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Abstract:

Direct products (a.k.a. Cartesian products) are familiar: Given linear spaces A and B of
dimensions a and b, their direct product A x B is the linear space of dimension a + b consisting
of all ordered pairs (a, b), for a in A and b in B; and direct products of smooth manifolds are an
analogous story. Fiber products (a.k.a. pullbacks) are a less familiar generalization. Given three
linear spaces A, B, and S of dimensions a, b, and s and given linear maps f:A — S and g: B -
S, their fiber product A X B is that subspace of the direct product A X B on which the maps f
and g agree, that is, the set of ordered pairs (a, b) with f(a) = g(b) in S. When the image
spaces f (A) and g(B) together span all of S, the maps f and g are said to be transverse, and the
dimension of the fiber product is then a + b — s. Fiber products make sense also for manifolds:
Given smooth manifolds A4, B, and S of dimensions a, b, and s and given smooth maps f: 4 - S
and g: B — S that are transverse in the appropriate sense, it is a standard result that the fiber
product A X B is itself a smooth manifold of dimensiona + b — s.

But what if the input manifolds A, B, and S are oriented? Is there then some natural rule for
orienting the fiber-product manifold A X¢ B? Such a rule is needed for an application of fiber
products in computer-aided geometric design and robotics --- in particular, for computing the
boundary of a Minkowski sum from the boundaries of its summands. We show that there is a
unique rule for orienting transverse fiber products that satisfies the Axiom of Mixed Associativity:
(AXgB) Xy C =AXg (B %X C).
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Extended Abstract

There is a mathematical operation called a “fiber productieng the word “fiber”
here comes from “fiber bundle” — nothing to do with fiber optitsxtiles, or
constipation. Given set&, B, andSand given mapg : A — Sandg: B — S
as in the diagram

A B
N6 *)
S

thefiber productof A andB overS, written A x s B, is that subset of the Cartesian
productA x B on which the mapd andg agree:

AxsB:={(a,b)|]ae A,be B, andf(a) = g(b)}.

Note that the fiber product depends upon the ma@sd g; when we want to
make that dependence explicit, we shall include the mapseiridrmula for the
fiber product, using the nonstandard notatirf] xs[g]B.

Fiber products arise in computing the boundary of a Minkaveskn from
the boundaries of its summands. Létand5 be two regions in the plane (or in
3-space). TheiMinkowski sums the regionA @ B :={a+b|aec A,b e B},
wherea + b here denotes the sum of the poiatandb as vectors. Each point
on the boundary of the Minkowski sutd & B is the vector sum of a pair of
points, one on the boundary gf and the other on the boundary Bf where the
tangent lines (or tangent planes) are parallel. Finding@ath pairs of parallel
tangents turns out to be an example of a fiber product: Thefsatsd B are the
boundary curves (or surfaces) of the regiohand B, the setSis the unit circle
(or unit sphere), and the magsandg are the Gauss maps, the maps that take
each boundary point to the outward-pointing unit normateeat that point.

Where do Minkowski sums arise? Given a region in the plan&(8fspace),
taking its Minkowski sum with a disk (or a ball) correspondsoffsettingthe
boundary curve (or surface) of that region — that is, to mguime boundary a
fixed distance orthogonal to itself. Such offsetting arfsequently in computer-
aided geometric design (CAGD). Minkowski sums arise aldotmdesign, where
one summand models the shape of a brush or pen while the othaglsnthe
trajectory along which that brush is translated. And Mink&ivsums arise in
robotics, when computing the configuration space for anabljeder translation.
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In all of these situations, itis common practice to repré@mregions involved by
specifying their boundaries. So carrying out a Minkowsknsequires computing
the boundary of that sum, which involves a fiber product.

Fortunately, there is a standard theory of fiber productsdhmaost suffices.
If A, B, andS are smoothd-manifolds and if we rule out various degeneracies
by requiring that the smooth magsandg betransversethen the fiber product
Al f] xs[g]B is itself a smoottd-manifold.

That standard theory doesn’'t deal with orientation, howeWweople doing
CAGD or robaotics typically orient the boundaries of theigians, to help them
distinguish inside from outside. Thus, given the orientedrimaries of regiongl
andB, they need the boundary of the Minkowski sudr® B also to be oriented.
To meet that need, we show how to orient a fiber-product meh#&pf] xs[g] B,
given orientations on the manifolds, B, and S as input (and always assuming
that the mapd andg are transverse). In particular, given poiatsn A andb in
B with f(a) = g(b), we orient the fiber produd[ f] xs[g] B at the pointa, b)
by working with the Jacobian matrices bfata and ofg atb.

In the fiber productsA xs B that arise in computing Minkowski sums, the
three input manifoldsA, B, and S always have the same dimension. We also
tackle the harder problem of orienting the manifélck s B when the dimensions
of A, B, and S differ, though we don’t know of any practical applicationkeve
it is important to orient such fiber products. While such a ifodeh A x5 B is
clearly orientable, it is no longer at all clear which of igtpossible orientations
is the proper one — that is, which orientation rule for thisrengeneral situation
satisfies the most compelling collection of identities. Wgua that the proper
choice is the unique rule that satisfi@s xs B) x1 C = A xs(B x1 C), a mixed
flavor of associativity in which the two fiber products invetlon each side are
taken over different base manifolds. More precisely, gsemoth manifolds and
smooth maps of the form

A B C
N ,4R ﬂ( ()
S T
the Axiom of Mixed Associativityequires that

(A1 xs[gIB)IN x7 [KIC = A[f] xs[g](BIN] x7 [KIC).

where the auxiliary maps': A xsB — T andg’: B x1 C — Sare defined by
h'(a, b) := h(b) andg'(b, ¢) := g(b). This axiom is so powerful that, together
with a few other, more obvious axioms, it determines a unajientation rule for
transverse fiber products.
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Chapter 1
Alice and Bob

Fiber products are not well known. One way to introduce therthiough the
story of Alice and Bob, the sweethearts with the neutrineasd

1.1 Using neutrino radios

Alice has just rowed her boat east, along the Equator, to th&texn beach of
Example Island, whose equatorial cross section is showigiré 1.1. Bob has
just rowed west to the island’s eastern beach. Since theyaayer to rendezvous,
they shoulder their packs and prepare to walk inland.

Their top priority, though, is to stay in constant contachey are equipped
with the latest in high-tech radios, rumored to operate bypdmitting a beam
of neutrinos. These radios allow them to stay in constantamdneven when
separated by kilometers of solid rock, as long as they rekaime same altitude.
(They must also remain over the Equator; they can’t wanderarth or south.)

They are in contact at the start, since they are both at se& By carefully
controlling their rates of climb, they manage to stay in eshtntil the state shown
in Figure 1.2. At this point, Alice has to stand still while Bavalks west across
his plateau. Then Alice retreats toward the western beach\idile, so that Bob
can advance into the valley that next confronts him. Once fBdses the bottom
of his valley, Alice can resume her forward progress, legtlirthe state shown in
Figure 1.3. Bob is almost at his goal — the peak of Mount Trystere they hope

/" \

/. \ / N/ \
/ N /\ / N\
/ N S/ AN

Figure 1.1: Example Island with Alice and Bob at their beache



2 CHAPTER 1. ALICE AND BOB

M@\i
/ NOAL /S N\
/ N A

Figure 1.2: Bob reaches the east edge of his plateau

PAY /&

/ \ / N/ \
/ ANEYAN / N AN
/ N S/ N\

Figure 1.3: Alice at the top of her first hill

to rendezvous soon.

But now it is Bob’s turn to retreat, so that Alice can advana®e ithe valley
that she now faces. Bob backs up to the bottom of his valley again. At this
point, Alice and Bob have a worried consultation; they dedcltht their best hope
is for both of them to retreat for a while. So Alice climbs weatd while Bob
climbs eastward, ending as in Figure 1.4. Alice then statilig/hile Bob retreats
across his plateau. Then Bob retreats almost to the eastaoh pallowing Alice
to advance to the bottom of her first valley.

Continuing in this fashion, Alice and Bob do eventually mge&o rendezvous
at the peak of Mount Tryst.

The tilted rectangl®/ T x ET in Figure 1.5 represents the state space in which
Alice and Bob have their adventure. The lower-left-to-uppght coordinate of
a point in that rectangle represents Alice’s west-to-easttipn in her mountain
range — from the western beadh to Mount TrystT. Thus, starting at any
state in the rectangle, we find the corresponding positioAlme by moving
diagonally up and left to the boundary of the rectangle amah tstraight up to
Alice’s mountain range. The story for Bob is similar: The Ewight-to-upper-
left coordinate of a state represents Bob’s east-to-westipo, from the eastern

7\

/X / N o
NN/ N\
/ V. \ L/ \C

Figure 1.4: Alice and Bob have both been retreating
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Figure 1.5: The state space of the adventure on Examplelislan
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beachE to Mount TrystT. Starting at any state in the rectangle, we find the
position of Bob by moving diagonally up and right to the boarnydof the rectangle
and then straight up to Bob’s mountain range.

The states in the gray portion of the rectan@ld x ET are those in which
Bob is higher than Alice, while the states in the white portimve Alice higher
than Bob. Gray is separated from white by a black path of statevhich Alice
and Bob are at the same altitude. During their adventureeAdnd Bob follow
this black path from the initial stai@V, E) to the final statéT, T).

Note that, while the black path goes mostly upward on the pageinds
around enough to include one segment that goes straight.dévVice and Bob
had their worried consultation when starting along thatesgt of the black path.

Note also that there is a little square of white, Alice-higstates sitting in the
midst of the gray, Bob-higher region. The boundary of thatsq is a closed loop
of black path, not connected to the long black path that Adicd Bob follow on
the way to their rendezvous. This loop arises because Alio@untain range has
a peak that sticks up above the floor of a valley in Bob's ratfgélice is near the
top of that peak and Bob is near the bottom of that valley, ttaeybe at the same
altitude; and they can climb around a bit while keeping th#itudes equal. But,
without losing contact — or tunneling or flying — there is noywar them to get
from one component of black path to another.

You may be surprised that the black path can have multipleocorents in this
way. Indeed, multiple components couldn’t happen if eitifehe two mountain
ranges were monotonic; but they can happen in the genera) easl they do
happen in our applications to CAGD and robotics, as we dgstuSection 3.7. In
fancier language, a fiber product of connected manifoldsfaibio be connected.

1.2 Introducing the fiber product

To model this mathematically, ek := W T denote the set of possible east-west
positions of Alice; letB := ET be the same for Bob; and |& denote the set
of possible altitudes of either Alice or Bob. We model thedggaphy of Alice’s
mountain range by an altitude functidn A — S, while we model Bob’s range
by g: B — S. The rectangle of possible states is the direct (a.k.a.e€iart)
productA x B = WT x ET. The black pathP — which may have multiple
components — is the set of paii& b) in A x B for which the altitudes are equal:

P:={(@b)e AxB]| f(a) =g(b)}.

This setP is called thefiber productof the mapsf andg.

The term “fiber” comes from a mathematical structure call&ibar bundle”,
by the way. Given two fiber bundles over the same base spate appropriate
way to multiply them is to take their fiber product ovgrwhich will be another
fiber bundle ovelS. Fiber products arise also in category theory, where they ar
often calledpullbacks
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Fiber products can be defined in many contexts, as we diseu&sction 4.4.
We shall typically assume that the spadeB, andS are compact smooth mani-
folds without boundary and that the maps A — Sandg: B — Sare smooth.
But the situation that Alice and Bob face is somewhat difiiére

For one thing, Alice’s mountain rang& is the closed segmeW T. This
segment is a smooth 1-manifold and is compact, but it does bavndary points:
to wit, the endpointdV and T. The story for Bob’s rang® = ET is similar.
Boundary points can cause trouble, as we discuss in Secton 1

A second thing that is different about Alice and Bob’s sitoiatis that the
altitude functionsf andg in Figure 1.5 are piecewise affiheather than smooth.
But we don’t change anything essential if we round off thekgeand valleys
slightly, so as to make them smooth. When we do so, the coofdise fiber
product P also get rounded off, converting itself into a smooth 1-manifold.
(There is no need to round off Mount Tryst; that is, the denweaof f from the
west atT need not agree with the derivative@from the east al . Indeed, it is
better not to round off Mount Tryst, for reasons that we désdoelow.)

We can define an altitude functidn: P — S on the fiber producP by
letting h(a, b), for any statga, b) on the black path, denote the common altitude
h(a, b) := f(a = g(b) of Alice and Bob in that state. When taking the fiber
product of smooth mapé: A — Sandg: B — S, theresultingmap: P — S
is also smooth. To be precise, it is actually the smooth mapat is thefiber
productof the smooth mapg$ andg, writtenh = f xgg. That is, the objects
that really get multiplied, when we take a fiber product ovememoth manifolds,
are smooth maps from smooth manifoldsSoWe shall hence refer to the maps
f andg as thefactor mapof the fiber product.

The fiber-product manifoldP is the domain of the fiber-product mdp =
f xs g. In this monograph, we shall writ® using the nonstandard notation
P = A[f] xs[g]B. It will often be clear from the context, however, which
smooth mapsf : A — Sandg: B — Sare intended. We then abbreviate the
manifold P by writing simply P = A x s B, which is the standard notation. But
keep in mind that the manifold xs B depends upon the factor mapsandg,
even when their names are elided.

1.3 Transversality

Figure 1.6 illustrates some phenomena that didn’t arisegarg 1.5.

First, Alice’s and Bob’s mountain ranges have peaks) and atV, that are at
the same altitude. Suppose that Alice and Bob are in the Blat&U, V). When
they leave that state, each of them can decide independendsher to descend
to the west or to the east. Thus, there are four black path#ethdaway from the
state(U, V) in Figure 1.6, rather than only two.

IFunctions likef andg are often called “piecewise linear”, rather than “piecenaffine”; but
| prefer to reserve the word “linear” for things that are hajaoeous, as well as of degree 1.
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Figure 1.6: An island whose mountain ranges are not trassver

The solid black rectangles in Figure 1.6 are an even moreoobwsign of a
new phenomenon. They arise because these two mountairsraage plateaus at
the same altitude. Alice and Bob can wander around freelyiradependently on
such a pair of plateaus while staying in constant contactisTthe fiber product
P — the black region that separates gray from white — includesee solid
rectangles. Such rectangles can have black paths attatthed te all four of
their corners, to two adjacent corners, to two oppositeamstror to none of their
corners, depending upon whether each of the two plateaok/ewis a mesa, a
bench, or a playa. (A mountain peak is a zero-length mesdewhvalley is a
zero-length playa. Thus, the state, V) in Figure 1.6, which is a zero-by-zero
black rectangle with black paths attached to all four of asners, results from
Alice’s and Bob’s ranges having equal height, zero-lengésas at) and atV.)

The fiber product in Figure 1.6 is not a 1-dimensional madifbbth because
of what happens in the neighborhood of the stateV) and because it includes
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solid rectangles. There is a standard technical condit@iedtransversality that
outlaws the degeneracies in Figure 1.6, hence guarantteinthe fiber product
will be a manifold. In particular, whenever the mapsandg aretransversethe
fiber productP = A[ f] xs[g]B is a smooth manifold of dimension diff) =
dim(A) + dim(B) — dim(S), as we discuss in Section 4.7.

We also discuss in Section 4.7 what it means for the two nfapsdg to be
transverse, which is a bit subtle in higher dimensions. Rbugpeaking, some
combination of moving the poird around inA and movingo around inB must
cause eitheff (a) or g(b) to cover all of the dimensions @&. In the case of Alice
and Bob, where the manifolds, B, andS are all 1-dimensional, this boils down
to a simple condition: There is only one dimensiorsito cover, and Alice covers
it by herself unless she is at a flat spot, that is, unligga) = 0. Bob covers it
by himself unless he is at a flat spot, wilib) = 0. So trouble arises only when
Alice and Bob are simultaneously at flat spots. Avoiding leumeans arranging
that none of the flat spots on Alice’s range are at the santedsdtias any of the
flat spots on Bob’s range. Thus, two factor mapandg are transverse in the
1-dimensional case just whethere are no equal-height flat spots, that is, just
when there are no pointg, b) in the state spacé x B with f(a) = g(b) and
f’(a) = g'(b) = 0. Recall that we are rounding off all corners (except for kitou
Tryst); so the bad stat@J, V) in Figure 1.6 does havé’(U) = g'(V) = 0. (If
we rounded off the peak of Mount Tryst, the resulting flat spot would, all
by itself, cause transversality to fail at the destinatiates T, T). That is why it
is better not to round off Mount Tryst — although losing tre@sality only at a
boundary point of the state space might be tolerable.)

1.4 Which way to go?

Let’s return to the transverse case: either to the Examtdadsn Figure 1.5 or
to some other island on which Alice’s and Bob’s mountain emnlgave no equal-
height flat spots. The fiber produBtis then a 1-dimensional manifold. We now
consider the problem of orienting.

To clarify the problem, suppose that Alice and Bob made caasp night.
They just woke up this morning. They can talk to each otherlair tradios,
they can look around at their local terrain, and they can+tekay, from where
the sun is rising — which way is east. But they can’t remembleicivway they
were walking when they stopped to make camp last night. (Sociusion is
not unreasonable, since each of them may have walked badodhgast their
current location many times already — although there wasmglestime in the
past when they were both in their current locations simekbasly.) Is there some
rule by which Alice and Bob can figure out which way to startkirad today?

To put that question another way, consider the arrowheaBgyure 1.7. The

2] use the phrases “just when” and “precisely when” to meaarid only if”.
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Figure 1.7: The black path for Example Island, correctlyoted
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solid arrowheads oA = WT, B = ET, andSindicate the preferred orientations
on those 1-manifolds, while the open arrowheads on the fitmauct 1-manifold
P indicate the way that Alice and Bob should walk. Is there st¢onal rule that
computes the open arrowheads from the solid ones? A rideaswhen its deci-
sions are based solely on the slopes where Alice and Bob amentdy standing,
without exploiting global information about the topograpif the island.

Note that there are open arrowheads also on the border dftibevhite square
in the middle of the gray region. Rules that orient fiber piiduypically orient
every component of them, even though Alice and Bob followyame of those
components. Different components could be oriented inaggatly, in principle.
But we are studying local orientation rules, rules that aaeelnl solely on the
slopes. Any local rule must orient the left edge of the littleite square in the
same way that it orients the vertical segment above theirgggobint (W, E),
since the states along those two segments look locally igssame: In all of
them, Alice’s terrain slopes up to the right, while Bob’spgs up to the left.

It turns out to be convenient to measure the slopes on Bobistam range
backwards. In particular, Alice and Bob agree that

advancing means moving toward Mount Tryst, following the horizontsd]id
arrowheads in Figure 1.7, while

retreating means moving back toward your own beach.

So Alice advances by moving east, while Bob advances by myawviest. Alice
and Bob then measure the slope of their local terrain as ta@fahange in their
altitude that would result from a small advance. So the stdpMice’s terrain is
just the slope of the graph of her altitude functibpas in a calculus class; but the
slope of Bob's terrain is the negative of the slopgoEach segment of terrain in
Figure 1.7 is marked witky, D, or F according as that terrain is upward-sloping,
downward-sloping, or flat — that is, according as Alice or Bodasures the slope
to be positive, negative, or zero.

1.4.1 The Greedy-Alice Rule

We are going to discuss two local rules that compute the coogen arrowheads.
But before we do that, let’s briefly discuss one that doe#iméiGreedy-Alice Rule

Alice should advance — unless Bob’s terrain is flat, in whiglse
Alice must stand still and Bob should advance.

Figure 1.8 shows the open arrowheads generated by the GAdiedyRule.
The difficulty is that they are inconsistent; they don’t agvéth each other about
the direction in which the black path should be oriented.&(iBolated little square
of black path has four open arrowheads on it, and they doréagjther.) Such in-
consistencies aren’t allowed on an oriented manifold, adis@uss in Section 5.6.
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Figure 1.8: The black path oriented inconsistently by thegdy-Alice Rule



1.4. WHICH WAY TO GO? 11

The problem with the Greedy-Alice Rule — the reason that it ganerate
open arrowheads that are inconsistent — is essentiallykaofacontinuity. The
Greedy-Alice Rule bases its decisions on the slopes of Alaned Bob's terrains,
so it is local. But a tiny change to those slopes can cause ltbedg-Alice Rule
to suddenly reverse its recommended open arrowhead. Fompdasuppose that
Alice’s slope is+1 while Bob’s slope is approximately zero. If Bob’s slope is
slightly positive, then Bob should advance at a sprightlygy@o that his altitude
will increase, hence allowing Alice to advance a trifle. Om tither hand, if
Bob’s slope is slightly negative, then he should retreat ssiraghtly pace, again
so that Alice can advance a trifle. So a tiny change in Bobjsesttauses a drastic
change to his recommended motion. It is this lack of contynthat leads to
the inconsistent open arrowheads in Figure 1.8. We defingiamnaf continuity
for local orientation rules in Section 6.2 that we cstiibility; and we show, in
Section 6.3, that any local orientation rule that is stalbtheags generates open
arrowheads that are consistent.

Once the open arrowheads are consistent, they are eithgistantly correct
or consistently incorrect, since the black path has only dwentations: the one
that we want, which goes from the poitw, E) toward(T, T), and its opposite.

1.4.2 The Partner’s-Slope Rule

To develop a rule that is both consistent and correct, lettaice the first few steps
along the black path. At the starting poitwW, E) in Figure 1.7, both Alice and
Bob are on upward slopes and they should both advance. Whemeohes his
plateau, as was shown back in Figure 1.2, Alice has to stahdstd when Bob
moves onto his downward slope, Alice starts to retreat. TAlise’s direction of
motion seems to be controlled by the slope of Bob’s terraymi8etry suggests
that Bob’s motion should be controlled by Alice’s slope. Tisaboth Alice and
Bob should employ the followingartner’'s-Slope Rute

e If your partner’s terrain slopes upward, you advance.
e If your partner’s terrain slopes downward, you retreat.
e If your partner’s terrain is flat, you stand still.

The first step in analyzing this Partner's-Slope Rule is teckhthat it gives
compatible instructions to Alice and to Bob: Whenever Alisénstructed to go
uphill, Bob had better be instructed to go uphill also, anel $hme for going
downhill and for staying at the same altitude. To verify catilplity, it suffices
to consider the eight possible cases for Alice’s and Bolpes, as shown in
Figure 1.9. (Seven of those eight cases occur in FigureHenissing case being
the one in which Alice’s terrain is flat and Bob’s slopes dowanalv) Why are there
only eight possible cases, instead of nine? The case thaleid out is for Alice
and Bob to be simultaneously at flat spots. If they ever folmedniselves in such
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Alice
Bob U F D

Alice advancesAlice advancesAlice advance

U | Bob advances| Bob stands Bob retreats
(both go up) (both go down
Alice stands Alice stands

F | Bob advances Bob retreats
Alice retreats | Alice retreats | Alice retreats

D |Bob advances| Bob stands Bob retreats
(both go down (both go up)

Figure 1.9: The eight cases of the Partner’s-Slope Rule

a state, the Partner’'s-Slope Rule would instruct them bm#tand still, so they
would be stuck. But such states are forbidden by our assomefitransversality.

The second step in the analysis is to check stability. Sincéoomal definition
of stability is still some chapters away, let's here arguerimally that the open
arrowheads will be consistent. The danger of inconsistansgs when we move
from one of the eight cases in Figure 1.9 to an adjacent caseexample, as we
move down the leftmost column, Alice first advances, thenddathen retreats.
But we move down that column because Bob's slope change$rsigrpositive to
negative. If Bob’s slope is only slightly positive, then édican advance only quite
slowly. Thus, if Bob’s slope subsequently changes to becsiightly negative,
Alice’s conversion to a slow retreat constitutes a contirsuthange in her velocity,
not a sudden and discontinuous reversal of orientatione Nt Bob continues
to advance at a sprightly pace throughout this process; wé dget the sudden
reversal from a sprightly advance to a sprightly retreatweasaw in the Greedy-
Alice Rule. The other three sides of the square in Figure te%imilar.

Once we have convinced ourselves that the Partner’'s-Slojpe gives open
arrowheads that are consistent, it is easy to see that teeyoasistently correct.
We simply check that we get the correct answer in the stastiatg, when Alice
and Bob are at their beaches. They are then both on upwardsslapd we do
want them both to advance, as the Partner’s-Slope Rulefigzeci

Exercise 1-1Here is a simple rule that tells Alice and Bob, not only thediion
in which to walk, but precisely how fast: They each set theinsigned velocity
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to be their partner’s signed slope. Thislocity Variantof the Partner’s-Slope Rule
unifies the eight separate cases of Figure 1.9 through thécroagnultiplying
signed numbers. Unfortunately, this clever idea does noeigdize to higher
dimensions, for reasons discussed in Exercise 2-8.

In detail, Alice’s slope is the rate of change of her altitud@&) with respect
to her positioma, which isdf/da. Bob’s isdg/db. Suppose that Alice controls
her positiona, as a function of timé, so as to makda/dt = dg/db, while Bob
makesdb/dt = df/da. Show that their rates of climb will then be identical.

Hint: By the Chain Rule, Alice’s rate of clim@f/dt is then given by

df _df da_df dg
dt dadt dadb’

1.4.3 The Gray-Region Rule

If Alice and Bob are willing to reason about their 2-dimemsbstate space, that
is, about the rectangld x B=WT x ET in Figure 1.7, then they can compute
the correct open arrowheads by using the followBray-Region Rule

Proceed along the black path in the direction that causegrtne
region to lie to your left.

This Gray-Region Rule is simpler than the Partner’s-Slopée Rn several
ways. For one thing, it unifies the eight separate cases mr&i).9: Alice and
Bob always leave the gray region to their left, regardlesslodther their slopes
are upward, downward, or flat. Also, the Gray-Region Rulebgi@usly stable:
As we move along the boundary of the gray region, keepingviags on our left,
the open arrowheads that we produce are obviously consisten

But is the Gray-Region Rule local? That is, can Alice and Buplement it
without having global knowledge about their altitude fuoos f: A — Sand
g: B — S? Yes, they can. Suppose that they are currently at some (@olton
the fiber product, so that(a) = g(b). Alice and Bob can measure the slopes of
their local terrains. By conferring over their radios, tloeyn combine those slopes
to determine, to first order, which pointX, Y) near(a, b) have f (X) < g(Y)
and which havef (X) > g(Y). A first-order sketch of the neighborhood of the
point (a, b) in the direct produciA x B will look like one of the eight sketches
in Figure 1.10. In each sketch, the origin represents thetgaj b); moving to
the right means that Alice advances, while moving up meaautsBhb advances.
The gray region is the set of states, Y) for which f (X) < g(Y). For example,
consider the upper-left sketch, in which both Alice and Baban upward slopes.
Any combination of Bob advancing and Alice retreating letmlstates(X, Y)
with f(X) < f(a) = g(b) < g(Y); so the entire second quadrant is gray, along
with portions of the first and third quadrants. The otherdkes are similar. Given
any such local sketch, the Gray-Region Rule tells Alice aold ®hich way to go;
so the Gray-Region Rule is indeed local.
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Alice upward Alice flat Alice downward

Bob (both flat is
flat forbidden)
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Figure 1.10: The eight cases for the local comparisoh©f) to g(Y)
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Of course, we must still avoid the non-transverse case, ¢n¢ral case in
Figure 1.10, in which both Alice and Bob are at flat spots. Ikesasense for
Alice and Bob to leave the gray region to their left only ifytege on a segment of
black path that separates gray from white. It wouldn’t makese, for example, if
they were in the middle of the one of the solid black rectasmgig-igure 1.6.

The stability of the Gray-Region Rule is geometrically endin Figure 1.10.
As we transition among the eight cases, say cycling cloakarsund the figure,
the black path rotates continuously — also clockwise, adithee happens to
be drawn. And the arrowheads that the Gray-Region Rule rewards for that
black path also rotate continuously, with no sudden rel®rddat continuity is
the property that we formalize in Section 6.2sability. Note that the central,
non-transverse case has to be outlawed in order to allovedimsnuity; there are
pairs of slopes arbitrarily close 1@, 0) for which the recommended arrowhead
points in any specified direction.

By comparing Figure 1.10 to Figure 1.9, we find that the Pag&lope Rule
and the Gray-Region Rule give the same answers in all eiglatscaDf course, it
was clear from the start that they must, since they both gieeobrrect answers.

1.4.4 The Intrinsic Gray-Region Rule

Warning: The Gray-Region Rule as stated above would failidédand Bob chose
to draw their state space in a different, but equally validywFigure 1.11 shows
Example Island again, but with the state sp@c& B drawn above the island,
rather than below it. The state space in Figure 1.11 is theomimage of the one
in Figure 1.7, reflected in the horizon. Because of this raflac Alice and Bob
should leave the gray region to their right in Figure 1.1fheathan to their left.
We can rephrase the Gray-Region Rule more intrinsicallyhabit gives the
correct answers in both figures. Letbe a vector (technically speaking, in the
tangent spacé (A x B) to the manifoldA x B at the point(a, b)) that points
in the Alice-advance direction; and Igtpoint in the Bob-advance direction. Ro-
tating froma to g defines an orientation on the 2-dimensional state spaceB.
That orientation is counterclockwise in Figure 1.7, buc&lwise in Figure 1.11.
Let ¢ be a vector that points along the fiber prodBct A x s B in the direction
in which Alice and Bob should walk. And létbe a vector that points somewhere
into the gray region; that is, the vectdishould point toward some nearby state
(X, Y) for which f(X) andg(Y) are distinct points in the manifol& and for
which the motion inSfrom f (X) to g(Y) agrees with the given orientation &
Thelntrinsic Gray-Region Ruléhens tells us:

The vectory orients the fiber produdh x s B correctly just when the
orientation on the direct produét x B given by rotating fronw to 8
is the same as that given by rotating frgnto é.

Exercise 1-2 The next day, Alice and Bob explore Example Island again, but
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Figure 1.11: Example Island with its state space drawn aliove
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with Alice walking in from the east this time, while Bob walksfrom the west.
Explain why the Intrinsic Gray-Region Rule gives the coti@tswer in this case.

Answer: One way to draw the state space for the second dayénadte is to
take Figure 1.7, to swap the labels “Alice” and “Bob” whenetleey appear, and
to swap the colors of the gray and white regions. Using pritneésdicate the
vectors on the second day, we then have- 8, 8/ = «, ands’ = —§; so we get
¢ = ¢. Thus, the fiber produd x s A gets the same orientation Asx s B.

1.5 Farewell to Alice and Bob

We discussed Alice and Bob to develop our intuitions abowr fijroducts. We
are about to move on, to consider fiber products of manifditigyier dimension.
But we owe Alice and Bob some closing remarks. In partican they always
rendezvous, regardless of the topography of their island?

