . . . , Sn−1)

to be those sequences of maps( f1, . . . , fn−1; g2, . . . , gn) that are transverse, that
is, those for which the resulting difference map1 is surjective. Lettingp :=
(a1 + · · · + an) − (s1 + · · · + sn−1) denote the dimension of the resulting fiber
products, we can think of the mixed-fiber-product operator as a mapping

P : Trans(A1, . . . , An; S1, . . . , Sn−1)→ G(p, A1× · · · × An).
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If the spacesA1 throughAn andS1 throughSn−1 are oriented, then an orientation
rule for mixed fiber products converts this into a mapping

EP : Trans(A1, . . . , An; S1, . . . , Sn−1)→ EG(p, A1× · · · × An).

An orientation rule isstablejust when this mapping is continuous.

8.7 Smooth manifolds

Once we understand mixed fiber products of linear spaces, we could go on to
study mixed fiber products of smooth manifolds. In the transverse case, such
a fiber product will again be a smooth manifold, by an easy generalization of
Proposition 4-12. (Indeed, if we evaluate ann-ary mixed fiber product as a nested
sequence ofn − 1 binary fiber products, we can then apply Proposition 4-12 as
stated, since, for binary products, there is no distinctionbetween pure and mixed.)
Furthermore, by an easy generalization of Proposition 6-10, any orientation rule
for the transverse, mixed fiber products of linear spaces that is stable and that
respects isomorphisms will lift to an orientation rule for the transverse, mixed
fiber products of smooth manifolds. But it wouldn’t require any new ideas to push
the theory in this direction, so we shan’t bother to do so. Instead, we shall continue
to focus on linear spaces and linear maps.



Chapter 9

Propriety via axioms

So our new goal is as follows: Given any transverse zigzagA1
f1
→ S1

g2
← A2

f2
→

· · ·
fn−1
→ Sn−1

gn
← An in which all of the factor spacesA1 through An and base

spacesS1 throughSn−1 are oriented, find a rule that orients the mixed fiber product
A1 ×S1 A2 ×S2 · · · ×Sn−1 An. We want our rule to satisfy as many pretty axioms
as possible. In particular, we require that the rule be stable and that it respect
isomorphisms, so that it will lift to give us an analogous rule for orienting the
transverse, mixed fiber products of smooth manifolds.

The subtle issue is finding a family of axioms that is consistent and complete.
Consistent means that there is some orientation rule that satisfies all of our axioms.
Complete means that there is only one such rule; that is, we have imposed enough
axioms to eliminate any flexibility in the choice of the orientation rule. Once we
have a consistent and complete family of axioms, it is straightforward to construct
the unique orientation rule that satisfies them: We simply calibrate the Delta Rule
(after generalizing it to the mixed case) so that it satisfiesour axioms.

By the way, we shall feel free to add in lots of axioms, provided that they are
consistent, in our quest for completeness. In particular, we make no attempt to
arrange that each of our axioms be independent of the others.

9.1 The axioms

In stating our axioms, it is convenient to focus on the binarycase. Define abinary

problem instanceto be a transverse, binary zigzagA
f
→ S

g
← B whose spaces

A, B, and S are oriented. Abinary orientation rulechooses, for every binary

problem instanceA
f
→ S

g
← B, one of the two possible orientations on the fiber

productA[ f ] ×S [g]B. We give our axioms as restrictions on the behavior of a
binary orientation rule.

Define aternary problem instance, analogously, to be a transverse, ternary

zigzagA
f
→ S

g
← B

h
→ T

k
← C whose five spaces are oriented. The associativity

law (A×S B)×T C = A×S (B×T C) for ternary problem instances will be one

105
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of our axioms. Because of this, there is no need for us to definea notion of a
“ternary orientation rule”, or an “n-ary orientation rule” for anyn > 2. If a binary
orientation rule satisfies that associativity axiom, then we can extend it uniquely
into an orientation rule for transverse, mixed fiber products A1×S1 A2×S2 · · ·×Sn−1

An of any arityn, since all ways of evaluating such ann-ary fiber product using
n− 1 nested binary fiber products will give the same result.

9.1.1 The Isomorphism Axiom

We want our rule for orienting the fiber productA[ f ] ×S [g]B to be based solely
on the abstract structure of the linear spacesA, B, andS, the orientations on those
linear spaces, and the abstract structure of the linear mapsf and g. We don’t
want the rule to flip a coin. We don’t want its decision influenced by extraneous
properties, such as the colors that the elements ofA, B, or S might happen to be
painted. To enforce these restrictions, we insist that the rulerespect isomorphisms,
that is, that it give isomorphic answers to isomorphic problem instances.

If A
f
→ S

g
← B and A′

f ′
→ S′

g′
← B′ are two binary problem instances, what

does it mean for them to be isomorphic? No surprise: They are isomorphic just
when there exist orientation-preserving bijections between corresponding spaces
that commute with the factor maps:

SA B

S′A′ B′

- �

- �
? ? ?

f g

f ′ g′
ϕ ψχ

(9-1)

That is, there must exist mapsϕ : A→ A′, ψ : B→ B′, andχ : S→ S′ that are
orientation-preserving bijections and that satisfyχ ∘ f = f ′∘ϕ andχ ∘g = g′∘ψ .

Given two problem instancesA
f
→ S

g
← B and A′

f ′
→ S′

g′
← B′ that are

isomorphic, the resulting fiber products are also isomorphic, at least up to orien-
tation. In particular, consider the mapω : (A ×S B) → (A′ ×S′ B′) defined by
ω(α, β) := (ϕ(α), ψ(β)). This definition makes sense because the fiber product
A×SB is a subset of the direct productA×B and because the unprimed constraint
f (α) = g(β) implies the primed constraintf ′(ϕ(α)) = χ( f (α)) = χ(g(β)) =
g′(ψ(β)). The mapω is easily seen to be bijective. A binary orientation rule
satisfies theIsomorphism Axiomjust when, in this situation, it always orients the
unprimed and primed fiber products so thatω preserves orientation.

9.1.2 The Stability Axiom

We want our rule for orienting linear-space fiber products tolift to a rule for ori-
enting smooth-manifold fiber products. Hence, as we discussed in Chapter 6, we
must require stability. We enshrine this requirement as theStability Axiom: Our
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orientation rule for binary problem instances must bestable, in the sense of the
equivalent Definitions 6-6 and 6-7.

9.1.3 The Reversing Axioms

Reversing the orientation on any one of the spacesA, B, or S, while leaving the
factor mapsf andg unchanged, must reverse the orientation on the fiber product
A[ f ] ×S [g]B. In symbols, we can write thisReversing Axiomas follows:

(−A)×S B = A×S (−B) = A×(−S) B = −(A×S B).

We shall sometimes split this axiom into three pieces: theLeft Reversing Axiom,
theRight Reversing Axiom, and theBase Reversing Axiom.

Reversing the orientation of a base space is another situation where mixed
fiber products are simpler than pure ones. Note that a mixed,n-ary fiber product
A1 ×S1 A2 ×S2 · · · ×Sn−1 An hasn − 1 different base spaces,S1 through Sn−1.
Reversing any one of them reverses the fiber product — no mystery there. In the
pure case, however, our only option is to reverse alln−1 of them simultaneously,
since they are all copies of a single base spaceS. That explains why, as we noted
in Exercise 7-11, the orientation of a pure,n-ary fiber productA1 ×S · · · ×S An

depends on the orientation of the base spaceS just whenn− 1 is odd.

9.1.4 The Both Identities Axiom

Consider the particular binary problem instanceS
1
→ S

1
← S, in which both of

the factor spacesA and B coincide with the base spaceS and both of the factor
maps f andg are the identity 1:S→ S. The fiber productS×S S is naturally
isomorphic toS, and the fiber-product map 1×S 1 is that isomorphism: the map
that takes(σ, σ ) to σ . TheBoth Identities Axiomrequires that the spaceS×S Sbe
oriented so that the map 1×S 1 preserves orientation. In symbols, we shall write
this axiom simply as

S×S S= S,

where each factor map is understood to be the identity.
If we combine the Both Identities Axiom with the Left and Right Reversing

Axioms, we deduce that(−S)×SS= S×S(−S) = −S, while (−S)×S(−S) = S.
If we further combine those axioms with the Isomorphism Axiom, we can handle

any problem instanceA
f
→ S

g
← B in which both f andg are invertible; any such

problem instance is isomorphic to one of the four particularinstances

S
1
→S

1
← S

S
1
→S

1
← (−S)

(−S)
1
→S

1
← S

(−S)
1
→S

1
← (−S),



108 CHAPTER 9. PROPRIETY VIA AXIOMS

according as the mapsf andg either preserve or reverse orientation.

Exercise 9-2 One reason why the equidimensional case is easy is that we have
already listed enough axioms to determine that case completely. Suppose that we
require the Isomorphism Axiom, the Stability Axiom, the Left and Right Revers-
ing Axioms, and the Both Identities Axiom. Show that every equidimensional,
binary, transverse fiber product then has a well-determinedorientation.

Sketch: By the Stability Axiom, it suffices to consider problem instances in
which both of the factor mapsf andg are invertible. By the Left and Right Re-
versing Axioms, we can further assume that bothf andg preserve orientation. By
the Isomorphism Axiom, we can then assume that we have the particular problem

instanceS
1
→ S

1
← S, whose answer is+Sby the Both Identities Axiom.

Exercise 9-3 In equidimensional cases, show that theCommutativity Axiom, the
axiom A×S B = B×S A, follows from our other axioms.

Answer: By the Stability and Isomorphism Axioms, it sufficesto consider the
four cases in whichA andB are either+Sor−S, with both factor mapsf andg
being the identity 1:S→ S. By the Reversing and Both Identities Axioms, those
four cases do commute.

9.1.5 The Left Identity Axiom

In order to nail down the Proper Orientations for problem instances that are not
equidimensional, we need further axioms. One thing to consider is what should
happen when one of the factor maps is the identity, but the other is not.

Consider a binary problem instance of the formS
1
→ S

g
← B, in which the left

factor spaceA coincides with the baseS and the left factor mapf is the identity
1: S→ S, but the right factor space and factor map are unconstrained. In such a
case, projection onto the right factor is an isomorphism between the fiber product
S×SB and the right factor spaceB, and theLeft Identity Axiomrequires thatS×SB
be oriented so as to make this isomorphism preserve orientation. In symbols, we
encode this axiom as the formulaS×S B = B. From another perspective, this
formula asserts that the identity map 1:S→ Sshould act as a left identity for the
fiber product, viewed as a binary operation on maps toS.

The Left Identity Axiom combines with the Left Reversing Axiom to give
us the formula(−S) ×S B = −B. If we add in the Isomorphism Axiom, we
can handle any problem instance in which the left factor mapf is invertible,
whether it preserves or reverses orientation. Thus, we now have sufficient axioms
to guarantee that our orientation rule will obey the Left Invertible Law.

The Left Identity Axiom is stronger than the Both IdentitiesAxiom, of course,
the latter being the special case of the former in whichB := Sandg := 1.
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9.1.6 The Right Identity Axiom

TheRight Identity Axiomis symmetric. It requires thatA×SS= A, and imposing
it guarantees that our orientation rule will obey the Right Invertible Law.

9.1.7 The Axiom of Mixed Associativity

The key axiom that nails down the Proper Orientations in non-equidimensional
cases is the Axiom of Mixed Associativity. Here is where we reap our reward for
generalizing from pure to mixed fiber products.

Let A
f
→ S

g
← B

h
→ T

k
← C be a ternary problem instance. Since the maps

(( f, g), (h, k)) are then transverse, it follows, as in Exercise 8-2, that allfour of
the following are binary problem instances with transversepairs of maps:

A
f
→ S

g
← B

(A×S B)
h′
→ T

k
← C

B
h
→ T

k
← C

A
f
→ S

g′
← (B×T C)

Here, we have writtenh′ for the forward factor map on the second line just to
remind ourselves that we must project from the fiber productA ×S B onto its
right-hand factorB before we can apply the maph to get toT . The mapg′ on
the fourth line is similar. Since these four binary problemsare transverse, the two
nested fiber products(A×S B)×T C andA×S(B×T C) are well defined. They are
also canonically isomorphic. TheAxiom of Mixed Associativityrequires that they
be oriented so that the canonical isomorphism preserves orientation. In symbols,
we have(A×S B)×T C = A×S (B×T C).

Warning: Associativity is often used as a rewrite rule; but this axiom has a
side condition that we must check, before doing such a rewriting. Suppose that
we come across a nested, binary fiber product in some calculation of ours, say
(A×S B)×T C. Before we can use the Axiom of Mixed Associativity to move the
parentheses to the right, we must check that we actually havea ternary problem
instance. Transversality isn’t typically a problem, since, when the inner and outer
binary products are transverse, the ternary product is alsotransverse. But there
is a more basic reason why there might not be a ternary product, an issue about
the left factor map of the outer product. Let’s call that mape: A×S B → T , so
our current product is actually(A×S B)[e] ×T C. To apply the Axiom of Mixed
Associativity, we need a factor maph : B → T . Our context may well supply
such a maph, a map with the property thate(a, b) = h(b), for every point(a, b)
in A ×S B. Our mape can then play the role ofh′ and the Axiom of Mixed
Associativity will apply. But we must check for the existence of the maph as a
side condition. If the valuee(a, b) depended ona, as well as onb, then no such
maph could be defined and the Axiom of Mixed Associativity wouldn’t apply.
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9.1.8 The issue of commutativity

Commutativity is a frequent companion to associativity. But there is no hope for
an oriented fiber-product operation to be commutative in full generality.

Proposition 9-4 A rule for orienting the transverse fiber products of linear spaces,
if it satisfies the Isomorphism Axiom, cannot be fully commutative.

Proof In the hoped-for identityA ×S B = B ×S A, consider a case in which
S := ♦ is zero-dimensional and positively oriented, while bothA and B are
1-dimensional, say withA = 〈α〉 and B = 〈β〉. The two factor mapsf andg
must be identically zero, and those maps are transverse. Thefiber-productA×S B
is the entire planeA× B, for which the vectors(α, 0) and(0, β) form an obvious
basis. Our orientation rule will determine which comes first, (α, 0) or (0, β), in a
positive basis for the planeA×S B. Lettingη denote±1 as appropriate, we have

A×S B = η〈(α, 0), (0, β)〉.(9-5)

What would commutativity mean, in this case? Letϒ : A×B→ B×A be the
swapping map, the map defined byϒ(xα, yβ) := (yβ, xα), for all real numbersx
andy. For commutativity to hold, we would have to haveϒ(A×♦ B) = B×♦ A.
Substituting in from Equation 9-5, we would need

B×♦ A = ϒ
(

η〈(α, 0), (0, β)〉
)

= η〈(0, α), (β, 0)〉.(9-6)

But our original problem instanceA
0
→ ♦

0
← B is also isomorphic to the

swapped problem instanceB
0
→ ♦

0
← A as follows:

♦A B

♦B A

- �

- �
? ? ?

0 0

0 0

ϕ ψ0

Here, the mapϕ : A → B is given byϕ(tα) := tβ, for all real numberst ; and
the mapψ : B → A is ψ := ϕ−1. The Isomorphism Axiom requires that the
combined mapϕ×ψ : A×♦ B→ B×♦ A preserve orientation, so we must have
(ϕ×ψ)(A×♦ B) = B×♦ A. This time, when we substitute in from Equation 9-5,
we find that

B×♦ A = (ϕ × ψ)
(

η〈(α, 0), (0, β)〉
)

= η〈(β, 0), (0, α)〉.(9-7)

But Equations 9-6 and 9-7 are flatly contradictory.⊔⊓

In fact, this result is not really about fiber products, but rather about direct
products, the direct productA× B being just that special case of the fiber product
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A× B = A×♦ B in which the base space is♦. Thus, Proposition 9-4 actually
proves that there is no rule for orienting the direct products of oriented linear
spaces that is both commutative and respects isomorphisms.

So we aren’t going to get full commutativity. To enable our application to
CAGD and robotics, commutativity had better hold for equidimensional problem
instances. But that is already guaranteed without any need for additional axioms,
as we saw in Exercise 9-3.

9.1.9 The Concatenate Axiom

Consider a binary problem instance of the formA
f
→ ♦

g
← B. The factor mapsf

andg must both be identically zero, so the fiber product will be theentire direct
product: A ×♦ B = ±(A × B). If our axioms are going to be complete, we
need some axiom that determines the proper orientation for such a fiber product.
We have already chosen to use the Concatenate Rule to orient direct products.
The most straightforward thing to do is to use that same rule also for these fiber
products. So, theConcatenate Axiomrequires thatA ×♦ B = A × B, where
the direct product on the right-hand side is oriented using the Concatenate Rule.
That is, the positive basis forA precedes the positive basis forB in assembling a
positive basis forA×♦ B.

There is some unavoidable arbitrariness about this choice.If we liked, we
could instead adopt theConcatenate-Backwards Axiom, which says thatA×♦B =
B × A = (−1)ab(A × B). We simply have to choose something, and either of
those choices turns out to be consistent with our other axioms.

Exercise 9-8 Suppose we take the base spaceS to be the direct product of the
oriented spacesA and B, oriented via the Concatenate Rule — so we haveS =
A× B. And suppose that we take our factor maps to be the standard injections;
so f : A → A× B is given by f (α) := (α, 0), while g : B → A× B is given
by g(β) := (0, β). Those two factor maps are always transverse, and the fiber
product A ×S B = A ×(A×B) B is always zero-dimensional, representing the
transverse intersection of theA and B axes in the direct productA × B, as in
Section 4.7.2. Is that intersection oriented positively ornegatively?

Answer: It turns out thatA×(A×B) B = (−1)ab♦.
This result might lead some readers to suspect that we are making a mistake

by adopting the Concatenate Axiom. The Concatenate-Backwards Axiom would
eliminate the factor of(−1)ab in this formula; would that be the better choice?
No. To see why not, try extending the example in this exercisefrom a binary
intersection to a ternary one. WithS := A× B × C as our base space, we need
to take the pairwise productsA × B, B × C, and A × C as our factor spaces,
rather than the individual spacesA, B, andC. But in which order should we put
those three products? SurelyB × C should go first, since it is the factor space in
which A is missing. Indeed, after adopting the Concatenate Axiom, we shall find
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in Exercise 10-21 that the fiber product(B×C)×S (A× C)×S (A× B), which
is zero-dimensional, is always positively oriented. The general,n-ary formula is

(Â1× · · · × An)×S (A1× Â2× · · · × An)×S · · · ×S (A1× · · · × Ân) = +♦,

whereS = A1 × · · · × An and the hats indicate omitted factors. Going back to
the binary casen = 2, we should have considered the reversed productB×S A =
B ×(A×B) A, sinceB is the factor space in whichA is missing; and, under the
Concatenate Axiom, that product is the simple one:B×(A×B) A = ♦.

9.2 Completeness

The axioms in our list, while they are far from independent, are both consistent
and complete. We first show their completeness.

Lemma 9-9 Let M
p
→ U

q
← N be a binary problem instance; so the mapsp and

q are transverse and the spacesM, U , andN are oriented. LetL be any oriented
linear space, and recall, from Section 5.4, that the map0=‖ p : L × M → U is
defined by(0=‖ p)(λ, µ) = 0(λ)+ p(µ) = p(µ). If we assume the Isomorphism,
Mixed Associativity and Concatenate Axioms, we then have

L ×
(

M[ p] ×U [q]N
)

= (L × M)[0=‖ p] ×U [q]N,

as an equality between oriented linear spaces.

Proof We first apply the Axiom of Mixed Associativity to the ternaryproblem

instanceL
0
→ ♦

0
← M

p
→ U

q
← N, getting

L[0] ×♦ [0]
(

M[ p] ×U [q]N
)

=
(

L[0] ×♦ [0]M
)

[ p′] ×U [q]N,

wherep′ : L ×♦ M → U is the map given byp′(λ, µ) = p(µ). We then apply
the Concatenate Axiom, on each side, to replace the fiber products over♦ with
direct products, noting that the mapp′ then becomes the map 0=‖ p. (We need the
Isomorphism Axiom, on the right-hand side, to ensure that the outer fiber product
doesn’t flip to the opposite orientation when we apply the Concatenate Axiom to
its left factor space.)⊔⊓

Theorem 9-10 There is at most one orientation rule for transverse, binaryfiber
products of oriented linear spaces that satisfies these five axioms: Isomorphism,
Stability, Left Identity, Mixed Associativity, and Concatenate.

Proof Given any binary problem instanceA
f
→ S

g
← B, we claim that the

orientation of the fiber productA[ f ] ×S [g]B is determined by the listed axioms.
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We first apply Lemma 9-9 to the original instanceA
f
→ S

g
← B with L := S,

learning that

S×
(

A[ f ] ×S [g]B
)

= (S× A)[0=‖ f ] ×S [g]B.

The fiber product on the left in this equality is the arbitraryone that we started
with, while the fiber product on the right has a left factor,S× A, whose dimension
is at least the dimension of the base spaceS. Hence, it will suffice for us to

demonstrate that all binary problem instancesA
f
→ S

g
← B in which a ≥ s

are determined. (In fact, we could restrict ourselves further to binary problem
instances in whicha ≥ s and the valuesf (α) of the left-hand factor map don’t
depend upon the firsts coordinates of the vectorα in A. But we won’t need that
additional restriction.)

In any problem instance witha ≥ s, there always exist linear surjections
from A onto S, so leth : A→ S be one such. There are only finitely many real
numberst for which the linear combinationf + th will fail to be a surjection.
Hence, perturbing the first factor map to beft := f + th while leaving the second
factor map alone,gt := g, will guarantee transversality for all real numberst that
are sufficiently close to zero: Im( ft)+Im(gt) = S+Im(g) = S. Thus, our current

problem instanceA
f
→ S

g
← B is the limit of problem instancesA

ft
→ S

gt
← B

in which the first factor mapft is surjective. By the Stability Axiom, it suffices to
show that all instances of this latter type are determined.

So suppose that the mapf in the problem instanceA
f
→ S

g
← B is surjective.

Let C be some complement of Ker( f ) in A, viewed for now as unoriented; we’ll
orient C in a moment. The linear mapf gives us a bijection fromA/Ker( f )
to Im( f ) = S and hence also a bijection fromC to S; call that latter bijection
f̄ : C → S, and orientC so that the bijectionf̄ preserves orientation. And let
K denote the linear space Ker( f ), oriented so thatK × C = A is an equality
between oriented linear spaces. We now apply Lemma 9-9 to thebinary problem
instance

C
f̄
→ S

g
← B,

with L := K , learning that

K ×
(

C[ f̄ ] ×S [g]B
)

= (K × C)[0=‖ f̄ ] ×S [g]B.

The right-hand side is the fiber productA[ f ] ×S [g]B whose orientation we are
trying to show determined. On the left-hand side, the left-hand factor map of the
fiber product is the orientation-preserving bijectionf̄ . Hence, by the Isomorphism
and Left Identity Axioms, we have

K ×
(

C[ f̄ ] ×S [g]B
)

= K × (S[1] ×S [g]B) = K × B.

Thus, the orientations of all transverse, binary fiber products are determined by
the listed axioms.⊔⊓
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9.3 Consistency: Calibrating the Delta Rule

To show that our axioms are consistent, we need to construct an orientation rule
that satisfies them all. We shall construct that rule by adding an explicit calibration
factor to the Delta Rule of Definition 7-2. By the way, the following version of
the Delta Rule has also been generalized, in the obvious way,from pure to mixed
fiber products.

Definition 9-11 (The Calibrated Delta Rule) For somen ≥ 1, let

A1
f1
−→ S1

g2
←− A2

f2
−→ · · ·

fn−1
−→ Sn−1

gn
←− An

be ann-ary zigzag, consisting of oriented linear spaces and linear maps. LetP be
the mixed fiber productP := A1[ f1] ×S1 [g2] A2[ f2] ×S2 · · · ×Sn−1 [gn] An, which
we view as a subspace of the direct productD := A1 × · · · × An. We define the
difference map1 : D→ S1× · · · × Sn−1 by

1(α1, . . . , αn) :=
(

g2(α2)− f1(α1), . . . , gn(αn)− fn−1(αn−1)
)

.

We assume that our zigzag is transverse, which means that thedifference map1 is
surjective. IfC denotes any oriented complement ofP = Ker(1) in D, it follows
that1 mapsC bijectively onto Im(1) = S1 × · · · × Sn−1. The Calibrated Delta
Rule orients the fiber productP so that

P ⊕ C

D
=
(A1×S1 · · · ×Sn−1 An)⊕C

A1× · · · × An
= (−1)κ

1(C)

S1× · · · × Sn−1
.(9-12)

The calibration is determined by the exponentκ in the factor(−1)κ . We choose
our calibration factor to depend upon the dimensions(a1, . . . , an) of the factor
spaces and the dimensions(s1, . . . , sn−1) of the base spaces as follows:κ :=
κn(a1, . . . , an; s1, . . . , sn−1), where the functionκn : Nn×Nn−1→ Z/2Z is defined
by

κn(a1, . . . , an; s1, . . . , sn−1) :=
∑

1≤i≤ j<n

si (aj+1− sj ).(9-13)

The main new idea in Definition 9-11 is the calibration function κn given in
Equation 9-13, which is rather mysterious at first glance. Ofcourse, we made
various arbitrary choices in setting up the Delta Rule; if wechanged our minds
about those choices, then the proper calibration function would change as well.
But the formula forκn is so wild that no simple readjustment of our arbitrary
choices could possibly free us entirely from the need to calibrate.

We can avoid the issue of calibration in the equidimensionalcase, however;
that is another way in which the equidimensional case is easy. For any integerm,
we have

κn(m, . . . ,m
︸ ︷︷ ︸

n

;m, . . . ,m
︸ ︷︷ ︸

n−1

) = 0,
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since each termsi (aj+1 − sj ) = m(m−m) in the sum is zero. Indeed, when the
factor mapsg2 throughgn are all invertible, that by itself is enough to guarantee
thataj+1 = sj for j from 1 ton − 1, and henceκn(a1, . . . , an; s1, . . . , sn−1) = 0.
This explains why we found, in proving Theorem 7-12, that theUncalibrated Delta
Rule already obeys the casek = 1 of the All-but-One Invertible Law 4-7.

Our next goal is to verify that the axioms in Section 9.1 are consistent by
showing that the Delta Rule, when calibrated by the particular functionκn given
in Equation 9-13, satisfies all of those axioms. Of course, those axioms talk only
about the binary case, so we shall typically work only with the binary calibration
functionκ2 : N

2× N→ Z/2Z given byκ2(a, b; s) = s(b− s). In the process of
verifying associativity, however, we shall go further and verify thatκn, as given in
Equation 9-13, is the proper calibration function for all aritiesn.

Theorem 9-14 Let theBinary Delta Rulebe the binary case of the Delta Rule,
calibrated by lettingκ2(a, b; s) := s(b− s). The Binary Delta Rule orients every
transverse fiber product of linear spaces in a way that satisfies all of our axioms:
Isomorphism; Stability; Left, Right, and Base Reversing; Both, Left, and Right
Identity; Mixed Associativity; and Concatenate.

Because of associativity, the Binary Delta Rule extends uniquely to ann-ary
Delta Rule, for alln; and that rule corresponds to adopting the calibration function

κn(a1, . . . , an; s1, . . . , sn−1) :=
∑

1≤i≤ j<n

si (aj+1− sj ),

given in Equation 9-13.

We tackle the proof of Theorem 9-14 one axiom at a time.

9.3.1 The Isomorphism Axiom

The Isomorphism Axiom holds regardless of how the Delta Ruleis calibrated,
and the proof is quite straightforward. We start with two binary problem instances

A
f
→ S

g
← B and A′

f ′
→ S′

g′
← B′ that are isomorphic. IfC is any oriented

complement ofP := A×SB in A×B, then the image ofC under the isomorphism,
call it C′, will be an oriented complement ofP′ := A′×S′ B′ in A′× B′. With this
choice forC′, the right-hand quotients in the equations

P ⊕ C

A× B
= (−1)κ2(a,b;s)

1(C)

S
and

P′ ⊕C′

A′ × B′
= (−1)κ2(a′,b′;s′)

1′(C′)

S′

will have the same sign. The calibration factors are also thesame, because we
havea = a′, b = b′, ands = s′. So, on the left-hand side, the isomorphism must
carry P to+P′ rather than to−P′, as the Isomorphism Axiom requires.
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9.3.2 The Stability Axiom

We saw, in Proposition 7-6, that the Uncalibrated Delta Ruleis stable and that it
remains stable under any recalibration that depends only upon the dimensions of
the factor spaces and base spaces.

9.3.3 The Reversing Axioms

The three Reversing Axioms also hold, no matter what calibration function we
adopt. Consider the relevant formula:

P ⊕ C

A× B
= (−1)κ2(a,b;s)

1(C)

S
.

Reversing the orientation on the first factor spaceA reverses the denominator on
the left-hand side and nothing else; so we have to reverseP also, to keep the
equation valid. ReversingB is similar. ReversingS reverses the denominator on
the right-hand side and nothing else; so, again, we have to reverseP. Thus, any
calibration of the Delta Rule satisfies all three Reversing Axioms.

9.3.4 The Both Identities Axiom

The Both Identities Axiom is the first of our axioms that actually constrains the
calibration function. It turns out that the Both IdentitiesAxiom holds just when
κ2 is zero on its main diagonal — that is, whenκ2(m,m;m) = 0, for all m ≥ 0.
Our chosen calibrationκ2(a, b; s) = s(b− s) certainly meets this requirement.

Here is why. For the problem instanceS
1
→ S

1
← S, the Delta Rule says:

P ⊕ C

S× S
= (−1)κ2(s,s;s)

1(C)

S
(9-15)

The fiber productP = S×S S is, up to orientation, the main diagonal ofS× S,
the spaceP = {(σ, σ ) | σ ∈ S}. So we haveP = η (1S←S, 1S←S)(S) for some
signη = ±1, and the Both Identities Axiom requires thatη = +1.

We get to chooseC to be any oriented complement ofP in S× S, and it is
convenient to chooseC = (0, S), that is, to setC := (0S←S, 1S←S)(S). With this
choice, since the difference map1 has the matrix1 =

(

−1S←S 1S←S

)

, we have

1(C) =
(

−1S←S 1S←S

)
(

0S←S

1S←S

)

(S) = +S.

Thus, the quotient on the right-hand side of Equation 9-15 reduces to+♦.
On the left-hand side, pasting together our recipes forP and forC as specified

in Equation 5-7, we find that

P ⊕ C = η

(

1S←S 0S←S

1S←S 1S←S

)

(S× S).
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Since either an elementary row or column operation convertsthis matrix into the
identity, we conclude that(P ⊕ C)/(S× S) = η♦. Thus, to make Equation 9-15
hold withη = +1, it suffices to ensure thatκ2(s, s; s) = 0.

9.3.5 The Left Identity Axiom

To analyze the Left Identity Axiom, we consider the instanceS
1
→ S

g
← B, for

which the Delta Rule says:

P ⊕ C

S× B
= (−1)κ2(s,b;s)

1(C)

S
(9-16)

The fiber productP = S×S B here is the subspace ofA× B = S× B consisting
of all pairs of the form(g(β), β), for β in B. We thus haveP = η(g, 1B←B)(B)
for some signη = ±1, and the Left Identity Axiom requiresη = +1.

We chooseC, this time, to be the spaceC := (S, 0) = (1S←S, 0B←S)(S). With
that choice, what happens on the right-hand side? The difference map1 here has
the matrix1 =

(

−1S←S g
)

, so we have

1(C) =
(

−1S←S g
)
(

1S←S

0S←S

)

(S) = ¬(S) = (−1)sS,

where “¬” is the negation map discussed in Exercise 5-3. We conclude that
1(C)/S = ¬(S)/S = (−1)s♦. Sincek2 is odd just whenk is odd, we can
rewrite this as(−1)s

2

♦.
As for the left-hand quotient in Equation 9-16, pasting together the column

matrices that defineP andC, we have

P ⊕ C = η

(

g 1S←S

1B←B 0B←S

)

(B× S).