1.5.1 Valleys below sea level

Even in the transverse case, they can fail to rendezvouseibbtheir mountain
ranges, say Alice’s, has a valley that dips below sea levelth&t case, Alice
and Bob will end their adventure with Alice stuck at sea lewethe west side of
that valley, unable to advance because Bob has retreatibe allay to the eastern
beach — and he has no scuba gear. In the analog of Figure &.5)abtk path
that starts at the initial stai@V, E) will leave the rectangl®/T x ET at some
point interior to its lower-right side. To avoid this problewe henceforth assume
that every point interior to the island lies strictly aboeasevel. (We could allow
interior points precisely at sea level, but it simplifiess to forbid them.)

Note that this scuba problem arises because Alice and Bolwvaieng on
1-manifolds with boundary; in particular, the eastern bbefags a boundary point
of Bob’s manifold. Fortunately, in our applications of fip@oducts to CAGD
and robotics, the manifolds involved are manifolds withootindary.

1.5.2 Guaranteed success

By combining all of our explicit and implicit assumptionsgvinave arrived at
a flavor of island on which Alice and Bob are guaranteed to sedc Suppose
that all interior points of the island are above sea levedf the peak of Mount
Tryst is the single highest point on the island; that theéwd® functionf : A —

S of the portion of the island west of Mount Tryst &', that is, continuously
differentiable; similarly, for the altitude functiog: B — S of the portion east
of Mount Tryst; and that the two altitude functiofisandg are transverse — that
is, there are no statéga, b) in A x B with f(a) = g(b) andf’(a) = g'(b) = 0.
Then, Alice and Bob are guaranteed to succeed, and here is why
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Consider the boundary of the state-space rectaAgie B, as in Figure 1.5.
The verticeSW, E) and (T, T) are black. The state®, E) fora > W are all
white, since all interior points of Alice’s range are aboeadevel. The states
(T,b) for b < T are also white, since Mount Tryst is the single, highest peak
So the two right-facing sides of the state-space rectangleratirely white. By a
similar argument, the two left-facing sides are entirelsrygrThus, the only two
points where a black path can reach the boundary of the spatee rectangle are
at its bottom and top corners, the poitt¥, E) and(T, T).

It follows from transversality that the white and gray raggoare separated
by a 1-dimensional manifold of clas¥', possibly with multiple components. A
component of that black manifold is either a closed loop oca@diffeomorphic
to a closed interval; in the latter case, both endpoints efaitt must lie on the
boundary of the rectangle. Thus, there is precisely one ooemt in the black
manifold of the latter type: & black arc that leads Alice and Bob from the
initial state(W, E) to the final statéT, T).

By the way, we are exploiting the assumption that Mount Tiys$he single
highest peak in a way that might not be obvious. Because dbadsmption, we
can restrict Alice to walk only west of Mount Tryst, while Betalks only east
of it — and those restrictions are crucial for achieving snarsality. It would be
more straightforward to let both Alice and Bob walk anywheneghe entire island
WE := WTUTE, hence using the full squaW®’E x WE as our state space, rather
than just the rectangular sub3#tT x TE. But then any flat spot on the entire
island would be enough to destroy transversality, sincegfdind Bob could stand,
arm in arm, at that flat spot.

1.5.3 The horrors of nontransversality

The assumptions in Section 1.5.2 arguably make things tep fea Alice and
Bob. They are walking along an unbranched path in the staigesgo it is always
obvious what they should do next. To make their adventuresrdloallenging, it is
tempting to allow nontransversality. Unfortunately, tbpens the door to various
monsters from real analysis, one of which is shown in Figut@.INote first that
the altitude functions andg in that figure are not transverse; the left endpoint
of the bumpy region on Bob’s range is a flat spot that is at tieesaltitude as
the plateau on Alice’s range. While the functiohgndg are not transverse, they
areC! — and might even b€, if the bumpy region in Bob’s mountain range
behaves like the functior — e Y**sin(1/x) behaves on the interval [Q 1].
Alice has to be east of her plateau in order for Bob to advanee any one of
the hills in his bumpy region, while Alice has to be west of pateau in order
for Bob to advance through any of the dales. Since Bob facaiaite sequence
of alternating hills and dales, Alice has to cross her platetinitely often before
they can rendezvous. (Figure 1.12 is a smoothed version adaekample in
Whittaker [16]. Huneke [7] later showed that this examplerisa sense, the only
bad thing that nontransversality allows.)
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Figure 1.12: An island on which Bob’s range is monstrousimnpy

To avoid this type of monstrous behavior without requiriransversality, we
would have to require that our altitude functions be eveemicanC>, in some
way. For example, Whittaker [16] analyzed altitude funetiavhose graphs can
be partitioned into a finite number of strictly monotonic semts. A different
way to achieve much the same effect is to require that thei@étifunctions be
piecewise real analytic. These cases are more challenginglice and Bob,
since their “black path” can have the bad features that agpdagure 1.6. But
Whittaker showed that Alice and Bob can still rendezvous.

Unfortunately, it is not at all clear how to generalize beydhe transverse
case in a fiber produch[ f] xs [g]B of higher dimension. To avoid requiring
that the mapd andg be transverse, we must require that they be nicer @fan
in some sense. But in what sense? Pierre Schapira [15] haseXaiting work
in this area, exploiting the notion of subanalytic stratification Very briefly, a
semianalytic seis a set that can be described by finitely many equalities iand i
eqgualities among real-analytic functions, just aemialgebraic sat one that can
be described by finitely many equalities and inequalitiesrgrpolynomials [2].
While semialgebraic sets behave nicely under projectithres Tarski-Seidenberg
Theorem), semianalytic sets do not.sAbanalytic sets a more subtle and more
permissive notion than a semianalytic set, and this extraigsiveness restores
nice behavior under projections [2]. Perhaps monstrouawiehcan be ruled out
without insisting on transversality by requiring that threghs of the factor maps
f andg be subanalytic sets.

We leave such questions as topics for future research. smibnograph, we
take the coward’s way out and simply require that the factapsf andg in our
fiber productsA[ f] x s[g] B be transverse. This guarantees that our fiber products
will be smooth manifolds, which we take it as our challengerient.

Exercise 1-3 Sketch the state space of the monstrous island in Figure 1.12
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Chapter 2

Fiber products in higher dimensions

Convention: We shall often be analyzing a smooth map from one
smooth manifold to another. In the neighborhood of any gpeint,
such a map is approximated to first order by a linear map betiee
tangent spaces. From now on, let's use boldface lettersrte rihe
smooth manifolds and smooth maps, while using italic lsttename

the approximating linear spaceand linear maps.

It is a standard result that the transverse fiber productsnobgh manifolds
are themselves smooth manifolds. We are looking for a lagial that orients
the output of such a fiber product, given orientations onrifts. If we were
willing to restrict ourselves to those fiber produ&ff] xs [g]B in which the
three manifoldsA, B, andS are all 1-dimensional, we could stop now. In that
1-dimensional caséboth the Partner’s-Slope Rule and the Gray-Region Rule are
local rules that compute the correct open arrowheads, soensdraady done twice
over. But we want to tackle several generalizations: the

equidimensional casewhere dim{A) = dim(B) = dim(S), but that common
dimension can be any nonnegative integer; and the

any-dimensional case where the three dimensions are unconstrained — though
the problems of most interest have d# + dim(B) > dim(S), since the
only way to achieve transversality when diy) + dim(B) < dim(S) is
vacuously, resulting in an empty fiber product.

The equidimensional case is the one that arises when camggdtnkowski sums
in CAGD and robotics. It is intriguing to consider the anyaginsional case also,
even though we have no practical applications of that caseiiml. So what
happens when we try to generalize our two rules from the ledsional case to
the equidimensional and any-dimensional cases?

ILinear spaces are often called “vector spaces”. | prefentime “linear space” because the
elements of such a space are often covectors, tensorsgesatr functions, rather than vectors.

21
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2.1 Local orientation rules

The Partner’s-Slope Rule and the Gray-Region Rule are lntas; given any
point (a, b) on the smooth manifold\[f] xs [g]B, they tell us how that fiber
product should be oriented in the neighborhoodapb) based solely on the local
behavior of the mapfandg, that is, based solely on Alice’s slopéa) and Bob’s
slopeg'(b). We want our rules for higher dimensions to be local as walk, Bnce
the dimensions of the smooth manifoldsandS exceed 1, the local behavior of
a smooth map: A — Snear a pointin A can no longer be described by giving
a single real number, the slopéa). Instead, we need an entire matrix, called the
Jacobian We next review some standard facts about tangent spaffesedtials,
and Jacobian matrices.

2.1.1 Tangent spaces and differentials

A smooth manifold can be approximated to first order near diig @oints by a
linear space called ttangent spaceWe denote the tangent space to the manifold
A at the poina asT,A.

A smooth map between smooth manifolds can be approximaticdtorder
by a linear map between the appropriate tangent spacesf: llet— S be a
smooth map between smooth manifolds, and suppose that thegm A is
carried, byf, to the points := f(a) in S. The behavior of near the poina is then
approximated, to first order, by a linear map frogA to TS called thedifferential
of f ata. We denote the differential agf: T,A — TS, the notationgdf), and
f'(a) are also used. Théacobianof f at a is the matrix of the differentialf,
expressed in terms of chosen bases for the two tangent gpatéselates.

We shall often usa ands to denote the dimensions of the smooth manifolds
A andS. So the tangent spadgA is ana-dimensional linear space, whilgS is
s-dimensional. The Jacobian bata is thus ars-by-a matrix. In the special case
a = s = 1, this matrix reduces to a single number: Alice’s slbj@).

Abusing notation even further, we shall often st denote the tangent space
A = T,A itself, when the context makes clear which manifdlénd pointa in
that manifold are intended. We similarly abbrevi@e= T.S. And we usef
to denote the differentiaf := T,f of the smooth map ata. Thus, the smooth
mapf: A — Sis approximated to first order near the paanpy the differential
T.f: T,A — TS, which we abbreviate as the linear map A — S. The Jacobian
of f atais the matrix of this linear may, with respect to chosen bases faand
S; and we denote that matrix a$]|

2.1.2 Orientation

We also need to review briefly what it means to orient a maghjfior more details,
see Chapter 5.
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Orienting a smooth manifold makes sense in any dimensiaonlfeanifolds,
the issue is forward versus backward; for 2-manifolds,dteskwise versus coun-
terclockwise; for 3-manifolds, it is right-handed versafi-handed. We orient a
manifold by orienting all of its tangent spaces in some liyoabnsistent manner.
(Local consistency isn’'t always possible; some manifokigh as the Mobius
strip, are not orientable.) And we orient a linear spaceh sisca tangent space, by
assigning a sign to each ordered basis in one of the two pesgdbally consis-
tent ways. Consistency means that two ordered bases foathe space must be
assigned the same sign just when the square matrix thatssgsréhe first basis
in terms of the second (or vice versa, it doesn’t matter) lusstipe determinant.
Otherwise, the determinant of the change-of-basis maitibbenegative, and the
two bases must be assigned opposite signs.

Letf: A — S be a smooth map between smooth manifolds, and suppose
thatf is a local diffeomorphism between some neighborhood of thet@ in A
and some neighborhood of the pogit= f(a) in S. This requires that the two
manifoldsA andS be of the same dimensi@= s. If the manifoldsA andSare
also oriented, the local diffeomorphism providedfliyeara must either preserve
or reverse orientation. Let’s set

senséf,a) .= +1 or sensé, a) .= -1

according ag preserves or reverses orientatioraatlt is a standard result that
the smooth map is a local diffeomorphism & just when its differential there,
the linear mapr,f, is invertible. Recall that we are abbreviating that lineeap
Tf: TA — TS as the mapf: A — S, We set sgaf) := +1 according as
the linear bijectionf : A — S preserves or reverses orientation, so that we have
sgn(f) = sensd, a).

We can concretely test the sign of a linear map by considéisngatrix. Let
[ ] be the matrix of the differentiaf, which is the Jacobian dfata. And let’s
suppose that, in writing out the matrix ], we have chosen bases for the tangent
spacesA and S that are positively oriented. We can then determine whether
preserves or reverses orientatioraddy testing the sign of the determinant of its
Jacobian: sensk a) = sgn(f) = sgn(det] f])).

2.1.3 The maps of a smooth-manifold fiber product

Figure 2.1 sets up some notation for the various maps assdeigth the smooth-
manifold fiber producA[f] xs [g]B. The two bottom sides of the diamond are
the factor maps: A — Sandg: B — S. In the Alice-and-Bob case, they
measured altitude. The two top sides of the diamond are girofes, the maps
u: AxsB — Agivenbyu(a, b) := aandv: A xsB — B givenbyv(a, b) := b.
Note that the fiber produét xsB is the largest subset of the direct prodack B

on whichfou(a, b) = gov(a, b), thatis, on whicti(a) = g(b). So the diamond in
Figure 2.1 commutes. The diagonal of the diamond, thefmag: A xsB — S,

is a symmetric name for the common compositieru = go v.
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Figure 2.1: Five maps associated with the fiber prody€} xs [g]B

We abbreviate the dimensions of the manifofdsB, andS asa, b, ands.
So it takesa coordinates to describe the position of Alice, a parnh A, and
b coordinates to describe a poimin B. As Alice and Bob vary their positions,
they want to remain at the same altitude, where it now takesordinates to
describe an altitude. That is, they constrain their jointioToso as to preserve
the altitude equality(a) = g(b), which in turn encodes scalar equalities. The
transverse case is the case in which trosealar equalities are independent, so it
costs a fulls degrees of freedom to preserve them all. The transversepfibduct
A[f] xs[g]B therefore has dimensian+ b — s.

Exercise 2-1 Consider the fiber-produét[f] xs[g]B in Figure 2.1. If the factor
mapg is injective, show that the projectianis also injective. Similarly, ifg is
surjective, show that is also surjective. The mapsandv are related similarly.
(By the way, this has nothing to do with smooth manifolds;atds equally well
whenA, B, andS are arbitrary sets arfdandg are arbitrary set maps.)

Answer: For injectivity, consider two poini&, b;) and (a, b,) in the fiber
product that project to the same poatinderu. We havef(a) = g(b,) = g(b,).
If gis injective, it follows thab, = b,, and hence is injective.

For surjectivity, leta be any point inA. If g is surjective, there must exibtin
B with g(b) = f(a). The point(a, b) then lies in the fiber product and projects to
a, So the maju is surjective.

2.1.4 The maps of a linear-space fiber product

Consider the behavior of the fiber product shown in Figurerdr some point
(a, b), wheref(a) = g(b); and lets denote that common poist:= f(a) = g(b)
in S. The manifoldsA, B, andS are approximated, near the poimtsb, ands,
by the tangent spacekA, T,B, andTsS, which we abbreviate a8, B, andS.
Figure 2.2 shows the linear maps relating these spaces —p#ues and maps
that approximate Figure 2.1 to first order néarb).

The factor magf: A — B is approximated to first order, near the paoant
by its differential, the linear maf,f: T,A — TS, which we abbreviate as
f: A - S Ina similar way, we abbreviate the differentilg: T,B — TS
simply asg: B — S. Note that the magd = T,f is invertible just wherf is a
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Figure 2.2: The behavior of the fiber produdtf] xs[g]B near(a, b)

local diffeomorphism af, mapping some neighborhood afdiffeomorphically
onto some neighborhood ef

When the smooth magsandg are transverse, it is a standard theorem that the
fiber productA[f] xs[g]B is itself a manifold. And the tangent space to that fiber
product, at the pointa, b), is simply the fiber product of the tangent spaces; that
is, we have the canonical isomorphism

Teab (A[f] xs[g]B) = TAA[Taf] x7.s[Tog] TuB.

Leaving the factor maps implicit, we havg,p (A xs B) = T,A x1s TpB; or,
using our italic-letter convention, we have simly ) (A xsB) = A xs B.

Finally, consider the projection mapg A xsB — A from Figure 2.1, which
is given byu(a, b’) := a. Near the poin{a, b), this mapu is approximated to
first order by its differential, which is a linear map, p)u: Tap (A xsB) — TA
that we shall abbreviate as A xs B — A. This linear mapu is simply the
projection of linear spaces, the map givenugy, 8) := «, for all vectorse in A
andg in B with f(«) = g(8). In a similar way, the differential of the projection
v: A xsB — Bat(a, b) is the projection: AxsB — B given byv(a, ) := B.

Thus, if we start with the fiber product of smooth manifoldd amooth maps
shown in Figure 2.1 and we consider that fiber product to fad¢onear the point
(a, b), what we end up with is the fiber product of linear spaces arehli maps
shown in Figure 2.2. When we say that an orientation rule fegrfiproducts
of smooth manifolds isocal, we require that it decide on an orientation for the
manifold A xs B near the pointa, b) solely by working with the linear spaces
and linear maps in Figure 2.2. Thus, any local rule for omgnsmooth-manifold
fiber products uses some rule for linear-space fiber prodscgssubroutine; the
smooth-manifold rule works by applying that subroutineapendently, to the
tangent spaces and differentials at each point.

2.2 Generalizing the Partner’s-Slope Rule

With those concepts added to our toolkit, let’s try to geheeahe Partner’s-Slope
Rule so that it can handle at least some transverse fiber @A[f] xs[g]B in
which the manifold#\, B, andS are not all 1-dimensional.
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2.2.1 Upward slopes versus downward slopes

What does the concept “Alice’s terrain slopes upward” cggomnd to, in our new,
multidimensional situation? The slope of Alice’s terrasrone aspect of the local
behavior of her altitude mapp A — S, say near the poira in A. Using our
standard abbreviations, the Jacobiahatfa is the matrix [f ], with a columns and
srows. In the special case that= a, that Jacobian is square, so it makes sense to
compute its determinant. When that determinant is posisog¢hat sengg a) =
+1, we say that Alice’s terraislopes upwardat a; when def[ f]) < 0, so that
senséf, a) = —1, her terrairslopes downwardta; when the Jacobian matrixX |

is square but déitf]) = 0, then her terrain iflat, in at least some direction —
that is, there is some direction in which Alice can move withchanging any of
the s coordinates of her altitude to first order; and, when the Biaco[f ] is not
square, it doesn’t make sense to talk about the slope of ‘dliegain.

In a similar way, it makes sense to talk about the slope of 8tdrain only
whens = b, so that the Jacobiamg] of Bob’s altitude mapg will be square.
Bob’s terrain ab is then upward sloping, downward sloping, or flat accordisg a
det([g]) is positive, negative, or zero.

2.2.2 Advancing versus retreating

What does the advice “Alice should advance” corresponditour new situation,
where Alice hasa dimensions to move around in? Consider Alice’s projection
mapu: A xs B — A, the map defined bu(a, b’) := a. At the point(a, b)
in the fiber produc xg B, the differential of the map is the linear projection
u: AxsB — A. The Jacobian af at(a, b) is the matrix [i], which hasa+b—s
columns (by transversality) aralrows. In the special case= b, this Jacobian
is square and might be invertible. When it is invertible, thap u provides a
diffeomorphism between some neighborhoodafb) in the fiber product and
some neighborhood @ in A. We can use that diffeomorphism to compare some
proposed orientation of x s B with the given orientation oA. When we advise
Alice to advance, we choose to orient the fiber product soshaseéu, (a, b)) =
sgnu) = +1, that is, so thatl preserves orientation ne@, b); when we advise
Alice to retreat, we choose the opposite orientation, treetbat makes reverse
orientation there. (Warning: Onae > 1, we can no longer interpret Alice’s
advancing or retreating by thinking of Alice changing hesition as a function
of time. Time is inherently 1-dimensional — at least, in oniverse! — while
the fiber producA xsB has dimensioa+b —s=a.)

In a similar way, it makes sense to advise Bob to advance @atsdnly when
S = a, so that the Jacobiam] of his projection map: A xsB — B is square,
and only at a pointa, b) on the fiber product where that Jacobiahif actually
invertible. By advising Bob to advance or retreat, we areoslrg our orientation
on the fiber produch xs B so as to make the mapeither preserve or reverse
orientation at the pointa, b).
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2.2.3 The Invertible Factor Laws

What do we get when we generalize the Partner's-Slope Rud¢'8 first discuss
how Alice controls her motion, based on the slope of Bobsaiar

Note that we must have = b if we intend to measure Bob’s slope as either
upward or downward. Fortunately, that same condition isothethat is required
if we intend to advise Alice to advance or retreat.

More precisely, we can measure Bob’s slope as upward or davchet a
point (a, b) on the fiber product just when Bob’s altitude mzjs a local diffeo-
morphism ath. Let's suppose this to be the case. If we want to advise Abce t
advance or retreat, Alice’s projection mapmust be a local diffeomorphism at
(a, b). To see that this will also be the case, note that we can foeafbress the
inverse ofu in terms of the local inverse @fby settingu=1(a) := (&, g~1(f(@)),
whered is close toa and hencd (@) is close tof(a) = g(b). In particular, the
pointu~1(a) lies on the fiber product because applyinga’ gives the same result
as applyingg to g~1(f(a’)). (Another way to prove this is to apply Exercise 2-1
to the differential maps in Figure 2.2, thereby deducing tha bijectivity of the
differentialg = T,g implies the bijectivity of the differentiah = T, )u.)

We thus arrive at the following law:

e If Bob’s altitude mapg is a local diffeomorphism ab that preserves ori-
entation there (that is, if Bob’s terrain slopes upwardpgtthen Alice’s
projection mapu will be a local diffeomorphism ata, b) and we should
orient the fiber produdA xsB so thatu preserves orientation there (that is,
Alice should advance).

e Symmetrically, ifg is a local diffeomorphism dt that reverses orientation
(Bob's terrain slopes downward Bj, thenu will again be a local diffeo-
morphism aia, b), but we should orient the fiber produttx s B so thatu
reverses orientation there (Alice should retreat).

When Bob’s altitude map is not a local diffeomorphism dt — either because
S # b, so that the Jacobiamg] is not even square, or because the Jacobian is
square but singular — then this law does not apply, and we m@imsight into
the question of how to orient the fiber productxs B. This law tells us how to
orient the fiber product whenever the right-hand factor gpegdocally invertible,
so we shall refer to it as theight Invertible Law

The equation

(2-2) senseéu, (a, b)) = senseg, b)

is a more concise way to express the Right Invertible Law. Mékier the mag is
a local diffeomorphism, and hence the right-hand side isddfithe mapu will
also be a local diffeomorphism and we should orient the fibedpct — which is
the domain of the map — to make the left-hand side agree with the right.
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The Left Invertible Lawis symmetric, using Alice’s slope to tell Bob whether
to advance or retreat:

(2-3) senseév, (a, b)) = senséf, a).

We'll refer to these two guidelines as thevertible Factor Laws

There is good news: Whenever both the Left and Right Invertibws apply,
the advice that they give is always consistent. For bothofattaps to be locally
invertible, we must have = a ands = b, so we are in the equidimensional case.
All four of the manifolds in Figure 2.1 then have the same disiena = b = s =
a+b—s. Furthermore, we must be at a poia b) at which both of the magsand
g are local diffeomorphisms. At such a point, both of the prog mapwu andv
are also local diffeomorphisms. The Left Invertible Lawdeis to orient the fiber
productA xs B so that sengg, (a, b)) = senséf, a), while the Right Invertible
Law tells us to make senge (a, b)) = senség, b). To see that those two pieces
of advice are consistent, note tfaksg = f o u = g o v and hence we have
senséf xsQ, (a, b)) = sensé, a) senséu, (a, b)) = senség, b) sens¢v, (a, b)).
So our two pieces of advice boil down to the same thing, whiehchristen the
Both Invertible Law

(2-4) sens€ xsg, (@ b)) = sensé, a) senseg, b).

This simple and compelling identity tells us how to orier# fliber product at any
point where both of the factor maps are locally invertiblef. cOurse, at such a
point, the Left Invertible Law by itself would also tell us atto do, as would the
Right Invertible Law; but the Both Invertible Law tells us recelegantly, without
our having to think about the projection mapsrv.

But there is also bad news: Back in the 1-dimensional casbeobtiginal
Alice and Bob, it followed from transversality that Alice émBob could not be
simultaneously at flat spots. Once the common dimensioneofrtanifoldsA,

B, and S exceeds 1, however, simultaneous flat spots can happen,wdwm

the factor map$ andg are transverse. Indeed, there exist nonempty, transverse,
equidimensional fiber products on which Alice and Bob areagbvat flat spots;

see Exercise 7-1. No matter what poiatb) we consider in such a fiber product
A[f] xs[g]B, the factor map$ andg are transverse dh, b) and the Jacobians

[f] of f ataand [g] of g atb are both square, but dgf]) = det[g]) = 0. The
Invertible Factor Laws give us no advice at all about how terdrsuch a fiber
product, no matter where on it we try to apply them.

By the way, since the Invertible Factor Laws are local, thekeperfect sense
also in the context of linear spaces and linear maps, as iré&@ 2. Given such
a fiber product of linear spaces, the Invertible Factor Lailsis to set

(2-5) sgnu) = sgng)

(2-6) sgn(v) = sgn(f)
(2-7) sgn(f xsg) =sgnf)sgng)
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In each of these laws, if the maps on the right-hand side aegtible, so the signs
on the right are well-defined, then the map on the left wilbdle invertible (as
we saw in Exercise 2-1); and we should orient the fiber produxt B, which is
the domain of the left-hand map, so as to make the equality. hol

In summary, generalizing the Partner’'s-Slope Rule to higheensions leads
to the Invertible Factor Laws. They specify how to orient jnaber products, and
they never contradict each other. But they do not constéwutemplete orientation
rule, even for the equidimensional case.

Exercise 2-8 Exercise 1-1 discussed the Velocity Variant of the Partag8tope
Rule in the 1-dimensional case. Explain why that variantsdo& generalize to
the equidimensional case.

Answer: The core idea in Exercise 1-1 is for Alice to restifiet choice of the
local coordinate system on the fiber prodéAck s B so as to make the Jacobian
matrix [u] of Alice’s projection mapu coincide with the Jacobian matrig][ of
Bob’s altitude mapg. Similarly, Bob restricts the choice to make his projection
matrix [v] coincide with Alice’s altitude matrix f]. Are those two restrictions
consistent? The commutativity of Figure 2.2 tells us thati = gov, from which
we deduce the matrix equalityf [Ju] = [g][v]. Thus, we can arrange that][=
[g] and [v] = [ f] only when [f][g] = [g][ f] — that is, only when the Jacobian
matrices off andg commute. Of course, 1-by-1 matrices are simply scalary; the
all commute. Once the common dimensionAgfB, andS exceeds 1, however,
we typically have f][g] # [9][ f], so there won’t be any local coordinate system
on the fiber produch xg B that makes bothy] = [g] and [v] = [ f]. Thus, the
idea that underlies the Velocity Variant typically isn’téevable.

2.3 Generalizing the Gray-Region Rule

The Gray-Region Rule generalizes more successfully thanP#rtner’s-Slope
Rule; but the process of generalization is a bit subtle. éddas the first step in
that process, | have a confession to make: The notion of tteg/igggion” doesn’t

always make sense, even in the 1-dimensional case — and thenGeay-Region

Rule, as we discussed it in Chapter 1, was a bit over-simgblifie

2.3.1 The Gray-Side Rule

Consider a transverse fiber prodéck s B in which all three manifold#, B, and
Sare 1-dimensional and oriented, but the manif®id a closed loop. Leta, b) be

a pointinthe direct produé x B at whichf(a) # g(b); so(a, b) is notin the fiber
product. Alice and Bob colored the state b) either gray or white, according as
they hadf(a) < g(b) orf(a) > g(b) in S. But the ability to discriminate between
those two cases presupposes that the man8addotally ordered. ISis a closed
loop, we can get from the poifiita) to the distinct poingg(b) by moving either
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way around the loop, forward or backward. So it is no longeacthat there is
such a thing as a “gray region”.

Indeed, when the manifolf is a loop in this way, removing the black path
A xsB from the state spaok x B may fail to disconnect the latter manifold. The
black path may behave like one of the circles that goes araundus; removing
such a circle from the torus leaves a cylinder, which is stthnected. Thus,
purely on topological grounds, there may be no hope of pamtitg what is left
into a “gray region” and a “white region”.

The fix for this difficulty is to work locally. Rather than deiing the “gray
region”, we define th@ray sideand thewhite sideof the black path locally by
looking at what tiny motions of Alice or Bob would do to thealative altitudes.
Indeed, this is what we actually did; what Figure 1.10 ad¢pusdlows, for example,
are the gray and white sides of a tiny segment of the black pdlibe and Bob
can figure out which direction to walk once they know whichesad the black
path is gray locally; they have no need even to think abouéttige gray region.
We refer to this clarification of the Gray-Region Rule as@ray-Side Rule

Note that, given a circle that goes around a torus, we can raadnsistent
convention about the gray side and the white side of thakegieven though we
cannot partition the cylinder that remains after removing ¢ircle into a “gray
region” and a “white region”. Note also that the open arromdeegenerated by the
Gray-Side Rule will always be locally consistent, even isgsawhere no “gray
region” can be globally defined. To verify this local conersty, it suffices to
check that nearby applications of the Gray-Side Rule wiltagabout which side
of the black path is the gray side.

2.3.2 Orienting direct products and quotients

At this point, we need some observations about orientingliteet products and
guotients of linear spaces. The key point is that arbitr&giaes are involved.

Given oriented linear spac&s andW, we can always put an orientation on
their direct producV x W. We typically do so by concatenating a positive basis
for V and a positive basis faWV, with the basis foV going first, and specify-
ing that the resulting concatenation constitutes a peshasis forvV x W. But
choosingV to go first in this concatenation is arbitrary, since the aifgoduct
V x W is isomorphic toW x V. For example, suppose thdtandW are both
copies of the real numbel, each oriented so that-1) is a positive basis. Their
direct producty x W is a plane. We can orient that plane so that rotation from
the positiveV axis to the positiv&V axis is either clockwise or counterclockwise.
The choice is arbitrary, as we saw by contrasting Figure 1ti7 Figure 1.11.

A similar issue arises for quotients. Suppose thas a linear subspace of a
linear space/. Given any basis fo, we can extend that basis into a basis for
V. And the vectors that we add, in doing that extension — moeeipely, their
equivalence classes moduo— form a basis for the quotient spawg U. If we
choose the basis ftu to be positive and we extend it so as to form a positive basis
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for all of V, we can orient the quotieM /U by specifying that the vectors added
during this extension constitute a positive basis\WgiU. But this construction
also involved an arbitrary choice: We chose to put the basit/ffirst and the
basis forV /U second, in assembling the basis Y6rwhen the other order would
have been just as good. Thus, in orienting the quotiefit), we are forced to
make an arbitrary choice betwe¥n=U x (V/U) andV = (V/U) x U.