To simplify this matrix, we multiply the second column byg on the right and
subtract from the first column — or we multiply the second row by g on the left
and subtract from the first row. Either way, we conclude that

P⊕ C = η

(

0S←B 1S←S

1B←B 0B←S

)

(B× S),

where this matrix denotes simply the swapping map fromB× S to S× B. From
our study of the Concatenate Rule in Section 5.2, we concludethat P ⊕ C =
η(−1)bs(S× B), so the left-hand quotient isη(−1)bs♦.

To make Equation 9-16 hold withη = +1, as the Left Identity Axiom requires,
we must have

(−1)bs = (−1)κ2(s,b;s)(−1)s
2
.

So the calibration functionκ2 must satisfyκ2(s, b; s) = bs− s2 = s(b− s). And
our proposed calibration, given byκ2(a, b; s) = s(b− s), meets this requirement.
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9.3.6 The Right Identity Axiom

The Right Identity Axiom is simpler. For the instanceA
f
→ S

1
← S, the Delta

Rule says

P ⊕ C

A× S
= (−1)κ2(a,s;s)

1(C)

S
,

where the fiber product is the subspaceP = +(1A←A, f )(A) of A × S and
the Right Identity Axiom requires the positive sign. Choosing C := (0, S) =
(0A←S, 1S←S)(S) reduces the quotient on the right-hand side to+♦, while the di-
rect sumP ⊕ C is the image ofA× Sunder the map with matrix

(

1A←A 0A←S

f 1S←S

)

.

Using an elementary row or column operation to zero out thef entry, the left-
hand quotient also reduces to+♦. So the Right Identity Axiom holds just when
the calibration functionκ2 satisfies the identityκ2(a, s; s) = 0. And our proposed
functionκ2(a, b; s) := s(b− s) meets this requirement also.

9.3.7 The Axiom of Mixed Associativity

Verifying the Axiom of Mixed Associativity involves ratherintricate reasoning,
but the challenges are more notational than conceptual.

The axiom itself,(A ×S B) ×T C = A ×S (B ×T C), involves only binary
fiber products. One way to show that the two sides have the sameorientation is to
show that each side has the same orientation as the ternary productA×S B×T C.
We can unify the arguments for the left and right sides by generalizing as follows.
Consider the nested product

A1×S1 · · · ×Si−2 Ai−1×Si−1 (Ai ×Si Ai+1)×Si+1 Ai+2×Si+2 · · · ×Sn−1 An,

where 1≤ i < n. That is, we first combine the adjacent factorsAi and Ai+1 in
an inner, binary fiber product. We then combine the result of that inner product
with the remaining factors, using an outer fiber product of arity n − 1. We shall
show that the orientation that results from this two-step process agrees with the
orientation that would result from computing the overall product in onen-ary
step. Once we have that general result, the two special cases(i, n) := (1, 3) and
(i, n) := (2, 3) combine to establish the Axiom of Mixed Associativity.

In order for the nested orientation and the overall orientation to be defined, we
must calibrate the Delta Rule for products of aritiesn− 1 andn. As we claimed
in Section 9.3, the proper calibration function for any positive n is

κn(a1, . . . , an; s1, . . . , sn−1) :=
∑

1≤k≤l<n

sk(al+1 − sl ).
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In addition to establishing associativity, our argument below verifies that these are
the proper calibration functions for products of arityn > 2. In what follows, it is
helpful to writeκn with the sum onk outside:

κn(a1, . . . , an; s1, . . . , sn−1) :=
∑

1≤k<n

sk

∑

k≤l<n

(al+1 − sl )

To make our formulas somewhat shorter, let’s use the symbolI to denote the
spaces associated with the inner fiber product, whileH and J denote the spaces
to its left and to its right. That is, for the factor spaces(Ak), we set:

AH := A1× · · · × Ai−1

AI := Ai × Ai+1

AJ := Ai+2× · · · × An

We also abbreviate the full direct productA1×· · ·×An = AH×AI ×AJ asAH I J .
For the base spaces(Sk), we do something similar, except that one less space is
involved:

SH := S1× · · · × Si−1

SI := Si

SJ := Si+1 × · · · × Sn−1

SH I J := S1× · · · × Sn−1

We first tackle the inner fiber productAi ×Si Ai+1, which we denote byPI .
Let CI be some oriented complement ofPI in the direct productAI = Ai × Ai+1.
Applying the Delta Rule to the inner product, we have

PI ⊕ CI

AI
= (−1)si (ai+1−si )

1I (CI )

SI
,(Inner)

where1I : AI → SI is the difference map that is given by1I (αi , αi+1) :=
gi+1(αi+1)− fi (αi ). Call that the Inner Equation.

Now for the outer fiber productA1×S1 · · ·×Si−2 Ai−1×Si−1 PI ×Si+1 Ai+2×Si+2

· · · ×Sn−1 An, which we denote byPO. Let CO be some oriented complement of
PO in the corresponding direct productA1×· · ·× Ai−1× PI × Ai+2×· · ·× An =
AH×PI ×AJ . With our abbreviations, the Delta Rule applied to the outerproduct
says that

PO ⊕ CO

AH × PI × AJ
= (−1)KO

1O(CO)

SH × SJ
,(Outer)

where1O : AH × PI × AJ → SH × SJ is the map defined by

1O(α1, . . . , αi−1, (αi , αi+1), αi+2, . . . , αn) :=
(

g2(α2)− f1(α1), . . . , gi (αi )− fi−1(αi−1),

gi+2(αi+2)− fi+1(αi+1), . . . , gn(αn)− fn−1(αn−1)
)

.
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Note that the differencegi+1(αi+1) − fi (αi ), which is identically zero onPI , is
omitted when defining the outer difference map1O. In this Outer Equation, the
exponentKO of the calibration factor can be written

KO :=
∑

1≤k<i

sk

(
∑

k≤l<i−1

(al+1 − sl )+ (pI − si−1)+
∑

i<l<n

(al+1 − sl )

)

+
∑

i<k<n

sk

∑

k≤l<n

(al+1 − sl ),

wherepI := dim(PI ). Since the inner fiber product is transverse, we havepI =
ai + ai+1− si ; so this simplifies to

KO =
∑

1≤k<n
k 6=i

sk

∑

k≤l<n

(al+1 − sl ).

Finally, let PV := A1×S1 · · · ×Sn−1 An be the overall fiber product, viewed as
a subspace of the overall direct productA1 × · · · × An = AH I J . We need some
oriented complementCV of PV in AH I J . We choose to setCV := CO⊕C′I , where
C′I := 0× CI × 0 is CI , viewed as subset ofAH I J . Applying the Delta Rule to
the overall product then gives us

PV ⊕ CO ⊕ C′I
AH I J

= (−1)KV
1V(CO ⊕ C′I )

SH I J
.(Overall)

In this Overall Equation, the difference map1V is the obvious one, while the
exponentKV of the calibration factor is

KV :=
∑

1≤k<n

sk

∑

k≤l<n

(al+1 − sl ).

The spacesPV and PO are the same, except possibly for their orientations;
and we want to show that their orientations are the same as well. Let the sign
η = ±1 be such thatPV = ηPO; we shall show that the Inner, Outer, and Overall
Equations imply thatη = +1.

We begin with the quotient on the left-hand side of the Overall Equation,
which we’ll call the Overall left quotient:

PV ⊕ CO ⊕ C′I
AH I J

= η
PO ⊕ CO ⊕C′I

AH I J
(9-17)

We can produce a second quotient with the same numerator by starting with the
Outer left quotient and addingC′I as a direct summand at the right end of both the
numerator and denominator:

PO ⊕ CO

AH × PI × AJ
=

PO ⊕CO ⊕ C′I
(AH × PI × AJ)⊕ C′I

=
PO ⊕ CO ⊕ C′I

(AH × PI × AJ)⊕ (0× CI × 0)

= (−1)dim(CI ) dim(AJ)
PO ⊕ CO ⊕C′I

AH × (PI ⊕ CI )× AJ
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Since the inner fiber product is transverse, we have dim(CI ) = si ; and we trivially
have dim(AJ) = ai+2 + · · · + an. We now rewrite Equation 9-17 with the right-
hand quotient expanded as the product of two quotients, and we use what we’ve
just learned to simplify the first of them:

PV ⊕CO ⊕ C′I
AH I J

= η
PO ⊕ CO ⊕ C′I

AH × (PI ⊕ CI )× AJ
×

AH × (PI ⊕ CI )× AJ

AH I J

= η(−1)si (ai+2+···+an)
PO ⊕ CO

AH × PI × AJ
×

AH × (PI ⊕ CI )× AJ

AH I J

The rightmost quotient in this expansion also arises if we start with the Inner left
quotient and add direct-product factors ofAH on the left andAJ on the right of
both the numerator and denominator:

PI ⊕CI

AI
=

AH × (PI ⊕ CI )× AJ

AH × AI × AJ
=

AH × (PI ⊕ CI )× AJ

AH I J

So we deduce the following relationship between the Overall, Outer, and Inner
left quotients:

PV ⊕ CO ⊕ C′I
AH I J

= η(−1)si (ai+2+···+an)
PO ⊕ CO

AH × PI × AJ
×

PI ⊕ CI

AI

Substituting the right-hand sides of the Overall, Outer, and Inner Equations for
their left-hand sides, we find that

(−1)KV
1V(CO ⊕ C′I )

SH I J
= η(−1)si (ai+2+···+an)+KO

1O(CO)

SH × SJ
(−1)si (ai+1−si )

1I (CI )

SI

(9-18)

= η(−1)si (ai+2+···+an)+KO+si (ai+1−si )
1O(CO)×1I (CI )

(SH × SJ)× SI

Note that any point(α1, . . . , αi−1, (αi , αi+1), αi+2, . . . , αn) in CO has fi (αi ) =
gi+1(αi+1), sinceCO is a subset ofAH × PI × AJ . Thus, theSI coordinate in
1V(CO), the coordinate that is omitted in1O(CO), is always 0. So we can rewrite
the quotient on the right-hand side of Equation 9-18 using direct sums as

1O(CO)×1I (CI )

(SH × SJ)× SI
=
1V(CO)⊕ (0×1I (CI )× 0)

(SH × 0× SJ)⊕ (0× SI × 0)
.

Compare this with the quotient on the left-hand side of Equation 9-18, which is

1V(CO ⊕ C′I )

SH I J
=
1V(CO)⊕1V(C′I )

SH I J
.

The second summand in each of these numerators is an orientedcomplement of
the common first summand1V(CO) in SH I J , so Exercise 5-5 is relevant here. Let
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φi : SH I J → SI denote projection onto the factor spaceSI = Si , and note that
Ker(φi ) = SH × 0× SJ = ±1V(CO). Exercise 5-5 then tells us that our two
numerators1V(CO) ⊕ (0× 1I (CI ) × 0) and1V(CO) ⊕ 1V(C′I ) will give the
same orientation toSH I J just when the two expressionsφi (0×1I (CI ) × 0) and
φi (1V(C′I )) give the same orientation toSi . And they do: Consider any point
(αi , αi+1) in CI . This point maps to

(0, . . . , 0
︸ ︷︷ ︸

i−1

,gi+1(αi+1)− fi (αi ), 0, . . . , 0
︸ ︷︷ ︸

n−i−1

) in (0×1I (CI )× 0) and to

(0, . . . , 0
︸ ︷︷ ︸

i−2

, gi (αi ),gi+1(αi+1)− fi (αi ),− fi+1(αi+1), 0, . . . , 0
︸ ︷︷ ︸

n−i−2

) in 1V(C
′
I ),

and both of those map togi+1(αi+1)− fi (αi ) underφi . So we conclude that

1V(CO ⊕ C′I )

SH I J
=
1O(CO)×1I (CI )

SH I J
.

Comparing this with Equation 9-18, we next account for the difference between
the denominatorsSH I J and(SH × SJ)× SI = (SH × 0× SJ)⊕ (0× SI × 0). We
have

SH I J = SH × SI × SJ = (−1)dim(SI ) dim(SJ)
(

(SH × 0× SJ)⊕ (0× SI × 0)
)

,

where dim(SI ) dim(SJ) = si (si+1+· · ·+sn−1). Equation 9-18 thus reduces to the
following equation about signs:

(−1)KV = η(−1)si (ai+2+···+an)+KO+si (ai+1−si )+si (si+1+···+sn−1).

The exponentKO cancels out most ofKV , leaving just the terms inKV with
k = i , which aresi

∑

i≤l<n(al+1− sl ). Recalling that signs don’t matter in dealing
with exponents of−1, those terms exactly cancel against the remaining explicit
terms in the exponent on the right-hand side. We conclude, from all of this, that
η = +1, which completes our proof of mixed associativity.

9.3.8 The issue of commutativity

While we know that we can’t achieve full commutativity, it isinteresting to see
what does happen about commutativity, with our chosen calibration functionκn.
We claim thatA×S B = (−1)(a−s)(b−s)(B×S A). Recall that direct products skew
commute just when the dimensions of both factor spaces are odd. Fiber products
generalize this by skew commuting just when both factor spaces have dimensional
parity opposite to that of the base space.

This claim is easy to verify. LetP := A ×S B and P′ := B ×S A be the
two fiber products, each oriented as specified by the Delta Rule. LetC be some
oriented complement ofP in A × B, and letC′ be the image ofC under the
swapping map(α, β) 7→ (β, α). The spaceC′ is then an oriented complement of
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P′ in B× A. If we apply that swapping map to the fiber productP, we get either
P′ or−P′, and our challenge is to determine which. Applying the DeltaRule to
the unprimed case, we have

P ⊕ C

(A, 0)⊕ (0, B)
= (−1)s(b−s)1(C)

S
.

In the primed case, we get

P′ ⊕ C′

(B, 0)⊕ (0, A)
= (−1)s(a−s)1

′(C′)

S
.

Noting that1′(β, α) = f (α)− g(β), we see that1′(C′) = ¬(1(C)), where “¬”
is the negation map discussed in Exercise 5-3. As for the primed left quotient,
let’s apply the inverse swapping map(β, α) 7→ (α, β) to the direct summands
in both numerator and denominator; this just changes our coordinate system and
hence does not affect the sign of the quotient. So the primed case reduces to

(±P)⊕ C

(0, B)⊕ (A, 0)
= (−1)s(a−s)¬(1(C))

S
.

Comparing this to the unprimed case, the left-hand denominators differ by(−1)ab;
the calibration factors differ by(−1)sb−sa = (−1)−sa−sb; and the right-hand nu-
merators differ by(−1)s = (−1)s

2
. So the proper sign in(±P) is (−1)(a−s)(b−s),

as we claimed.

9.3.9 The Concatenate Axiom

The Concatenate Axiom is easy. Suppose thatS = ♦ is zero-dimensional and
positively oriented; the Concatenate Axiom requires thatA×♦ B = A× B. To
verify this, we apply the Delta Rule, getting

P ⊕ C

A× B
= (−1)0(b−0)1(C)

♦
.

Noting thatC is zero-dimensional, we can take it to be positively oriented. We
then haveP ⊕ C = P and1(C) = 1(♦) = ♦, so we have

P

A× B
=

A×♦ B

A× B
= +♦.

That being the last of the axioms on our list, the proof of Theorem 9-14 is now
complete. So there is a unique rule for orienting transverse, mixed fiber products
that satisfies all of the axioms on our list; that rule is the Delta Rule, calibrated
as in Equation 9-13. In what follows, we shall refer to the orientations produced
by that rule as theProper Orientations. Furthermore, given any transverse,n-ary
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zigzagA1
f1
→ S1

g2
← A2

f2
→ · · ·

fn−1
→ Sn−1

gn
← An, we henceforth use the formula

A1×S1 A2×S2 · · · ×Sn−1 An to denote its mixed fiber product, oriented properly.
(We defined the Proper Orientation for an all-invertible, pure fiber product

back in Definition 7-10, and we extended that by continuity toall transverse,
equidimensional, pure fiber products in Definition 7-15. We are now extending
further, both to the any-dimensional case and from pure to mixed fiber products;
but this new extension is consistent with those earlier definitions.)



Chapter 10

Adjusting the axioms

We have achieved our key goal: a consistent, complete, and compelling family
of axioms for a rule that orients any-dimensional transverse fiber products. In
particular, I am personally pleased that there turns out to be an orientation rule
that satisfies the Axiom of Mixed Associativity.

In this final chapter, we consider several ways in which we might adjust our
family of axioms. First, we study how free we would be to vary our orientation
rule, were we to give up on certain of our axioms. Second, we discuss several
ways in which our list of axioms could be shortened by combining a group of
axioms into a single, more powerful identity.

10.1 Twisted orientation rules

The Proper Orientation Rule is the unique rule that satisfiesall of our axioms.
But suppose that we were willing to abandon some of our axioms. What freedom
would we thereby acquire to adopt some orientation rule different from the Proper
Rule? To study this issue, we introduce the concept of a “dimensional twist”.

Given a binary problem instanceA
f
→ S

g
← B, we have agreed that the

formula A×S B denotes the fiber product with its Proper Orientation. Let’sdenote
by A×∗S B = ±(A×S B) that same fiber product, but oriented by some possibly
improper orientation rule.

For the problem instanceA
f
→ S

g
← B to be transverse, we must havea+b ≥

s; let T be the set of all triples of nonnegative integers(a, b; s) with a + b ≥ s.
Define adimensional twistto be any functionw : T → Z/2Z; so, for each triple
(a, b; s) in T , we get to choose a free bitw(a, b; s). Given a dimensional twist
w, the correspondingtwisted orientationsdiffer from the Proper Orientations as
follows:

A×wS B := (−1)w(a,b;s)(A×S B).

What do our various axioms say about which dimensional twists are legal?

125
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10.1.1 Twists are the only reasonable adjustments

It’s easy to see that the Isomorphism, Stability, and Reversing Axioms hold for
any twisted orientation rule, just as they do for the untwisted Proper Orientations.
The more interesting result goes in the other direction.

Proposition 10-1 Any orientation rule×∗ that satisfies the Isomorphism, Stabil-
ity, and Reversing Axioms is the twisted orientation rule×∗ := ×w corresponding
to some dimensional twistw : T → Z/2Z.

Proof Let A ×∗S B denote the result of orienting the fiber productA ×S B by
some rule that satisfies the Isomorphism, Stability, and Reversing Axioms; and let
(a, b; s) denote some triple of nonnegative integers inT . It suffices to show that,

for all problem instancesA
f
→ S

g
← B whose dimensions are given by the triple

(a, b; s), the quotients(A ×∗S B)/(A×S B) have a common sign, since we can
then choose the free bitw(a, b; s) to make that common sign be(−1)w(a,b;s).

Among such problem instances, the generic ones have factor maps f andg
that are of the largest possible rank: dim( f (A)) = min(a, s) and dim(g(B)) =
min(b, s). By the Stability Axiom, it suffices for us to show that all such generic
instances agree about the sign of the quotient(A ×∗S B)/(A ×S B), since any
non-generic instance is the limit of a family of generic instances.

Let A
f
→ S

g
← B and A′

f ′
→ S′

g′
← B′ be two such generic instances.

Since both are generic, we have dim( f (A)) = dim( f ′(A′)) and dim(g(B)) =
dim(g′(B′)). And, since both are transverse, we have dim( f (A) + g(B)) = s =
dim( f ′(A′)+ g′(B′)). It follows that dim( f (A)∩ g(B)) = dim( f ′(A′)∩ g′(B′)).
Therefore, we can choose a bijectionχ : S→ S′ that satisfiesχ( f (A)∩ g(B)) =
f ′(A′) ∩ g′(B′), χ( f (A)) = f ′(A′), andχ(g(B)) = g′(B′). We can then choose
bijectionsϕ : A → A′ andψ : B → B′ that satisfyχ( f (α)) = f ′(ϕ(α)) and
χ(g(β)) = g′(ψ(β)).

The three bijectionsϕ, ψ , andχ almost constitute an isomorphism between
the unprimed and primed problem instances, as in Diagram 9-1, the only problem
being that they might not preserve orientation. So we setA′′ := ±A′, B′′ := ±B′,
andS′′ := ±S′, choosing the signs so as to makeϕ, ψ , andχ preserve orientation
as bijections between the unprimed and doubly primed instances. Since both the
proper orientation rule and the rule×∗ satisfy the Isomorphism Axiom, the map
(α, β) 7→ (ϕ(α), ψ(β)) will be an orientation-preserving map both fromA×S B
to A′′×S′′ B′′ and also fromA×∗S B to A′′×∗S′′ B

′′. It follows that the two quotients
(A×∗S B)/(A×S B) and(A′′ ×∗S′′ B′′)/(A′′ ×S′′ B′′) will have the same sign.

Both the proper orientation rule and the rule×∗ satisfy the Left, Right, and
Base Reversing Axioms as well, so we have bothA′′ ×S′′ B′′ = η(A′ ×S′ B′)
and A′′ ×∗S′′ B′′ = η(A′ ×∗S′ B′), where the signη := (A′′/A′)(B′′/B′)(S′′/S′)
is +1 or −1 according as the number of sign reversals between the singly and
doubly primed instances is even or odd. It follows that the singly-primed quotient
(A′ ×∗S′ B′)/(A′ ×S′ B′) agrees with the other two.⊔⊓
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The Isomorphism and Stability Axioms are our most basic, since they ensure
that the orientation rule under discussion will lift from linear spaces to smooth
manifolds. The Reversing Axioms are less basic; but it turnsout that some appeal
to all three of the Reversing Axioms can’t be avoided in Proposition 10-1. As
the next two exercises show, the Reversing Axioms are neededprecisely in those
cases where either one of the three input spaces or the outputspace — that is,
eitherA, B, S, or A×∗S B — is zero-dimensional.

Exercise 10-2 In the proof of Proposition 10-1, consider a triple(a, b; s) in which
all four of a, b, s, anda+b−s are strictly positive. Show that all problem instances

A
f
→ S

g
← B with the dimensions(a, b; s) then share a common sign for the

quotient(A[ f ] ×∗S [g]B)/(A[ f ] ×S [g]B) without assuming that the orientation
rule×∗ satisfies any of the Reversing Axioms.

Sketch: Whens > 0, we can choose the bijectionχ : S → S′ to preserve
orientation. Even when the primed and unprimed problem instances are generic,
however, we may then be unable to choose the bijectionϕ : A→ A′ to preserve
orientation, since we might have dim(Ker( f )) = dim(Ker( f ′)) = 0. But, when
a, b, s, anda + b− s are all positive andg has rank min(b, s), we can afford to
lower the rank of the mapf from min(a, s) to min(a, s) − 1 without destroying
transversality. Thus, we can smoothly alter the mapf to a new mapf − : A →
S whose behavior has been negated in precisely one dimension,without losing
transversality as the behavior in that dimension passes through zero. The quotient
(A[ f −]×∗S [g]B)/(A[ f −]×S [g]B) for this altered problem instance has the same
sign as the original, by stability; and, if we compare that altered instance to the

primed instanceA′
f ′
→ S′

g′
← B′, using the same bijectionχ as before, we can

now choose the bijectionϕ : A→ A′ to preserve orientation. Repeating the same
technique, if necessary, we can smoothly alter the mapg in one dimension to a
new mapg− : B → S, thereby allowing the bijectionψ : B → B′ to preserve
orientation as well — and all without any appeal to the Reversing Axioms.

It follows from this exercise that most instances of the Reversing Axioms are
actually consequences of the Isomorphism and Stability Axioms. That is, given
the latter two axioms, the only novel content in the Reversing Axioms concerns
fiber products where either an input space or the output spaceis zero-dimensional.

Exercise 10-3On the other hand, show that the Reversing Axioms are required
in Proposition 10-1 for those triples(a, b; s) in which at least one ofa, b, s, or
a+ b− s is zero.

Answer: For triples witha = 0, consider the orientation rule×∗ given by

A×∗S B :=

{

A×S B if dim(A) > 0

♦ ×S B if dim(A) = 0.

This rule assigns the Proper Orientation except when the factor spaceA = −♦ is
both zero-dimensional and negatively oriented, in which case it does the reverse.



128 CHAPTER 10. ADJUSTING THE AXIOMS

So it differs from the Proper Rule by something that isn’t simply a dimensional
twist. This rule is stable because there is no way to smoothlymove from a case
that it treats properly to a case that it treats improperly simply by altering the
factor maps; changing fromA = ♦ to A = −♦ requires a discrete jump. This
rule also satisfies the Isomorphism Axiom — and the Right and Base Reversing
Axioms, for that matter. But it violates the Left Reversing Axiom.

Triples withb = 0 or with s = 0 can be handled similarly. For triples with
a+b−s= 0, consider the orientation rule that orients every positive-dimensional
transverse fiber product properly, but orients every zero-dimensional such product
positively, whether that is proper or improper.

10.1.2 Which twists have which properties?

For an orientation rule×w that is based on a dimensional twistw : T → Z/2Z,
the structure of the twistw determines which of our remaining axioms will be
satisfied. Each axiom boils down to a certain constraint on the twistw. In four
cases, the axiom simply forces the twisted rule to agree withthe Proper Rule on
some subset ofT , so the constraint is quite simple:

• The Both Identities Axiom holds whenw(s, s; s) = 0, for all s in N.

• The Left Identity Axiom holds whenw(s, b; s) = 0, for all b ands in N.

• The Right Identity Axiom holds whenw(a, s; s) = 0, for all a ands in N.

• The Concatenate Axiom holds whenw(a, b; 0) = 0, for all a andb in N.

But the Axiom of Mixed Associativity,(A×S B)×T C = A×S (B×T C), is
more subtle. If we evaluate the left-hand side using the twisted rule×w, our result
will differ from the proper result by−1 to the powerw(a, b; s)+w(a+b−s, c; t).
Similarly, the twisted right-hand side will differ from theproper one by−1 to the
powerw(a, b+ c− t; s)+w(b, c; t). So the Axiom of Mixed Associativity will
hold just when

w(a, b; s)+ w(a+ b− s, c; t) = w(a, b+ c− t; s)+ w(b, c; t),(10-4)

for all nonnegativea, b, c, s, andt with a+b ≥ s, b+c ≥ t , anda+b+c ≥ s+ t .
We shall refer to Identity 10-4 as theMixed Identity; and we shall refer to those
dimensional twists that satisfy the Mixed Identity as beingmixed-associative.

It is not immediately clear what structural properties of a dimensional twist
cause it to be mixed associative. It will turn out that the mixed associative twists
are precisely those of the form

w(a, b; s) := u(a)+ u(b)+ u(a+ b− s)+ v(s),(10-5)

whereu : N→ Z/2Z andv : N→ Z/2Z are arbitrary functions. Recall that every
triple (a, b; s) in T satisfiesa+ b ≥ s, so the argumenta+ b− s in the third call
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to u will be nonnegative. We shall refer to Equation 10-5 as theUV-Recipe. The
twists that are mixed associative, it will turn out, are precisely those that can be
constructed from an appropriate pair of functions(u, v) via the UV-Recipe.

If a dimensional twistw can be so constructed from a pair of functions(u, v),
then there are always three other pairs of functions(u′, v′) that would produce
the same twistw. First, suppose that we complement all of the values of both
functions, settingu′(k) := u(k) + 1 andv′(k) := v(k) + 1 for all nonnegative
k. Since there are four terms on the right-hand side of the UV-Recipe 10-5 and
we are working modulo 2, the pair(u′, v′) will generate the same twist as(u, v).
Second, suppose that we complement all of the valuesu(k) andv(k) for k odd;
that is, we setu′(k) := u(k)+ k andv′(k) := v(k)+ k. Since the sum of the four
arguments(a)+ (b)+ (a+ b− s)+ (s) is zero modulo 2, we again get the same
twist. We can eliminate those two sources of redundancy by normalizing the pair
(u, v), arbitrarily constraining some two values of the functionsu andv, one with
an even argument and the other with an odd argument. For example, we could
require thatu(1) = u(0) = 0 or thatv(1) = v(0) = 0. In fact, we shall constrain
one value ofu and one value ofv, requiring thatu(1) = v(0) = 0.

Proposition 10-6 The UV-Recipe 10-5 constitutes a one-to-one correspondence
between dimensional twistsw that are mixed associative and pairs of functions
(u, v) that satisfy the normalization constraintsu(1) = v(0) = 0.

Proof It is easy to see that any dimensional twistw that is constructed from a
pair of functions(u, v) via the UV-Recipe will satisfy the Mixed Identity 10-4
and will hence be mixed associative. The left-hand side of the Mixed Identity
simplifies to

w(a, b; s)+ w(a+ b− s, c; t)

= u(a)+ u(b)+ u(a+ b− s)+ v(s)

+ u(a+ b− s)+ u(c)+ u(a+ b+ c− s− t)+ v(t)

= u(a)+ u(b)+ u(c)+ u(a+ b+ c− s− t)+ v(s)+ v(t),

and the right-hand side simplifies to that same value.
To show the converse, letw be a twist that satisfies the Mixed Identity 10-4 for

all quintuples(a, b, c; s, t)with a+b ≥ s, b+c ≥ t , anda+b+c ≥ s+t . We must
construct functionsu : N→ Z/2Z andv : N→ Z/2Z with u(1) = v(0) = 0 and
with

w(a, b; s) = u(a)+ u(b)+ u(a+ b− s)+ v(s),

for all triples(a, b; s)with a+b ≥ s. And we must show that this pair of functions
(u, v) is uniquely determined.

Step 1: Considering first the quintuples(s, s, k; s, s) for any nonnegatives and
k, we find thatw(s, s; s) = w(s, k; s). Symmetrically, considering(k, s, s; s, s),
we find thatw(s, s; s) = w(k, s; s).
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Step 2: In the particular cases = 0, we havew(k, 0; 0) = w(0, k; 0) =
w(0, 0; 0). We want to havew(0, 0; 0) = u(0)+u(0)+u(0)+v(0) = u(0)+v(0),
and our normalization requiresv(0) = 0; so we must setu(0) := w(0, 0; 0). This
establishes the UV-Recipe in the case(0, 0; 0).

Step 3: We next consider the quintuples(a, b, a; 0, 0), learning that

w(a, b; 0)+ w(a+ b, a; 0) = w(a, a+ b; 0)+ w(b, a; 0),

which we can rewrite as

w(a, a+ b; 0)− w(a+ b, a; 0) = w(a, b; 0)− w(b, a; 0).

From this, an induction that parallels the subtractive algorithm for computing the
greatest common divisor allows us to deduce thatw(a, b; 0) = w(b, a; 0), for
all nonnegativea and b. The base cases of that induction are the cases with
min(a, b) = 0, which we established in Step 2.

Step 4: For anyk ≥ 1, we want to arrange that

w(1, k; 0) = u(1)+ u(k)+ u(k+ 1)+ v(0) = u(k)+ u(k+ 1),

where the latter equality holds because the normalization forcesu(1) = v(0) = 0.
Since we are working modulo 2, it follows thatu(k+1) = u(k)+w(1, k; 0). Thus,
our only hope is to setu(k), for all k ≥ 1, as follows:u(k) :=

∑

1≤i<kw(1, i ; 0).
Note that this givesu(1) = 0, as required by the normalization. Furthermore,
making this choice foru(k) establishes the UV-Recipe for all of the triples(a, b; s)
with s= 0 and min(a, b) = 1.