Such quotients often arise from linear maps. etV — W be a linear map
between linear spaces, let Dom) := V be the domain ofn, let Kerlm) :=
m~1({0}) be the kernel omin V, and let Im(m) := m(V) be the image om in
W. Itis a basic theorem of linear algebra that the image isi@ady isomorphic
to the domain modulo the kernel: (m) = Dom(m)/Ker(m). Hence, given
orientations on any two of those three spaces, we can oherthird. But doing
so also involves making an arbitrary choice; roughly spegkive must choose
between realizing Doxm) as Kefm) x Im(m) or as Im(m) x Ker(m).

2.3.3 The Delta Rule

The Gray-Side Rule generalizes quite successfully intdesthat handles the full,
any-dimensional case. But doing so involves making anyitthoices, which will
come back to haunt us.

Consider some any-dimensional, transverse fiber proél{fdtxs [g]B, and
consider the neighborhood of some pdiatb) in A xsB. We adopt our standard
abbreviations: So the poistin S is the common valus := f(a) = g(b). We
denote byAthe tangent spack := T,A and similarly forB := T,B andS := TS.
The differential off atais the linear mafd,f: T,A — TsS, which we abbreviate as
f: A— S Andsimilarly forg: B — S. The linear maps$ andg are themselves
transverse, and the tangent space to the fiber product isbrepioduct of the
tangent spaces,n (A xsB) = A xgs B. Our challenge is to orient this tangent
spaceA x s B, given orientations on the tangent spage®, andS.

Note that this challenge, because it is local, involves dinlgar spaces and
linear maps. To meet the challenge, we define a linear map\ x B — Shy
subtracting, setting

Ale, B) :=9(B) — f(a),

for any point(«, B) in the direct productA x B. If Alice moves from the point

ato some nearby poir#, a certain vectow describes, to first order, how she has

moved. Similarly, a certain vectgr describes how Bob has moved frdnto b'.

If Alice and Bob both move in this way, the vectara, B) tells us, to first order,

the discrepancy that arises between the pdi@$ andg(b’). The kernel ofA

is the space of all directions in which Alice and Bob can moweyafrom (a, b)

while preserving the relationshiga) = g(b) to first order. Thus, that kernel is

precisely the linear-space fiber product K&y = A x g B that we want to orient.
This mapA is the key to our generalized Gray-Side Rule. We are given ori

entations on the manifold&, B, and S and hence on their tangent spacdgs
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B, and S. By concatenation, we can put an orientation on the direatiyet
A x B = Dom(A). Because we are restricting our attention to transverse fibe
products, it turns out that (i) is the entire tangent space () = S, for which
we have a given orientation. Putting together those oriems.on DongA) and
Im(A), we get an orientation on Kek) = A x s B, which was our goal. We refer
to this orientation technique as thaear-Space Delta Rule

The Smooth-Manifold Delta Rule/orks in the obvious way; it orients each
tangent spacé x s B to the fiber-product manifold x sB by applying the Linear-
Space Delta Rule to that tangent space. The resulting atiens on the tangent
spaces always fit together in a locally consistent mannerghlly orienting the
manifoldA x s B itself; we prove this local consistency in Section 7.3 byvging
that the Linear-Space Delta Rule has the continuity prgmattedstability, which
we define in Section 6.2.

So the good news is that the Smooth-Manifold Delta Rule isggwenough
to orient all transverse fiber products, even the any-dimeasones. The bad
news is that we are forced to make various arbitrary choi¢evention in
implementing the Delta Rule. Which basis goes filstor B, in concatenating
a basis forA x B? Which goes first, K&ér\) or Im(A), in concatenating a basis
for Dom(A)? For that matter, why did we séi(«, 8) ;= g(8) — f (), rather
thanA(a, B) .= f(a) — g(B)? Because of those arbitrary choices, we have no
guarantee that the orientations produced by any partiaaaant of the Delta
Rule will be natural and hence have good mathematical ptiegerinstead, the
orientations that we get will depend upon the arbitrary cesithat we have made.
Thus, we must add an explicit fudge factor to the Delta Ruterder to “calibrate”
it, that is, to arrange that it gets the “proper” orientati@s its answers.

2.4 Defining the Proper Orientations

But which orientations of transverse fiber products are gprt? That question
turns out to be quite easy in the 1-dimensional case, faaidy @lso in the equidi-
mensional case, but rather subtle in the any-dimensiorsal. call three of those
cases arise in two different problem domains: linear spacdsmooth manifolds.
But any orientation rule for smooth manifolds that is loeduces to an rule for
linear spaces; so the linear-space problem is the fundatame.

2.4.1 Linear-space orientation rules as subroutines

Our overarching goal is an orientation rule for transvetserfproducts of smooth
manifolds. But we have decided up front that this rule muskdgal; that is, it
must operate by using some orientation rule for transvebse firoducts of linear
spaces as a subroutine and applying that subroutine to aaghrit space of the
manifold independently. The answers given back from theadhamanifold rule
are completely determined by the answers from its lineacggubroutine. So, in
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considering issues of “propriety”, it suffices to focus oa #ubroutine, that is, to
consider orientation rules for transverse fiber productmefr spaces.

Not any linear-space rule will do, of course. The orientagion the various
tangent spaces returned by the linear-space subroutingxaicscally consistent,
so that they fit together to give an orientation on the madifolo guarantee
that all of our linear-space rules behave well in this regare require that they
be stable in the sense defined in Section 6.2. We prove in Section @t3athy
stable linear-space rule will always orient the tangentepan a locally consistent
manner and will hence lift to give a smooth-manifold orieiota rule. Requiring
stability thus addresses the issue of local consistenayirig us free to focus on
the linear-space question: Given a transverse fiber pradlicear spaces, which
orientation of that fiber product is “proper”?

2.4.2 The easy cases

In the 1-dimensional case of Alice and Bob, choosing the @rapientation is
quite easy. When both Alice and Bob are on upward slopes, we meyer in any
doubt that they should both advance; sopheperopen arrowhead in the upper-
left cell in Figure 1.10 points toward the upper right. Thhestseven cases are
then determined by stability: As the black line rotates,dpen arrowhead must
rotate with it, in order to avoid any sudden reversals.

The equidimensional case turns out to be almost as easy. Wg&leo first an
equidimensional fiber produd[ f] xs[g]B in which both of the factor map$
andg are invertible. The Both Invertible Law 2-7 then convindingtates that
the proper orientationon the fiber product is the one that makes(dgsx s g) =
sgn f)sgng). We show in Section 7.5 that all other equidimensional cases
determined from this by stability.

We could use a similar argument, based on stability and ttielbeertible
Law, to define the proper orientation for fiber products inatld = s # b. And
the Right Invertible Law would handle the ones in whiackt s = b. But the full,
any-dimensional case is quite a different story. Wheg s # b, so that neither
factor map can possibly be invertible, itisn’'t at all cledrieh of the two possible
orientations is the proper one.

2.4.3 Axioms for the proper orientations

The way to investigate that question is to invent axiomscbastrain the behavior
of a linear-space orientation rule for the any-dimensiaaele. Indeed, each of
the Invertible Factor Laws is essentially such an axiom: Itheatity Axioms in
Sections 9.1.4 through 9.1.6. We succeed in this axiomé&itegy if we can
invent a compelling collection of axioms that is both cotesis and complete.
“Consistent” here means that there is some orientationthde satisfies all of
our axioms. “Complete” means that there is at most one sueh 180, if we
find an axiom system that is both consistent and completes thidd be a unique
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orientation rule that satisfies all of our axioms. We can ttiefine theProper
Orientationsto be the orientations produced by that unique rule. And we ca
calibrate the Delta Rule so that it produces those Propem@iiions.

Associativity is one obvious axiom to try for. L&, B, C, andS be oriented
linear spaces and Ildt: A — S, g: B — S, andh: C — Shbe linear maps that
are transverse in the appropriate sense. The two lineaespac s B) xsC and
A xs (B x5 C) are then canonically isomorphic, and we surely want to requi
that our rule orients them so that the canonical isomorppigserves orientation.
That is, we want to havéA xs B) xsC = A xs (B x5 C), rather than having
(A xsB) xsC = —(A xs(B xsC)). Unfortunately, all of the obvious axioms,
including associativity, are not enough to narrow down tbace of orientation
rules for the any-dimensional case to a single, proper rule.

The key to finding an axiom system that is complete is to irgmish stronger
form of associativity:

(AXSB) XTC:AXS(B XT C)

In this Axiom of Mixed Associativityhe two fiber products are over different base
spacesS and T. The implicit maps that are really being multiplied, in sueh
mixed fiber product, have the zigzag form:

N A

Note that this zigzag involves two factor maps frddn a “forward” one toT
and a “backward” one t&. By adding this Axiom of Mixed Associativity to our
more straightforward axioms in Chapter 9, we produce a ciidie of axioms that
is both consistent and complete, thereby defining the Propientations for the
any-dimensional case.

2.5 Overview

Now is perhaps a good time for an overview of this monograph.

In Chapter 1, we familiarized ourselves with fiber produgtslombing moun-
tains with Alice and Bob. We came up with two rules for oriegtil-dimensional
fiber products: the Partner’s-Slope Rule and the Gray-Regide.

Our overall goal is to orient the smooth manifolds that resdilen we take
transverse fiber products of oriented smooth manifolds. Af@ o do so, not only
in the 1-dimensional case of Alice and Bob, but also in thadiqmensional and
any-dimensional cases. In the current Chapter 2, we hav&demed the extent
to which the Partner’s-Slope Rule and the Gray-Region Rairebe generalized.
The Partner’'s-Slope Rule generalizes into the Invertilaletér Laws, which are
essentially axioms about how an orientation rule for fibedpicts should behave.
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Those axioms do specify the Proper Orientation of many fibedycts — but

not all of them, not even all of the equidimensional ones. Gha&y-Region Rule

generalizes into the Delta Rule, a framework that is powenfiwugh to handle
the full any-dimensional case. Unfortunately, buildingstframework involves

making some arbitrary choices. So the resulting Delta Re&=la to be calibrated
with an explicit fudge factor, before it will assign the Pesrientations.

Chapter 3 completes the introduction by providing some vatitin for all
this. We discuss a problem of practical interest, arisin@A&GD and robotics,
where it is important that the fiber products of oriented rfdds themselves be
oriented. In particular, we discuss computing the Minkoveskns and convolu-
tions of regions that are described by specifying their loauies.

Our mathematical work begins in earnest in Chapter 4, wheretwdy the
direct products and fiber products of sets, linear spacessamoth manifolds.
For linear spaces and smooth manifolds, where the concepiim@nsion makes
sense, we discuss the standard notion of transversality.

In Chapter 5, we study what it means to orient a linear spaaesorooth man-
ifold. While our definitions here are also essentially seaddwe must take care
to arrange that all linear spaces end up with two possibntations, even linear
spaces of dimension zero (such a space having the emptyrsmgokvectors as
its only basis). We discuss how orientation interacts witbal products and with
guotient spaces. Given a linear map between two spaces¢hedeh direct prod-
ucts, we discuss how to represent that linear map as a matasaventries are
themselves linear maps. We can perform elementary row adndhocoperations
on the resulting matrices, just as if they were matrices oflmers; but we must
be careful to “multiply” by composing from the correct side.

Stability is the key concept in Chapter 6. We want our origotarule for
smooth manifolds to be local, meaning that it must operatgsiryg an orientation
rule for linear spaces as a subroutine and applying thabstibe to each tangent
space independently. For this to work, the linear-space must have a certain
continuity property that we christestability. In Chapter 6, we define stability, and
we prove that any stable linear-space rule will orient théowss tangent spaces of
a smooth manifold in a locally consistent manner, hencengivis an orientation
rule for smooth manifolds. In the remainder of the monograpé can hence
focus on stable orientation rules for linear-space fibedpcts.

Chapter 7 presents our initial, uncalibrated version ofdbka Rule for linear
spaces and proves that it is stable. We use the Both Inwettdolv and stability
to define the Proper Orientation for any transverse, equ@dsional fiber prod-
uct, and we demonstrate that even the Uncalibrated Delta &signs the Proper
Orientations in the equidimensional case. Recall that #fednd Right Invertible
Laws apply also to some transverse fiber products that arequatimensional.
We find that the Uncalibrated Delta Rule assigns orientationsome of those
cases that violate the Left Invertible Law. This is conviiicievidence that the
Delta Rule must be explicitly calibrated in order to get thhed@r Orientations,
once we leave the equidimensional case.
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The key to defining the Proper Orientations in the any-dinoerad case is the
Axiom of Mixed Associativity. Chapter 8 returns to the badefinitions from
Chapter 4, generalizing them so that they can handle mixedpitoducts, where
a different base space is involved for each adjacent pamaidf spaces. In the
process, we definezagzago be a particular structure in linear algebra: a sequence
of linear spaces in which adjacent spaces are related bgrlmaps that alternate
in direction.

Everything comes to a head in the Chapter 9. We present & bsi@ms that
contains the Axiom of Mixed Associativity. We demonstrdtattthose axioms are
both consistent and complete, so the orientations thatdbgsgribe are the unique
Proper Orientations. We then calculate the fudge factodeeeo calibrate the
Delta Rule so that it produces those Proper Orientations.

In Chapter 10, we discuss the freedom that we would acquieglopt other
orientation rules if we were to abandon certain of our axioM& also discuss
several formulas that bundle together subsets of our axidhmes fanciest of these
is theBinary Full Formulg

(Lx NxQ) xmxnxg (M x Nx R =LxNxR,

a single identity that is free of fudge factors and yet is pdwieenough, all by
itself, to capture the Proper Orientation for every transgdiber product of linear
spaces. The subtle point about the Binary Full Formula iotder of the factors
in each of its ternary direct products.

As part of understanding why the Binary Full Formula is cotiipa with
mixed associativity, we also write out a Ternary Full Foreni Chapter 10. And
we show that it would be possible to write out mary Full Formula, for any.
Unfortunately, these-ary Full Formulas fon > 3 are unavoidably asymmetric,
and hence are not as pretty as the Binary Full Formula. To sgehese higher
full formulas have the universality implied by the adjeetitfull”, we need to
appeal to an intriguing theorem of linear algebra about thectire of zigzags
— a theorem that follows, fortunately, from Gabriel's Thexorin the theory of
quiver representations.



Chapter 3

Minkowskl sum and convolution

Recall that our goal in this monograph is to orient the smau#nifolds that
result when we take transverse fiber products of orientecdb#mmoanifolds. In
this third and final introductory chapter, we motivate thailppem by discussing
an application area in which it arisddinkowski sumandconvolutionsn CAGD
and robotics. For more details about these issues, seel3].6,

3.1 The oriented boundaries of paintings

It often works well to represent a region dispace by specifying its boundary,
since that boundary has dimension ofdy— 1). For this reason, representation
schemes based on boundaries are common in CAGD and robotics.

In such schemes, the boundaries are typically taken to bated. Perhaps the
clearest justification for that decision comes from examplke Figure 3.1. Think
of the planar region in that figure as the letter alpha from @ee&ifont (drawn by
a type designer who is far too enamored of circles and strargs).

In Figure 3.1(a), the boundary of the alpha is an unorientedec Without an
orientation to provide guidance, the only local rule fortisiguishing the inside
from the outside asserts that every crossing of the bourtdkeg us either from
inside to outside or vice versa. By that rule, unfortunatitlg diamond where the
alpha crosses itself ends up being outside — which wouldrrokve

We could restructure the boundary as shown in Figure 3.1ote that the
boundary now consists of two separate loops, the outer ofiwias three sharp

0

(@) (b) (©)

Figure 3.1: A letterr, drawn three different ways

37
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corners, while the inner has one. But it may be expensivertgpee the four self-
intersections and to restructure the boundary in that wasthErmore, it would be
delicate to edit this two-loop version of the boundary whileserving the illusion
of a single brush stroke that crosses itself.

Orienting the boundary, as shown in Figure 3.1(c), provalbstter solution.
We then make the convention that crossing the boundaryfreay,its right to its
left, means moving from outside to inside. Under this cotieen the diamond
of self-intersection lies inside the alpha twice. This ngekeme intuitive sense,
since the points in that diamond would be passed over twiagbassh painted the
alpha. In computer graphics and in complex analysis, thiggon is described
by saying that thevinding numbeiof the oriented boundary around points in that
diamond is 2.

Once some points are to lie inside the alpha with multipli@t we can no
longer view the alpha simply as aregion, that is, as a sulbtie¢ plane. Rather, it
is at least a multiset. In fact, we want to allow our windingmhers to be negative,
as well as positive, since reversing the orientation on thendary should negate
all of the resulting winding numbers. So the alpha has be@fuaction from the
plane to the integers whose regions of constancy are whl\sal, in some sense
yet to be specified. That concept reminds me of painting bybeinso let’s refer
to such an integer-valued function apanting The alpha in Figure 3.1(c) is a
painting in the plane that takes on the values 0, 1, and 2,@xled by the colors
white, light gray, and dark gray.

Warning: While we use the concept of a “painting” in this cteapwe don’t
define that concept precisely. In particular, we don't sfyelsow well-behaved
the regions of constancy have to be. That sloppiness is psitnie because this
chapter provides only motivation, not mathematics; paggiare just one example
of a practical situation that needs oriented fiber produth® best candidate that
| know of for a precise notion of “painting” is Schapira’s rat of aconstructible
function[15]. Under Schapira’s definition, the regions of constaoicg painting
are the strata of a subanalytic stratification.

One final remark about the graphical conventions used inr€igul(c): The
standard way to draw an orientation on a smooth manifbidvolves some sort of
tangential graphical structure, something that indicatesrientation on sample
tangent spaces. For example, we draw an orientation on anffatthby drawing
arrowheads pointing along it, forward or backward. Whemtlaaifold M sits, as
a submanifold, inside an oriented manifold of some largeratiision, we have the
option of drawing some sort of normal structure instead,etbing that indicates
an orientation on sample complements of tangent spaceexganple, wheri
is a 1-dimensional submanifold of an oriented 2-manifol@, ean indicate our
choice of orientation oM by drawing, say, outward-pointing unit normal vectors
alongM. In Figure 3.1(c), we have redundantly used both scheméls,dvmow-
heads alongv and short, headless, outward-pointing vectors normall toWe
refer to the latter vectors ashiskers We introduce these two different schemes
for indicating the orientation oM because, in later examples, we shall be deal-
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Figure 3.2: The Minkowski sum of two orthogonal rods

ing with two orientations that don’t always agree. In thismewple, however, the
whiskers and the arrowheads always do agree; that is, threkersi always point
toward the right-hand batwf the arrowhead.

3.2 Minkowski sums of convex regions
Given two regions4 andB in the plane, theiMinkowski sunis the region
A®oB:={a+b|ae Aandb e B},

where the plus im + b denotes vector sum. For example, the Minkowski sum of
the horizontal rod4 and the vertical rod in Figure 3.2 is the rounded rectangle
A @ B on the right. Its boundary consists of four line segmentshed which is

a translate of a flat side of one of the two rods, together wvath uarter circles,
each with twice the radius of the semicircles at the endseofalds.

Given the boundaries of the two regiodsand B3, how can we compute the
boundary of their Minkowski suml @ B?

If we start with a pointa in the interior of A, then every point of the form
a+ b, for b in B, will lie in the interior of the Minkowski sum. Thus, the only
way to get out to the boundary of the Minkowski sund B is to add a poina
that lies on the boundary of to a pointb that lies on the boundary .

But we need more. If the tangent line to the regibata is not parallel to the
tangent toB at b, then we can combine tiny motions along the boundaried of
andB to nudge the sura + b an infinitesimal distance in any direction; so, once
again, we can’t possibly be out on the boundary of the Minkaowsm. To get out
to the boundary of the sum & B, we must add pointa andb on the boundaries
of A andB where the tangent lines are parallel.

Even requiring the tangents to be parallel is not restecgimough. Consider
all of the boundary points of the region$ and B in Figure 3.2 at which the
tangentis horizontal. Each point along the top edge of thekbivski sumA @ B

1By the “right-hand barb”, we mean the barb on your right when face in the direction that
the arrow points; the nautical term would be “starboard barb
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is the vector sum of a point along the top edgedénd the unique point at the
middle of 5’s top semicircle; and the same is true if we replace “topdtighout
with “bottom”. But adding a top boundary point gf to the middle of3’s bottom
semicircle leads to a point o4 @ B that is not on the boundary. Thus, all of the
points on the boundary of the Minkowski sumh® 5 have the forma + b where

a andb are points on the boundaries.dfandB at which the tangent lines match
both in slope and in orientation.

Beware! We are now starting to use the orientations on oundaues for
two different purposes. We continue to use the orientatiorth@ boundary of
any painting to compute the values of that painting, thatasjetermine which
side of the boundary has the larger winding number. But ndvemforming the
boundary of a Minkowski surd & B, we also compare the orientations on the
boundaries ofd and B in order to decide which of the tangents.dfshould be
added to which of the tangents Bf To avoid confusion in what follows, let’s
make an association between these two different uses ofrigsgtation and our
two different graphical conventions for drawing that otaion. We’'ll use the
arrowheads that point along the boundary to compute windingbers, under
the convention that crossing a boundary from its right tdefs increases the
winding number by 1. When matching up tangents to computddumdary of
a Minkowski sumA & B, we’ll use the whiskers instead; we’ll look for pairs of
pointsa andb on the boundaries oft andB at which the whiskers are equal as
vectors — not only parallel, but also with the same sense.

We now have a glimmer of why fiber products arise in computingkdwski
sums. LetA andB be two regions in the plane whose boundareand B are
smooth 1-manifolds. Le¥! denote the unit circle, the set of all unit-length vectors
in the plane. We can maf to S* by taking each boundary point to the whisker
at that point; call that mapa: A — S* the whisker map(or Gauss map), and
define the whisker mapg: B — S! in a similar way. The boundary of the
Minkowski sumA @ B then corresponds t8[wa] xs: [wg] B, the fiber product
of the boundaries of the two summands taken over the ci¥glerhere the factor
maps fromA andB to S* are the whisker maps.

But we don’t yet have any clear motivation for orienting tHeefi products of
oriented manifolds. While the boundari@s B, and A xs: B of the regionsA,

B, and A @ B are in fact oriented manifolds, there is no reason as yet wiy w
need to keep track of that orientation as a separate conBapte we know the
whisker maps, we can compute the correct arrowhead at any@oany of these
boundaries by rotating the whisker vector 90 degrees catlotkwise.

Exercise 3-1 Given two regions4 andB in the plane with smooth boundariés
andB, suppose that we want the whisker maps A — St andwg: B — S'to
be transverse. What geometric condition must we impose?

Answer: The analog of a plateau on Alice’s mountain rangesegggnent of the
boundaryA that is straight; along such a segment, the whisker map istann
The analog of a peak or a valley is a point 8rwhere the boundary switches
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Figure 3.3: Sliding the brush along the trajectoryd

between curving to the left and curving to the right. Sucmfsoare calleghoints

of inflectionor flexes at a flex, the whisker map has a local extremum. Technically,
the points along a straight segment also count as flexesf \B@want the whisker
mapswa andwg to be transverse, what we must avoid is having flexes, one on
A and the other o8, whose whiskers are equal as vectors — that is, are parallel
and have the same sense.

3.3 1-dimensional regions as trajectories

By the way, there was no reason why the two rods in Figure 3®2tbde the
same thickness. Figure 3.3 shows the degenerate situatwnich the rod4 has
shrunk to have zero width. Thus, the upper and lower boueslafid run along,
one right on top of the other.

When one of the summands of a Minkowski sum is 1-dimensiamahis
sense, we can reinterpret the summation as a dynamic prod#ssview the
1-dimensional summand as a trajectory and the other sumasadbrush, and
we translate the brush along the trajectory. In Figure 3e3get the strokel & B
by translating the rod-shaped bruskalong the trajectoryl (which happens to be
straight, but wouldn’t have to be). Indeed, Minkowski sums ased in graphics
to model brush strokes in precisely this way. But note thantiotion of the brush
must be limited to pure translation. If the brush were toteta to change shape
as it moved along the trajectory, then we would be dealingyith a Minkowski
sum, but with a more general problem in differential geogetr

When two segments of boundary run along right on top of ealbrpas do
the top and bottom boundaries of the regidmn Figure 3.3, our conventions for
drawing orientations can become ambiguous. In partictilare’s nothing in the
picture to indicate that the rightward-pointing arrowhedoing.4 goes with the
downward-pointing whiskers, while the leftward-pointiagrowhead goes with
the upward-pointing whiskers. We trust to context to resavch ambiguities.

Minkowski sums of higher dimension arise in robotics. Faaraple, consider
translating a sofa around in a living room — but only transl@tnot rotating. If
we Minkowski-subtract the sofa from the living room, we ag# With the set of
collision-free positions for the sofa under translation.
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Figure 3.4: Offsets of a parabolic arc

3.4 Concave boundaries with tight turns

To prepare for our next example of a Minkowski sum, let’s l@alsome offsets
of a parabola. The darker curve in Figure 3.4, the middle dnibe seven, is
that portion of the graph of the standard parabple= x? that lies over thex
interval [-3/2 .. 3/2]. The three curves on either side are the curves that result
from offsetting that parabola by a distancede?/5, +4/5, and+6/5. We could
imagine drawing Figure 3.4 by building a beam with seven pspaced 25 apart,
and then sliding that beam along the parabola. We keep tha beatered on
the parabola and normal to it at all times — like a tightropdkemcarrying a
beam for balance. The surprising features of the resultherewallowtails that
appear in the paths traced by the two innermost pens. A smalilacresults when
the forward motion of a pen that arises from our progressgatbe parabola is
overwhelmed by the backward motion that arises from outimiaf the beam.
The farther a pen sticks out toward the inside of the turnimbee likely that pen
is to experience such retrograde motion.

Exercise 3-2Let r be a distance large enough so that the inner offset to the

parabola at distance has a swallowtail. (For the standard parabgla= x2,

that means > 1/2.) Where are the two cusps of that swallowtail located?
Answer: The two cusps are the centers of the two circles afisad that

osculate the parabola, that is, that match it in positiapes| and curvature.

With swallowtails in mind, consider the Minkowski sum in birg 3.5. The
region A is the same parabolic arc that we saw in Figure 3.4, but nowede
as a 1-dimensional region. Singkis 1-dimensional, we can interpret the sum
A @ B as translating the brush along the trajectoryd, where the bruslf is a
circular disk of radius 5. If we compute the boundary of the straded B by
adding pairs of boundary points with equal whiskers, we etgainting shown
in Figure 3.5 — complete with the swallowtail in its upper bdary.
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Ao B

Figure 3.5: A parabolic trajectory with a tight turn
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Such swallowtails can’t arise in Minkowski sums whose sumasaare both
convex, like those shown in Figures 3.2 and 3.3. The whiskagp of a convex
region is weakly monotonic; that is, advancing along thgiae’'s boundary may
cause the whisker to rotate counterclockwise or may leawevttisker’'s azimuth
unchanged, but it never causes the whisker to rotate clegkvdorrowing some
terminology from Alice and Bob, all of the terrain on such auntain range is
either upward-sloping or flat; none of it slopes downwardhoih mountain ranges
have this character, then Alice and Bob can traverse the filmuct without
either ever needing to retreat, so no retrograde motiorsris

But retrograde motion can arise in a Minkowski sum, like tinaEigure 3.5,
in which one of the summands fails to be convex. Note that gpeuboundary
of the trajectoryA is concave, since forward motion along that boundary, from
right to left, causes the whisker to rotate clockwise. Itis tlockwise rotation
of Alice’s whisker that forces Bob to retreat along the uppe&cular boundary of
the brush, leading to the retrograde motion and the swadlibwt

3.5 From Minkowski sums to convolutions

A Minkowski sum is simply a set— a subset of the plane, in tteead Figure 3.5.
So the boundary of the Minkowski sus & B does not include the swallowtail.
Instead, to construct the upper boundary of the4ei B, we must compute the
point of self-intersection of the upper boundary and cliftloé swallowtail rooted
there, replacing it with a sharp turn.

But the points inside the swallowtail do have a special prigpnat could
justify our viewing them as lying inside the sum twice. As warislate the disk-
shaped brusB along the parabolic trajectory, the points in that swallowtail are
precisely the points that get two coats of paint. Given ammpnswointp, the brush
moves ovep and then off ofp twice, once while the brush is heading down and
again while it is heading back up. This could justify retagpthe swallowtail as
part of the boundary — in which case the object that it boundstrbe a painting,
rather than a region. The painting that results when we decthe entire offset
curve as part of the boundary, retaining the swallowtaitalled theconvolution
of the regionsA4 and B, written A x B. Note that the values of the convolution
painting A x B in Figure 3.5 count coats of paint, just as do the values of the
alpha-shaped painting in Figure 3.1.

When winding numbers greater than 1 arise, so that the cotwoldiffers
from the Minkowski sum, it is the convolution that is mores#dy related to fiber
products. Note that, as we move along the boundary of theobaton A * 1,
the whisker vector changes continuously. On the boundaitysofinkowski sum
A @ B, on the other hand, at the throat of the swallowtail, the kdms/ector
jumps discontinuously. So we shall switch our attentioryhmat follows, from
Minkowski sums to convolutions.

There is another way to count the coats of paint that a oiateives, and this
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helps to explain why the name “convolution” is appropridtestead of translating
the brushB along the trajectoryd and watching what happens at the pqgint
during this process, we center a copy of the brigsht p, intersect that copy
with the trajectory.4, and count the number of closed segments in the resulting
intersection. Note that each such closed segment corrdsgora time interval
during which one coat of paint gets applied.

That recipe actually exploits a symmetry of this particldaush; to get the
right answer for an arbitrary brush shaBeit turns out that we must invert the
brushB through the origin before translating it ppand then intersecting it with
the trajectoryA. (Recall that inversion through the origin, in the planghessame
as rotating around the origin by 180 degrees; but inversioough the originin a
space of odd dimension is a rotary reflection, rather tharation.)

In symbols, this new way of counting coats of paint can betemit

(3-3) (AxB)(p) = / A(q) B(p — g) dg.

The paintingB(p — -) is the result of inverting3 through the origin and then
translating the result tp. We multiply that painting pointwise by the painting
A( ), this multiplication generalizing the notion of intersectin the description
above. We then reduce the resulting product painting toglesinteger by using
an appropriate reduction map, written here as integration.

Formula 3-3 helps to explain why the name “convolution” ipegpriate. If
(an)n=0 and (bp)n=0 Were, say, two sequences of real numbers, their convolution
a x b would be defined by the analogous formula

@xb)n =) abni.