Step 5: Considering next the quintuples(a, 1, b; 0, 0) for any nonnegativea
andb, we find thatw(a, 1; 0)+w(a+1, b; 0) = w(a, b+1; 0)+w(1, b; 0). Since
the UV-Recipe holds for the first and last terms, it holds for the second term just
when it holds for the third. By induction along the diagonalsin the planes = 0
with a fixed value ofa+ b, we conclude that the UV-Recipe holds for all triples
(a, b; s) with s= 0.

Step 6: For alls ≥ 0, we want to arrange that

w(s, s; s) = u(s)+ u(s)+ u(s)+ v(s) = u(s)+ v(s).

Sinceu(s) is now determined, this forces us to setv(s) := w(s, s; s) − u(s).
Note that, whens = 0, this givesv(0) = 0, as the normalization requires. For
s ≥ 1, this choice establishes the UV-Recipe for the particulartriple (s, s; s).
Furthermore, we saw in Step 1 thatw(k, s; s) = w(s, k; s) = w(s, s; s), for all
nonnegatives and k. From this, it follows easily that the UV-Recipe actually
holds for all triples of the form(k, s; s) or (s, k; s).

Step 7: Finally, we consider the quintuples(a, b, 1; s, 0) for a+b ≥ s, finding
thatw(a, b; s)+w(a+ b− s, 1; 0) = w(a, b+ 1; s)+w(b, 1; 0). We know that
the UV-Recipe holds for the second and fourth terms; so it holds for the first term
just when it holds for the third. Thus, by induction, the UV-Recipe holds for the
entire column{(a, k; s) | k ≥ max(0, s− a)} when it holds for any entry in that
column. In Step 6, we saw that it does hold for(a, s; s); so it always holds.⊔⊓
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Let’s now restrict ourselves to dimensional twistsw that are mixed-associative
and can therefore be constructed via the UV-Recipe 10-5. Forsuch twists, the
Identity and Concatenate Axioms translate into restrictions on the functionsu and
v. There is an additional, very weak property that is worth considering in this
context. It seems natural to hope that♦ ×♦ ♦ = ♦, as opposed to♦ ×♦ ♦ = −♦.
If an orientation rule has the property♦ ×♦ ♦ = ♦, let’s say that itpreserves
null-positivity. Note that any rule that satisfies either the Both IdentitiesAxiom or
the Concatenate Axiom must preserve null-positivity.

Proposition 10-7 Recall that every mixed-associative twist corresponds, under
the UV-Recipe, to a unique pair of functions(u, v) with u(1) = v(0) = 0. The
twists that preserve null-positivity are those withu(0) = 0. The twists that satisfy
the Both Identities Axiom are those withu ≡ v, that is, withu(k) = v(k) for all
k ≥ 0; those same twists also satisfy the Left and Right Identity Axioms. The
twists that satisfy the Concatenate Axiom are those withu ≡ 0.

Proof A mixed-associative twistw preserves null-positivity just when we have
w(0, 0; 0) = u(0) + u(0)+ u(0) + v(0) = u(0) + v(0) = 0. Sincev(0) = 0 by
assumption, we must also haveu(0) = 0.

A twist w satisfies the Both Identities Axiom just when we havew(s, s; s) =
u(s)+ v(s) = 0, that is, whenu ≡ v. When this happens, it also satisfies the Left
Identity Axiom, sincew(s, b; s) = u(s)+u(b)+u(b)+ v(s) = 0. And similarly
for the Right Identity Axiom.

A twist w satisfies the Concatenate Axiom just when we havew(a, b; 0) =
u(a) + u(b) + u(a + b) + v(0) = u(a) + u(b) + u(a+ b) = 0. Settinga := k
andb := 1, we find thatu(k)+ u(1)+ u(k+ 1) = 0; sinceu(1) = 0, this means
u(k) = u(k+ 1), so we haveu ≡ 0 by induction. ⊔⊓

Of course, if we want both the Identity and Concatenate Axioms to hold, we
must chooseu ≡ v ≡ 0; that is, we must eschew all twisting and adopt the Proper
Orientations.

Exercise 10-8Let’s denote by×↔ the oriented fiber-product operator that would
result if we replaced the Concatenate Axiom with the Concatenate-Backwards
Axiom, while retaining all of our other axioms. Since all of our other axioms are
either left-right symmetric or come in symmetric pairs, it follows thatA×↔S B =

B ×S A, for all binary problem instancesA
f
→ S

g
← B. So the orientation rule

×↔ differs from the Proper Rule by the dimensional twist↔ : T → Z/2Z given
by↔ (a, b; s) := (a− s)(b− s) mod 2. This twist must be mixed-associative;
to what functionsu andv does it correspond?

Answer: The functionsu andv given by

u(k) := v(k) :=

{

0 if k ≡ 0, 1 (mod 4)

1 if k ≡ 2, 3 (mod 4).
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10.2 The partial identity formulas

Consider a binary problem instanceA
f
→ S

g
← B. If the map f is bijective,

then the Left Identity Axiom, together with the Isomorphismand Left Reversing
Axioms, tells us at once how to orient the fiber product. Now suppose thatf is not
bijective, but that we can writef as the direct product of two maps, one of which
is bijective. We want to exploit the existence of that bijective factor to simplify
the fiber product, and the Left Partial Identity Formula willtell us how.

Changing notation somewhat, letM denote the dimensions that we know to
be bijectively mapped, whileA andSdenote the remainders of the left factor and

base spaces. That is, we consider the binary zigzag(M×A)
1× f
−→ (M×S)

(h,g)
←− B.

The left factor map is the direct product 1M←M × f , where 1M←M : M → M
corresponds to the bijectively mapped dimensions andf : A → S to the rest.
The right factor map(h, g) also splits into two parts, the mapg : B→ S and the
maph : B → M. Is this zigzag transverse? The left factor map certainly covers
M, so this zigzag is transverse just when Im( f ) + Im(g) = S, that is, just when

the reduced zigzagA
f
→ S

g
← B is transverse. Furthermore, when both zigzags

are transverse, their fiber products are isomorphic in a canonical way: The map
8 : A× B→ M × A× B given by8(α, β) := (h(β), α, β) carries the reduced
fiber productA×SB bijectively onto the extended fiber product(M×A)×(M×S)B.
One might hope that this map8 would preserve orientation; that is, one might
hope that

(M × A)×(M×S) B
?
= A×S B.(10-9)

If so, this would be exactly the type of formula that we were looking for: Given a
fiber product in which the left factor map is a direct product with a bijective factor,
we could simplify by removing the domain and codomain of thatbijection.

Unfortunately, Formula 10-9 turns out to be wrong; more precisely, it turns out
to be inconsistent with the Concatenate Axiom. The problem is that the factor of
M multiplies A andS from the left. We set things up that way without discussing
the issue. But we can equally well put the bijectively mappeddimensions on the

right, forming the extended zigzag(A× M)
f×1
−→ (S× M)

(g,h)
←− B. This suggests

an analogous formula in whichM multiplies A andS from the right:

(A× M)×(S×M) B = A×S B.(10-10)

Formulas 10-9 and 10-10 can’t both be right, since they give different answers
in some cases — for example, when dim(A) and dim(M) are both odd, so that
A× M = −(M × A), but dim(S) is even, so thatS× M = M × S. The special
cases in whichS= ♦ are particularly revealing. In those cases, we shall see that
Formula 10-10 follows easily from our axioms. Since Formula10-9 disagrees
with Formula 10-10 on some of those cases, Formula 10-9 is definitely wrong.
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When S = ♦, Formula 10-10 claims that(A × M) ×(♦×M) B = A ×♦ B.
This case is particularly simple to analyze because the understood left factor map
f : A → S must be identically zero. Applying the Concatenate Axiom tothe
direct productA× M, we have

(A× M)×(♦×M) B = (A×♦ M)×(♦×M) B.

Since f ≡ 0, the left factor map of the outer fiber product on the right-hand side
is the composite map 0× 1: A×♦ M → ♦ ×M. The value of this map at a point
(α, µ) doesn’t depend uponα; so the side condition discussed in Section 9.1.7
is met. Thus, we can apply the Axiom of Mixed Associativity tothe transverse,
ternary zigzag

A
0
→ ♦

0
← M

(0,1)
−→ ♦ × M

(0,g)
←− B,

to swap the parentheses from the left to the right:

(A×♦ M)×(♦×M) B = A×♦ (M ×(♦×M) B) = A×♦ (M ×M B).

The Left Identity Axiom then reduces this answer toA×♦ B, which establishes
Formula 10-10 in the caseS= ♦.

The upcoming Proposition 10-12 will show that all cases of Formula 10-10
follow from our axioms; so we shall henceforth refer to Formula 10-10 as the
Left Partial Identity Formula. Proposition 10-12 will also establish the symmetric
formula for those binary fiber products in which the right factor map is partially
bijective, which is theRight Partial Identity Formula

A×(M×S) (M × B) = A×S B.(10-11)

Proposition 10-12 The zigzag(A × M)
f×1
−→ (S× M)

(g,h)
←− B is transverse

just when the reduced zigzagA
f
→ S

g
← B is transverse, and, under the Proper

Orientations, we have(A× M) ×(S×M) B = A×S B. Symmetrically, the zigzag

A
(e, f )
−→ (M×S)

1×g
←− (M× B) is transverse just whenA

f
→ S

g
← B is transverse,

and we haveA×(M×S) (M × B) = A×S B.

Proof The claims about transversality hold because the identity map 1: M → M
coversM, leaving Im( f ) and Im(g) to coverS.

As for the Partial Identity Formulas themselves, it sufficesto verify one of
them, since each implies the other. For example, if we assumethe Right Partial
Identity Formula 10-11, we can then prove the Left Formula 10-10 by keeping
track of the sign changes as we commute the various direct andfiber products:

(A× M)×(S×M) B = (−1)am+sm
(

(M × A)×(M×S) B
)

= (−1)am+sm+((m+a)−(m+s))(b−(m+s))
(

B×(M×S) (M × A)
)

= (−1)am+sm+(a−s)(b−m−s)
(

B×S A
)

= (−1)am+sm+(a−s)(b−m−s)+(b−s)(a−s)
(

A×S B
)

= A×S B.
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To verify the Right Partial Identity Formula, it suffices to show that it holds
under the Calibrated Delta Rule, since that rule assigns theProper Orientations.
So we consider the equation

A[(e, f )] ×(M×S) [1× g](M × B) = A[ f ] ×S [g]B.

Let P := A×S B denote the right-hand fiber product, viewed as a subset of the
direct productA × B, and let8 : A × B → A × M × B be the map given by
8(α, β) := (α, e(α), β). The left-hand fiber productP′ := A×(M×S) (M × B)
then satisfiesP′ = η8(P) for some signη = ±1, and we claim thatη = +1.
Let C be any oriented complement ofP in A× B. Applying the Delta Rule to the
right-hand fiber product, we have

P ⊕ C

A× B
= (−1)s(b−s)1(C)

S
.(10-13)

Turning to the left-hand fiber product, we chooseC′ := 8(C)⊕ (0,M, 0) as
our oriented complement ofP′ in A× M × B. The Delta Rule then gives us

P′ ⊕ C′

A× M × B
= (−1)(m+s)((m+b)−(m+s))1

′(C′)

M × S
.(10-14)

Rewriting P′ asη8(P) and substituting in forC′, we deduce that

η
8(P)⊕8(C)⊕ (0,M, 0)

A× M × B
= (−1)(m+s)(b−s)1

′(8(C)⊕ (0,M, 0))

M × S
.(10-15)

We now transform the left-hand side of Equation 10-13 so as tomake it to
resemble the left-hand side of Equation 10-15. Since the map8 is injective, we
can apply it to both numerator and denominator, getting(P ⊕ C)/(A × B) =
(

8(P)⊕8(C)
)

/8(A× B). Since8(A× B) and(0,M, 0) are linearly indepen-
dent subspaces ofA× M × B, we can then add a direct summand of(0,M, 0) to
both numerator and denominator, getting

8(P)⊕8(C)⊕ (0,M, 0)

8(A× B)⊕ (0,M, 0)
= (−1)s(b−s)1(C)

S
.(10-16)

The numerators on the left-hand sides of Equations 10-15 and10-16 are the
same. As for the denominator in Equation 10-16, we have8(A×B)⊕(0,M, 0)=
9(A× B×M), where9 : A× B×M → A×M × B is the linear map with the
matrix

9 =





1A←A 0A←B 0A←M

e 0M←B 1M←M

0B←A 1B←B 0B←M



 .

The entry ofe here can be eliminated by an elementary operation on either the
rows or the columns, so we have9(A × B × M) = (−1)bm(A × M × B).
Combining this result with Equations 10-15 and 10-16, we deduce that

η (−1)bm+s(b−s)1(C)

S
= (−1)(s+m)(b−s)1

′(8(C)⊕ (0,M, 0))

M × S
.(10-17)
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Now, since1′(8(α, β)) = 1′(α, e(α), β) = (e(α), g(β)) − (e(α), f (α)) =
(0, g(β) − f (α)), we have1′(8(C)) = (0, 1(C)). And since1′(0, µ, 0) =
(µ, 0)− (0, 0) = (µ, 0), we have1′(0,M, 0) = (M, 0). We deduce that

η
1(C)

S
= (−1)ms(0, 1(C))⊕ (M, 0)

(M, 0)⊕ (0, S)
=
(M, 0)⊕ (0, 1(C))

(M, 0)⊕ (0, S)
=

M ×1(C)

M × S
,

and so the signη is indeed+1, as we claimed.⊔⊓

Exercise 10-18Suppose that we chose to replace the Concatenate Axiom with
the Concatenate-Backwards Axiom. Show that the Partial Identity Formulas above
would then be replaced by theLeft Partial Identity Back-Formula

(M × A)×←→(M×S) B = A×↔S B(10-19)

and theRight Partial Identity Back-Formula

A×←→(S×M) (B× M) = A×↔S B,(10-20)

where×↔ is the Concatenate-Backwards version of the oriented fiber product that
we introduced in Exercise 10-8. The former of these can be viewed as a corrected
version of the erroneous Formula 10-9, with which we began Section 10.2.

Answer: If we swap the left and right factor spaces on both sides of the Left
Partial Identity Formula 10-10, we getB×←→(S×M)(A×M) = B×↔S A. This becomes
the Right Partial Identity Back-Formula 10-20 when we restore alphabetical order
by swappingA andB. The Left Partial Identity Back-Formula 10-19 follows in a
similar way from the Right Partial Identity Formula 10-11.

Exercise 10-21For n a positive integer, suppose that the oriented linear space
S= A1× · · · × An is the direct product ofn oriented spaces. Show that

(Â1× · · · × An)×S (A1× Â2× · · · × An)×S · · · ×S (A1× · · · × Ân) = ♦,

where a hat indicates a factor that is omitted from a direct product and where the
factor maps of the fiber product on the left-hand side are the obvious inclusions.
Note that, whenn = 2, this reduces to the identityB ×(A×B) A = ♦ that we
discussed in Exercise 9-8.

Answer: Consider thekth factor spaceA1 × · · · × Ak−1 × Ak+1 × · · · × An,
for somek in [1 . . n]. For i from n down tok + 1, working from right to left,
we use the Left Partial Identity Formula to cancel the factorof Ai in this product
against theAi in the next base spaceS to the right. Similarly, fori from 1 tok−1,
working from left to right, we use the Right Partial IdentityFormula to cancel the
Ai in this product against theAi in the nextS to the left. All of this canceling
leaves♦ ×♦ · · · ×♦ ♦, which is simply♦.
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10.3 The Binary Full Formula

The Partial Identity Formulas are less transparent than ourindividual axioms, but
they are also more powerful. Moving even further in that direction, we can com-
bine both of the Partial Identity Formulas with the Concatenate Axiom into a
single, subtle formula, theBinary Full Formula:

(L × N × Q)×(M×N×Q) (M × N × R) = L × N × R.(10-22)

If λ, µ, ν, θ , andρ are elements of the spacesL, M, N, Q, andR, then the left-
hand factor map here takes(λ, ν, θ) 7→ (0, ν, θ), while the right-hand map takes
(µ, ν, ρ) 7→ (µ, ν, 0). That is, we are dealing with the binary problem instance

L × N × Q
0×1×1
−−−→ M × N × Q

1×1×0
←−−− M × N × R.