In both cases, we invert one factor through the origin, tedast to the point of
interest, multiply it by the other factor pointwise, andrihieduce the result to a
single value using some linear operator. Thus, it makes geode to view the
variant of Minkowski sum that retains the swallowtail as adkof convolution.

It doesn’t matter, by the way, which operand gets invertedl teanslated. It
would work equally well to invert the trajectory through tbegin, translate it to
the pointp, and then multiply that by the original brush:

(AxB)(p) = /A(p —q) B(q) dg.

For more details about the reduction operation for paistitige operator that
we are writing as integration, see Schapira [15]. In bridfatthat operator counts
is the topological degree of the whisker map. Thus, givenirtipg P, say in the
plane, we compute the integ¢iP by walking around the entire boundary Bf
once and counting the net number of counterclockwise fufigtihat that whisker
vector makes during this process. If a paintigs the characteristic function of a
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Figure 3.6: Decomposing an annulus into four compact, eatitrle chunks

set that is both compact and contractible, then the whisietov will make a net
rotation of precisely one full turn, as we move around theralauy of that set; so
the integral will be/ P = 1. When we apply Formula 3-3 to count coats of paint,
the paintings4(q) B(p—q) dq that we integrate are the characteristic functions of
unions of closed segments of the trajectgrySince each such closed segment is
compact and contractible, the resulting integral is sintipgynumber of segments,
which is the number of coats of paint.

Exercise 3-4 Contractibility is important. Let the painting be the characteristic
function of a closed annulus in the plane; whaf B?

Answer: The whisker vector rotates through one positivetfuh as we trace
the outer boundary of the annulus; but it rotates throughregative full turn
as we trace the inner boundary. So we h#® = 0. To see this another way,
Figure 3.6 expresses the annuRias an integral linear combination of four paint-
ings, each of which is the characteristic function of a coohpad contractible set.
Each summand has integral 1, so the integrdfas 1+ 1 —1— 1= 0.

3.6 Open versus closed boundaries

Something new happens along the bottom edge of the swallowtigure 3.5:
The orientation of that curved edge as encoded by the aranghdiffers from its
orientation as encoded by the whiskers. In particular, thiskers along that edge
point toward the left-hand barb of the arrowhead. Everyeledse in all of our
examples so far, the whiskers have pointed toward the hight barb.

Did we screw up somehow? Is the arrowhead along the bottora eflthe
swallowtail correct as drawn? Recall that we are using dmeagls to compute
winding numbers. The arrowheads on the other portions obtlumdary already
imply that the winding number inside the swallowtail mustheAs a result, the
arrowheads along the bottom edge of the swallowtail musttgiom left to right,
to orient that segment of boundary with the higher windinghber to its left.

What about the whiskers along the bottom edge of the swalit®vAre they
correct as drawn, pointing upwards? That bottom edge isrgateby sums of the
form a + b, wherea is advancing slowly leftward along the middle of the upper
boundary of the trajectoryl, while b is retreating quickly rightward around the
upper boundary of the brugh The whiskers at the pointsandb both point up,
so it would certainly be simplest if the whiskers generatedgthe bottom edge
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of the swallowtail pointed up as well. Indeed, we can argae tihey must point
up by comparing the various offsets of the parabola shownguare 3.4. Letting
B, denote a circular brush of radiuswe certainly want to have

A s Begjs = A x (Bajs % Bays) = (A x Bays) * Bys;

that is, thickening the trajectory first by 8 and then by an additiona)2 should
give the same result as a single thickening by the overatudce of §5. For that
to hold, the whiskers along the bottom edge of a swallowtaisthpoint up, so
that those points are available to be added to points alantpthof a subsequent
brush, thereby filling in the bottom edge of a larger, highpiswallowtail.

So we have made no mistake: The orientations on the bounélarpainting
that come from the arrowheads and from the whiskers, whig tiften agree,
can sometimes disagree. It follows that we must allow fomuolauy segments of
two different types in our paintings: segments along whighangle between the
arrowhead and the whisker 90 and segments along which that angle-B0.
The sign of that angle constitutes, in some sense, one adalithit of information
that is associated with each segment of the boundary.

That additional bit can be used to encode useful informatod that insight
seems worth discussing here briefly, even though it is pergto our current
purposes. In particular, we can use that bit to distinguestavben segments of
boundary that are open versus closed. That is, the bit chngelhether the
points that lie precisely on a segment of boundary have tigedar the smaller
of the two adjacent winding numbers. Under the simplest @éimgpscheme, the
whiskers point toward the right-hand barb along closed daues, but toward
the left-hand barb along open boundaries. Most of our pajsthave had most
of their boundaries closed. For example, the disk-shapeshi# in Figure 3.5
has winding number 1 along its circular boundary, as wellnagde that circle.
This convention corresponds to the following rule for cotpgiwinding numbers
along a boundary:

To compute the winding number at a pomthat lies precisely on
the boundary, perturb the boundary everywhere slightly bYingy
on all of its whiskers, and then compute the winding numbehat
perturbed boundary aroumd

For the disk-shaped brudhin Figure 3.5, the whiskers point outward. Pulling
on those whiskers moves the boundary slightly out, incrgais radius; so the
points lying precisely on the original boundary get the savmaling number as
the points inside it.

Under this convention, Figure 3.1(c) shows a closed alplthFagure 3.2
shows two closed rods whose Minkowski sum is a closed, ralimdetangle.
The first segment of open boundary that arises in our figurtéeeifottom edge
of the swallowtail in Figure 3.5. Since the whiskers alongttturved edge point
up, pulling on the whiskers lifts that segment of boundaiytgly; so the points



48 CHAPTER 3. MINKOWSKI SUM AND CONVOLUTION

along that curve get winding number 1, rather than 2. Notetthais consistent
with counting coats of paint. A poim along that bottom edge receives just one
coat of paint as the disk-shaped brusislides along the parabolic trajectad
The brush first coverg, then almost uncoveps— moving so as to bring under
some point of the bounding circle &f — but then coverg again, before finally
uncoveringp definitively. So, overall, just one coat of paint.

This talk of open versus closed boundaries, while intemgsis peripheral to
our current purpose. The key point for us is that left-bagmsents of boundary
do arise, as well as right-barb segments. Hence, when camypednvolutions,
we must keep track of the arrowheads on our boundaries asasasestructure,
independent from the whiskers. The natural way to keep wathose arrowheads
is to treat our boundaries as oriented manifolds. So thedemisgsA and B of the
regions.A and B will come to us with preferred orientations. We want the fiber
productA xg: B, which is the boundary of the convolutiof « 5, to inherit a
preferred orientation as well. Thus, convolutions are gu@ieation where it is
important that the transverse fiber products of smoothntetemanifolds should
themselves be oriented in some natural way. That is the tdpglds monograph.

Note that the fiber products that arise from convolving pag# are always
equidimensional. If we are dealing with paintingsand 5 in d-space, then their
boundary manifoldsA and B have dimensiord — 1, while the base manifold
is simply the spher&®-! of all possible whisker vectors. Thus, readers who
are motivated purely by their desire to implement convoluttan focus on our
equidimensional results, ignoring the large chunk of thsograph that tackles
the subtleties of the any-dimensional case.

By the way, we want convolution to be both associative androamative: to
satisfy bothA x (B «C) = (A x B) «C and A x B = B x A, for all paintingsA,
B, andC. So whatever rule we come up with for orienting fiber prodwstisuld
also be both associative and commutative, at least in theliegensional case.
Once we leave the equidimensional case, it turns out thatredativity becomes
hopeless; but our final orientation rule will be associgtiighout any restrictions
on the dimensions — indeed, associative even for mixed filmtyzts.

The convolution operation also has an identity element:péiatingZ that
interprets the origin ofl-space as d-ball of radius zero. The boundatyof this
paintingZ is a(d — 1)-sphere whose whisker map : | — S9! is the identity.
To arrange thaf *« A = A x Z = A for any paintingA4, we want the boundaries
to satisfyl xgi-1 A = A xge-2 | = A. Our final orientation rule will be required
to achieve this by the Left and Right Identity Axioms 9.1.51&n1.6.

3.7 Boundaries with more than one component

Way back in Chapter 1, while we were studying Alice and Bob,digzovered
that the fiber products of connected manifolds need not beexdad. Figure 3.7
shows an example of this phenomenon: two check matkedR, each a non-
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L R 0 LxR

= =
== =

Figure 3.7: The convolution of two non-convex quadrilalera

convex quadrilateral, whose convolution looks somethikg & stealth airplane.
To help clarify what is going on in this example, the convantis shown four
more times underneath, with the origin of the right-handeec& R aligned, in

turn, with each of the four vertices of the left-handed ch&ck

Suppose that we start off with Alice at the origin 6fand Bob at the origin
of R, at the whiskers that point straight down. As they turn andenadvancing
or retreating as specified by the Partner’s-Slope Rule,uhesof their locations
trace out the wings of the airplane: a non-convex octagorat dbtagon forms
part of the boundary of the convolutiaghx R, but not all of it. We can also start
out with Alice at the leftmost vertex af and Bob at the rightmost vertex &, at
the whiskers that point straight up. As they turn and mowgistafrom there, the
sums of their locations trace out the tail of the airplaneh@mb. The boundary
of the convolutionC x R includes both the octagon and the rhomb.

The region where the rhomb overlaps the octagon has windirmder 2 in the
convolution « R. There is a good geometric reason for this; but, since neithe
nor R is 1-dimensional, we can't treat either of them as a trajgctmo we can'’t
justify that winding number by counting coats of paint. bed, we have to apply
Formula 3-3 directly:

(L5 R)(P) = f L@ R(P - o) da.
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=7 =7

Figure 3.8: Both upper poinfssatisfy (L « R)(p) = 2.

Figure 3.8 shows what happens when we use this formula to at@rtpe
winding number of the convolutiof x« R around two different pointp, each of
which lies in the region of winding number 2, the region whibeerhomb overlaps
the octagon. In each case, we take the right-handed dReuale invert it through
the origin, and we translate the result to bring the origirthe pointp. The
intersection of the inverted and translat@dvith the original, left-handed check
L then has two connected components, shown shaded in eaabf Radure 3.8.
Both of those components are compact and contractible esiotibgral is 2.

Note that the two lower edges of the rhomb are segments of opendary,
segments where the whiskers point toward the left-hand &fette arrowhead, so
the points on the boundary have the lower of the two adjacemding numbers.
This openness also makes good geometric sense. If we imeertght-handed
checkR and translate it to some poiptalong one of those bottom rhomb edges,
the intersection of the result with the original, left-haddacheckl will have just
one connected component. That intersection will have goutt — a single
point whose removal would disconnect what remained; buty thie cut-point in
place, the intersection is a single component, both congrattontractible.



Chapter 4

Fiber products

Enough, already, of introductions; it is time to start stindyfiber products in
earnest. The fiber product is most easily thought of as ainestébset of the
direct product. So we begin by reviewing the direct prodottsets.

4.1 Direct products of sets

When taking direct products of sets, we can keep track of wtaictor is which in
two different ways: by the position of that factor or by anasated index value.
Let’s first consider the positional approach.

4.1.1 The positional approach

Given two setsA andB, their direct produc? x B is defined, positionally, as the
set of all ordered pairg, b), with ain A andb in B. More generally, givem
setsA; throughA,, then-ary direct produc®; x - - - x A, is the set of all ordered
n-tuples(ay, ..., a,), with g in A, fori from 1 ton.

This positional direct-product operator is almost asgo@a but not quite.
From three set#\, B, andC, we can form three different direct products: the
left-associated, nested binary prodgét x B) x C, the right-associated analog
A x (B x C), and the ternary produé& x B x C. Those three sets are distinct; but
the reparenthesizing map&, b), ¢) < (a, (b, c)) < (a, b, c) give us obvious
one-to-one correspondences between them. Hence, it isaligreafe to ignore
the distinctions between those three sets and to treatitbet-giroduct operator as
if it were associative.

What about commutativity? Unless the sétsand B are equal, the set of
ordered pairsA x B is different from the seB x A, which suggests that the
direct-product operator is not commutative. But we havé @ggeed to ignore
the distinction between the setd x B) x C and A x (B x C), because of
the natural one-to-one correspondence between them. &heuélso, perhaps,
ignore the distinction betweeA x B andB x A, exploiting the swapping map

51
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(a, b) <+ (b, @) as our one-to-one correspondence? But doing that woulddead
confusion when the set& and B intersect. Ifp andq are distinct elements of
the intersectionA N B, we must distinguish between the paips q) and(q, p);
indeed, that is why we adopted ordered pairs in the first place

4.1.2 The indexed approach

Commutativity causes confusion in the positional apprdaetause position is a
poor way to keep track of which component is which; indiceslesetter. We start
with setsA;, for eachi in some index set. We then define the direct product
[lic; A to be the set of all functiona with domainl and whose value; lies

in A;, foralli in I. Note that an ordered pair is essentially the same thing as a
function on the domaiil, 2}; so the indexed approach is not that different from
the positional approach. The key advantage of the indexaaaph is that we use
the same index, sayin I, to name both the factor s& and the corresponding
componeng; of an elemené of the direct product.

In the indexed approach, how close is the direct-productaipeto being
associative? Suppose that we have some partitioa | J, . Ik of the index
setl into disjoint subsetsy, for k in another index seK. The direct-product
operator is almost associative in the sense that the nestddd] ], .« ([T, A)
is essentially the same as the overall prodyet, Ai. An element of the overall
product is a function o whose value at lies in A;, while an element of the
nested product is a function éhwhose value &t is a function only whose value
ati liesin A;. Those two concepts aren’t identical, but we can freely edrany
element of either product into a corresponding elementebther product. So it
is generally safe to ignore the distinction between the two.

As for commutativity, the indexed approach makes it cleat the direct-
product operator is commutative, in the sense that it dbesatter how the index
setl is ordered. Indeed, there is no reason for the index sebe ordered at all.

Another advantage of the indexed approach is that it extentdandle index
setsl that are infinite, even uncountably infinite. But that paréc advantage
isn't relevant for this monograph, since all of the indexssatour direct products
— and in our fiber products — are going to be finite. By restngtourselves
to finite index sets, we avoid various set-theoretic suleenote that the Axiom
of Choice is equivalent to the claim that every direct praciimonempty sets is
nonempty, no matter how large the index set of that direaiygpcomight be.

4.2 Fiber products of sets

A simple and concrete way to think of the fiber product is asréagesubset of
the direct product.

Let S be a fixed set, which we call tHease setand letl be any nonempty
index set. (Eventually, we want to allow the index set to b@gmBut that leads
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to complications, as we discuss in Section 4.3. For nows letuirel to be
nonempty.) For eachin I, let A; be a set and lef;: A; — Sbe a map; we call
A theit™ factor setand f; thei™ factor map Taking the fiber product involves
constructing a certain sét and a certain map: P — S.

Let D := [];., Ai be the direct product of the factor sets, which, under the
indexed approach to the direct product, is a set of functwitis domainl. The
fiber product is the subsd? of D consisting of those functions that satisfy
fi(a)) = f;(q), foralli andj in I. Thatis, the fiber product is that subset of the
direct product on which all of the factor maps agree. We ¢eédl $etP thefiber
productof the setg A;) over S and we write

P=]][flA.
icl

When the factor mapsf;) are clear from the context, we shall abbreviate this
formula by eliding them, writing simply

P= l_[SAi.

iel

The fiber-product map: P — Sis then defined by setting(a) := fi(g),
for eachain P and for some in I. Whichi in | we choose doesn’t matter, since
all of the factor maps agree dh Furthermore, there is soméo choose, because
we are requiring the index seto be nonempty. We call thefiber productof the
maps( f;), and we write

h=]]f

iel

Is this fiber-product operator associative? The answergsregslly yes, as
for the direct product. But we must be careful to avoid hawang of the index
sets that arise be empty. Suppose that the nonempty indéxsspartitioned into
disjoint, nonempty subsets, so that we haved = [, lx; note thatK will
automatically be nonempty, sintas. We compare the nested fiber product

[TsMnd (TTsLf1A)

keK iclk

to the overall fiber product
[IIfIA,
iel

where the factor mapy in the nested case is the fiber-product map associated
with the inner fiber product:
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In the nested case, the relatiofiga;) = f;(a;) withi andj in the same subsét
are enforced when the inner fiber product

[[[fi1A

ielk

is formed, while the relations with and j in different subsets are enforced as
part of forming the outer fiber product. In the overall cadlepfathe relations are
enforced simultaneously. But the two end results are thesam

The fiber-product operator is also commutative, in the sansesas the direct-
product operator: There is no need for the index setbe ordered.

4.3 The nullary fiber product

One unfortunate aspect of defining the fiber product to be aetudf the direct
product, as we did in Section 4.2, is that we get the wrong angwthenullary
case the case in which the index sktis empty. In this section, we discuss an
alternative definition of the fiber product, one that getsdbeect answer in the
nullary case without treating that case specially. But #tigrnative definition is
more complicated. In the end, we choose to fix up the nullasg camply by
treating the case = ¢ as special.

Note that the nullary fiber product ov&is unique. When the index sétis
empty, there are no factor seAs and no factor maps$;: A; — S. So the nullary
fiber product oveSis some definite seé®, and some definite mam: Py — S.

What would happen if we tried to apply our original definitionthe nullary
case? We would first construct the nullary direct prodDgt That set is a single-
ton, its single element being the unique function whose doensaempty. Since
there are no constrainfs(a;) = fj(a;) to enforce, we would take the nullary fiber
productP, to be all of Dg. We would then get stuck trying to define the nullary
fiber-product magh,, there being no obvious way to choose one eleme&tim
which hy should map the single element .

The correct answer, it turns out, is to take the nullary fibedpct P, over S
to be simplyP, = S, while the associated mdp: P, — Sis the identity map
1: S— S That answer is correct because theSenapped td via the identity
map, acts as an identity element for the fiber-product ojmeraio see this, let
be a nonempty index set and suppose ¢iatnot an element off. Letting Ae be
another name fof and lettingf.: Ac — Sbe another name for the identity map
1: S— S, we claim that the augmented fiber product

[I<[f1A
ielUfe}
is essentially the same as the plain fiber product

[ILfIA.

iel
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Of course, the two sets are not identical. But, given any etarof either set,
we can produce the corresponding element of the other inlaatatay. Given
a pointa in the augmented fiber product, we construct the correspgnualiain
pointa by settinga; := & for all i in I, simply ignoring the valuey,. Given a
plain pointa, we construct the corresponding augmented point by seiting g
for all i in | and settingg], := f(a) for somei in |, where there is somieto
choose and whichwe choose doesn’t matter.

That argument shows whiyy = Siis the proper answer for the nullary fiber
product overS. It also indicates how our definition of the fiber product abbé
altered, if we wished, in order to get the correct answer énrthllary case. We
could simply augment all of our fiber products with one additil factor ofS.
That augmentation would convert arary product into a product of arity + 1,
after which nullary products would no longer arise.

Here is how that augmentation would work in detail. Let theebaetS,
the index set, the factor setg$A), the factor maps f;), and the direct product
D :=[];., A be as before. Consider the augmented direct probuet S x D.
We would define the fiber product to be the sulidef D consisting of those pairs
(s,a inwhich fi(a) = s, for alli in I. It follows from this thatf; (a;) = fj(q),
for alli andj in I. The fiber-product map: P — Sis then simply the projec-
tion h(s, a) := s. When! is nonempty, the plain and augmented fiber products
P and P are naturally isomorphic. Whehis empty, however, the augmented
construction shines by getting the correct answees Sandh = 1g., s.

The augmented definition gets the nullary case correctf pogvents us from
thinking of the fiber product as a subset of the direct prad&ct we shall stick
with the plain definition of Section 4.2, fixing up the nullacgse by treating
it specially. From now on, therefore, we exclude the nulleage unless it is
particularly mentioned.

4.4 An aside about category theory

In category theory, direct products and fiber products amosi the same notion:
Fiber products ovefs in a given category are simply direct products in the
new categoryCs whose objects aré-morphisms from somé-object toS. We
review those ideas here briefly, since the perspective egoay theory can be
enlightening [11]. But some readers might prefer to skip #action.

We first review how direct products are defined in a categbry-or each
in some index sel, let A; be an object of. We consider structures of the form
(P, (&)), whereP is an object of” ande : P — A is a morphism ot’, for each
i in|. Such astructuréP, (g)) is called adirect productof the objectg Aj) when
the following universal mapping property holds: Given anlyes such structure
(P’, (€)), there exist a uniqgue morphism1 P* — P that satisfie® o u = €,
for all i in 1. Direct products may not exist. When they do exist, howeser,
straightforward argument shows that they are unique, upitocue isomorphism;
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so it is generally safe to talk about them as if they were ugligdefined.

For example, consider the category whose objects are sétwlanse mor-
phisms are maps between sets. In that category, direct gidiways exist. We
could prove this by showing that the concrete direct prodetined in Section 4.1
satisfies the universal mapping property and hence quaifies) abstract direct
product — that is, as a direct product in the sense of catetheory.

Associativity works out more neatly in this abstract apptoaRecall that our
concrete direct-product operator on sets is only almostcative: The two sets
(A x B) x CandA x (B x C) are different, although we generally ignore the
distinction between them. In category theory, direct paslare defined from the
start only up to a unique isomorphism. So the extra mechanesded to ignore
the distinction betweefiA x B) x C andA x (B x C) comes built in.

What happens when the index dets empty? The resulting nullary direct
product exists just when the categdfyhas aterminal or universally attracting
object — an objectP such that, for all object$’ in C, there exists a unique
morphismu: P’ — P. If a categoryC has terminal objects, any two of them are
uniquely isomorphic, and the nullary direct product has teanmon structure. In
the category of sets and set-maps, a singleton set is a tdrotiject. So a nullary
direct product of sets is a singleton set.

Fiber products are simply direct products in a differenegaty. LetS be any
fixed object of the categoiy; we call Sthebase objectWe build a new category
Cs whose objects aré-morphisms from somé-object toS. If f: A — Sand
g: B — Sare two objects of the new categaty, a morphism fromf togin Cs
is simply a morphisnih: A — B in C that satisfiegyo h = f. A fiber product
over Sin the category is then just a direct product in the categ@ry

This perspective provides additional evidence about tineecbway to define
the nullary fiber product ove®. That nullary fiber product should be the terminal
object of the categorgs. It is easy to check that the identity morphism3:+ S
of the category is the terminal object of the categaty.

By the way, binary fiber products arise frequently in catggbeory, where
they are also calledullbacks

4.5 Specializing the indices to bé through n

In this monograph, we are restricting the index sets in otgadiproducts and
fiber products to be finite. Our goal is to orient the fiber pridwf oriented
manifolds, and orientation is a fundamentally finite-disienal concept. Hence,
the only products that we are going to need are those of finite & those in
which the index sel is finite.

Given that our index sets are always finite, it is convenientake, as our
standard index set for anary product, the particular sét, . . ., n}, consisting of
the firstn positive integers. This has several advantages.

One advantage is notational. When we have {1, ..., n}, we can write the
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direct produc{ [;_, A in asimpler way, ag\; x - - - x A,. Similarly, we can write
the fiber-product

set ns[fi]Ai:nsAi and map nsfi

iel iel iel

aSAl[fl] Xg:-- Xs[fn]An = A; Xg--+ X5 Ay andfl Xg+++ Xg fn.

For fiber products, taking = {1, ..., n} as our standard index set has an
additional advantage: It makes it easy to select a nonrexhrset of constraints.
Recall that the fiber produd@; xs- - - x5 A, is that subseP of the direct product
D := A; x --- x A, consisting of elementa that havef;(a) = fj(g), for
alli andj in 1. Oncen exceeds 2, these constraints are redundant. But when
I ={1,...,n}, we can focus on the adjacent constraifitgy) = fi,1(aj;1), for
i from 1ton — 1, which are nonredundant.

For these reasons, we henceforth tdke: {1, ..., n} as our standard index
set for am-ary product. (As discussed in Section 4.3, we are allownegiullary
casel = ¢ only when that case is being explicitly discussed. So wectlpyi
require thah > 1.)

One disadvantage of taking= {1, ..., n} is that the sefl, ..., n} has too
much structure: In addition to being a set of cardinalityt is also ordered. Worse
yet, we have already exploited that order. We exploited iemvive adopted the
notationsA; x - - - x A, andA; xs- - - xg A, as ways to write down the direct and
fiber products — notations in which the factor sets are odiéxan left to right.
We exploited it in another way when, for amary fiber product, we selected a
nonredundant set of constraints by focusing on the adjg=erg of factor maps.

Exploiting the total order on the set= {1, ..., n} is bad because it raises the
possibility that the resulting product operator might netdommutative — that
the product might depend, in some important way, on whiclend of the index
setl we choose. Indeed, we shall discuss a product operationciin8é.2, the
oriented direct product of oriented linear spaces, in withehordering ol does
matter. Until then, however, our only uses of the orderind ea {1, ..., n} will
be unimportant. For example, changing the ordering wouethgk which of the
constraintsf; (&) = fj(a;) we chose to focus on as the nonredundant ones; but
that change wouldn’t affect the resulting fiber product.

4.6 Fiber products of linear spaces

Suppose that the base setand all of the factor seté\; through A, are linear
spaces, say over the real numbers. So the direct prddluet A; x --- x A, isS
also a linear space; we shall denote an element of that preduas, ..., an),
using Greek letters for the elements of the factor spaceghwhe think of as
vectors. Suppose also that the factor mépsA; — S, fori from 1 ton, are all
linear. Since the constraints(«j) = fi 1(xjy1), fori from 1 ton — 1, are then
linear equations, the fiber produdt xs--- xs A, will be a linear subspace of
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the direct product; x - - - x A,. The fiber-product magp, xs- - - xs f, will also
be linear. So we can view the fiber product as an operatioreinvtirld of linear
spaces and linear maps (more precisely, in that category).

There is another way in which we can exploit linearity. Whaa lbase spaceé
has a linear structure, we can measure the extent to whidlwthadjacent factor
mapsf; and f;; fail to agree by forming the differencg, (1) — fi(«j), that
difference being a vector in the base sp&ce- a vector that we hope is zero.
If we take such a difference for eachfrom 1 ton — 1, we end up with a map
A Ay x - x Ay — S that we shall call thalifference map(Don’t confuse
S'-1, the Cartesian product af- 1 copies ofS, with S"~2, the(n—1)-dimensional
sphere.) That is, we define the difference napy

Aoy, ..., an) == (fa(a2) — fa(en), ..., falan) — faoa(anoa)).

Note that the fiber product subspatexs- - - x5 A, is precisely the kernel of the
difference map\; we haveA; xs--- xs A, = Ker(A).

4.7 Transversality

While the fiber product of linear spaces is always a lineacspds dimension
depends upon the way in which the factor maf3 interact. For example, if all
of the factor maps are identically zero, then each constrfait) = fi 1(oii1)
is satisfied trivially, so the fiber product coincides witle tirect product. We are
particularly interested in the opposite extreme: tif@sverse casethe case in
which the fiber product has the smallest possible dimension.

It is convenient to restrict ourselves to linear spaces wliimension is finite.
The notion of transversality can be extended to infiniteatisional spaces, but
doing so requires topological concepts, such as Banactespaw continuous
linear maps, that don'’t arise in the finite-dimensional caSace our eventual
goal is to study orientation and orientation is a purely érdimensional concept,
we henceforth restrict ourselves to finite-dimensionatepa

What will the finite dimension of the fiber produét xs--- xs A, then be?
Let's denote dingA;) by a and dim(S) by s; by convention, we use an upper-
case italic letter for a linear space, the matching lowesedéalic letter for its
dimension, and the corresponding Greek letter for an eleofen For the direct
productD = A; x --- x A,, we have dinfiD) = d = a; +--- + a,. We cut
out the fiber producP, inside of D, with the constraintd; («j) = fi1(@j 1), for
i from 1 ton — 1. Each of these constraints is an equality between elenoénts
S, and can hence remove at maeslegrees of freedom. The fiber product is as
small as possible just when those constraints are indepgndetly removing
(n—1)sdegrees of freedom and leavingdi®) = p:=a;+---+a,— (n—1)s.
Transversality is the property of the factor m&ps that makes those constraints
be independent.
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Definition 4-1 Let n be a positive integer, le$ and A; through A, be finite-
dimensional linear spaces, and ket A, — Sbe a linear map, for from 1 ton.
LetA: A; x --- x A, — S 1 be the difference map, defined by

Ay, ..., an) == (fala2) — fa(er), ..., falan) — fooi(an-a)).

The maps(fy, ..., f,) are calledtransversgust when the difference mag is
surjective. Note that this can happen only when@anx - - - x A,) > dim(S"™1),
thatis, whera; + - - - 4+ a, > (n — 1)s.

Consider a fiber produd® := Aq[ f1] xs--- xs[fa] Ay Of linear spaces. It
is precisely when the factor maps are transverse that thergiion of P is as
small as possible — in particular, that di®y) = a; + --- + a, — (n — 1)s.
To see why, recall thaP = Ker(A). By elementary linear algebra, we have
dim(P) = dim(Ker(A)) = dim(A; x --- x A,) —dim(Im(A)). And the mapA
is surjective just when dighm(A)) = dim(S"™ 1) = (n — 1)s.

By the way, it is often helpful to think of the minimum pos®ldimension of
the fiber producP as beings+ (a1 —S) + -+ -+ (&, — S).

Exercise 4-21n thg context of Definition 4-1, define treugmented difference
mapto be the map\: Sx A; x --- x A, — S given by

Ao, o, ... an) = (filer) — o, ..., falan) — o).
Show that the map is surjective just when is surjective, that is, just when the
maps(fy, ..., f,) are transverse. Note that this augmentation adds a new facto

spaceA, ;= Swhose factor magfy: Ag — Sis the identity map org, just as
we saw in Section 4.3 when studying nullary fiber productdeéd, this exercise
makes it clear that the proper way to extend Definition 4-1ht niullary case
n = 0 is to make the convention that the empty sequence of maEnsverse.

Exercise 4-31If the sequencéfy, ..., f,) of linear maps is transverse, show that
any subsequence, taken in any order, is also transversis.f¢llows easily from
the previous exercise.)

Exercise 4-4 Show that the linear mapd,, ..., f,) are always transverse when
all but one of them, say all buf, are surjective.

Answer: To showA surjective, it suffices to start with an arbitrary point
(01, ...,0q) Iin S and to construct a poirb, g, ..., an) IN Sx Ap x --- X A,
with A(a, Ay, ...,on) = (01,...,0,). We start by fixingxy arbitrarily and then
choosingo to arrange thafy(ax) — o = ok. Fori different fromk, we can then
exploit the surjectivity off; to find somey; with fi(«j) — 0 = 0.