The lettersL, M, N, Q, and R are less than perspicuous. A better way to
name the five oriented linear spaces in the Binary Full Formula is to give each
space a two-letter name, where those two letters are drawn, with repetition, from
the set{A, B, S}. Under this scheme, the Binary Full Formula is written

(AA× AB× AS)×(SB×AB×AS) (SB× AB× BB) = AA× AB× BB.(10-23)

To start to get a handle on this formula, let’s consider a transverse fiber product
P := A[ f ] ×S [g]B and think about the ways in which the various dimensions of
the linear spacesA, S, andB can interact.

AB: There may be some dimensions ofA, B, andS that are in mutual bijective
correspondence underf andg. In the Binary Full Formula 10-23, those
dimensions make upAB, and they survive into the fiber productP.

AS: There may be some dimensions ofA that are in bijective correspondence
with some dimensions ofS under f , but where those dimensions ofS lie
outside the image ofg. Such dimensions make upAS. They don’t survive
into the fiber productP — because Bob couldn’t stay at the same altitude
as Alice if Alice moved in those dimensions.

SB: Symmetrically,SB consists of those dimensions ofB that are in bijective
correspondence with dimensions ofSunderg, but where those dimensions
of S lie outside the image off .

AA: There may be some dimensions ofA that lie in the kernel off — ways that
Alice can move without affecting her altitude. Those dimensions make up
AA, and they survive into the fiber productP.

BB: Symmetrically,BB is those dimensions ofB that lie in the kernel ofg.
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Note that the two letters in the name of a space should be thought of as the left
and right endpoints of a nonempty substring of the string “ASB”. In particular,
the spaceAB appears in theS position of Formula 10-23, as well as in theA and
B positions. Note also that we are using only five out of the six possible such
substrings. By transversality, every dimension ofS must correspond either to a
dimension ofA (CaseAS) or a dimension ofB (CaseSB) or both (CaseAB).
Thus, we have no need for a “neither” option, a space namedSS.

The Binary Full Formula 10-23 follows easily from the two Partial Identity
Formulas and the Concatenate Axiom. Starting with the left-hand side

(AA× AB× AS)×(SB×AB×AS) (SB× AB× BB),

we apply the Left Partial Identity Formula to remove the two instances ofAS
and the Right Partial Identity Formula to remove the two instances ofSB, leaving
(AA× AB) ×AB (AB × BB). We then choose one of the two Partial Identity
Formulas — say the Left one — to remove two of the three instances ofAB, after
which the Concatenate Axiom finishes the proof:(AA× AB)×AB (AB× BB) =
AA×♦ (AB× BB) = AA× (AB× BB) = AA× AB× BB.

While the Binary Full Formula is easy to prove, it is surprisingly powerful.
The key to that power — the reason why it is “full” — is the following universality.

Proposition 10-24 Every binary problem instanceA
f
→ S

g
← B is isomorphic to

an instance of the special form

AA× AB× AS
0×1×1
−−−→ SB× AB× AS

1×1×0
←−−− SB× AB× BB,

to which the Binary Full Formula applies.

Proof We want to express the oriented factor spacesA andB as direct products
A = AA× AB× ASandB = SB× AB× BB and the base spaceS as a direct
productS= SB× AB× AS in such a way that the factor mapsf andg become
the trivial direct products 0× 1× 1 and 1× 1× 0. To this end, we shall construct
oriented subspacesAAA, AAB, and AAS of A with A = AAA ⊕ AAB ⊕ AAS and
similarly for B andS, where the factor mapsf andg restrict to give orientation-
preserving bijections relatingAAS↔ SAS, SSB↔ BSB, andAAB↔ SAB↔ BAB.

It’s convenient to do the work in two phases. We’ll first do linear algebra to
choose the subspaces themselves, but just orient them arbitrarily. We’ll then go
back and reverse the orientations of some of those chosen subspaces, as necessary,
so that the final orientations ofA, B, andSmatch the given problem instance.

The linear algebra starts out easily; we setAAA := Ker( f ) andBBB := Ker(g),
assigning orientations to those two kernels arbitrarily.

We next fix some complementU of AAA in A. If we restrict the factor mapf
to the subspaceU of A, it becomes a bijection onto Im( f ) ⊆ S. Let’s refer to that
restriction as the map̄f : U → Im( f ). In a similar way, fix some complementV
of BBB in B, and letḡ : V → Im(g) be the resulting bijection.
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We next setSAB := Im( f ) ∩ Im(g), once again orienting arbitrarily. We then
set AAB := f̄ −1(SAB), so thatAAB is some oriented linear subspace ofU , our
chosen complement ofAAA in A. Similarly, we setBAB := ḡ−1(SAB).

The substrings that remain areASandSB. We setSAS to be some complement
of SAB in Im( f ), oriented arbitrarily. We then setAAS := f̄ −1(SAS). Similarly,
we setSSB to be some complement ofSAB in Im(g), oriented arbitrarily, and we
setBSB := ḡ−1(SSB).

We now haveSAB ⊕ SAS = ± Im( f ). Applying the bijection f̄ −1 to each
summand, we haveAAB ⊕ AAS= ±U . And it follows thatAAA⊕ AAB ⊕ AAS=
±(AAA ⊕ U) = ±A. Similarly, we haveSSB⊕ SAB = ± Im(g) and, applying
ḡ−1, we haveBSB⊕ BAB = ±V and BSB⊕ BAB ⊕ BBB = ±B. Furthermore,
since the mapsf and g are transverse, their images span all ofS; so we have
SSB⊕ SAB ⊕ SAS= ±S.

We now fix up the orientations, as necessary, starting with the base spaceS.
If the orientation of the direct sumSSB⊕ SAB ⊕ SAS is currently−S, we reverse
the orientation of, say, the summandsSAS and AAS. Since we are reversing both
of them, the mapf still restricts to an orientation-preserving bijection between
them; but we now haveSSB ⊕ SAB ⊕ SAS = +S. We then fix up the factor
spaces. If the orientation of the direct sumAAA⊕ AAB⊕ AAS is currently−A, we
simply reverse the orientation of the summandAAA. Similarly, if the orientation
of BSB⊕ BAB ⊕ BBB is currently−B, we reverseBBB. The resulting problem
instance is then isomorphic to the original.⊔⊓

Corollary 10-25 The Binary Full Formula 10-23 and the Isomorphism Axiom —
just those two, without any of our other axioms, not even Stability! — form a
consistent and complete axiom system for the Proper Orientations.

Proof Given any binary problem instanceA
f
→ S

g
← B, Proposition 10-24

constructs an isomorphic instance of the special form to which the Binary Full
Formula applies. The Proper Orientation for the fiber product P := A ×S B is
then determined as the orientation that makesP = AA× AB× BB. ⊔⊓

So the Binary Full Formula, together with the Isomorphism Axiom, implies all
of our other axioms; but our proof of that in Corollary 10-25 is based on much of
this monograph. It is instructive to confirm that the Binary Full Formula implies
each of our other axioms, using separate arguments that are as direct as possible.
We are going to devote the rest of Section 10.3 to that task, since those confirming
arguments help to explain just how the Binary Full Formula manages to bundle up
so much information into a single equation.

By the way, analogous to our Binary Full Formula, there exists ann-ary Full
Formula for anyn. The Unary Full Formula is trivial, but is worth writing down,
to help clarify the general patterns:AA = AA. We’ll write out the Ternary Full
Formula in Section 10.3.4, and we’ll tackle then-ary case in Section 10.4.
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10.3.1 The easy confirmations

The Concatenate and Both Identities Axioms are the easiest axioms to confirm as
being implied by the Binary Full Formula — so easy that we don’t even need the
Isomorphism Axiom. SettingAA := A andBB := B in the Binary Full Formula
while settingAS := AB := SB := ♦, we find that

(A× ♦ × ♦)×(♦×♦×♦) (♦ × ♦ × B) = A× ♦ × B,

from which it follows immediately thatA×♦ B = A× B. And settingAB := S
while settingAA := AS := SB := BB := ♦, we find that

(♦ × S× ♦)×(♦×S×♦) (♦ × S× ♦) = ♦ × S× ♦,

so we have confirmed thatS×S S= S.
The Left Identity Axiom is a bit more subtle. If we setAA := SB := ♦ in the

Binary Full Formula, we find that

(♦ × AB× AS)×(♦×AB×AS) (♦ × AB× BB) = ♦ × AB× BB.

This is perfectly consistent with the axiomS×S B = B, where the role ofS is
played byAB × AS and the role ofB by AB × BB; but we don’t yet have a
proof. Indeed, in the Left Identity AxiomS×S B = B, we don’t need to assume
anything about the behavior of the right factor mapg : B→ S. In order to apply
the Binary Full Formula, however, we must break up the spacesB and S into
subspaces on whichg behaves in known, simple ways. Proposition 10-24 tells
us that this breaking up can always be done, up to isomorphism. So the Binary
Full Formula, together with the Isomorphism Axiom, does imply the Left Identity
Axiom. The Right Identity Axiom is symmetric.

The Reversing Axioms are a similar story. Every binary problem instance
A×S B = P is isomorphic to an instance of the special form to which the Binary
Full Formula applies:

(AA× AB× AS)×(SB×AB×AS) (SB× AB× BB) = AA× AB× BB.

By negatingAA, we then conclude that(−A)×S B = −(A×S B); and negating
BB gives us the Right Reversing Axiom in a similar way. For the Base Reversing
Axiom, we negate, say, bothASandAA.

10.3.2 Confirming stability

The Stability Axiom is so subtle that we shan’t bother to confirm it here in detail.
But we shall discuss the key idea that would underlie such a confirmation.

The hard part of confirming stability is showing that the orientation of the fiber
product doesn’t suddenly flip at the end of a limiting processin which the rank of a
factor map drops. Suppose that we approach a particular binary problem instance
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A
f0
→ S

g0
← B along a path of instancesA

ft
→ S

gt
← B, ast tends to zero. We

always have rank( f0) ≤ limt→0 rank( ft ) and rank(g0) ≤ limt→0 rank(gt). When
both of those hold as equalities, stability actually follows from the Isomorphism
Axiom. The hard cases are those in which at least one of the inequalities is strict.

Let’s suppose that rank( f0) < limt→0 rank( ft); what happens when we apply
the Binary Full Formula to each problem instanceA[ ft ] ×S [gt ]B? In particular,
how does Proposition 10-24 decompose the spacesA, B, andS into subspaces,
as a function oft? And how does the Binary Full Formula then build up the
fiber productP from those subspaces? At the moment thatt becomes zero, some
dimensions move out of the subspaceAB. In the factor spaceA, those dimensions
move out ofAAB into AAA; that is, they get absorbed into the kernel of the map
ft , which suddenly grows. In the fiber productP, the corresponding dimensions
move out ofPAB into PAA. The corresponding dimensions of the base spaceS
move out ofSAB into SSB; that is, they are left behind by the image offt , which
suddenly shrinks. Note that, since these dimensions ofSare no longer covered by
Im( ft) whent = 0, they must be covered by Im(g0), since the problem instance
A[ f0] ×S [g0]B is transverse. So they do indeed move intoSSB, as we claimed.
The corresponding dimensions in the factor spaceB move out ofBAB into BSB.

We now exploit a combinatorial property of the Binary Full Formula. Note
that its four ternary direct products correspond preciselyto the four left-to-right
chains in the following poset:

AB
BB

AS

AA

SB

��

HH

HH

��
(10-26)

In particular, the subspacesAA and SB appear only in direct products withAB
immediately to their right, whileAB always has eitherAA or SB to its left. We
can thus proceed as follows: Ast approaches zero, we arrange that the “moving”
dimensions come first, in our positive, ordered bases for each of the four subspaces
AAB, SAB, BAB, andPAB. At the moment thatt becomes zero, those dimensions
can then slide over, with no transpositions needed, to become the last dimensions
in our positive, ordered bases forAAA, SSB, BSB, and PAA. Since the order of
the basis elements doesn’t change ast becomes zero — all that changes is our
interpretation of which basis elements span which subspaces — the orientations
that are produced by the Binary Full Formula do remain stablein the limit.

We could deal in a similar way with a sudden drop in the rank ofgt when t
becomes zero, because the subspacesASand BB appear always just to the right
of AB. We could even deal with the ranks of bothft and gt dropping whent
becomes zero, since the drop in rank( ft ) shrinks the basis forAB from the front,
while the drop in rank(gt) shrinks it from the back — so the two processes don’t
interfere. Thus, if we filled in lots of details, we could confirm that the Binary Full
Formula (together with the Isomorphism Axiom) implies the Stability Axiom.
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10.3.3 Reordering the direct products

Writing the Binary Full Formula 10-23 as we have been doing,

(AA× AB× AS)×(SB×AB×AS) (SB× AB× BB) = AA× AB× BB,

with its direct products in the order specified by Diagram 10-26, works well for
confirming stability. But it is worth noting that there are other ways to order those
products that are equally valid.

For example, the subspaceSBappears twice, withAB to its right both times.
If we swapped that pair in one of the two products, puttingSB to the right ofAB,
we would introduce a correction factor of(−1)dim(SB) dim(AB). But swapping the
other pair as well removes the correction factor, giving us an equally valid way to
write the Binary Full Formula:

(AA× AB× AS)×(AB×SB×AS) (AB× SB× BB) = AA× AB× BB.

The ternary direct products in this variant are left-to-right chains in this poset:

SB
BB

AS
ABAA

��

HH
(10-27)

This variant of the Binary Full Formula makes it harder to write down the left
factor mapf , however. We can’t just writef = 0×1×1, because corresponding
subspaces no longer occur in corresponding left-to-right positions. Instead, if we
wrote f : AA× AB× AS→ AB× SB× ASas a matrix of maps, it would be

f =





0AB←AA 1AB←AB 0AB←AS

0SB←AA 0SB←AB 0SB←AS

0AS←AA 0AS←AB 1AS←AS



 ,

with not all of the identity blocks on the main diagonal. But the factor map that we
intend is still clear: The matrix of maps should have identity blocks wherever the
domain and codomain correspond and should otherwise be entirely zero. This rule
makes perfect sense even when the matrix of maps is not square, as will happen
in constructing the factor maps for the Ternary andn-ary Full Formulas.

Here is another possible variant of the Binary Full Formula:After swapping
SBwith AB, we could swapAAwith AB, both times that that pair appears, getting
the variant

(AB× AA× AS)×(AB×SB×AS) (AB× SB× BB) = AB× AA× BB,

with its poset:

SB

AA BB

AS
AB ��@@

��

HH
(10-28)
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In this variant, theAB component comes first in all four of the direct products.
On the other hand, there certainly are constraints on the posets that we can

adopt. For example, we must haveAA ≺ BB (that is, AA to the left of BB)
in any valid poset. To see why, consider a problem instance inwhich AA and
BB are odd-dimensional, whileAB = AS= SB= ♦. The left-hand side of the
Binary Full Formula then reduces toAA×♦ BB, while the right-hand side is either
AA×BB or BB× AA, according asAA≺ BB or BB≺ AA in the poset. In order
to satisfy the Concatenate Axiom, the former must pertain.

Exercise 10-29Show, by a similar argument based on the Left Partial Identity
Formula, thatAA ≺ AS in any valid poset. Symmetrically, because of the Right
Partial Identity Formula, we must haveSB≺ BB.

Exercise 10-30Show, by using both of the partial identity formulas (or by using
the formulaB×A×B A = ♦ in Exercise 9-8) thatSB≺ AS in any valid poset.

The four constraintsAA ≺ BB, AA ≺ AS, SB≺ BB, andSB≺ AS, which
are the four in Poset 10-28 that don’t involveAB, turn out to be the only ones that
must hold in any valid poset for the Binary Full Formula. We demonstrate that,
and generalize to then-ary case, in Section 10.4.2.