Transversality is particularly simple in the binary caséneifference map
A Apx Ay — Sisthen given byA(ay, ap) := fo(ap) — f1(a1), SOA is surjective
just when the images of; and f,, together, span all 0 — that is, just when
Im(fy) +Im(f,) = S. Note that the mapef,, f,) will be transverse, in particular,
when either Inif;) = Sor Im(f,) = S, as we saw in Exercise 4-4.
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Exercise 4-5Let A, B, andSeach be théx, y) plane, let the factor map: A —
S be the projectionf (x, y) := (X, 0) on thex-axis, and lety: B — S be the
projectiong(x, y) = (0, y) on they-axis. Show that the mapé andg are
transverse, even though neither of them is surjective.

Answer: The image of is thex-axis, the image of is they-axis, and those
two subspaces, together, span the entire pfane

Exercise 4-6 Generalize the Invertible Factor Laws, 2-5 through 2-7mfrine
binary case to tha-ary case.

Answer: The Left and Right Invertible Laws generalize todrae theAll-but-
One Invertible Lawwhich says, fok from 1 ton, that

(4-7) sgn(uy) = sgn(fy) - - - sgr( fy_1) sgr( fiy1) - - - sgn(fy),

whereuy: A; xs--- xs Ay — A is the projection from the fiber product to the
k" factor space. That is, if all of the factor maps but kHeare invertible, then the
fiber product is transverse, th& projection maguy is invertible, and we should
orient the fiber product to make that equality hold.

When alln of the factor maps are invertible, we have the less genetahbre
elegantAll Invertible Law

(4-8) sgn(fy xs--- xs fn) = sgn(fy) - - - sgn( f).

This law, like the Both Invertible Law 2-7 from the binary easloesn’'t need to
mention any of the projection maps.

4.7.1 The associativity of transversality

Exercise 4-3 showed that the condition of transversaligpimmutative; it is also
associative, in the following sense. Suppose that we haweenall fiber product
whose factor maps may or may not be transverse. We can comrsinguting
that same fiber product in two steps: We first combine somesdédtors in an
inner fiber product and then combine that inner result withrdmaining factors

in an outer fiber product. Since the fiber-product operaseifiis associative, this
two-step process will get the same result as the one-stepalbfiber product. We
claim, as well, that the overall product is transverse jus¢mboth the inner and
outer products are transvers8y commutativity, we can assume that the factors
that get combined in the inner fiber product are an initiaksuibg of the factors.

Proposition 4-9 Let n be a positive integer, e and A, through A, be finite-
dimensional linear spaces, Igt. A, — S be a linear map, far from 1 ton, and
letk be an integer with < k < n. Let P denote the inner fiber product, the
productP = A; xs--- xs A Of the firstk factor spaces, and lat. P — S

1The phrase “inner product” here is simply an abbreviatiofirofer fiber product”; we are not
talking about the type of inner product that takes two vextord returns a scalar.
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be the associated fiber-product nrap= f; xs--- xg fx. The sequence of maps

(fq, ..., fy) associated with the overall fiber produtx s- - - X s A, IS transverse
just when
e the sequence of maps, ..., fx) associated with the inner fiber product

P = A; xs--- xg Ay IS transverse

e and the sequence of magis fy.1, ..., f,) associated with the outer fiber
productP xs A1 Xs--- Xs A, IS also transverse.

Proof Leta, := dim(Ay) for k from 1 ton and lets := dim(S). The overall
fiber productA; xs --- xs A, has its minimum possible dimension, which is
S+ (ag—S)+---+ (a, — S), just when the mapéfy, ..., f,) are transverse. On
the other hand, suppose that we compute that same produat gtéps. The inner
product has its minimum possible dimensi@Ri, ;= s+ (@ —S)+-- -+ (a—9),
just when the mapsf,, ..., fy) are transverse. And the outer product has its
minimum possible dimensios;(p—S)+(ax.1—S)+- - -+ (a,—S), just when the
maps(h, fc.1,..., fy) are transverse, whegehere denotes the dimension of the
inner fiber product. Substituting,, for p in this expression gives the minimum
possible overall dimension; so the overall product is tvarse just when both the
inner and outer products are transverse.

4.7.2 Transversality viewed geometrically

The algebraic notion of transversality that we have justngefiis closely related
to the geometric notion of transverse intersections. bt a linear space and
let A; through A, be subspaces & The subspaceé; through A, are said to
intersect transverselwhen the codimension of their intersection is the sum of
their codimensions:

(4-10) s—dim(AiN---NA)=G—a)+---+(S—ap).

For example, the three plangs= 0,y = 0, andz = 0 in (X, Yy, z)-space intersect
transversely; each plane has codimension 3 = 1, while their intersection,
which is just the origin, has codimension-30=3=1+ 1+ 1.

To relate this concept to fiber products, we view each sulespaas a factor
space by equipping it with the identity injectidn: A, — Sas its factor map. A
point («y, ..., a,) in the direct producD = A; x --- x A, then belongs to the
fiber productP just wheno; = --- = «,, S0 the fiber product is essentially the
intersection. This fiber product is transverse just when

dim(A; xs--- xs Ay) =dim(AiN---NA)=sS+@ -5 +---+ (@, —9),

which, by Equation 4-10, is just when the subspaces intetisetsversely.

Note that, by a standard convention, intersecting zeropades ofS gives us
back simplySitself. This is further evidence that we did the right thingem we
defined the nullary fiber product ov&ito beS.
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Now is a convenient time to point out that the transversalityan n-tuple
of maps(fy,..., fn) is a stronger condition than the transversality of all pairs
(fi, f;). Consider the three planes= 0,y = 0, andx = y in (X, y, z)-space.
Each plane has codimension 1, and each pair of planes ioteéraasversely in
a line, of codimension 2. But all three planes also interge¢he entire line
x =y = 0, so the three planes do not intersect transversely.

4.8 Fiber products of smooth manifolds

A smooth manifold looks everywhere locally like a linear spaso it is not hard
to extend the theory of fiber products from linear spaces wotimmanifolds.

A topological d-manifoldis a Hausdorff topological space in which every
point has a neighborhood homeomorphic to an open subsif oflf M is a
topologicald-manifold, a homeomorphisg: U — R from an open sét) € M
to the open sep(U) € RY is called aocal coordinate systerar chartonU. A
family of charts that cover the entire manifdltlis called amatlas

(A mathematical fine point: We are going along with most atghorequiring
that our topological manifolds be Hausdorff spaces. Butg @&} points out that
this assumption plays no role in the bulk of the argumentsliiimg manifolds.
Consider the real line with its origin doubled. Viewed aspadlogical space, this
space isly, but is not Hausdorff: Each of the two origins has a neighbodthat
does not contain the other; but we can’t find neighborhoodf®ftwo origins
that are disjoint. Lang considers this space to be a smoaothriifold, while most
authors do not. This monograph supports Lang’s positiothersense that none
of our arguments that involve manifolds require the Haugwoperty. Thus, if
you so choose, you are free to follow Lang in allowing non-stiarff manifolds.)

A smooth d-manifolds a topologicald-manifold together with an atlas in
which, for every pair of chartg: U — RY andy: V — RY, the composite
homeomorphismy o ¢~ 1: (U N V) — (U N V), called thechange of coor-
dinates mapon the intersection of the two charts, is infinitely diffetieble. If
M is a smoothd-manifold andN is a smoothe-manifold, then a continuous map
f: M — N is calledsmoothat the poinm in M when, for some chagi: U — R¢
on a neighborhood of min M and for some chant: V — RR® on a neighbor-
hoodV of f(m) in N, the composite map

Yofop™ipUNFHV)) — (V)

is infinitely differentiable, as a map from an open seRfto R®. This condition
doesn’t depend upon which chagtsand ¢ we choose. The maf M — N
is smoothwhenf is smooth at all pointsn in M. (We are being lazy in taking
“smooth” to mean infinitely differentiable, that i€>. For our purposesC?
would probably be smooth enough; but it is convenient notaetto keep track
of the number of continuous derivatives.)
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So we consider smooth manifolds and smooth maps betweenwWieahabout
products in this category? Direct products always exist;filner products are
more subtle. If we don’t impose any restrictions, it mighppan, for smooth
manifoldsA, B, andS and for smooth mapé: A — Sandg: B — S, that
the local dimension of the set-theoretic fiber prodfick s B varies from point
to point, as a consequence of the local behaviofsasfdg. Indeed, we saw an
example of essentially this phenomenon in Figure 1.6, wtieréocal dimension
of a non-transverse fiber product is sometimes 1 and somef2m#é/e are going
to rule out this bad phenomenon in the standard way by reqyigt every point
on the set-theoretic fiber product, that the linear apprations to the factor maps
f andg be transverse. This forces the local dimension of the fibedymt to be
everywhere minimal — and hence to be everywhere the same.

We recall some notation. L& andN be smooth manifolds, ldt M — N
be a smooth map, and let be a point inM. We denote byl,,M the tangent
space to the manifol at the pointm. And we denote byi,f: TonM — Tym)N
the differential off at m, which is the linear map from the tangent spag® to
the tangent spac& N that approximate§to first order neam. The notations
(df)m andf’'(m) are also used for the differenti@l,f.

Definition 4-11 Letn be a positive integer and I8&tandA; throughA,, be finite-
dimensional smooth manifolds. Foifrom 1 ton, letf;: A; — S be a smooth
map. The map#, ..., f,) are calledransversavhen, for every poinsin Sand

for everyn-tuple of points(a, ..., a,) with g in A; andf;(a) = sfori from 1

to n, the differentialsT, fi : T, Ai — TS, viewed as a sequence of linear maps
(Ta,f1, ..., To,fn), are transverse.

We shall often abbreviate the linear-space fiber produdt riyaresents the
local behavior of a smooth-manifold fiber product by usiradidt letters, rather
than boldface. That is, we shall abbreviate the tangentespad; as A;, the
tangent spacé&S as S, and the linear map,f; as fi: AL — S, leading to the
linear-space fiber produé[ f1] xs--- xs[ fn] An.

When the smooth-manifold fiber produtt[f,] xs- - - xs[f,]An is transverse,
the linear-space fiber produgy[ f;] xs--- xs [ f,] Ay that represents the local
behavior at any point is always transverse. It follows thatlbcal dimension of
the fiber producf; xs--- xsA,, at every point on it, is the minimum possible,
that minimum dimension bein@, + - - - + a,) — (N — 1)s. As a result, the fiber
productA; xs--- xs A, is again a smooth manifold.

Proposition 4-12 With the same notations as in Definition 4-11, suppose tfeat th
smooth factor mapéf,, ..., f,) are in fact transverse. The set-theoretic fiber
productP = A4[fi] xs--- xs[fn]An is then a smooth manifold, of dimension
(&g + -+ a,) — (n—1)s. Also, the fiber-product malg xs--- xsfy: P—> S
and the projection mapg: P — A, fori from 1 ton, are smooth maps.
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Proof This is a standard result, for which we appeal to standang,texuch as
Lang [10] — but beware that the proof given in Lang consistthefsingle word
“Obvious.” O

Beware also: It can easily happen that the fiber proAucts- - - xsA, is the
empty set, that is, that there are no pomits S andn-tuples of pointgay, .. ., a,)
with g in A; andfi(g) = s, fori from 1 ton. In this case, the mag$,, ..., f,)
are transverse vacuously. Indeed, wlaer- - - - + a, < (n — 1)s, the only way
that the mapsf,, ..., f,) can be transverse is vacuously, since we know that we
must havea; + --- + a, > (n — 1)s in order for any linear-space fiber product
with those dimensions to be transverse.

Suppose that the mayk, ..., f,) are transverse vacuously. Proposition 4-12
then tells us that the fiber produBf xs--- xs A, = @ is a smooth manifold
and that it has dimensioth := (a; + --- + a,) — (0 — 1)s. That's fine when
d > 0; everyone agrees that the empty set is a perfectly valisb#mmoanifold of
any nonnegative dimensiah But what about negative dimensions? To avoid a
special case in Proposition 4-12, we make the conventidrtileaempty set is a
smooth manifold of dimensiod also wherd < 0. Of course, there are no linear
spaces of negative dimension; but an empty manifold hasnmgetd spaces, so
this convention is defensible.

Proposition 4-12 tells us that fiber products do exist in ditegory of smooth
manifolds, as long as we restrict ourselves to the tranevease. Much of the
theory then carries over from linear spaces to smooth miasifé-or example, the
associativity of the fiber-product operator and the asswtyaof the condition of
transversality both carry over from linear spaces to smowhifolds.

Geometers distinguish certain sequences of submanifdlds .., A,) of a
smooth manifold asintersecting transverselyl he relationship of this geometric
notion to the map-based notion of transversality in Defni4-11 is the same for
manifolds as for linear spaces: We let the factor maps bediwatity injections
fi: Aj — S. Two smooth surfaces in a smooth 3-fold intersect transhejast
when, at each point of intersection, the two tangent plamesad coincide. A
curve and a surface intersect transversely in a 3-fold juenyat each point of
intersection, the tangent line to the curve does not lie entéimgent plane to the
surface. Two curves can intersect transversely in a 3-folg by being skew —
that is, by having no points of intersection.

If A andB are two smooth curves that lie skew in a smooth 3-f6ldhen
the intersectiorA xs B is an example of a transverse fiber product of negative
dimension; we have ditd xsB) = dim(A)+dim(B) —dim(S) = 1+1-3 = —1.
There is no contradiction here, because the intersegétigg B is empty.

Exercise 4-13While we shan’t prove Proposition 4-12 in this monograph, we
should know how to construct charts on the fiber-product folhiFor notational
simplicity, let's consider a binary fiber produ&{f] xs[g]B, which we assume
transverse. Lep = (a, b) be a point in the fiber product, so thida) = g(b)
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is some poinsin S. There is some neighborhood of the pannh the manifold
A that is homeomorphic to an open subsefR8f Since we are interested only
in what happens near, let's assume for simplicity that the manifofd actually
coincides with an open subset of the linear spaégand let’s also translate, if
necessary, to get = 0. Similarly, let's assume th& is a neighborhood of the
origin b = 0 in R® and thatS is a neighborhood of the origia = 0 in RS.
Construct a chart on a neighborhood of the ppiat (O, 0) in the fiber product.
Sketch: Given our simplifying assumptions, the fiber pradif¢] xs[g]B is
a submanifold of the linear spad®® x R = R, The tangent space to that
submanifold at the origin is the linear-space fiber produgs, (A[f] xs[g]B) =
R3[Tof] xwrs [Tog] R°, which has dimensioa + b — s by transversality. LeC
be some complement of that tangent spacRdh®, and note that digC) = s.
Convince yourself that the linear-space quotient map RSP to R2+°/C, when
restricted to the fiber produé[f] xs[g]B, will be a chart on some sufficiently
small neighborhood of the origin in the fiber product.
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Chapter 5

Orientation

Orientation is the property that, for a curve, distingussfeeward from backward,;
for a surface, clockwise from counterclockwise; and for fl8; right-handed
from left-handed. We first review the concept of orientingelr spaces and then
move on to orienting smooth manifolds.

5.1 The sign of an ordered basis

Orienting finite-dimensional linear spaces over the reahbbersR is a standard
topic; but we have to be careful here to make sure that evexgesg- including a
space of dimension zero — ends up with two possible orientati

If M is areal linear space whose dimension= dim(M) is finite, anorien-
tation of M is a rule that assigns a sign to each ordered bashg of one of the
two globally consistent ways. We can encode an orientatidvi as a pairb, 3)
consisting of some ordered babis= (u1, ..., um) for M and a single biB, say
encoded as an element of the setl, —1}. We interpret the pai¢b, g) as declar-
ing that the ordered basis = (u4, ..., um) has the sigr8. Once one basis for
M has been assigned a sign, every other basis inherits a usiguéy the con-
sistency constraint: The basidas the same sign &sjust when the matrix that
transforms fronb to c — or back again, it doesn’t matter — has positive determi-
nant. Anoriented linear spaces a linear space together with a chosen orientation.
If M is an oriented linear space, we us#! to denote the same underlying linear
space, but equipped with the opposite orientation; so & lagiositive for— M
just when it is negative foM.

If b is an ordered sequence of linearly independent vectorsrirte dmear
space, let’'s writgb) to denote the span of those vectors, oriented so as to make
the sequenchb a positive basis for the spad¢k). So, ifb is a basis for the entire
oriented linear spachkl, we have eithetb) = M or (b) = —M, according as the
basisb is positive or negative.

A linear spaceM of dimension zero is special in that it has only one basis: the
empty sequence of vectors. Such a spltstill has two possible orientations,

67
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under our definition, since that unique basis can be eithgitipe or negative, so
we have eitheM = () or M = —(). Be warned that people sometimes talk,
informally, as if orienting a linear space meant specifyangpsitive basis. But, if
that were the case, then a zero-dimensional space woulddmy@®ne possible
orientation. The existence of two possible orientatiomsswut to be essential in
what follows, since a fiber produd[ f] xs[g]B can be zero-dimensional even
when the input spacea, B, and S all have positive dimension. Reversing the
orientation on any one oA, B, or S (while leaving the map$ andg unchanged)
should reverse the induced orientation on the fiber produgt B; to make this
possible, even a zero-dimensional space must have twdy®ssientations.

While a zero-dimensional space is just like a space of pesitimension in
having two possible orientations, there is still somethspgcial about a zero-
dimensional space: Its two orientations are intrinsicaligtinguishable. Any
oriented linear space of positive dimension has both pesiiases and negative
bases. Indeed, if we negate any vector in any positive lthgisesult is a negative
basis, and vice versa, so there are “just as many” positigesas negative ones.
It doesn’t make sense to ask whether such a space is itsdivplysoriented or
negatively oriented, in any intrinsic sense. But&tbe an oriented linear space
with dim(M) = 0. The spacé/ has exactly one basis: the empty sequence. And
that basis is either positive or negative. There are no veatdhat basis to negate,
to convert it from one sign to the other. We have eithke= () or M = —(), and
we can tell which of those two cases pertains. Given an @atklnear spacé/
of dimension zero, we’ll say tha#l is positively orientedbr negatively oriented
accordingasv = () orM = —().

Let’s adopt the symba} as a prettier way to writ@, the oriented linear span
of the empty sequence. So the spdcés positively oriented, while the space
—<{ is negatively oriented. (More precisely, the symbol’“denotes the zero-
dimensional subspace of the current linear space, whetectimiaining space
must be determined from context. This is similar to the waat the symbol “0”
is used to denote the zero element of the current linear spdwre that space
is determined from context. When confusion might arise, halsvrite $y to
denote the zero-dimensional subspace of the linear ¢pgce

Exercise 5-1 True or false: Any two oriented linear spaces of the same isioa
are isomorphic.

Answer: True when their common dimension is positive; batdpacesy and
—<{ are not isomorphic. There is precisely one bijection betwteem, the zero
map; but that map does not preserve orientation. This is epeca of what it
means for the orientation of a zero-dimensional orientetspo be an intrinsic
aspect of that space.

Exercise 5-2 (For people who know about alternating tensors) Mebe a real
linear space of finite dimensian := dim(M). Them' exterior powerof M is
the space/\"M of all alternating,m-contravariant tensors oM, and we have



5.2. DIRECT SUMS AND DIRECT PRODUCTS 69

dim(A\™M) = (1) = 1. One simple example of such a tensogisA ... A fim,
where (i1, ..., um) is a basis forM. Show that orientingM is equivalent to
distinguishing one of the two rays leaving the origin/ji'"M as the positive ray.
In the special case whei is zero-dimensional, note th#™M = R; and thus,
in this framework also, the two possible orientations of @z#imensional space
are intrinsically distinguishable.

Comment: People integrating over manifolds deal with ateelapace, the
space/\"(M*) of all alternating,m-covariant tensors oM. If (dus, ..., dum)
is the basis for the dual spadé* that is dual to the basigt, ..., um) for M,
thendu, A ... A dup, is a simple example of an alternating;covariant tensor,
sometimes called solume form Orienting a linear spac®! is equivalent to
orienting its dualM*; but we won't have any occasion to exploit dual spaces in
this monograph.

If f: K — L isalinear bijection between two oriented linear spa€eand
L, then the orientations o andL are related byf. We denote byf (K) the
spacel, but with the orientation carried forward frok via f. That is, we have
f(K) = L or f(K) = —L, according as the bijectioh: K — L preserves or
reverses orientation. So we always hdu&) = sgn(f)L.

More generally, whenevef : K — L is injective, we usef (K) to denote
Im( f) with the orientation carried forward froid. Note that every injective map
f preserves orientation whehis interpreted as a bijection frol to f (K).

Still more generally, iff : K — L is any linear map, the expressidriiU)
makes sense as an oriented linear subspatevdienevelJ is an oriented sub-
space ofK with U N Ker(f) = {0}. We usef (U) to denote the image of the
subspac& under f, with the orientation carried forward frotu.

Exercise 5-31If M is an oriented linear space of dimensionlet—: M — M
denote the negating map, the map that takes each vedatoM to its negative:
=(u) := —u. Show that-(M) = (—1)™M; that is, negating alin coordinates of
a space reverses the orientation of that space precisely mhe odd. It follows
that we must distinguish carefully betweeiM) and— M.

5.2 Direct sums and direct products

Suppose thakK andL are linearly independent subspaces of some larger space.
Given a signed, ordered basi&., ..., xx), 8) for K and one((Aq, ..., A), y)

for L, the obvious way to orient the direct sutn® L is with the signed, ordered
basis

((Kl, vy Kk, )\1, ey )\|), ﬂ]/)

That is, we concatenate the two bases with the basis going first, and we
multiply the two signs. This rule combines the given ori¢iotas onK and L
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to produce an orientation on the direct skim® L, an orientation that does not
depend upon which signed, ordered bases we choos€ &dL. We shall refer
to this rule for orienting a direct sum of oriented subspaaesheConcatenate
Rule Roughly speaking, we form a positive basis #r® L by concatenating
positive bases foK and for L, in that order — the only roughness about that
recipe being that a negatively oriented, zero-dimensispate doesn’t have any
positive bases.

The Concatenate Rule behaves well with respect to reveosiagtation: IfK
andL are linearly independent, oriented subspaces of some Ispgee, we have

(—KyeL=Ka@ (L) =—(KaL).
But the order of the direct summands is important; we have
KeoL=(D"LaK).

Thus, which basis goes fird or L, in building an oriented basis for the direct
sumK &L, makes a difference precisely when béttandL are odd-dimensional.

Suppose now thak and L are any two oriented spaces, not subspaces of
some common, larger space. We shall use the ConcatenateaRal¢o orient
the direct producK x L in the obvious way. That is, we decompose the direct
productK x L as the direct suniK x L = (K, 0) & (0, L) of the K-axis, the
set(K, 0) := {(x, 0) | « € K}, and the analogous-axis, and we then apply the
Concatenate Rule for direct sums.

Warning: This is the first situation that we have come acrimsspmputing
either direct products or fiber products, where the ordeheffactors is critical.
Given two linear spacek; and K,, we have so far been thinking of the direct
productsK; x K, andK, x K; as two ways of viewing the same space: the space
of all functionsk defined on the index sét, 2} for which«, lies in K; andk; lies
in K,. That is, we have been exploiting the ordering on the indéxis} only
in unimportant ways, such as deciding which factor to witthe left of the «”.

But the Concatenate Rule exploits that ordering in a cliticay, to determine
which basis goes first. If we use the swapping nfapr) — (X, «) to identify
K x L with L x K, we have, as oriented spaces:

K x L=(=D"(L x K).

Thus, when taking direct products of odd-dimensional dedrinear spaces, the
order of the factors is critical.

Exercise 5-4 Let & andn be unit vectors in the directions of the positivandy
axes, so that the linear spage n) is the(x, y)-plane with its standard orientation.
Mathematicians generally draw the plaigen) so that the 90-degree rotation that
takest to i is counterclockwise. Adopting both that convention andG@beacate-
nate Rule, consider Figures 1.7 and 1.11. Which of thentilitess the state space
A x B and which illustrate® x A= —(A x B)?

Answer: Figure 1.7 illustrate8 x B.
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5.3 Quotient spaces

Let L be a linear subspace of a linear spAéeand consider the quotient space
M/L. Given any basis fot., we can extend that basis into a basis kbr And

the vectors in that extension — more properly, their eqeiveé classes modulo

L — constitute a basis for the quotient spdd¢L. If we start with a positive
basis forL and we extend it so as to form a positive basisNbrwe can orient

the quotient spac# /L by taking the extending vectors, in that same order, as a
positive basis foiM /L. This is roughly the same as using the Concatenate Rule
on the direct produdt x (M/L) (which is isomorphic taM, but not canonically).
Unfortunately, it would be equally reasonable to concateirethe other order, as

in the direct productM/L) x L, putting the extending vectors first. There is no
compelling reason to prefer one order over the other.

The same need for a choice arises if we deal with complemethish are
sometimes more convenient than quotient spaces. Noterikatiog the quotient
spaceM/L is equivalent to orienting any (and hence every) compler@eot L
in M. Indeed, if we extend a basis farinto a basis foiM, the linear span of the
extending vectors will be a compleme@tof L in M. Thus, instead of relating
the orientations oM, L, andM/L, we can relate the orientations &M, L, and
C, using one of the direct sunid = C @ L or M = L & C. But we still have to
choose one of those two.

Returning from complements to quotient spaces, note thlatutifortunate
need to choose betweéNl /L) x L andL x (M/L) arises only wheh. andM /L
might both be odd-dimensional. Suppose, for example,lthat+M. The quo-
tient spaceM/L is then zero-dimensional. Since the integer O is definitene
the order of the two factors does not matter in this case; tieatations orL and
on M determine the orientation on the zero-dimensional sp&agce uniquely. In
particular, we haveM /L = ¢ whenL = M, and we haveM/L = —{ when
L =-—M.

It is sometimes convenient to use the two linear spgcaad—<», rather than
the two integers 1 and 1, to encode the two possible signs of a bijection. If the
map f: K — L is a linear bijection, we can then denote €fgnsimply as the
guotient spacd (K)/L.

Exercise 5-5Let f : K — L be any linear map and |€; andC, be two oriented
complements of Kerf) in K. Fixing arbitrary orientations oK, Ker(f), and
Im(f), we have Keff) ®C; = K and f (C;) = + Im(f), and similarly forC,,
though possibly with different signs. Show thier(f) & C,)/(Ker(f) & Cy) =
f(Cy)/f(Cy); that is, either both quotients a#e or both are—<).

Hint: Let gq: K — K/Ker(f) be the quotient map. We hawgC,) =
+(K/Ker(f)), and similarly forC,. Show that both of the quotients above are
equal toq(Cy)/q(Cy).



72 CHAPTER 5. ORIENTATION

5.4 Matrices of maps

We are going to be dealing with direct products of linear sgaend with linear
maps that have such direct products as their domains or caidem In doing
computations with such a map, it can be helpful to represerst & matrix whose
entries are themselves maps, rather than scalars. Indeethdory of matrices
can be generalized even further by letting the matrix entoe morphisms from
any additive category [12]. But linear maps are general ghdor us. Let’s settle
on a consistent set of conventions for that case.

Suppose tha#, B, K, andL are linear spaces. Lefx._, be some linear
map fx.a: A — K, and similarly for f_ _a, fx.g, and f__g. (We write these
subscripts in the order “codoma# domain” rather than “domair> codomain”
because, in this monograph, we are writing our maps and hegirices as prefix
operators.) We can combine these maps in various ways.

e The operation of direct product is the most general way tolioentwo
maps, and it does not require any special properties of tips tmeing com-
bined. For example, the direct produgt_ x f__g is the linear map from
A x BtoK x L given by

(fkea x fLep)(a, B) i= (fkeal@), fLos(B)).

Note that this same combining operation is often descrisetldirect sum.
If AandB are linearly independent subspaces of some larger domade sp

while K andL are linearly independent subspaces of some larger codomain
space, then the mafx.a x f_.g can also be described as the direct sum

fkeca® fL.g: A®B—- Ko L.

e Given two linear maps defined on the same domain, we can centisém
in a tighter way by sharing the argument. For example, the rveps
fkca and f__a share the domai\; we can combine them to get the map
(fK<—A7 f|_<_A): A— K xL given by

(fkens fLea)(@) == (fkeala), froa(a)).

e Given two linear maps that share the same codomain, we cambigem
them in a tighter way by adding the results. For example, walsoe
the mapsfx.a and fx._g, which share the codomail, to get the map
fkead fkep: Ax B — K given by

(fken# fke)(a, B) i= fxeala) + ks (B).

The exotic symbol #” warns that this binary operator is something fancier

than simple addition.
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Suppose that we start off with four maps_a, fkg, fLea, andf _g. We can
assemble those four into a single mbp Ax B — K x L by putting the latter two
combining operations together in several different ways: d&h either seb =

(fken, fLen) # (fkep, fLep) orwe canse® := (fxoa# fxep, fLeadF fios).
Either way, we end up with the same map

(e, B) = (frkeal@) + fkea(B), freal@) + fLes(B)).

Perhaps the clearest way to write this maps as a 2-by-2 matrix. Adopting
the conventions for matrices in which matrices are prefixaijpes, we write the
application® («, ) = (x, A) as

fkea fK<—B) ay (K
fLea fues /) \B A
Note that, under these conventions, the maps with the samaiddorm a column

of the matrix, while the maps with the same codomain form a dowparticular,
using [g] to denote the matrix of the linear mgpwe have

(5-6) (heen fienl = (L),
while
(5-7) [fxen# fucs]l = ([Tkeal [fresl).

Equation 5-6 combines two maps with the same domain by gpsterr matrices
together, one above the other. Equation 5-7 combines twes wéh the same
codomain by pasting their matrices together, side by side.

Exercise 5-8 How does the direct-product operator combine matrices? iha
what is the analog of Equations 5-6 and 5-7 for the nigpa x f_.g?
Answer: The direct-product operator assembles blocks dbevdiagonal:

[fK<—A X fL<—B] = ([ fKO(_A] [fKO<—B]>

5.5 Elementary operations on matrices of maps

Suppose that we are dealing with a linear map whose domaiic@haimain are
direct products of smaller spaces. We just adopted coruenfor representing
such a map as a matrix whose entries are themselves maps. dargtage of
this representation is that we can perform elementary rahcafumn operations
on the resulting matrix; for example, we can add a multipl@a@§ row to any
other row without affecting the overall determinant. Thagust what happens in
standard linear algebra, where the entries in the matri@esaalars. When the
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matrix elements are maps, however, things are more suirite, e composition
operator on functions is not commutative. Thus, when we tiplyl’ the maps in
one row by a constant map we have to compose lyon the proper side — as
it turns out, for a row operation, we compose witbn the left. We here review
the theory of elementary row and column operations to seeihextends to the
noncommutative case.