10.3.4 Confirming mixed associativity

We have left the most intriguing axiom for last: Why is it thatthe Binary Full
Formula (together with the Isomorphism Axiom) implies the Axiom of Mixed
Associativity? The obvious strategy for confirming that implication starts with a

ternary problem instanceA
f
→ S

g
← B

h
→ T

k
← C. We then confirm that

(

A[ f ] ×S [g]B
)

[h′] ×T [k]C = A[ f ] ×S [g′]
(

B[h] ×T [k]C
)

by applying the Binary Full Formula four times to evaluate the inner and outer
fiber products on each side. In order to apply the Binary Full Formula, however,
we have to decompose the various linear spaces involved intosubspaces that the
various factor maps behave on in known, simple ways. Proposition 10-24 does
that decomposition in the binary case, breaking up each of the three spacesA, S,
andB into subspaces corresponding to the appropriate subset of the five labelsAA,
SB, AB, AS, and BB. In the ternary case, the decomposition is more complex.
We must break up the five spacesA, S, B, T , andC, and we have a total of twelve
potential labels: all fifteen non-empty substrings of the string “ASBTC”,

AA SS BB TT CC

AS SB BT TC

AB ST BC(10-31)

AT SC

AC,
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except forSS, ST, andTT, which are ruled out by transversality. Rather than
tackling that ternary decomposition here, we postpone it until Section 10.4.1, in
which we prove then-ary analog of Proposition 10-24 by appealing to the theory
of quiver representations. For now, let’s simply assume theternary analog.

Under that assumption, the following is a universal formulafor the ternary
case, which we therefore christen ourTernary Full Formula:

A×S B ×T C = P(10-32)

where

A := AA× AB× AC× AT × AS

S := SB× SC× AB× AC× AT × AS

B := SB× SC× AB× AC× BB× BC× AT × BT

T := TC× SC× AC× BC× AT × BT

C := TC× SC× AC× BC× CC

P := AA× AB× AC× BB× BC× CC

This Ternary Full Formula is, unfortunately, far too long towrite on a single line;
so we have introduced symbolic names for each of its six direct products.

Let’s consider first which subspaces appear in which direct products, without
worrying about their order. The subspaces that appear in thefive products on the
left-hand side are determined by the order of the letters in the string “ASBTC”.
For example, for the productT , we start with the eight substrings that contain the
letterT — eight because there are four gaps to the left ofT , where the substring
can start, and two gaps afterT , where it can stop. These eight substrings form the
parallelogram that can be reached by downward paths fromTT in Diagram 10-31.
But we then omit the two spacesST andTT, which are ruled out be transversality,
leavingT as the product of six subspaces. The fiber productP is a different story;
it contains all six of the subspaces whose names involve neitherSnor T .

The order of the subspaces in each direct product is a subtlerissue. As we
have chosen to write down the Ternary Full Formula 10-32, itssix direct products
correspond to chains in this poset:

AC BC
CC

AT
AS

BT

BBAB
AA

SC
TC

SB

��

��

HH

HH HH

HH��

��(10-33)

As in the binary case, there are lots of other orderings that would be equally
good. Note that we haven’t been able to achieve perfect left-right symmetry in
the ternary case. The subspacesAC andBB appear together in several products,
so we had to break the symmetry; we have chosen arbitrarily towrite AC to the
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left of BB. SinceAC andBBappear together in an even number of products, how-
ever — to wit, in the two productsB andP — reversing this choice would affect
only the surface form of the Ternary Full Formula, not its underlying import.

To prove that the Ternary Full Formula 10-32 is correct with the products in
the order that we have chosen, we apply the Binary Full Formula twice to evaluate
the left-associated product

(

A×S B
)

×T C. The resulting calculation is shown in
the top half of Table 10.1. To save space, that table denotes direct products simply
by listing their factor spaces; that is, we write(X,Y, Z) rather thanX × Y × Z.
We also abbreviate dim(AT) as(at), and similarly for the other subspaces. Note
that we have to reorder some of the subspaces temporarily, inorder to apply the
Binary Full Formula. The horizontal braces indicate the grouping of subspaces
into blocks for each application of the Binary Full Formula.And L denotes the
result of the inner binary fiber product.

The bottom half of Table 10.1 verifies the Ternary Full Formula a second time,
this time using the right-associated productA ×S

(

B ×T C
)

. SoR denotes the
result of that inner binary fiber product. The two halves of Table 10.1 are not quite
symmetric, because of our arbitrary choice to writeAC to the left of BB in the
Ternary Full Formula. But the two halves do get the same result, and this confirms
that the Binary Full Formula (together with the IsomorphismAxiom) does indeed
imply the Axiom of Mixed Associativity — the last of our otheraxioms.

Exercise 10-34What is theBinary Full Back-Formula, the analog of the Binary
Full Formula that would result if we replaced the Concatenate Axiom with the
Concatenate-Backwards Axiom?

Answer: Swapping the left and right factor spaces in the Binary Full Formula
gives

(SB× AB× BB)×←−−−−−−→(SB×AB×AS) (AA× AB× AS) = AA× AB× BB.

But restoring alphabetic order among the names of the subspaces then requires
that we swap the nameAAwith BB and the nameASwith SB, leading to the final
formula:

(AS× AB× AA)×←−−−−−−→(AS×AB×SB) (BB× AB× SB) = BB× AB× AA.

10.4 Towards ann-ary Full Formula

In verifying the mixed associativity of the Binary Full Formula 10-23, we found
it helpful to write out the Ternary Full Formula 10-32. Suppose that we wanted
to write out an explicitn-ary Full Formula, for some largern — a single formula
that encodes the proper orientations of alln-ary transverse mixed fiber products.
We would face two challenges.

First, to show that such a formula actually has the universality implied by the
adjective “full”, we need a result from linear algebra — essentially, a structure
theorem for zigzags. We proved that theorem for binary zigzags by explicit linear
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algebra in Proposition 10-24. But extending that result to the n-ary case is not
trivial. Indeed, we haven’t yet extended it even to the ternary case. Fortunately, the
theory of quiver representations comes to our rescue. We show, in Section 10.4.1,
that the necessary structure theorem forn-ary zigzags is a corollary of Gabriel’s
Theorem, in the theory of quiver representations.

The other key ingredient that we need, in order to write out anexplicit n-ary
Full Formula, is an appropriate partial order. Each space that appears in that Full
Formula will be written as the direct product of a sequence ofsubspaces, and
we need to know an appropriate left-to-right ordering for the subspaces in that
product. In Section 10.4.2, we analyze the constraints on such a partial order and
we construct an explicit total order that satisfies all of therequired constraints.

10.4.1 The indecomposable summands of a zigzag

In Proposition 10-24, we showed that every binary problem instance is isomorphic
to an instance of the special type to which the Binary Full Formula applies. Recall
that the proof had two steps. We first did explicit linear algebra to decompose the
three linear spacesA, B, andS as direct sums of subspaces on which the factor
maps f andg behave in very simple ways. We then adjusted the orientations of
the resulting subspaces so that the orientations of the spacesA, B, andScame out
properly. Adjusting the orientations turns out to be easy, even in then-ary case.
But the linear algebra required in then-ary case is fairly subtle. Fortunately, the
recent theory ofquiver representations[4, 5, 14] has made dramatic progress on
these subtle issues of linear algebra. The quiverQn that corresponds to ann-ary
zigzag turns out be a quiver offinite type, so an appeal to Gabriel’s Theorem will
give us all that we need to analyze the structure of zigzags.

DefineQn to be the directed graph that consists of a path of length 2n whose
edges alternate between pointing forward and pointing backward:

◦
D1

−→ ◦
C1

←− ◦
D2

−→ · · · −→ ◦
Cn−1

←− ◦
Dn

The namesDi andCi are intended to suggest “domain” and “codomain”, by the
way. Since a quiver is just another name for a directed graph,we shall also refer to
the graphQn as a quiver, then-ary alternating-path quiver. An n-ary zigzag is, in
other language, simply a representation of this quiverQn. In such a representation,
we associate a linear space with each vertex, say the factor space Ai with the
domain vertexDi and the base spaceSi with the codomain vertexCi , for eachi ;
and we associate a linear map with each edge, the linear mapfi : Ai → Si with
the i th forward edge and the linear mapgi+1 : Ai+1 → Si with the i th backward
edge, thus arriving at then-ary zigzag

A1
f1
−→ S1

g2
←− A2

f2
−→ · · ·

fn−1
−→ Sn−1

gn
←− An.

Given twon-ary zigzagsZ1 andZ2, we construct theirdirect sum Z= Z1⊕Z2

by taking the direct sums of corresponding linear spaces andcorresponding linear
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maps. Theall-zero zigzag, the zigzag all of whose spaces are zero-dimensional
and all of whose linear maps are identically zero, is an identity element of this
direct-sum operator. A zigzag isindecomposablewhen it is not isomorphic to a
direct sum of nonzero zigzags. The key to understanding the linear algebra of
zigzags is to describe all of the isomorphism classes of indecomposable zigzags.
Fortunately, the theory of quiver representations gives usthat description.

The quiverQn is of finite type; that is, its Tits form [4, 14] is positive definite.
So Gabriel’s Theorem tells us that there are precisely

(2n
2

)

isomorphism classes of
indecomposable representations ofQn, one such isomorphism class for each of
the

(2n
2

)

subpaths ofQn. For example, consider the subpath ofQn that goes from
C1 to D3:

◦
C1

←− ◦
D2

−→ ◦
C2

←− ◦
D3

The indecomposable representations ofQn that correspond to this subpath are
all isomorphic, with the following structure: They associate 1-dimensional linear
spaces with each of the vertices in the subpath, that is, withthe four verticesC1,
D2, C2, and D3; and they associate zero-dimensional spaces with the rest of the
vertices ofQn. There are then three linear maps for which both the domain and
codomain are 1-dimensional: the forward map fromD2 to C2 and the backward
maps fromD2 to C1 and fromD3 to C2. For the representations in this equivalence
class, those three linear maps are bijections. All of the other linear maps are
identically zero, as they must be, including the forward mapfrom D1 = ♦ to C1

and the forward map fromD3 to C3 = ♦.

Theorem 10-35 (Structure of Zigzags)Fix an arityn ≥ 1. Everyn-ary zigzag
Z can be decomposed, in an essentially unique way, as the direct sum of a finite
number of indecomposablen-ary zigzags, each of which corresponds to a subpath
of the quiverQn, as discussed above. The structure ofZ can thus be described,
up to isomorphism, by specifying how many of these indecomposable summands
lie in each of the

(2n
2

)

possible isomorphism classes. Those classes can be grouped
into four types, according as the corresponding subpath runs

Type DD: from Di to Dj , for somei ≤ j ;

Type DC: from Di to Cj , for somei ≤ j ;

Type CD: from Ci to Dj , for somei < j ; or

Type CC: from Ci to Cj , for somei ≤ j .

Proof This is Gabriel’s Theorem [4, 14] applied to the particular quiver Qn,
which is of finite type. The

(2n
2

)

isomorphism classes correspond to the
(2n

2

)

non-
negative dimension vectors at which the Tits form takes on the value+1. ⊔⊓



148 CHAPTER 10. ADJUSTING THE AXIOMS

Theorem 10-35 is a structure theorem for zigzags, and we shall use it to verify
that ann-ary Full Formula is actually “full”. Before we do that, however, we need
to consider the role that transversality plays in Theorem 10-35.

Proposition 10-36 An indecomposablen-ary zigzag is transverse just when it is
not of TypeCC.

Proof Recall that ann-ary zigzagA1
f1
→ S1

g2
← A2

f2
→ · · ·

fn−1
→ Sn−1

gn
← An is

transverse just when its difference map1 : A1 × · · · × An → S1 × · · · × Sn−1 is
surjective, where that difference map is given by

1(α1, . . . , αn) :=
(

g2(α2)− f1(α1), . . . , gn(αn)− fn−1(αn−1)
)

.

If a zigzag is indecomposable of TypeCC, the number of base spacesSi

that are 1-dimensional exceeds by one the number of factor spacesAi that are
1-dimensional; so the difference map1 can’t possibly be surjective.

If a zigzag is indecomposable of TypeDC, its difference map is bijective, as
we can check by working from right to left. For example, if its1-dimensional
spaces run from the vertexDi to the vertexCj , for somei ≤ j , then any value for
σj determines a unique corresponding value forαj , after which that value, together
with any value forσj−1, determines a unique value forαj−1, and so forth. The
difference maps for indecomposable zigzags of TypeCD are similarly bijective,
as we can check by working from left to right.

Finally, if a zigzag is indecomposable of TypeDD, its difference map fails to
be injective, but is surjective — as we can check by working ineither direction. ⊔⊓

Proposition 10-37 If an n-ary zigzagZ is a direct sum, sayZ =
⊕

i Zi , thenZ
is transverse just when all of the summandsZi are transverse.

Proof The difference map ofZ is the direct product of the difference maps of the
Zi , and a direct product of maps is surjective just when each factor is surjective. ⊔⊓

Corollary 10-38 An n-ary zigzag is transverse just when all of its indecompos-
able summands are of types other than TypeCC.

We can now verify the “fullness” of ann-ary Full Formula. We shall state the
result only for the ternary case,n = 3; but the same ideas suffice for alln.

Proposition 10-39 Every ternary problem instanceA
f
→ S

g
← B

h
→ T

k
← C is

isomorphic to an instance of the special form to which the Ternary Full Formula
applies, that special form being as described in Formula 10-32.

Proof As in our analysis of the binary case in Proposition 10-24, the proof has
two parts. The hard part is the linear algebra that breaks up all of the factor spaces
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and all of the base spaces into appropriate subspaces. It is then straightforward to
adjust the orientations of those subspaces as needed.

We deal with the linear algebra by applying Theorem 10-35 to the given
ternary problem instance, thereby decomposing it as the direct sum of indecom-
posable zigzags of the fifteen classes shown in Table 10-31. Of those fifteen
classes, the three classesSS, ST, andT T cannot arise, since a ternary problem
instance is assumed to be transverse. We group the indecomposable summands of
the twelve remaining classes by their class. The direct sum of the summands of
classSC, for example, then gives us the subspacesSSC, BSC, TSC, andCSC, and
similarly for the other eleven classes.

It remains only to deal with the orientations. We begin by making an arbitrary
choice of orientation for each of the twelve classes. For example, for the class
SC, we choose some orientation for the subspaceSSC, and we carry that orienta-
tion forward to orientBSC, TSC, andCSC. We then reverse some of our arbitrary
choices, if necessary, in order to arrange that the three factor spacesA, B, andC
and the two base spacesS andT all emerge with the proper orientations. We fix
up the base spaces first. If the orientation ofS is currently wrong, we reverse the
subspacesAAS andSAS. Similarly, if T is currently wrong, we reverseBBT and
TBT. We can then fix up each factor space independently, with no interference.
For example, ifB is currently wrong, we simply reverseBBB. ⊔⊓

10.4.2 The poset underlying a Full Formula

Our quiver-based analysis of the structure of a zigzag has demonstrated that every
transversen-ary zigzag can be decomposed in such a way that ann-ary Full For-
mula will apply. To write out an explicitn-ary Full Formula, however, we need
one further ingredient: We need to know how to order the various subspaces in
each of its direct products. In the ternary case, for example, we ordered the six
direct products in Formula 10-32 as specified by the chains inPoset 10-33.

In then-ary case, we need a poset whose elements are the isomorphismclasses
of indecomposable representations of ann-ary zigzag. Of those

(2n
2

)

classes, how-
ever, the

(n
2

)

classes that are of TypeCC will not arise, since our zigzags are
transverse. So our poset will have

(2n
2

)

−
(n

2

)

elements.
What are our goals for this poset? To be useful, it must imposea linear order

on all of the isomorphism classes that appear in any single product of ourn-ary
Full Formula. But we also want our Full Formula to be correct,that is, to impose
the Proper Orientation on every fiber product. We can guarantee that correctness
by imposing simple combinatorial conditions on the poset.

Definition 10-40 Fixing n ≥ 1, consider a poset whose elements are the
(2n

2

)

−
(n

2

)

isomorphism classes of indecomposable, transverse representations of the quiver
Qn. We call such a posetadmissiblewhen it meets the following six conditions:

1. For each vertex in the quiverQn, the poset imposes a linear order on those
classes that include that vertex.
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2. The poset also imposes a linear order on all of the classes of TypeDD. Note
that those classes are the ones that appear, on the right-hand side of the Full
Formula, in the expression for the fiber product.

3. If the leftmost vertex in a classαDD of TypeDD also belongs to a classβCD

of TypeCD, then the partial order must haveβCD ≺ αDD.

4. Symmetrically, if the rightmost vertex in a classαDD of TypeDD belongs to
a classβDC of TypeDC, then we must haveαDD ≺ βDC.

5. If a classαCD of TypeCD and a classβDC of TypeDC intersect, but are not
nested one inside the other, then we must haveαCD ≺ βDC. An equivalent
way to describe this situation is to say that the two classesαCD andβDC

share an odd number of vertices.

6. Given two classesαDD andβDD, both of TypeDD, if every vertex ofαDD lies
strictly to the left of every vertex ofβDD, then we must haveαDD ≺ βDD.

In the binary caseA×SB, each of the last four conditions boils down to a single
ordering constraint. Condition 3 saysSB ≺ BB, Condition 4 saysAA ≺ AS,
Condition 5 saysSB≺ AS, and Condition 6 saysAA≺ BB. Note that these four
constraints are precisely the four that we saw to be necessary in Section 10.3.3.

We shall show, in a moment, that the six conditions in Definition 10-40 suffice
to ensure that the resultingn-ary Full Formula is correct. But let’s first make the
easy observation that these six conditions can be simultaneously satisfied.

Proposition 10-41 Admissible partial orders exist, for everyn ≥ 1.

Proof We satisfy Conditions 1 and 2 by choosing our partial order tobe total.
In Conditions 3 through 5, note that a class of TypeCD is always required to be
smaller than some class of some other type, while a class of TypeDC is always
required to be larger than some class of some other type. We can hence satisfy
those conditions as follows: We put all of the classes of TypeCD first in our order,
ordered arbitrarily among themselves. And we put all of the classes of TypeDC
last, again ordered arbitrarily among themselves. It remains only to insert the
classes of TypeDD into the middle, between theCD’s and theDC’s, in some
order that satisfies Condition 6. For example, we could describe each class of
TypeDD by the pair(leftmost vertex, rightmost vertex) and then sort those pairs
lexicographically. ⊔⊓

Proposition 10-42 Then-ary Full Formula that is constructed from any admissi-
ble partial order is correct, in the sense that it determinesthe Proper Orientation
for every transverse,n-ary fiber product.
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Proof To show that the resultingn-ary Full Formula is correct, we use our axioms
to reduce its left-hand side to coincide with its right-handside.

Step 1: Canceling the classes of TypesCD and DC We start by tackling the
isomorphism classes of TypeCD andDC, working inductively from the shortest
such classes toward the longer ones. We shall eliminate eachsuch class in turn
from our Full Formula — in particular, from that formula’s left-hand side.

Choose one of the shortest remaining classes. Let’s say thatit is the classσCD

of TypeCD; if it is of Type DC, we treat it symmetrically. The classσCD includes
an even number of vertices, and we view each codomain vertex as paired with the
following domain vertex. Letc andd denote one such adjacent pair of vertices,
included withinσCD; we shall treat each such pair separately. We are going to
use the Right Partial Identity Formula 10-11 to remove the factor σCD from the
left-hand-side products associated with the verticesc andd.

We first exploit mixed associativity to insert parentheses into our Full Formula
in such a way that one of the innermost fiber products to be computed is the
binary product that has vertexc as its base space and vertexd as its right-hand
factor space. Note that the direct-product expressions associated with each of
these vertices will include a factor corresponding toσCD. If those two factors
were both leftmost in their products, we could apply the Right Partial Identity
Formula immediately to remove those two factors.

Typically, of course, there will be factors to the left ofσCD in the product for
the vertexc, and also to the left ofσCD in the product for the vertexd. Some of
those leftward factors may be shared between the two products. In fact, we claim
that all such leftward factors must be shared.

Consider some factor, sayτ , that lies to the left ofσCD in the product for the
vertexd. If the factorτ occurs at all in the product forc, it must lie to the left of
σCD there as well, since the same partial order linearly orderedboth products. Can
it be thatτ does not occur at all in the product forc? If so, the classτ must have
d as its leftmost vertex; soτ must be either of TypeDD or of TypeDC.

Suppose first thatτDD is of TypeDD. By Condition 3, sinced is the leftmost
vertex inτDD andd lies also inσCD, the partial order must haveσCD ≺ τDD. But
that contradicts the leftward location ofτDD.

On the other hand, suppose thatτDC is of TypeDC. By induction, we have al-
ready removed from our Full Formula all factors corresponding to classes that are
shorter thanσCD. So the classτDC is at least as long asσCD. SinceτDC starts to the
right of whereσCD starts, the classesσCD andτDC cannot be nested. Condition 5
therefore applies, telling us thatσCD ≺ τDC, which is again a contradiction.

So every factor that occurs to the left ofσCD in the product for the vertexd
occurs also in the product forc. What about the converse?

Suppose thatρ is a factor that lies to the left ofσCD in the product forc; could
it be thatρ does not occur in the product ford? The rightmost vertex ofρ would
then have to bec; soρ would have to be of TypeDC. (There is no second choice
because TypeCC doesn’t occur.) SinceρDC is at least as long asσCD, those two
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can’t be nested. By Condition 5, we conclude thatσCD ≺ ρDC, which is again a
contradiction.

We have now shown that the factors that lie to the left ofσCD in the product for
the vertexc are identical to those that lie to the left ofσCD in the product ford. We
can swapσCD to the left over each of these factors in turn. Since each suchswap
happens twice, once in the formula forc and once in the formula ford, any factor
of −1 that might be introduced cancels out. Having done these swaps, the factor
σCD is now leftmost in the products for bothc andd, so we can use the Right
Partial Identity Formula to eliminate it. Note that this swapping puts our formula,
temporarily, into a state where some of its products are not ordered according to
the controlling partial order. But, once we eliminate the two instances ofσCD with
the Right Partial Identity Formula, that problem goes away.

Step 2: Converting to lexicographic order When the induction in Step 1 has
been completed, all of the factors that remain in our Full Formula, on the left-hand
side as well as on the right, correspond to classes of TypeDD. By Condition 2,
our partial order restricts to total order on all of the classes of TypeDD. Our next
goal is to replace that total order, one swap at a time, with lexicographic order.

A pair of classes of TypeDD is currentlyinvertedif the ordering relationship
between those classes in the current total order is the opposite of their lexico-
graphic relationship. Our strategy will be to eliminate each such inverted pair by
performing a single swap. We don’t want that swap to affect any other ordering
relationships, however; so we restrict ourselves to swapping inverted pairs that are
adjacent in the current total order. If there are no invertedpairs that are currently
adjacent, then every adjacent pair is in lexicographic order. By transitivity, the
current order must be entirely lexicographic, so we are donewith Step 2.

If not, choose some inverted pair that is currently adjacent: Say thatτDD and
σDD are two classes of TypeDD that are adjacent in the current total order, that
τDD ≺ σDD in that total order, but thatσDD ≺ τDD in lexicographic order. Our plan
is to swapσDD to appear beforeτDD.

The only way in which we are changing any ordering relationships is to swap
inverted pairs into lexicographic order. So any pair that iscurrently inverted was
also originally inverted. But the original total order on the classes of TypeDD
was required to satisfy Condition 6. SinceτDD precededσDD in that original order,
it cannot have been the case thatσDD precededτDD; so, by the contrapositive of
Condition 6, it cannot be the case that every vertex ofσDD lies to the left of every
vertex ofτDD. But we also know thatσDD precedesτDD in lexicographic order.
Because of the way that lexicographic order works, it cannotbe the case that
every vertex ofσDD lies to the right of every vertex ofτDD. The only remaining
option is that the vertex sets ofσDD andτDD intersect.

Two classes of TypeDD that intersect can intersect in various ways: One
may be nested inside the other, or they may overlap like shingles. In any case,
however, the size of their intersection is always odd. So suppose that we rewrite
the left-hand and right-hand sides of our Full Formula to adjust for swappingσDD
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to precedeτDD. We need to swap adjacent factors corresponding toσDD andτDD

in an odd number of products on the left-hand side, one for each vertex in their
intersection. But we also need to swap them in the single product on the right-
hand side. So the total number of swaps is even, and we can alter our Full Formula
to account for this swap without introducing a factor of−1.

Step 3: Canceling the superfluous factors of TypeDD As a result of Step 2,
the total order on the classes of TypeDD the controls our current Full Formula
is now lexicographic. And that makes it easy to cancel the superfluous factors
that remain. To see the pattern, here is what the left-hand side of a quaternary
fiber product would be at the start of these final simplifications, given that the
controlling order is lexicographic:

(AA, AB, AC, AD)×(AB,AC,AD) (AB, AC, AD, BB, BC, BD)

×(AC,AD,BC,BD) (AC, AD, BC, BD,CC,CD)

×(AD,BD,CD) (AD, BD,CD, DD).

(We have separated the factors in each direct product here with commas, rather
than with×’s, just to save space.) Consider each base space. We can use the
Right Partial Identity Formula to cancel each of the factorsof that base space,
from left to right, with the corresponding factors at the start of the following factor
space. All of the base spaces in what remains are simply♦, so we can convert the
fiber products that remain into direct products using the Concatenate Axiom. And
what results from that is precisely the direct product of allclasses of TypeDD, in
lexicographic order — which agrees with the right-hand side:

(AA, AB, AC, AD, BB, BC, BD,CC,CD, DD)

So the Full Formula that we started with was indeed correct.⊔⊓

Exercise 10-43If a partial order is going to guide us in writing out ann-ary Full
Formula, that order certainly has to satisfy Conditions 1 and 2 in Definition 10-40.
Proposition 10-42 shows that Conditions 3 through 6 then suffice to guarantee that
the resultingn-ary Full Formula will be correct. In the other direction, show that
Conditions 3 through 6 are also necessary. In particular, given a partial order that
violates even just one of the ordering constraints in Conditions 3 through 6, find a
fiber product that the resultingn-ary Full Formula will orient improperly.

Hint: The arguments are similar to those in Exercises 10-29 and 10-30. In each
case, we can choose the subspaces corresponding to the two misordered classes to
be 1-dimensional, while choosing all other subspaces to be♦.
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a manifold with, 5, 17
closed segment of, 47
of a region, 37
open segment of, 47, 50

brush stroke
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swallowtail in boundary of, 44
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chart, on a manifold, 62
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44, 48
Commutativity Axiom, 108

157



158 INDEX

commutativity for direct products
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differential, 22, 63
dimensional twist, 125
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of oriented linear spaces, 30
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defined with indices, 52

direct sum
of maps, 72
of zigzags, 146

double cover, 81
downward slope, 9, 26, 44
dual spaces, 69
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on matrix of maps, 74

equidimensional case
arises in convolutions, 48
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equidimensional case, of transverse
fiber products, 21

Euclidean structure, 88

factor maps
of a mixed fiber product, forward

and backward, 98
of a pure fiber product, 5, 53

factor set, of a fiber product, 53
fiber bundle, 4, 78
fiber product, iii, 4

as direct product in a related cat-
egory, 56

commutative diagram of, 23, 25
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notation for, 5
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of smooth manifolds, 63, 104
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flexes (points of inflection), 41
forward factor map, 98

Gabriel’s Theorem, 146, 147
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Gauss map (a.k.a. whisker map), iii,
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Grassmann manifold
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Gray-Region Rule, 13, 85
intrinsic version of, 15
topological flaw in, 30

Gray-Side Rule, 30
Greedy-Alice Rule, 9

Hausdorff, required for manifolds, 62

Identity Axioms, 48
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Intrinsic Gray-Region Rule, 15
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106
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Jacobian matrix, iv, 22, 23

Klein bottle, 75

Left Identity Axiom, 108, 117
Left Invertible Law, 28
Left Partial Identity Back-Formula, 135
Left Partial Identity Formula, 133
linear space versus vector space, 21n
linear versus affine, 5n
local coordinate system, on a mani-

fold, 62
local orientation rule, 9, 25
locally consistent pseudo-orientation,

75

manifold
non-orientable, 75
smooth defined, 62
topological defined, 62

with boundary, 5, 17
matrix of maps, 72
Minkowski sum, iii, 39

differs from convoluation, 44
with a 1-dimensional summand

becomes brush stroke, 41
Mixed Associativity Axiom, 34, 109,

118
side condition in, 109

mixed fiber product, 98
credit for concept of, v

mixed-associative dimensional twist,
128

Möbius strip, 23, 75

n-ary Full Formula, 36, 145
negative basis, 67
negatively oriented zero-dimensional

linear space, 68
neutrinos, spurious appeal to, 1
null-positivity, preservation of, 131
nullary direct product, 56
nullary fiber product, 52, 54

arising in geometric context, 61
oriented like base, 93
via category theory, 56

offsets of a curve or surface, iii
of a parabola, 42

offsetting repeatedly, 47
open boundary, segment of, 47, 50
orientation of a boundary

two uses for, 40
two ways to draw, 38

orienting
a direct sum or direct product, 69
a linear space, 23, 67
a quotient space, 71
a smooth manifold, 23, 75
a zero-dimensional linear space,

67
the boundary of a region, 37

painting, 38
Partial Identity Back-Formulas, 135
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for Binary Full Formula, 140, 141
for n-ary Full Formula, 149–153
for Ternary Full Formula, 143
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positive definite Tits form, 147
positive semidefinite matrix, 88
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Proper Orientations

in all-invertible case, 92
in equidimensional case, 108
in general case, 123

pseudo-orientation, 75
pullback (another name for the fiber

product), 4, 56
pure fiber product, 98

quiver, v, 146
of finite type, 146

quotient spaces, orienting, 71

retreating, 9, 26, 44
Reversing Axioms, 107, 116
Right Identity Axiom, 109, 118
Right Invertible Law, 27
Right Partial Identity Back-Formula,

135
Right Partial Identity Formula, 133

Schapira, Pierre, 19, 38
semialgebraic set, 19
semianalytic set, 19
sense, of a smooth map at a point, 23
sign, of a linear bijection, 23
slope of terrain, 9, 26

smooth manifold, 62
smooth,C∞ versusC1, 62
Stability Axiom, 106, 116
stable orientation rule, 11, 81, 89, 104
standard index set{1, . . . , n}, 56, 98
stealth airplane, an example that graph-

ically resembles, 49
subanalytic stratification, 19, 38
swallowtail

appearing in inner offset, 42
arrowheads along, 46
cusps of, 42
whiskers along, 46

tangent bundle, of a manifold, 78
tangent map, 22, 63
tangent space, to a manifold, 22, 63
Tarski-Seidenberg Theorem, 19
tensors, 68
terminal object, in a category, 56
Ternary Full Formula, 36, 143
ternary problem instances, 105
Tits form, 147
trajectory

of a brush, 41
transversality, iv, 7, 58

defined for linear spaces, 59, 101
defined for manifolds, 63
defined for zigzags, 101
in the 1-dimensional case, 7
monsters when not required, 18
role of in Structure Theorem for

Zigzags, 148
substitutes for, 19
viewed geometrically, 61, 64

twist, dimensional, 125
twisted orientations, 125
TypesDD, DC, CD, andCC, 147

unary fiber product, 87
orientation independent of base

orientation, 93
Unary Full Formula, 138
universally attracting object, in a cat-

egory, 56
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upward slope, 9, 26, 44

vector bundle, 78
vector space versus linear space, 21n

whisker, 38
credit for the clever name, v
pulling on, 47

whisker map (a.k.a. Gauss map), 40
weakly monotonic, 44

winding number, 38
along boundary, 47

zigzag, 101
all-zero, 147
as a quiver representation, 146
indecomposable, 147

of TypeDD, DC, CD, or CC,
147

Structure Theorem for, 147
transverse, 101