To see the general pattern, it suffices to consider a linegrdnaA x B —
K x L whose matrix representation

fK<—A fK<—B)
P] =
[ ] (fL<—A fL<—B
is 2-by-2. We first consider performing an elementary colwparation on the

matrix [®], say adding some multiple of the second column to the firkiroa.
To achieve that goal, we introduce the mip A x B — A x B whose matrix is

O ]

Og-a lges

The lower-left entry here is an arbitrary linear function. o: A — B, which is
going to play the role of the arbitrary scalar by which we npijtin a standard
column operation. Performing the column operation invelkeplacing the matrix
[®@] with the matrix product$][ V] = [® o V], as follows:

f(— f<— 1(— O<— f<—+f<— <« f<—
[q)][qj]:(KA KB)(AA AB)Z(KA K<B IBcA KB>.

fLea fLes Og-a lgcs fLea+ fLesOeea fLes

To move from the matrix¢] to [®][ V], we compose the second column on the
right by the functiongg._, and add the result to the first column. That process
constitutes arelementary column operatiorNote that the matrix\J] is lower-
triangular with 1's on the diagonal, no matter what basesheo®se for the spaces
AandB. Hence, we have dgW]) = 1, from which it follows that def ®][ V]) =
det([®]). Thus, performing an elementary column operation does ffettahe
determinant.

Dually, we can also perforralementary row operationsn a matrix without
affecting its determinant: WWe compose some row on the lefamyappropriate
function and add the result to some other row. For exampteariy linear map
h..k: K — L, we can transform] like this:

1K<—K OK<—L) fK<—A fK<—B — ( fK<—A fK<—B
hrek Lo fLea  fLes hrek fuca+ fLea hiok fkes + fLes/
These elementary row and column operations will be one otaals when
we need to prove things about bijections between spacearhadirect products.
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5.6 Orienting a smooth manifold

Roughly speaking, we orient a smooth manifold by orientiagheof its tangent
spaces, with the proviso that the orientations on the targpates must be chosen
in a locally consistent manner. But there are some suldldfiest, there are some
manifolds that simply cannot be oriented; their global getyndoes not permit
the required local consistency to hold everywhere. Secfmmdhose manifolds
that can be oriented, the number of possible orientatiopertt#s upon the number
of connected components: An orientable manifold iittonnected components
has precisely '2possible orientations.

In more detail, leM be a smooth manifold, of dimensiom At each poinim
in M, the tangent spack,M is a linearm-space. Suppose that we choose one of
its two possible orientations, for each pointin M, in some arbitrary way. Let’s
refer to the result as jpseudo-orientationf the manifoldM.

In order for a pseudo-orientation of a maniféitdto qualify as an orientation,
it must be locally consistent; what does that mean? Conaidbarty: U — R™
on some open subsket of M. At each pointm in the domainJ of the chartp,
we can use the tangents to timecoordinate axes ak™, in numeric order, to get a
reference orientation on the tangent spgghl. We say that a pseudo-orientation
of M is consistenwith the chartp: U — R™ when, for all pointsm in U, the
pseudo-orientation orients the tangent spagé in agreement with the reference
orientation provided by. A pseudo-orientation df1 is locally consistent at a
pointm in M when there is some chart on some neighborhoaa @fith which
the pseudo-orientation is consistent. Finally, we say ahagéeudo-orientation of
M islocally consistentvhen it is locally consistent at every pomtin M.

There are manifolds, calledlon-orientable on which this local consistency
simply cannot be achieved. The Mobius strip and the Kleitild@re simple
examples of non-orientable 2-manifolds. Fortunately,dinect products and the
fiber products of orientable manifolds are always oriergaide shall prove that
result for direct products in a moment and for fiber productSection 7.3. So,
if we start with manifolds that are orientable and we build/meanifolds only by
taking direct and fiber products, the problem of non-oribilityt never arises.

Each connected component of an orientable manifold isf ils&ntable and
has precisely 2 possible orientations. A manifold viitbonnected components,
thus, has a total of*2possible orientations. The cake= 0 is worth noting.
Since 2 = 1, an empty manifold has only one possible orientation. $mnting
an empty manifold is trivial; there are no choices involvieecause there are no
tangent spaces to orient.

5.7 Orienting direct products of manifolds

We saw, in Section 5.2, that the Concatenate Rule gives usyaomarient the
direct products of oriented linear spaces. By using the @@mate Rule as a
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linear-space subroutine, independently at each point, ameget an analogous
rule for orienting the direct products of oriented manifold

Consider some direct produbt = A; x --- x A, of oriented manifolds,
and suppose that the factor manifoldls throughA, have been given to us in a
specified order. Standard theory tells us that, at each,pbmttangent space to
the direct product is canonically isomorphic to the diremduct of the tangent
spaces; that is, for any poidt= (a,, ..., ay) in D, we have

TaD = (Ty, A1) X -+ x (Ty,Ap).

So, at each poind in D, we can produce a basis for the tangent spag2 by
concatenating, in the specified order, positive bases @fattor tangent spaces
Ts, A throughT, A,. The Concatenate Rule for Manifoldsrients the tangent
spacelyD so that a basis constructed in this way is positive.

Why does this rule give an orientation of the manifbldand not just a pseudo-
orientation? That is, why is the Concatenate Rule locallystzient, say at the
pointd = (a, ..., a,)? For each from 1 ton, by the local consistency in the
factor manifoldA;, we can find a charg;: Ui — R%* on some neighborhood
U; of & with which the given orientation oA, is consistent. The direct product
U; x - - - x U, is then an open neighborhood of the painh D, and we can define
acharty : Uy x - - - x U, — RY on that neighborhood by concatenating sequences
of coordinates, setting

Y@, ..., a) = (pi@), ..., ¢n(@)).

The pseudo-orientation specified by the Concatenate Rulenisistent with this

charty over the entire neighborhodd; x --- x U, of d and is hence locally
consistent. Thus, the Concatenate Rule does indeed dneulirect products of
oriented manifolds. It follows that such direct products always orientable, as
we claimed in Section 5.6.



Chapter 6
Stability

In this monograph, we are going to develop a compelling rateofienting the
transverse fiber products of oriented linear spaces. Giueh a rule for linear
spaces, we then intend to produce an analogous rule for ahdsiby applying
our linear-space rule, as a subroutine, to each tangené spaependently. That
approach is an obvious one, and the side condition of trasahty is no obstacle.
But we must require a certain continuity property of our éinspace rule, lest
we end up with pseudo-orientations of some fiber product folasi that are not
locally consistent. Thinking back to Alice and Bob, the Ghgdlice Rule in
Figure 1.8 gives an example of what could go wrong were owalirspace rule
to lack the required continuity. In this chapter, we define aquired continuity
property — which we christen “stability”.

How does this subroutine stuff work, in detail? [®andA; throughA, be
smooth, oriented manifolds. Suppose thatA; — Sis a smooth map, for
from 1 ton, and that the mapé, ..., f,) are transverse. By Proposition 4-12,
the fiber producP := A; xs--- xs A, is again a smooth manifold. Let’s view
that fiber producP as a subset — actually, a submanifold — of the direct product
A; x---x Ay, andletp = (ay, ..., a, be a point inP. So there exists a point
sin Swith fi(a) = s, fori from 1 ton. By standard theory once again, the
tangent space to the fiber product is naturally isomorphitédfiber product of
the tangent spaces; that is, we have

ToP = (T, AD[Tayfi] X1+ X5 [T, Tl (Ta, An).

We shall often abbreviate this &= A[ fi] xs--- xs[ f,] An. We can orient the
tangent spacP on the left by using our assumed linear-space rule, as astiteo

to orient the fiber produch; xs--- xs A, on the right. The linear spacées,
through A, and S come to us oriented, because they are tangent spaces to the
oriented manifoldsA; throughA, andS. Furthermore, from Definition 4-11,
what it means for the smooth maffg) to be transverse is that their differentials
(f;) are transverse linear maps at every ppiget (ay, ..., a,) in the fiber product

P. So we are in fine shape to invoke our subroutine, that is,iembthe tangent
spaceP = T,P as a transverse fiber product of oriented linear spaces.

77
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But what about local consistency? As the pgint= (ai, ..., a, moves
around in the fiber produd®, the orientations on the varying tangent spaes
and A; throughA,, will be locally consistent. Also, the factor map§) will vary
continuously and will remain transverse. Does this enduaé the orientations
that we assign to the tangent spaées- A f1] xs--- xs[ fn] A, by repeatedly
calling our linear-space subroutine will also be locallysistent?

Fiber products of smooth manifolds are subtle to think apsiace so many
things vary simultaneously. As the poipt= (ay, ..., a,) varies over the fiber
productP = A; xs--- xs Ap, the tangent space; := T, A; andS = TS
vary, along with the factor map§: A, — S. It would be simpler if the linear
spaces involved stayed fixed and only the maps relating Sesees varied — for
example, if there were a single, fixed linear spégerather than separate linear
spaces associated with each of the pomtsr A;. We show in Section 6.3 that
we can convert to that simpler situation by restricting tb@pp to move only in
a small region, a region small enough so that the pmimémains within a local
coordinate system on the manifddg, fori from 1 ton, while the pointsremains
within a local coordinate system on the manif@dIn Sections 6.1 and 6.2, we
study the simpler situation in which the spaces stay fixed.

Remark: There are well-developed mathematical technifpredealing with
all of the tangent spaces to a smooth manifold at once, witiaiting ourselves
to a portion of the manifold that has a local coordinate syst&ll of the tangent
spaces together form thi@ngent bundlef the manifold. Tangent bundles are an
important example ofector bundleswhich, in turn, are an important example
of fiber bundles— the area of mathematics where the name “fiber product” came
from. But we can do what we need to do in this monograph workiaglly,
without recourse to tangent bundles.

6.1 Varying only the factor maps

In this section and the next, we take the linear spagethrough A, andSto be
fixed, and we allow only the factor magds: Ai — Sto vary. What does the
fiber-product operator itself correspond to, in this simgieuation?

Definition 6-1 If A and B are linear spaces, let LiA, B) denote the set of all
linear maps fromA to B. Each such linear map corresponds to a matrix \&ith
columns and rows, and we equip the space [k B) with the topology ofR?".

Definition 6-2 If A;throughA, andSare linear spaces, let Traifs, ..., A,; S
denote that subset of the direct product(dg, S) x --- x Lin(A,, S) consisting

of n-tuples of maps fi, ..., f,) that are transverse.
Given anyn-tuple of mapg fq, ..., f) inTrangAq, ..., Ay S), we can form
the fiber product

P(fy, ..., fn) i= Aq[ f1] xs--- xs[fa] An.
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This fiber productP(f,, ..., f,) is some linear subspace of the direct product
D:= A x---x A, anditsdimensioni®p :=a; +---+a, — (n — 1)s. The
set of all linear subspaces of a fixed sp&x¢hat have a fixed dimensiop is a
well-known manifold called &rassmannian

Definition 6-3 If K is a linear space of dimensi&and we have G< d < k, the

set of all linear subspaces Kf of dimensiord has a natural structure as a smooth
manifold G(d, K), called theGrassmannian of d-dimensional subspaces of K
We could express any particular basis for such a subspace-dw/a matrix;

but multiplying this matrix on the right by any invertibt:by-d matrix would
produce another basis for the sadidimensional subspace. Thus, the dimension
of the manifoldG(d, K) iskd — d? = d(k — d).

For example, whed = 1, consider all of the lines through the origin of the
linear spacd . Those lines form a projective space of dimengith—d) = k—1;
so the Grassmann manifodi{1, K) is simply projective’k — 1)-space.

The fiber-product operatd? discussed above can hence be viewed as a map

P: TrangA, ..., Ay S — G(p, D).

Note that this magP is continuous: Small changes to the factor m&pthrough
f, cause only small changes in the resulting linear subspade ..., f,).

Exercise 6-4Let A, B, and S be linear spaces of dimensioasb, ands with
a+ b > s, and consider the fiber-product operator

Piag:s: TrangA, B; S — Ga+b—s, Ax B).

What is the dimension of the domain Bfa g.5? Of its codomain? Account for
the discrepancy between the two dimensions.

Answer: The product space LiA, S) x Lin(B, S) has dimensiomas+ bs =
(a+ b)s. Whena + b > s, most pairs of mapéf, g) in Lin(A, S) x Lin(B, S)
are transverse, so the subset T(@nB; S) has that same dimension. But the
Grassmann manifold(a + b — s, A x B) has dimension only

@+b-s)(@+b)—(@a+b-9s)=(@+b--9)s.

The former exceeds the latter Isy. This discrepancy arises because, for any
invertible linear mape: S — S, the pair of factor mapge o f, e o g) gives the
same fiber product as the paif, g); and there ara? degrees of freedom in the
choice of the mag.

Exercise 6-5The previous exercise works out quite neatly, in part bezds
binary fiber-product magP A s.s IS surjective; that is, every linear subspace of
A x B of dimensiona + b — s can arise as a fiber produf f] xs[g]B. Once
n exceeds 2, tha-ary case is not so simple. For example, consider ternary fibe
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products in whichA, B, andC are copies of the plani?, while Sis the lineR.
So a transverse fiber product of the foAnf] xs[g] B xs[h]C is 4-dimensional.
What is the dimension of the domain TraAs B, C; S) of the fiber-product map
Pas.c.g? Of its codomairg (4, A x B x C)? Account for the discrepancy.

Answer: The factor mag : R> — R has two degrees of freedom in it, and the
same forg andh; so the triple of mapsf, g, h) has six degrees of freedom. For
generic choices of those three maps, the differencemap x B x C — S is
surjective; so the transverse subset T(anB, C; S) is also 6-dimensional. But
one of those dimensions is crushed out by the fiber-produpt®pgz c.s), since
the triple of mapgeo f, ec g, ec h) gives the same fiber product @k g, h), for
any invertible linear map: R — R. So we expect the image of the fiber-product
map Pa g.c.s to be 5-dimensional.

As for the full Grassmann manifold(4, A x B x C) of all 4-dimensional
linear subspaces of a linear 6-space, it has dimengi6nr-44) = 8. So there
remains a discrepancy of-85 = 3.

To see why atypical 4-dimensional subspac@esfB x C can't arise as a fiber
product, consider the factor mdp. A — S. Since dinfA) = 2 > 1 = dim(S),
there must exist a nonzero vectom Awith f () = 0. And the vectorte, 0, 0) in
A x B x C then belongs to the fiber product. Thus, every 4-dimenssuiadpace
of the 6-spaceé\ x B x C that arises as a fiber product has a nontrivial intersection
with the fixed subspacA x 0 x 0. But a typical 4-subspace of 6-space intersects
a fixed 2-subspace only in the origin. It costs one degreeeefiiom to insist that
our 4-subspace interseétx 0 x 0 in an entire line. It costs two additional degrees
of freedom to insist that it similarly intersectOB x 0 and Ox 0 x C.

6.2 Stability defined

We continue to restrict ourselves to the simpler situationtich the linear spaces
A; through A, and S stay fixed, while only the factor mapg: A, — S are
allowed to vary. Our next goal is to define what it means, in $irapler situation,
for an orientation rule to bstable

Eachd-dimensional linear subspace okalimensional linear spade can be
given two possible orientations. Suppose that we distsigbetween them. If
we assemble together all of the resulting orierdeslibspaces o, the result is
a smooth manifold that is, in some sense, “twice as big” asthedard Grass-
manniang(d, K). This larger manifold is called Eh@rassmannian of oriented
d-dimensional subspaces of Knd we shall write it/ (d, K). For example, in the
cased = 1, the Grassmanniah(1l, K) consists of all oriented lines through the
origin of K, which form simply the spherg¢—1.

Forgetting about the orientation of an orientedubspace oK leaves us with
an unorientedl-subspace. So we have a natural map from the big Grassmannian
to the standard one, frogi(d, K) to G(d, K). This map is precisely two-to-one.
In fact, every neighborhood ié(d, K) that is small enough not to include both
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a d-subspace and its negative has two isomorphic pre-imagé$dnK); one
says thatj(d, K) is adouble covernf G(d, K). For example, whed = 1, the
(k — 1)-sphereS*~* is a double cover of projectiv — 1)-space.

Let S and A; through A, be fixed linear spaces. We saw in Section 6.1 that
taking fiber products gives us a continuous map

P: TrangA., ..., A; S — G(p, Ay x --- X Ap),

wherep := a; + - -- + a, — (n — 1)sis the dimension of such a transverse fiber
product. Suppose now that the spaSemnd A, throughA,, are oriented and that
we have some rule in mind for orienting the resulting fibeiquts. By exploiting
that rule, we get a map

P: TrangAw, ..., An S — G(p, Ar X -~ X Ay).

We are particularly interested in those orientation rubesvhich this more refined
map P is also continuous, so that small changes to the factor nfiapisrough
f, cause the oriented linear subspa&efy, ..., fn) to slew around slightly, but
without any sudden reversals of its orientation.

Definition 6-6 A rule for orienting the transverse fiber products of oriérieear
spaces istablewhen, for all oriented linear spacég throughA,, andS, the map
that it defines from

Trans{Al,...,An;S)—>§(a1+---+an—(n—1)s,Alx---xAn)

taking the transverse-tuple of maps(fy, ..., f,) to the oriented fiber product
Aqf f1] xs- -+ xs[ fn] An is continuous.

Definition 6-6 is global and elegant; but we couldn’t actyalse it in a proof
unless we took the time to define the Grassmann manifoldgelgci— that is, to
construct explicit charts for it. Instead, we shall view Défon 6-6 as motivation
and define stability in the following more concrete and losal. Readers who
know about Grassmann manifolds will be able to verify that tlwo definitions
are equivalent.

Definition 6-7 A rule for orienting transverse fiber products of orientateér
spaces istablewhen, for all such space&; throughA, andS, for all transverse
sequences of mapdy, ..., fy) in TrangA4, ..., Ay S), and for any oriented
complementC of the fiber producﬂ5(f1, ooy f) = A f] xs - xs[fn] An
in the direct producD = A; x --- x Ay, there is some neighborhodad of the
point (f1, ..., f,) in TrangA4, ..., Ay; S) small enough so that, for all points
(hq, ..., hy) in that neighborhoot, we have

(6-8) P(hy,....hn @®C=P(f,..., fna@C.
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Note that the validity of Equation 6-8 combines two claimsstfithat the fiber
productﬁ(hl, ..., hy) = Aq[h1] xs--- xs[hy] Ay is also a complement of the
fixed linear subspac€ in the direct producD = A; x --- x An; and second,
that using the Concatenate Rule to combine the orientatbonB(hy, ..., hy)
andC gives the same orientation to the direct prodicas does combining the
orientations orP(fq, ..., f,) andC.

Exercise 6-9 Using Definition 6-7 to determine what stability means, shbat
the Greedy-Alice Rule in Figure 1.8 is not stable.

Answer: Let the space#, B, and S all be copies of the real numbeR
let f: A — Sbe the identity, and lej: B — S be the zero map. The maps
(f,9) = (1, 0) are transverse, and the fiber prodégl] xs [0] B is the B-axis
of the product spacé x B, oriented upward — because Alice is on an upward
slope, so Bob should advance. We can take our comple@émtoe theA-axis,
say oriented rightward. But any neighborhood of the pgihtg) = (1, 0) in
Trang A, B; S) will include points of the form(h, k) := (1, €¢), for smalle of
both signs. When is positive, the fiber producd[1] x s [¢] B has high positive
slope and is oriented upward; but, wheis negative, the produ®[1] x s[¢] B has
high negative slope and is oriented downward. In the latisecthe Greedy-Alice
Rule does not achievgA[1] xs[€]B) & C = (A[1] xs[0]B) & C.

6.3 Lifting from linear spaces to manifolds

Consider some rule for orienting those linear spaces tisaltras the transverse
fiber products of oriented linear spaces. We hope to lift thiis to an analogous
rule for fiber products of smooth manifolds. In order for thigng process to
succeed, we have argued that the linear-space rule had bettgable, in the
sense of Definition 6-7. In this section, we show that anydirepace rule that is
stable in that sense does lift to a smooth-manifold rule.

There is actually a second requirement, in addition to ktgbbut it almost
goes without saying. It is the general mathematical prictpat isomorphic
inputs should produce isomorphic outputs. In particula, drientation that our
linear-space rule chooses for a transverse fiber proflydy] xs--- xs [ fa] An
should depend only upon the dimensions and orientatiotneaiace#\; through
A, and S and the input-output behavior of the factor mafasthrough f,. It
shouldn’t involve flipping a coin. It shouldn't depend uporelevant details, such
as the colors that the vectors in the various spaces migpehmetp be colored. We
shall formalize this requirement in Section 9.1.1 asldmnorphism AxiomFor
now, we argue less formally, referring to an orientatiorertat is well-behaved
in this sense aespecting isomorphisms

Proposition 6-10 Any rule for orienting the transverse fiber products of linea
spaces that both respects isomorphisms and is stableoliéégule for orienting
the transverse fiber products of smooth manifolds.
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Proof For notational simplicity, let’s focus on the case of biniber products.
Handling then-ary case would make the notation more complex withoutmgisi
any additional mathematical issues.

Fix some linear-space orientation rule that both respetshorphisms and
is stable; and then consider a transverse fiber product ocb$mmoanifoldsP =
A[f] xs[g]B. At any pointp = (a, b) in P, the tangent space to the fiber product
is the fiber product of the tangent spaces:

(6-11) ToP = (TLA)[Taf] x1s [Tog] (ToB).

We orient the tangent spadgP on the left by applying our assumed linear-space
rule to the fiber product,A x1.s TyB on the right. This lifting pseudo-orients the
fiber productP; but is this pseudo-orientation locally consistent? Wesgtigate
that local consistency in the neighborhood of some pa#drcpbint, sayp, =
(ag, bp) in P. To demonstrate the local consistency nggarwe construct a chart
on some neighborhood pf in P with which our pseudo-orientation is consistent;
and we construct that chart as in Exercise 4-13.

Since we are interested in the structure of the fiber produigt mearp,, we
can restrict our varying poirg = (a, b) to vary only within some neighborhood
of po. We can similarly restrica to remain neaiy, b to remain neab,, and
s := f(a) = g(b) to remain neas, := f(ag) = g(bp). Choosing charts on those
neighborhoods, we might as well assume, as in Exercise thdthe manifoldA
actually coincides with an open set in the fixed linear sg&teve also assume,
by translation, thagy = 0. We treat the manifoldB andS similarly. The fiber
productP is then realized for us as a submanifold of the direct protdct RP =
R2+b and we are interested in what happens on that submanifaidthe origin
po = (0,0). Enforcing these simplifying assumptions formally woutyalve
converting from our initial situation to a different but eorphic situation. We
won't formalize the details of that isomorphism here. Ndtewever, that our
assumed linear-space orientation rule will get the sameemnis the simplified
situation as in the original situation, since we assumetiespect isomorphisms.

As the pointp varies, the linear spacdsA, T,B, andTsS on the right-hand
side in Equation 6-11 vary. But now that we are viewing the ifiodcth A as an
open subset dk?, all of the tangent spacdgA can be naturally identified with the
tangent space t&?2, which we shall denoté\; that is, we haveA = T,R2 for all
pointsa nearay = 0. Similarly, the tangent spac@sB and TS are all identified
with B andS, the tangent spaces B? andR®. With these identifications, we can
rewrite Equation 6-11 as

T,P = A[T.f] x5[Toa] B.

Note that, on this right-hand side, only the factor maps.vary

At the originpg = (0, 0), we have the tangent spatgP = A[Tof] x &[Tog] B.
Let C denote some oriented complement of this tangent spgen the product
spaceAx B. We saw in Exercise 4-13 that the quotient map fiRf® to R2™°/C,
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when restricted to the fiber produet= A[f] xs[g]B, serves as a chart on some
neighborhoodJ of the originpg in the fiber product. Let’s refer to that chart as
¢: U — R&b/C,

As the pointp = (a, b) varies neapy, the pair of mapsT.f, T,g) varies away
from (Tof, ToQ); but the pair(T,f, T,g) remains transverse. Our assumed linear-
space orientation rule is stable. Hence, there is some lp@igbod of the point
(Tof, Tog) in Trang A, B; S) small enough so that, for every poitit, k) in that
neighborhood, we have

(Alh] x5[KIB) ® C = (A[Tof] x5[Tog] B) & C.

For all pointsp that are close enough pg, the pair of mapsTaf, T,g) will belong
to that small neighborhood, so we will have

(AlTaf] x5[Tog] B) ® C = (A[Tof] x5[Tog] B) ® C.

Thus, if we orient the quotient spa@&*°/C so that our pseudo-orientation is
consistent with the chag at the origin, that consistency will extend throughout
some neighborhood of the origin in the fiber product.

So the key to an orientation rule for smooth-manifold fibesdarcts is an
orientation rule for linear-space fiber products that b@tpects isomorphisms
and is stable. From now on, we focus on the search for a lisigace rule that
has those two properties and is otherwise compelling. Inqudar, we shall work
almost entirely with linear spaces and linear maps from noygsmooth manifolds
will get mentioned only occasionally.



Chapter 7

The Uncalibrated Delta Rule

Recall that Alice and Bob had two methods for orienting thetimensional fiber
productA xg B: the Partner’'s-Slope Rule and the Gray-Side Rule.

We generalized the Partner’s-Slope Rule to higher dimassio Section 2.2,
getting the Invertible Factor Laws. But those laws are nobmpmete answer,
because there are equidimensional transverse fiber ppodlucg B about which
the Invertible Factor Laws tell us nothing; here is an exampl

Exercise 7-1 Consider the toru§* x S, which is a compact smooth manifold.
Let A, B, andS each be a copy of the torus. Viewing each torus as the unitequa
[0..1] x [0.. 1] with edges appropriately identified, define the smooth map
f: A — Sto be projection on th& axis,f(x, y) := (x, 0), and defineg: B — S

to be projection on thg axis,g(x, y) := (0, y). Show thaf andg are transverse
and describe the fiber product maniféldx s B. But note that neithef nor g is
invertible anywhere.

Answer: At each point in the fiber produét x s B, the tangent spaces and
differentials look locally like the example in Exercise 4s% the map$ andg are
transverse, although neither is invertible. The fiber pobdiianother torus, which
we can think of as the direct product of thi@xis of A with the x axis ofB.

We had better luck when we generalized the Gray-Side Ruleati@& 2.3:
We sketched out the Delta Rule, a rule that handles everguease case, regard-
less of the dimensions of the spaces involved, and that ity saen to be stable.
In this chapter, we flesh out the simplest version of the Dielite, the version
without an explicit fudge factor. We also define what the rdprientation is for
any equidimensional transverse fiber product, and we shaiwtir Uncalibrated
Delta Rule assigns those Proper Orientations.

7.1 The Delta Rule abstractly

The Gray-Side Rule tells Alice and Bob to walk along the blaekh so as to
keep the gray, Bob-higher side of it to their left. We now galiee that rule

85
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to transversa-ary fiber products in which the dimensions of the varioussepa
involved are arbitrary. While our overarching goal is areatation rule for fiber
products of smooth manifolds, we focus here on a rule foalispaces — but we
require that rule to be stable, so that it will lift to smootlmifolds.

Consider oriented linear spacég through A, and S and transverse linear
maps(fy, ..., f,), with fi: AA — S. We want to choose an orientation on the
fiber productP := A4 f1] xs- - - x 5[ fa] An, Which is a linear subspace of the direct
productD = A; x --- x A,. From the given orientations on the factor spaces
A; through A,,, we can use the Concatenate Rule to orient the direct prdauct
Let C denote some complement Bfin D. If we had a way to orient, we could
combine our orientations o = P @ C andC to get an orientation oR.

The key to orientindC is the difference map: D — S'-! given by

Aoy, ..., an) == (fa(a2) — fa(en), ..., falan) — fooa(anoa)).

Recall that the fiber produ® is the kernel of the difference may. Furthermore,
Definition 4-1 tells us that the map$,, ..., f,) are transverse just when the map
A is surjective. Hence, the map will carry any complement oP = Ker(A)

in D bijectively onto all ofS'-1. SinceC is such a complement, we can use the
equationA(C) = S to relate an orientation o@ to an orientation or8" 1. As

for orientingS"1, we are given a preferred orientation 8rand the Concatenate
Rule does the rest.

Definition 7-2 (The Uncalibrated Delta Rule) Let n be positive; letS and A;
throughA, be oriented linear spaces. kdrom 1 ton, let fi: Aj — Sbe alinear
map, and assume that the magds, ..., f,) are transverse. Le® be the fiber
productP = Aq[ f1] xs--- xs[ fa] A, Viewed as a subspace of the direct product
D := A; x --- x A,. Let the difference map.: D — S be defined by

Ao, ..., an) == (fa(a2) — fa(en), ..., falom) — fooa(en-a)).

By transversality, the difference map is surjective. IfC denotes any oriented
complement ofP = Ker(A) in D, it follows that A carriesC bijectively onto
Im(A) = S1. The Uncalibrated Delta Rule orients the fiber prod@ao that

(7-3) (P®C)/D = A(C)/S"™.

In this formula, the denominato® = A; x - - - x A, andS" ! are to be oriented
using the Concatenate Rule, and the same for the numé?agoC.

Note that which complemer@ we choose doesn’'t matter in Equation 7-3,
except for its orientation; and even the orientatio@afoesn’t affect the resulting
orientation on the fiber produ@, sinceC appears once in each numerator.

Note also that we have made various arbitrary choices imgaip the Delta
Rule. We chose to write the left-hand numerator in Equati@esP ¢ C, rather
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thanC @ P. In defining the difference mafy, we chose to subtradt («;) from
fiL1(aiy1), rather than the reverse. Because we have made those chgibes
some care, Equation 7-3, even though it has no fudge factors but to assign
the Proper Orientation t& in all equidimensional cases. But getting the Proper
Orientations in any-dimensional cases turns out to regxpdicit calibration.

Exercise 7-4 Consider the unary case = 1. If P is the fiber product of the
single spaceA;, does the Delta Rule give = A; or P = —A;? (The latter
would lead to horrible confusion, since our notatidn xs - - - xs A, for a fiber
product reduces, in the unary case Ap)

Answer: In the unary case, Equation 7-3 re@disp C)/A; = A(C)/SP. The
difference mapA: A, — S is the zero map. The empty direct prodi&tis
zero-dimensional, and the Concatenate Rule orients itipely;, that is, we have
S = ¢. The complemen€ is zero-dimensional, and we can choose it to be
positively oriented as well, givin@ = ¢ andA(C) = <. Equation 7-3 then
reduces td?/A; = /<O = O; thus, the Delta Rule giveB = A;.

7.2 The Delta Rule in matrix form

To ensure that we understand precisely what the Delta Rusmsydet’s discuss
how we would apply it in practice. Which matrices would we stvact and which
determinants would we compute?

We begin by choosing a basis for each of the linear spAgé¢lroughA,, and
for S. For simplicity, let's choose those bases to be positivagrted. (Of course,
an oriented linear space isomorphic+t@ has no positive bases; but correcting
for that glitch is straightforward.) For eachwe then compute the matrix;| of
the mapf;, with respect to our chosen bases.

Our next task in implementing the Delta Rule is to assemldsdhmatrices
to form the matrix of the map\: A; x --- x A, — S'1. To get a basis for
the domain ofA, the direct productA; x --- x A,, we do the obvious thing,
concatenating our chosen basesAgithroughA,, in that order. To get a basis for
the codomain

S 1=8x...x§
n-1
we again do the obvious thing, taking our chosen basiSfond repeating ih — 1
times, viewed first as a basis for the leftm8dactor, then as a basis for the second
Sfactor, and so forth. Adopting those bases, it is straightéod to check that the
matrix of A is

—[fa] [f] O ... 0 0
0 —[f] [fd ... 0 0
[A] = : : Lo : :
0 0 0 ... [fa4] O

0 0 0 ... —[foa] [fal
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Thei™ column in this formula actually represents a blockaptolumns, while
each of then — 1 rows represents a block sfows. So the overall matrixg] has
d:=a; + ---+ a, columns andn — 1)s rows. We next check the rank of the
matrix [A]. We expect to get rankA]) = (n — 1)s; any lesser rank implies that
we do not have transversality.

The fiber producP := A; xs--- x5 A, is the kernel ofA. So our next task is
to compute some basis for that kernel. palenote whatever basis we compute;
we shall figure out in a moment whether the basis positive or negative, that
is, whetherP = (p) or P = —(p). The basig will consist ofd — rank([A]) =
d — (n—1)svectorsinD = A; x --- x A,. Representing each such vector as a
column of numbers, the ordered bagisorresponds to a matriyp] with d rows
andd — (n — 1)s columns. Note that4][p] = O.

Next, we compute some complemé&hbdf P in D. That is, we compute some
matrix [c] with d rows and(n— 1)s columns and with the property that the pasted-

(i)

which isd-by-d in size, has nonzero determinant. The columns of the submatr
[c] then form a basis for a complemedof P in D. Furthermore, on the left-hand
side of Equation 7-3, the quotieflP & C)/D is ¢ or —¢{ according as the sign
of the determinant of this pasted-together matrix is pesivr negative.

To evaluate the quotiert(C)/S"* on the right-hand side, we form the matrix
product [A][c]. This product will be square of sizen — 1)s, and will have full
rank by transversality. The sign of its determinant tellsmrether the quotient
A(C)/Stis & or —9.

If the signs that we have computed for the left-hand and +ingintd sides of
Equation 7-3 agree, then our bagifor P was positive; else it was negative.

Exercise 7-5 Equation 7-3 works whef is chosen to be any complement®f
in D. In computational practice, however, it would be attraetiv chooseC by
setting the matrixd] to be the transpose of the matriX]. That is, we choose our
complemenC to be the linear span of the rows ak], interpreting each row as
a column vector by transposing it. Why is this attractive?ai\iioes this choice
correspond to geometrically?

Answer: This choice is attractive because the matrix prothat arises on the
right-hand side is therA][c] = [A][A]'. That product is a positive semidefinite
matrix and hence has nonnegative determinant automatisalive know the sign
of the determinant without computing it. Geometricallyststrategy corresponds
to equipping the spacP with the unique Euclidean structure under which our
chosen, concatenated basis ris orthonormal. We then choo%2 to be the
orthogonal complement d® in D — orthogonal under that Euclidean structure.
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7.3 Stability of the Delta Rule

A prime virtue of the Delta Rule is its stability, in the serdéefinition 6-7.

Proposition 7-6 The Uncalibrated Delta Rule is stable. Furthermore, wer¢éowe
recalibrate the Delta Rule by adding a fudge factat-dfthat depended only upon
the dimensions of the input manifolds, the resulting rulelld@lso be stable.

Proof Let P(fy,..., fy) := A fi] xs--- xs[f.] Ay be some transverse fiber
product and le€ be some oriented complement of the fiber prodicty, ..., f,)
in the direct producD := A; x - - - x A,. The spac& will also be a complement
of the fiber productP(hy, ..., hy) = Ai[hi] xs--- xs[hp] An, for every point
(hy, ..., hy) inTrang Ay, ..., Ay; S that is close enough tofy, . . ., f,), say, for
those pointghg, ..., h,) in some neighborhood of the sequencefy, ..., f,).
The neighborhood might not be connected; but the space Tfadns..., A, S
is locally connected, so we will be able to find a smaller nearhoodU’ of
(f1, ..., fy thatis included irJ and is also connected.

For each pointhy, ..., h,) in this neighborhood)’, the Uncalibrated Delta
Rule tells us to orient the fiber produeth,, ..., h,) so that

(P(hy,....,hy) ®C)/D = Ag,,.hy(C)/SH

.....

In particular, we orienP(fy, ..., f,) so that

.....

.....

Ay...nn(C) = St forall (hy, ..., hy) in U’ orelseAq,. .n,)(C) = =S for
all such(hy, ..., hy). It follows thatP(hy, ..., h,) ®C = P(fy, ..., f,) @ C for
all (hq, ..., hy) inU’, which establishes stability.

The same result holds if we recalibrate the Delta Rule byragdifudge factor
of the form(—1)<@--a:9 'wherex is any functionc: N" x N — Z/27Z. We then
orient the fiber producP (hy, ..., h,) so that

(P(hy,...,hy) ®C)/D = (=)@ > Ay, (C)/S

.....

but the added fudge factor doesn’t vary as the pdmt ..., h,) varies, so it
doesn't affect stability. O

Because the Delta Rule is stable, Proposition 6-10 saysvihaan lift it from
the category of linear spaces to the category of smooth wldsif— which is what
we intend to do.

Corollary 7-7 Any transverse fiber produét[f] xs [g]B of orientable smooth
manifoldsA, B, andS is itself orientable.
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7.4 The Invertible Factor Laws revisited

The Uncalibrated Delta Rule assigns some orientation toyavansverse fiber
product. But are those orientations the Proper Orientafidhs a first stab at that
issue, let’'s analyze whether or not the orientations assidpy the Uncalibrated
Delta Rule obey the Invertible Factor Laws. It turns out tthety do obey the
Right Invertible Law, but they sometimes violate the Leftdrtible Law.

7.4.1 The Right Invertible Law

We begin with the Right Invertible Law, which applies only evhthe dimensions
b ands of the linear space8 and S are equal and the right-hand factor map
g: B — Sisinvertible. In such cases, the map A xs B — Athat projects onto
the first coordinate is a bijection, and the Right Invertib&v tell us to orient
A x s B so that sgfu) = sgng), that is, so thati(A xs B)/A = g(B)/S =
sgn(g)<>. Does the Uncalibrated Delta Rule concur?

Wheng is invertible, the fiber produdP := A xs B consists of all pairs of
the form(a, g~1(f (a))), for o in A. As a complemen€ for Pin D = A x B,
it is convenient to choose all pairs of the fot g), for 8 in B. That is, we set
C := (Oacg, 1g.)(B) as an oriented linear space.

We now guess an orientation fér itself, settingP’ := (1a.a, g 1o f)(A).
By testing whether or notP’ @ C)/D = A(C)/S, as in Equation 7-3, we can
then determine whether the Uncalibrated Delta Rule Bets P’ or P := —P’.
For future reference, note thatP’) = A, sou(P’)/A = +<.

We haveP’ & C = ®(D) = ®(A x B), whered: Ax B - A x Bisthe

linear map
_ laca  Oacs
®= (g_lo f 1B<—B ’

here expressed as a matrix of maps, as discussed in SectiomMN6te that our
recipe forP’ = (1a.a, gt o f)(A) has become the first column of this 2-by-2
matrix, while our recipe for the compleme@t = (0x. g, 1g.g)(B) has become
its second column. Each column gets formed using Equatiéndnid the two
columns then get pasted together using Equation 5-7. Weasily eero out the
entryg~! o f in this matrix, either by subtracting an appropriate mistipf the
second column from the first or by subtracting an appropraikiple of the first
row from the second. So we havB’ @ C)/D = sgn®)<$ = +<.

What about the quotiemk (C)/S on the right-hand side of Equation 7-3? As
a matrix of maps, we have

A=(—f g).
So we find that

AC) = (-1 g) (OA*B) (B) = g(B),

1BeB
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which means that\(C)/S = g(B)/S = sgng)¢>. The Uncalibrated Delta Rule
thus insists thatP & C)/D = sgng)¢. Since(P’ ® C)/D = ¢, we conclude
thatP = sgn(g) P’ and hence that(AxsB)/A = u(P)/A =sgng) u(P)/A =
sgng) ¢, just as the Right Invertible Law requires.

7.4.2 The Left Invertible Law

Symmetrically, the Left Invertible Law applies whan= s and the factor map
f: A — Sisinvertible. In such cases, the projectionA xs B — B onto the
second coordinate is a bijection, and the Left Invertiblerit@ll us to arrange that
sgnv) = sgnf), that is, thatv(A x5 B)/B = f(A)/S = sgn(f)¢{. Does the
Uncalibrated Delta Rule concur with this? Sadly, not always

The fiber producP := A xs B is the set of pairg f ~1(g(B)), ), for g in B.
We setP’ := (f 1o g, 1g.8)(B), noting for future reference thatP’)/B = ¢.

As our complemen€ for P in A x B, we take all pairs of the forni, 0).
Thatis, we se€ := (1aca, Og.a)(A). We then havd?’ & C = ¥(B x A), where
v: Bx A— Ax Bisthe map

f~log 1A<—A)
v = .
( 1B<—B OB<—A
The entryf —1 o g is easy to zero out; but the map that remains is the swapping
isomorphism fromB x Ato A x B, which has determinarit-1)2°. So we have

(P'®C)/D = (=1)*¢.
On the right-hand side, we have

AC)=(-f 9) (3’;2) (A) = ~(T(A)),

where— is the negating map introduced in Exercise 5-3. Since thesdgon
of S= f(A)iss = a, we end up withA(C) = (—1)2f(A) and hence we
haveA(C)/S= (—1)2f(A)/S= (—1)2sgn ). The Delta Rule thus insists that
(P®C)/D = (—1)2sgn f)¢. Since(P’ @ C)/D = (—1)2%), we conclude that
P = (—1)23sgn f)P’ and hence that

v(A xsB)/B=v(P)/B=(=1)*sgnf)v(P)/B = (—1)**? sgn(f)¢.

When either is even orb is odd, this concurs with the Left Invertible Law. But
whena is odd andb is even, it does not concur. Moral: The Delta Rule must be
recalibrated to get the Proper Orientations in the any-dsimmal case.

Exercise 7-8 Peeking ahead to Section 9.3, the factor that recalibrate®elta
Rule for the binary, any-dimensional case turns out to-bB3°~%, Whens = a,
verify that this agrees with the-1)2*~ that we just computed.

Hint: An integer, its negation, and its square always haeestime parity.
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7.5 Equidimensional propriety

The equidimensional case is a happier story: Even the Umesdid Delta Rule

assigns the Proper Orientation to every equidimensioaattrerse fiber product.
To flesh out this claim, we first have to define what the Propér@ations are in

the equidimensional case, which turns out to be uncontsmlenVe then verify

that the Uncalibrated Delta Rule produces those Propen@itiens.

7.5.1 The all-invertible case

Before we tackle the full equidimensional case, let's analtheall-invertible
case the subcase in which all of the factor maps are invertible.

Consider an equidimensional fiber prodict= A f1] xs--- xs[ fn] A, Of
linear spaces. When all of the factor mags) are invertible, we shall refer to
the fiber product aall-invertible. Note that most equidimensional fiber products
are all-invertible. If we think of the entries in the matrscef the factor maps as
independent variables, those variables have to satisfytaic@lgebraic relation
in order for de([ f;]) to be zero; so the failure of all-invertibility is alreadya@rin
of degeneracy. The failure of transversality is even mogederate, since at least
two of the determinants must be zero before the n{dps. .., f,) can become
non-transverse, as we saw in Exercise 4-4.

The all-invertible case, in addition to being the most coms particularly
easy to analyze, since we can appeal to the All Invertible fram Exercise 4-6:

sgn(fy xs--- xs fn) =sgn(fy) - - - sgn'fy).

Writing our quotients with numerator atop denominator teesgpace, this law
becomes
(fixs--xsf)(P)  fi1(A) ‘o fn(An)
S S S

The left-hand side makes sense because, when all of the faafis are invertible,
the fiber-product map, xs--- x5 f,: P — Sisalso invertible, its inverse taking
a vectoro in Sto the point( fl_l(a), ..., f7%(0)) in the fiber produc®P.

The All Invertible Law tells us that the sign of the fiber-pumtl map should be
the product of the signs of the factor maps. That seems elagdrcompelling, so
we use it to define the Proper Orientation of any fiber prochattis all-invertible.

(7-9)

Definition 7-10 When a fiber produch[ f;] xs- - - xs[ fn] A, of linear spaces is
all-invertible, itsProper Orientationis that given by the All Invertible Law 7-9.

Exercise 7-11Consider an all-invertible fiber produét;[ f;] xs--- xs[ fn] An.
Show that reversing the orientation of any single factorcepd reverses the
Proper Orientation of the fiber product. But show that remershe orientation
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of the base spac8reverses the Proper Orientation of the fiber product justwhe
nis even.

Answer: The first claim is clear, sinc® appears just once on the right-hand
side of Identity 7-9. For the second claim, note that theeanaropies ofS on the
right-hand side and one on the left-hand side, for a total f1 copies. When
nis even,n 4+ 1 is odd, so reversing the orientation $forces us to reverse the
orientation of the fiber product. Whemis odd, on the other hand, the orientation
of the fiber product is independent of the orientatiorsof

Note that the second claim continues to hold in the cases0O andn = 1.
The orientation of the nullary fiber product ov@rwhich is Sitself, does indeed
depend upon the orientation 8f while the orientation of the unary fiber product
A; over S, which is simplyA;, does not.

We next verify that the Uncalibrated Delta Rule gives theperdOrientation
to every fiber product that is all-invertible.

Theorem 7-12 Consider any fiber product of linear spaces in which the facto
maps are all invertible. The Uncalibrated Delta Rule o8esuch a fiber product
in accord with the All Invertible Law 7-9 and hence gives thibér product its
Proper Orientation.

Proof Let P := Ay fi] xs--- xs[fn] Ay be a fiber product in which all of the
factor maps are invertible. We first use an easy generazati our analysis of
the Right Invertible Law in Section 7.4.1 to show that

ui(P)  fa(Ay) fn(An)
— X oo X ,
Aq S S

(7-13)

where the map;: P — A, isthe projection from the fiber product to the leftmost
factor spacéA;. For this portion of the proof, we won't need the assumptiaat t
f, is invertible. Note that Equation 7-13 is the cdse= 1 of the All-but-One
Invertible Law 4-7, discussed in Exercise 4-6.

Since f, through f, are invertible, the fiber produd® consists of all tuples
of the form (a4, fz_l(fl(ozl)), oy TN (f1(@n))), for ag in A;. As a complement
CforPin D = A; x --- x A, itis convenient to choose all tuples of the form
(0, ap, ..., ap), fora; in Ai. More precisely, we s&f := ®(A; x --- x Ay) as an
oriented linear space, whede: A, x --- x Ay — Ap x --- x A, is the obvious
injection, the map with matrix

00...0
10... 0
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We now guess an orientation for the fiber prodiécitself, settingP’ :=
(Apycny, o to fr, ..., f710 f1)(A)). By testing whether or natP’ @ C)/D =
A(C)/S' 1, as in Equation 7-3, we can then determine whether the Urresdid
Delta Rule set® := +P’. For future reference, note that(P’)/A; = <.

We haveP’ @ C = V(D) = W(A; x --- x Ay), whereV is the linear map

1 00..0
f,l0f; 1.0 ... 0
[w]=|fs'eofi O 1 0
filofip 00 ... 1

obtained by pasting the recipe f& as a new column at the left of]. So we
have(P’' @ C)/D = sgn¥)<. We can easily zero out the subdiagonal entries in
the matrix fory; so we have sg) = 1 and hencéP’ & C)/D = ¢.

What about the quotienk(C)/S"* on the right-hand side of Equation 7-3?
The difference mapr: D — S'~! has the matrix

—f, f, 0 ... 0 0
0O —f, f3 ... 0 0
[Al=1: = =
0 O O ... fpere O
0 O o0 ... —f,_1 f,
as we saw in Section 7.2. Sowe hav€C) = A(D®(A; x --- x Ay)), where
f, 0 ... 0 0
—f, f3 ... 0 0
[A][@] = IR
o o ... f..1 O
0O 0 ... —fp1 fn

Again, we can zero out the subdiagonal entries. So the Uwesdid Delta Rule
insists that
POC _ AC) _[AI®J(Ar x - x A _ Ta(AD) fo(An)

D 9t -t S S
Sinceu;(P")/A; = (P"® C)/D = {, we conclude that
uP) wP)P PeCP PaC (A ‘o fn(An)
A° A P D P D S S

just as Equation 7-13 requires.

We now suppose that the factor mépis also invertible. We can then rewrite
the left-hand quotienti;(P)/A; as f;(uy(P))/f1(Ay). Since the fiber-product
map f; xs--- xg f, agrees orP with f; o u; for everyi, we can further rewrite
this as(f; xs--- xg f,)(P)/fi(A1). Multiplying both sides byf;(A;)/S then
gives us the All-Invertible Law 7-9.0
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7.5.2 Extending by continuity

The all-invertible case is now well under control. The Al/émtible Law tells
us which orientation is the Proper Orientation. And the ®&tule, even in its
current uncalibrated form, computes that Proper Oriemtati

On the other hand, the any-dimensional case is still quitepgm challenge.
In particular, consider a fiber produéf f] xs[g]B in which the factor maps
andg are transverse, but neither of them is invertible. The fivier Factor Laws
then don’t apply. So itisn’t clear how to settle upon one @ftifvo orientations of
A x s B as the proper one.

Continuity provides a way to settle this question in the domensional case.
In this section, we show that every transverse, equidino@asifiber product is
the limit of all-invertible fiber products. We can define th@jger Orientation of
the limit to be the limit of the Proper Orientations, once vexé shown that the
latter limit is well-defined.

Fix oriented linear spaces; through A, and S, all of the same dimension,
which we shall refer to as; and consider what happens as we vary the factor
mapsf; throughf,, but keep them always transverse. The poit. .., f,) then

varies in the space Traf&,, ..., A,; S), which we can think of as an open subset
of Rast—+as — RS Recall that we can view the fiber-product operator as a map
P: TrangA¢, ..., Ap; S — g(g, A;x---x Ap). If we choose a rule for orienting

each fiber product, we getam&p TrangAy, ..., Ay; S — é(s, Arx---xAy);
and our chosen orientation rule is stable just when thisrmmapl3 is continuous.
Let's settle on the Uncalibrated Delta Rule as our orieatsatile, lettingP denote
the continuous map associated with that stable rule.

Let Inv(Ay, ..., Ay; S) denote the subset of Trais, ..., A,; S) consisting
of those sequencés,, ..., f,) in which all of the mapd, through f,, are invert-
ible. Claim: The set IngAq, ..., Ay; S)isdense in Tran®\, ..., Aq.; S).

Exercise 7-14Let (fy, ..., f,) be any point in the space Trams, ..., A.; S),
where we are assuming that the dimensiongpthrough A, and S all coincide.

Show, by an explicit construction, that the paiff, . . ., f,) lieson aline segment
in the space Trang\;, ..., A,; S) C R"S all of whose points are all-invertible,
with the possible exception @ff, ..., f,) itself.

Answer: For eachh from 1 ton, there exist lots of linear bijections frowy, to
S, since those spaces have the same dimensiorh; L&k — Sbe one such. We
then introduce a real parametaand we seff; ; := f; +th;. This makes dé[f;])
a polynomial int with leading term(det([h;]))t®; so we will have de&{ f;;]) = 0
for at mosts different values of. Thus, alln of the mapsf; ; throughf,, ; will be
bijective for all nonzerd with |t| sufficiently small.

The map|3 associated with the Uncalibrated Delta Rule assigns thpePro
Orientations toqall of the fiber products in &, ..., A,; S), by Theorem 7-12.
Since the magP is continuous on the larger set TraAs, ..., A,; S) in which
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Inv(Aq, ..., Ay; S is dense, it is natural to use continuity in defining the Prope
Orientation for this wider class of fiber products.

Definition 7-15 If A; throughA, andS are linear spaces of the same dimension
and the mapéf,, ..., f,) are transverse but not all invertible, we define the Proper
Orientation of the fiber produd@y[ f;] xs- - - x 5[ fn] An to be the unique orientation
that satisfies

(7-16) Al f1] xs- - xs[fa] An = !m Aql f1e] xs- - xs[fnt] An,
where(fyy, ..., fnt) denotes any parameterized sequence of maps that satisfies
limio(fyt, ..., fnr) = (f1,..., fy) and that is all-invertible for all nonzerb

with |t| sufficiently small.

The continuity of the ma[f’ implies that the limit on the right-hand side in
Equation 7-16 will exist, as an oriented linear space, aatlitlvon’t depend upon
which parameterized sequenck,, ..., f,+) we choose.

Corollary 7-17 The Uncalibrated Delta Rule assigns the Proper Orientdtion
every transverse, equidimensional fiber product.

Note that transversality remains crucial; we can’t useiooitly to extend even
further, to a sequence of mapg, ..., f,) thatis not transverse. In such a case,
the dimension of the fiber produdy[ f;] xs--- xs[f,] A, is larger than the
minimum possible, whichia; + - -- + a, — (n — 1)s = s. We may well be able
to realize such a sequencé,, ..., f,) as the limit of all-invertible sequences
(fyt, ..., for) In such a way that the limit of the fiber products on the right in
Equation 7-16 is well defined. But that limit is then a propgéospace of the fiber
product on the left, and hence doesn’t help us to orient ttterlaindeed, every
s-dimensional subspace of the fiber product on the left, wiiiiee orientation,
can then be realized as one of the limits on the right.



Chapter 8

Mixed fiber products

The Uncalibrated Delta Rule gives an orientation to evexydverse fiber product
of linear spaces, whether equidimensional or not. But weevierced to make
various arbitrary choices in setting up the Delta Rule, soahswers that it gets
aren't always the proper ones. Indeed, we saw in Sectio2 Thét its answers
sometimes violate the Left Invertible Law — a clear sign opnopriety. So we
are going to have to recalibrate the Delta Rule, in order tapixhe answers that
it gives in the any-dimensional case.

The recalibration itself is easy: We just insert the propegk factor. The hard
part is deciding what the Proper Orientation of a transviése product ought to
be, in general. We hope to find a compelling collection of mdcand a unique
orientation rule that satisfies those axioms. If so, we cdimeléhe orientations
produced by that unique rule to be the Proper Orientatiorgsyae can then adjust
the fudge factor in the Delta Rule to produce them.

One obvious axiom to try for is commutativityA xs B = B x5 A. Once
we leave the equidimensional case, however, commutatigtpmes hopeless.
Indeed, we argue in Section 9.1.8 that commutativity is hlegseeven for direct
products, and direct products are a special case of fibemuptsdthe case in
which the base spacg = < is zero-dimensional. The best that we can hope
for, when orienting the direct products of oriented linepaces, is the identity
A x B = (—1)2*B x A. The analogous rule for the more general case of fiber
products turns out to bA xg B = (—1)@ 9098 x g A,

While we can’t require commutativity, we are going to requaissociativity.
In fact, we can actually achieve something stronger tharobhweous notion of
associativity. The obvious axiom requires xs B) xsC = Axs(B xsC). We
are going to require the stronger identiyx s B) x1 C = Ax (B x1 C), where
the fiber products armixed meaning that the base spacgand T may differ.
Generalizing to mixed fiber products in this way makes themxodf associativity
significantly more powerful, and that extra power turns aube just what is
needed to narrow down the field of possible orientation rtdes unique, proper
choice. In this chapter, we generalize our underlying fraoré& to deal with
mixed fiber products.

97
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Figure 8.1: The factor sets and factor maps of a pure fiberyatod
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Figure 8.2: The factor sets and factor maps of a mixed fibedyro

8.1 Multiple base spaces

Cast your mind back to Section 4.5 where, in defining the filbedpcts of sets
and set maps, we adopted the particulariset {1, ..., n} as our standard index
set for am-ary fiber product. We were then able to switch from writing

[ fIA

iel

for the fiber product to writingh\y[ f1] xs- - - x 5[ fn] An. And we were able to select,
from among all of the fiber-product constrairfiga;) = f;(a;), the nonredundant
constraintsf; (a)) = fi11(g,1), fori from 1ton— 1. Adoptingl = {1,...,n}as
our standard index set also opened the door to a generafizaitour underlying
framework that we didn’t exploit back in Section 4rhixedfiber products.

Consider Figures 8.1 and 8.2. The fiber products that we heae Biscussing
so far, which we shall henceforth cadure, start off with then factor setsA;
through A, and with a single base s& thei® factor setA, being equipped
with a factor mapf;: A; — S. In contrast, am-ary mixedfiber product starts
off with the n factor setsA; through A, and withn — 1 different base sets, say
S throughS,_1. Thei® factor setA; comes equipped with two different factor
maps, aorward factor map if: AL — § to the succeeding base set and also a
backward factor map;g Ay — S_; to the preceding base set. In this way, each
of then — 1 nonredundant constraints above becomes associatedtsvibvin
base set. The constraint that we wrote abové &%) = fi.1(a 1) now becomes
fi(a) = gi+1(@41), an equality between elements of the baseSseThe mixed
fiber product

Aql f1] x5 [G2] Aof f2] X, -+ x5, [On] An

is that subset of the direct produdi x --- x A, consisting of those elements
(ag, ..., ay) forwhich fi(a) = gi11(a1), fori from 1ton—1. When the forward
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and backward fiber maps are clear from the context, we shaih @bbreviate a
mixed fiber product simply a8, xsg - - xg_, An.

While the first and last factor spaces of a mixed fiber prodagelonly one
associated factor map, each of the remaining, interioofegpgaces is the domain
of two factor maps, one backward and one forward, which wéewust before
and just after that space. This is in contrast to the pure, aelsere the interior
factor spaces have only one factor map, and we have our cabag whether to
write that map just before or just after. (In this monogratplat issue arose only
in Exercise 6-5, where we wrote the mgjpeforeB in A[ f] xs[g]B xs[h]C.)

For binary fiber products, there is no distinction betweengtre and mixed
cases: Figures 8.1 and 8.2 become indistinguishable when2, modulo the
choice of names. For unary fiber products, there is techpiaalistinction, but it
makes little difference. In a unary, pure fiber product, tingle factor space\;
is equipped with a factor mafy: A; — S; but the behavior of that map doesn’t
affect the result. In a unary, mixed fiber product, there aréactor maps.

Most of the theory of fiber products generalizes in a stréagivard way from
the pure case to the mixed case. We discuss here only th@sevenere something
new happens.

8.2 The fiber-product maps

In the pure case, the fiber-product operation producessasitputs, both a set
and a map: the sé; xs--- xs A, and the mapf; xs--- xs f, from that set to
S. In the mixed case, we again get a s@i:xg --- x5, , Ay. But there are now
n— 1 different base sets, so there are 1 different fiber-product maps. Thé of
these, foi from 1 ton—1, takes a pointay, . . ., a,) in the fiber-product set to the
common valuefi (g) = gi;1(a;1) in the base se§. In the rare situations when
we need a name for this map, we'll refer to itl@s A; xg --- x5, A = S.

8.3 The nullary case

In studying pure fiber products, we decided to treat the nukase specially,
but at least it was clear what the nullary pure fiber produetr &should be —
namely, the spac8 itself. Once we generalize to mixed fiber products, however,
it turns out that there is no natural way to handle the nuléage.

Given a mixed fiber product

Aql f1] x5 [G2] Aof T2] X5, - -+ x 54 [On] An,

letg:: Ay — T be any map from the factor sé to any nonempty sef, and
consider augmenting the product by adding@s an additional factor set and base
set on the left, as follows:

T[A] x7 [g Ad[ f1] x5 [G2] A2f f2] x5, - -+ X5, [On] An.
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This augmentation leaves the fiber product essentially amgéd; each point
(ag, ..., ay) in it is simply augmented to becomeg,(a;), a;, ..., a,). Setting

n = 0 in this augmented product suggests thamight be a natural value for
the nullary mixed fiber product. But the s€twas arbitrary, except for being
nonempty. If the base set§,, ..., S._1) came from some natural sequence and
that sequence had a zeroth elen®nthen one might argue that the nullary mixed
fiber product should b&. But it would make equal sense to augment from the
right, which would argue fo§, instead. And, when the base s€¥9 are arbitrary,
there is no reason to prefer any particular sefffoil herefore, when dealing with
mixed fiber products, we flatly outlaw the nullary case.

In almost all respects, mixed fiber products are more gerleaal pure fiber
products. Indeed, we can restrict ourselves from the misseé ¢to the pure case
by constraining all of the base spaces to be eq&l= --- = S,_1; and by
constraining the forward and backward maps defined on anymmnfactor space
to coincide: fi = g; for 1 < i < n. The nullary case is the lone exception. When
we restrict ourselves to pure fiber products o8ewe are limiting ourselves to a
world in which Sis the only permissible base space;Sthen becomes a natural
value for the nullary fiber product. It is precisely the fdtat the mixed case is
more general, allowing lots of different base spaces, tiraek us to abandon the
notion of a nullary fiber product.

8.4 Commutativity and associativity

In the pure case, the operator that takes fiber products dwezchbase spacg
is both commutative and associative. In the mixed case, @wottier hand, each
fiber product involves a sequence of base spaces, each df wghielated to the
factor spaces on either side of it by forward and backwartbfanaps. So there
is no hope for commutativity in general; the left-to-rightler of the factor spaces
and of the base spaces is encoded in the factor maps.

What about associativity, in the mixed case? It takes a mos#ought to
see that mixed fiber products can even be nested. Given sidiged j with
1 <i < j < nand given tha-ary mixed product

Al fi] xs - xg, [GIAL ] x5 - x5, [GIAT] x5 -+ x5, [Gn] An,
suppose that we want to compute the product flgrthroughA, first, as an inner

fiber productP := A[fi] x5 ---x5_,[gj]A;. Roughly speaking, this corresponds
to adding in a pair of parentheses, getting

Al f1] xs - xq, [GT(ALT] x5 - x5, [GIA)[ 1 x5 -+ x5, [G] An,

or, equivalently,

Al 1] xg - xg, [G] P[f]T x5 -+ x5, [On] An.
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For this remaining, outer product to make sense, howeverséhP must come
equipped with a backward factor map &, and a forward factor map t§,

the maps that we have written abovegisand f;. To define those maps, we
exploit the fact that the inner fiber produBtis a subset of the direct product
D:=A x---x A. Lety;: D — A andu;: D — A; be the projections of

D onto its first and last components. We then define the backiaatdr map

g': P — §_1bysettingg' := gi o u; and the forward factor mafy: P — § by
setting f/ := fj o u;. With this understanding, it is easy to check that mixed fiber
products can be nested and that the mixed-fiber-producatgres associative.

8.5 Linear spaces

We now specialize to the category of linear spaces and limegos. The input
data for a mixed fiber product in that category is two sequenédinear spaces,
connected by maps in the pattern of Figure 8.2. We shall tefsuch a structure
as azigzag When we need to write a zigzag down in text, it saves spaadlpse
all of its spaces and maps down onto a single line, like this:

fa fno1 On

S .

A5 s <A An.

We could allow zigzags to end either on the top or on the battibvat is,
to end either at a factor spadg or at a base spacg. But it is easy to pad a
zigzag, at either end, by adjoining zero-dimensional lirsgeces and identically
zero linear maps; so it doesn’t matter too much where theagigificially ends.
Since we here use zigzags mostly as input to the mixed-fiteeiyat operator,
we’ll require our zigzags to have both their left and rightleion top. We refer to

fn—l

Aq i S & A By S-1 & A, as ann-ary zigzagthe input data for an
n-ary fiber product. So a unary zigzag consists of a singlefagaceA, with no
base spaces and no factor maps. (And there is no such thingula®y zigzag.)
Just as for pure fiber products, the linearity of tHdase spac§ in a mixed,
n-ary fiber product lets us do a subtraction to measure theetdevhich thei

of the nonredundant constraints fails to hold. We definalifierence major the
fn—l

zigzagAlii Sl<g—2A2i2> Cee = Sh_l<g—"Antobethemam: A x---x Ay —
S x---x §_1given by

Aoy, ..., an) = (G(o2) — fi(@r), ..., Onlon) — fas(an-1)).

As in the pure case, we define a zigzag tada@sversgust when the associated
difference map is surjective. It is precisely in the tramseecase that the mixed
fiber productA; xg A; Xg, -+ Xs,_, An = Ker(A) has the minimum possible
dimension, whichiga; +---+a,) — (S + - + Sh_1).

Note that generalizing from pure to mixed simplifies somésaf the theory.
The difference map in the mixed case takes its values in theesh x - - - x §,_1,
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which is the direct product of all of the base spaces. In the pase, because
S =---= S._1 = S, that product collapses 81, which is more mysterious.
Similarly, the formula(a; + --- + a,) — (st + - - - + s,-1) for the dimension

of a transverse, mixed fiber product is more enlightening tha corresponding
formula(a; + - - - + a,) — (n — 1)sin the pure case.

In the pure case, we can think of transversality as a propdrey sequence
of Svalued linear maps. In the mixed case, however, if we warthitok of
transversality as a property about maps, we have to stdrtaxgequence of pairs
of maps, the two maps in each pair being the forward and backimator maps
whose values lie in a common base space. For example, tlsvérsality of the
n-ary zigzag above, if we think in terms of maps, is the trarsality of the maps
((f1, @2), (f2,93), ..., (fao1, Gn)).

Proposition 4-9 showed that the property of transversaditgssociative, in
the pure case. That associativity carries over to the migsd,cand for the same
reason: Suppose that we compute an overall fiber productestaa fashion, first
combining some of the factor spaces in an inner fiber prochattlzen combining
that result with the remaining factor spaces in an outer fioeduct. The overall
product is transverse just when both the inner and outeryotedare transverse,
since both of those events happen just when the final fibetyotspace has the
minimum possible dimension.

To ensure that this is clear, let’s state the mixed-casegrdlProposition 4-9.
The proof for the mixed case is essentially the same as fquuhecase.

fn—l

Proposition 8-1 Let A, i S & Ao T S & A, be am-ary zigzag,
and leti andj be integers with < i < j < n. Let P denote the inner, mixed
fiber productP := A[ fi] x5 [Disa] Aipal fiya] x5, - -+ xs_, [9j]A; of the factor
spaces fron\ throughA;. The overalln-ary zigzag is transverse just when

. fi i fi fi— gj . . .
o the zigzagh — § & AL % ... 5§, < A associated with inner

fiber productP is transverse
: / f/ !

e and the zigzad\, NIy S, <P S L& A, associated
with the outer fiber product is transverse. The spBAcis a single factor
space of this outer fiber product, and its forward and bac&aator maps
are the mapd; andg; defined in Section 8.4.

Exercise 8-2 Consider a ternary zigzay e sdBAT EC Ifwe compute
the mixed fiber produc\[ f] xs [g]B[h] xt [K]C in one step, the associated
difference map willbethe mapsi: Ax Bx C — Sx T givenbyA(«, B, y) =
(9(B)— f(a), k(y)—h(B)). If we compute that same product in the nested fashion
(A[ f]xs[d] B)[h/] x 1[K]C, the inner and outer fiber products have the difference
mapsA,: Ax B — SandAo: (A[f] xs[g]B) x C — T given by

Ai(a, B) ==9(B) — ()
Ao((a, B), v) == K(y) —N(a, B) = K(y) — h(B).
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Proposition 8-1 tells us that the overall difference mapvill be surjective just
when both the inner and outer difference mapsand Ao are surjective. Verify
this directly.

Answer: Suppose first that is surjective. To see that, is surjective, for any
o in S, chose an arbitrary in T; there existgw, 8, y) with A(a, 8, y) = (o, 1),
from which it follows thatA | (@, 8) = o. To see that\g is surjective, for anyt
in T, there existg«, B, ) with A(a, 8, y) = (0, t). From this, it follows that
the pair(a, B) lies in the fiber produch[ f] xs[g] B and thatAo ((«, B), y) = 7.

Conversely, suppose that bath and A are surjective, and léb, T) be any
pointin S x T. There existsay, B1) with A, (@1, B1) = o. And then there exists

((or2, B2), v2) With f(a2) = g(B2) andAo((az, B2), v2) = T +h(B1). From these,
it follows that A («y + ap, B1 + B2, v2) = (0, T).

Exercise 8-3 Generalize the Invertible Factor Laws from thv@ry pure case, as
in Exercise 4-6, to tha-ary mixed case.
Answer: In the mixed fiber product

P = A fi] x5 [Q] Azl f2] X, -+ - X5, [Gn] An,

leth;: P — S denote the™ fiber-product map, for from 1 ton — 1. And let
ui: P — A denote the' projection, fori from 1 ton. So we havédy, = fiou; =
Oi+1 0 Uiyg, fori from 1ton — 1. And we then have

sgn(ui) = sgn(fy) - - - sgn(fi_1) sgN(Gi+1) - - - SYN(Gn)
sgn(Uit1) = sgn(fy) - - - sgn(fi) sgn(gi2) - - - SYN(gn)
sgnthi) = sgn(fy) - - - sgn(fi) sgn(gi11) - - - SGN(Gn)-
In any of these formulas, when all of the maps on the rightdtsaehe are invertible,

then the map on the left will also be invertible, and we sharidnt the mixed
fiber productP so as to make the equality hold.

8.6 Stable orientation rules

If we fix the factor space#\; through A, and the base spac&s through§,_1,
what is still needed to specify a mixed fiber product are thevdéod factor maps
(f1, ..., f,_1) and the backward factor maps, .. ., On). Let’s define

TraniAl, ety Al’la S_I.v st S‘I—l)

to be those sequences of mags, . . ., foo1s oy ..o, On) that are transverse, that
is, those for which the resulting difference mapis surjective. Lettingp =
(g + -+ a) — (s + -+ + S-1) denote the dimension of the resulting fiber
products, we can think of the mixed-fiber-product operasos enapping

P: TrangA,, ..., A:S,. .., S-1) — G(p, AL x -+ x Ay).



104 CHAPTER 8. MIXED FIBER PRODUCTS

If the spacedA; throughA, and S, throughS,_; are oriented, then an orientation
rule for mixed fiber products converts this into a mapping

P: TrangAr, ..., An; St oo, Sit) — G(p, Au X - - X Ay).

An orientation rule istablejust when this mapping is continuous.

8.7 Smooth manifolds

Once we understand mixed fiber products of linear spaces,owtel go on to
study mixed fiber products of smooth manifolds. In the transs case, such
a fiber product will again be a smooth manifold, by an easy gdization of
Proposition 4-12. (Indeed, if we evaluateraary mixed fiber product as a nested
sequence oh — 1 binary fiber products, we can then apply Proposition 4-12 as
stated, since, for binary products, there is no distindbetween pure and mixed.)
Furthermore, by an easy generalization of Proposition,Gah@ orientation rule
for the transverse, mixed fiber products of linear spacesishstable and that
respects isomorphisms will lift to an orientation rule fboettransverse, mixed
fiber products of smooth manifolds. But it wouldn’t requirg/anew ideas to push
the theory in this direction, so we shan’t bother to do sotelad, we shall continue
to focus on linear spaces and linear maps.



Chapter 9

Propriety via axioms

. . . f o) f
So our new goal is as follows: Given any transverse zigkag> S < A, —

fn—l

- = S & A, in which all of the factor spaceé; through A, and base
spacess throughS,_; are oriented, find a rule that orients the mixed fiber product
A; xg Az Xs, -+ Xg_, An. We want our rule to satisfy as many pretty axioms
as possible. In particular, we require that the rule be stabld that it respect
isomorphisms, so that it will lift to give us an analogouserfbr orienting the
transverse, mixed fiber products of smooth manifolds.

The subtle issue is finding a family of axioms that is consitséend complete.
Consistent means that there is some orientation rule ttisfisa all of our axioms.
Complete means that there is only one such rule; that is, weihgosed enough
axioms to eliminate any flexibility in the choice of the oriation rule. Once we
have a consistent and complete family of axioms, it is shridgward to construct
the unique orientation rule that satisfies them: We simpliypite the Delta Rule
(after generalizing it to the mixed case) so that it satisfigsaxioms.

By the way, we shall feel free to add in lots of axioms, prodideat they are
consistent, in our quest for completeness. In particularmvake no attempt to
arrange that each of our axioms be independent of the others.

9.1 The axioms

In stating our axioms, it is convenient to focus on the biraage. Define ainary

. . . f
problem instanceéo be a transverse, binary zigzdg— S & B whose spaces
A, B, and S are oriented. Abinary orientation rulechooses, for every binary

problem instanceé\ Lsd B, one of the two possible orientations on the fiber
productA[ f] xs[g]B. We give our axioms as restrictions on the behavior of a
binary orientation rule.

Define aternary problem instangeanalogously, to be a transverse, ternary
zigzagA e s B T &£ cwhosefive spaces are oriented. The associativity
law (A x5 B) x1 C = A x5 (B xt C) for ternary problem instances will be one

105
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of our axioms. Because of this, there is no need for us to definetion of a
“ternary orientation rule”, or anri-ary orientation rule” for any > 2. If a binary
orientation rule satisfies that associativity axiom, thencan extend it uniquely
into an orientation rule for transverse, mixed fiber produgtx s Az xs,- - - X, ,
A, of any arityn, since all ways of evaluating such arary fiber product using
n — 1 nested binary fiber products will give the same result.

9.1.1 The Isomorphism Axiom

We want our rule for orienting the fiber produsf f] xs[g] B to be based solely
on the abstract structure of the linear spa&eB, andS, the orientations on those
linear spaces, and the abstract structure of the linear magsdg. We don't
want the rule to flip a coin. We don’t want its decision influeddy extraneous
properties, such as the colors that the elements, d@, or S might happen to be
painted. To enforce these restrictions, we insist thatulerespect isomorphisms
that is, that it give isomorphic answers to isomorphic peabinstances.

fAS>s& BandA > 5 & B aretwo binary problem instances, what
does it mean for them to be isomorphic? No surprise: Theysan@aorphic just
when there exist orientation-preserving bijections betweorresponding spaces
that commute with the factor maps:

f
A—.s-2 B

PP

(9-1) A——S~——PB

That is, there must existmaps A — A,y : B— B’,andyx: S— S thatare
orientation-preserving bijections and that satigbyf = f'ocp andyog =g ov.

/

Given two problem instancea e s & BandA i s & B that are
isomorphic, the resulting fiber products are also isomarpdti least up to orien-
tation. In particular, consider the mag (A xs B) — (A’ xg B’) defined by
w(a, B) = (p(a), ¥(B)). This definition makes sense because the fiber product
Ax sB is asubset of the direct produstx B and because the unprimed constraint
f (@) = g(B) implies the primed constraint’(¢p(«@)) = x(f(a)) = x(9(B)) =
g'(¥(B)). The mapw is easily seen to be bijective. A binary orientation rule
satisfies thésomorphism Axionust when, in this situation, it always orients the
unprimed and primed fiber products so thgpreserves orientation.

9.1.2 The Stability Axiom

We want our rule for orienting linear-space fiber productbftao a rule for ori-
enting smooth-manifold fiber products. Hence, as we digtussChapter 6, we
must require stability. We enshrine this requirement asStiadility Axiom Our
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orientation rule for binary problem instances mustskeble in the sense of the
equivalent Definitions 6-6 and 6-7.

9.1.3 The Reversing Axioms

Reversing the orientation on any one of the spakeB, or S, while leaving the
factor mapsf andg unchanged, must reverse the orientation on the fiber product
Al f] xs[g]B. In symbols, we can write thReversing Axioras follows:

(—A) Xs B = AXS(—B) = AX(_S) B = —(A Xs B)

We shall sometimes split this axiom into three pieces:Libi Reversing Axiom
theRight Reversing Axionand theBase Reversing Axiam

Reversing the orientation of a base space is another situatihere mixed
fiber products are simpler than pure ones. Note that a mixadly fiber product
A; x5 A Xs, -+ Xs,_, Ay hasn — 1 different base space&§ throughS,_;.
Reversing any one of them reverses the fiber product — no myyistere. In the
pure case, however, our only option is to reversa alll of them simultaneously,
since they are all copies of a single base sgacehat explains why, as we noted
in Exercise 7-11, the orientation of a pureary fiber productA; xs--- xs A,
depends on the orientation of the base sgagest whenn — 1 is odd.

9.1.4 The Both Identities Axiom

Consider the particular binary problem instarge> S < S, in which both of
the factor space#é and B coincide with the base spa&and both of the factor
mapsf andg are the identity 1S — S. The fiber product x s Sis naturally
isomorphic toS, and the fiber-product mapxs 1 is that isomorphism: the map
that takeqo, o) to 0. TheBoth Identities Axiomequires that the spa&x s She
oriented so that the mapxs 1 preserves orientation. In symbols, we shall write
this axiom simply as

SxsS=S

where each factor map is understood to be the identity.

If we combine the Both Identities Axiom with the Left and RigReversing
Axioms, we deduce th@t-S) xsS= Sxg(—S) = —S, while (=S xg(—95) = S.
If we further combine those axioms with the Isomorphism Awjave can handle

any problem instancA ~, s & Binwhich bothf andg are invertible; any such
problem instance is isomorphic to one of the four particidatances

s3s<s

sisd (-9
(-9 3s&s
(—S) 3S < (-9,
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according as the maplsandg either preserve or reverse orientation.

Exercise 9-2 One reason why the equidimensional case is easy is that vee hav
already listed enough axioms to determine that case coempl&uppose that we
require the Isomorphism Axiom, the Stability Axiom, the tahd Right Revers-

ing Axioms, and the Both Identities Axiom. Show that everyiggmensional,
binary, transverse fiber product then has a well-determamiehtation.

Sketch: By the Stability Axiom, it suffices to consider pretnl instances in
which both of the factor map$ andg are invertible. By the Left and Right Re-
versing Axioms, we can further assume that bb@indg preserve orientation. By
the Isomorphism Axiom, we can then assume that we have thieydar problem

instanceS 5> S <& S, whose answer ig-S by the Both Identities Axiom.

Exercise 9-3In equidimensional cases, show that @emmutativity Axiomthe
axiomA xg B = B xg A, follows from our other axioms.

Answer: By the Stability and Isomorphism Axioms, it suffitesonsider the
four cases in whiclA andB are eitherS or — S, with both factor mapd andg
being the identity 1 S — S. By the Reversing and Both Identities Axioms, those
four cases do commute.

9.1.5 The Left Identity Axiom

In order to nail down the Proper Orientations for problentanses that are not
equidimensional, we need further axioms. One thing to cargs what should
happen when one of the factor maps is the identity, but therasmot.

Consider a binary problem instance of the foBm> S < B, in which the left
factor spaceA coincides with the bas8 and the left factor mag is the identity
1: S— S, but the right factor space and factor map are unconstrainesiich a
case, projection onto the right factor is an isomorphisrwbenh the fiber product
Sx sB and the right factor spad®, and thd_eft Identity Axiontequires thabx sB
be oriented so as to make this isomorphism preserve olientdh symbols, we
encode this axiom as the formufaxs B = B. From another perspective, this
formula asserts that the identity map & :— Sshould act as a left identity for the
fiber product, viewed as a binary operation on mapS.to

The Left Identity Axiom combines with the Left Reversing Arn to give
us the formula(—S) xs B = —B. If we add in the Isomorphism Axiom, we
can handle any problem instance in which the left factor nfiais invertible,
whether it preserves or reverses orientation. Thus, we raw bufficient axioms
to guarantee that our orientation rule will obey the Leftdriible Law.

The Left Identity Axiom is stronger than the Both Identith&esiom, of course,
the latter being the special case of the former in whdch= Sandg := 1.
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9.1.6 The Right Identity Axiom

TheRight Identity Axionis symmetric. It requires that xsS = A, and imposing
it guarantees that our orientation rule will obey the Rigivelrtible Law.

9.1.7 The Axiom of Mixed Associativity

The key axiom that nails down the Proper Orientations in equidimensional
cases is the Axiom of Mixed Associativity. Here is where wagreur reward for
generalizing from pure to mixed fiber products.

letA5>sEBAT £Ccbea ternary problem instance. Since the maps
((f, 9), (h, k)) are then transverse, it follows, as in Exercise 8-2, thafoait of
the following are binary problem instances with transveraies of maps:

ALsdB
(AxsB) 5T &£ C
BLTEC
A5 s& (BxrC)

Here, we have writte’ for the forward factor map on the second line just to
remind ourselves that we must project from the fiber proddicts B onto its
right-hand factorB before we can apply the mdpto get toT. The mapg’ on
the fourth line is similar. Since these four binary problearestransverse, the two
nested fiber productA x sB) x+ C and A xs(B x1 C) are well defined. They are
also canonically isomorphic. Thxiom of Mixed Associativisequires that they
be oriented so that the canonical isomorphism preservestation. In symbols,
we haVG(A xsB) x1C=Axs(B xtC).

Warning: Associativity is often used as a rewrite rule; s taxiom has a
side condition that we must check, before doing such a riegritSuppose that
we come across a nested, binary fiber product in some catmulaet ours, say
(AxsB) x1 C. Before we can use the Axiom of Mixed Associativity to move th
parentheses to the right, we must check that we actually hagenary problem
instance. Transversality isn’t typically a problem, sinwben the inner and outer
binary products are transverse, the ternary product istedssverse. But there
is a more basic reason why there might not be a ternary prpdaodssue about
the left factor map of the outer product. Let’s call that neapA xs B — T, so
our current product is actuallyA xs B)[e] xt C. To apply the Axiom of Mixed
Associativity, we need a factor mdp B — T. Our context may well supply
such a magh, a map with the property thata, b) = h(b), for every point(a, b)
in A xs B. Our mape can then play the role di’ and the Axiom of Mixed
Associativity will apply. But we must check for the existenof the magh as a
side condition. If the value(a, b) depended om, as well as orb, then no such
maph could be defined and the Axiom of Mixed Associativity wouldapply.
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9.1.8 The issue of commutativity

Commutativity is a frequent companion to associativityt Buere is no hope for
an oriented fiber-product operation to be commutative ingeherality.

Proposition 9-4 A rule for orienting the transverse fiber products of lingraces,
if it satisfies the Isomorphism Axiom, cannot be fully comatiue.

Proof In the hoped-for identityA xs B = B x s A, consider a case in which
S := ¢{ is zero-dimensional and positively oriented, while ba&thand B are
1-dimensional, say wittA = (@) and B = (8). The two factor mapd andg
must be identically zero, and those maps are transversdibEngroductA x s B

is the entire plané x B, for which the vectorsa, 0) and(0, g) form an obvious
basis. Our orientation rule will determine which comes figgt 0) or (0, 8), in a
positive basis for the plan& x s B. Lettingn denotet+1 as appropriate, we have

(9-5) A xsB =n((a,0),(@O,pB)).

What would commutativity mean, in this case? et Ax B — B x Abe the
swapping map, the map defined Byxa, yB) := (yB, Xa), for all real numbers
andy. For commutativity to hold, we would have to haVgA x, B) = B x, A.
Substituting in from Equation 9-5, we would need

(9-6) B x, A=Y (n((,0), O, 8)) =n(0a), (B, 0).

But our original problem instancé 2 % 2 Bis also isomorphic to the
swapped problem instan@ > o 2 Aas follows:

A—2.6-9 B
@ 0 1//{
B—O><><—OA

Here, the magp: A — B is given byg(tx) := tg, for all real numbers; and
the mapy: B — Ais ¢ = ¢~1. The Isomorphism Axiom requires that the
combined magp x ¥ : Ax, B — B x, Apreserve orientation, so we must have
(¢ x¥)(Ax,yB) = B x, A This time, when we substitute in from Equation 9-5,
we find that

(9-7) B xy A= (¢ x ¥)(n{(, 0), (0, B))) = n{(B,0), (0, ).
But Equations 9-6 and 9-7 are flatly contradictors.

In fact, this result is not really about fiber products, buhea about direct
products, the direct produét x B being just that special case of the fiber product
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A x B = A x, B in which the base space {s Thus, Proposition 9-4 actually
proves that there is no rule for orienting the direct produaft oriented linear
spaces that is both commutative and respects isomorphisms.

So we aren’t going to get full commutativity. To enable ouplmation to
CAGD and robotics, commutativity had better hold for equidnsional problem
instances. But that is already guaranteed without any rexeatiditional axioms,
as we saw in Exercise 9-3.

9.1.9 The Concatenate Axiom

Consider a binary problem instance of the fohm> % & B. The factor mapd
andg must both be identically zero, so the fiber product will be ¢hére direct
product: A x, B = (A x B). If our axioms are going to be complete, we
need some axiom that determines the proper orientatiorufdr a fiber product.
We have already chosen to use the Concatenate Rule to oifent groducts.
The most straightforward thing to do is to use that same rgle far these fiber
products. So, th€oncatenate Axiomequires thatA x, B = A x B, where
the direct product on the right-hand side is oriented udiegGoncatenate Rule.
That is, the positive basis fok precedes the positive basis fBrin assembling a
positive basis forA x, B.

There is some unavoidable arbitrariness about this chdicee liked, we
could instead adopt tHeoncatenate-Backwards Axiomhich says thaAx B =
B x A = (—1)2(A x B). We simply have to choose something, and either of
those choices turns out to be consistent with our other axiom

Exercise 9-8 Suppose we take the base sp&® be the direct product of the
oriented space# and B, oriented via the Concatenate Rule — so we h@ve

A x B. And suppose that we take our factor maps to be the standations;
sof: A— Ax Bisgivenbyf(x) := («,0), whileg: B — A x B is given

by g(B) := (0, B). Those two factor maps are always transverse, and the fiber
product A xs B = A xaxs) B is always zero-dimensional, representing the
transverse intersection of th& and B axes in the direct produdA x B, as in
Section 4.7.2. Is that intersection oriented positivelpegatively?

Answer: It turns out thaf x a.g) B = (=1)3°$.

This result might lead some readers to suspect that we arenghakmistake
by adopting the Concatenate Axiom. The Concatenate-Badsssxiom would
eliminate the factor of—1)° in this formula; would that be the better choice?
No. To see why not, try extending the example in this exerfrism a binary
intersection to a ternary one. Wihi:= A x B x C as our base space, we need
to take the pairwise products x B, B x C, and A x C as our factor spaces,
rather than the individual spacés B, andC. But in which order should we put
those three products? Surddyx C should go first, since it is the factor space in
which Ais missing. Indeed, after adopting the Concatenate Axioensknall find
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in Exercise 10-21 that the fiber prody& x C) xs (A x C) xs (A x B), which
is zero-dimensional, is always positively oriented. Theeagal,n-ary formula is

(AL x - x Ay Xs (AL X Ag X oo X Ay) X+ Xg (A X -+ x Ay) = 49,

whereS = A; x --- x A, and the hats indicate omitted factors. Going back to
the binary case = 2, we should have considered the reversed proBuct A =

B x(axg) A, sinceB is the factor space in which is missing; and, under the
Concatenate Axiom, that product is the simple oBex axs) A = $.

9.2 Completeness

The axioms in our list, while they are far from independeng, laoth consistent
and complete. We first show their completeness.

Lemma 9-9 LetM > U <~ N be a binary problem instance; so the mapand
g are transverse and the spabésU, andN are oriented. Let be any oriented
linear space, and recall, from Section 5.4, that the fépp: L x M — U is
defined by 04 p)(A, u) = 0(L) + p(n) = p(w). If we assume the Isomorphism,
Mixed Associativity and Concatenate Axioms, we then have

L x (M[p] xu [gIN) = (L x M)[0 # p] xu [q]N,

as an equality between oriented linear spaces.

Proof We first apply the Axiom of Mixed Associativity to the terngpyoblem
instancel 2 ¢ < M 2 U & N, getting

L[O] x [01(M[P] xu [AIN) = (L[O] x, [0]M)[p] xy [4]N,

wherep': L x, M — U is the map given by'(x, n) = p(n). We then apply
the Concatenate Axiom, on each side, to replace the fibeupteaverd with
direct products, noting that the mapthen becomes the maptop. (We need the
Isomorphism Axiom, on the right-hand side, to ensure thavtliter fiber product
doesn't flip to the opposite orientation when we apply the &denate Axiom to
its left factor space.) O

Theorem 9-10 There is at most one orientation rule for transverse, bifibgr
products of oriented linear spaces that satisfies thesexivena: Isomorphism,
Stability, Left Identity, Mixed Associativity, and Coneatate.

Proof Given any binary problem instano& e s < B, we claim that the
orientation of the fiber produd[ f] xs[g] B is determined by the listed axioms.
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We first apply Lemma 9-9 to the original instanAeL s BwithL := S,
learning that

Sx (A[f] xs[g]B) = (Sx A0 # f] xs[g]B.

The fiber product on the left in this equality is the arbitrarne that we started
with, while the fiber product on the right has a left fact®i A, whose dimension
is at least the dimension of the base sp&ceHence, it will suffice for us to

demonstrate that all binary problem instan¢lesi> s < Binwhicha > s
are determined. (In fact, we could restrict ourselves &rtio binary problem
instances in whicla > s and the valued («) of the left-hand factor map don't
depend upon the firstcoordinates of the vecter in A. But we won'’t need that
additional restriction.)

In any problem instance wita > s, there always exist linear surjections
from Aonto S, so leth: A — Sbe one such. There are only finitely many real
numberst for which the linear combinatiori + th will fail to be a surjection.
Hence, perturbing the first factor map to he= f +th while leaving the second
factor map aloneg; := g, will guarantee transversality for all real numbetbat
are sufficiently close to zero: Iof,) +1m(g;) = S+Im(g) = S. Thus, our current

problem instanceA L s & Bis the limit of problem instanceA s
in which the first factor mag; is surjective. By the Stability Axiom, it suffices to
show that all instances of this latter type are determined.

So suppose that the mdpin the problem instancé L s Bis surjective.
Let C be some complement of Kgir) in A, viewed for now as unoriented; we’'ll
orientC in a moment. The linear map gives us a bijection fromA/ Ker(f)
to Im(f) = Sand hence also a bijection fro@ to S; call that latter bijection
f: C — S, and orientC so that the bijectionf preserves orientation. And let
K denote the linear space Kdrn), oriented so thak x C = A is an equality
between oriented linear spaces. We now apply Lemma 9-9 toitiaey problem
instance

chsls,
with L := K, learning that
K x (C[f] xs[g]B) = (K x C)[0# f] xs[g]B.

The right-hand side is the fiber produsf f] xs[g] B whose orientation we are
trying to show determined. On the left-hand side, the laftdhfactor map of the
fiber product is the orientation-preserving bijectibnHence, by the Isomorphism
and Left Identity Axioms, we have

K x (C[f] xs[g]B) = K x (1] xs[g]B) = K x B.

Thus, the orientations of all transverse, binary fiber potslare determined by
the listed axioms. O
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9.3 Consistency: Calibrating the Delta Rule

To show that our axioms are consistent, we need to constnuatiantation rule
that satisfies them all. We shall construct that rule by agldmexplicit calibration
factor to the Delta Rule of Definition 7-2. By the way, the &lling version of
the Delta Rule has also been generalized, in the obviousfraay,pure to mixed
fiber products.

Definition 9-11 (The Calibrated Delta Rule) For somen > 1, let

f1 92 f2 fa-1 On
AL— S <— A e S

An

be ann-ary zigzag, consisting of oriented linear spaces andllimegps. LetP be
the mixed fiber producP := Aq[ f1] xg [92] Ao F2] Xs, - -+ Xs,_, [On] An, Which
we view as a subspace of the direct prodDct= A; x --- x A,. We define the
difference map\: D — S x --- x S_1 by

Aoy, ..., an) = (G(o2) — fr(@r), ..., Onlon) — faa(an-1)).

We assume that our zigzag is transverse, which means thditfégrence map\ is
surjective. IfC denotes any oriented complementt= Ker(A) in D, it follows
that A mapsC bijectively onto ImMA) = § x --- x §,_1. The Calibrated Delta
Rule orients the fiber produ@ so that
(9_12) P@C:(AlXSl"'XSHAn)@C:(_l)K A(C) .

D Arx - x Ay S XX S-1
The calibration is determined by the exponerih the factor(—1)*. We choose
our calibration factor to depend upon the dimensi@as. . ., a,) of the factor
spaces and the dimensiofs, ..., S,_1) of the base spaces as follows: :=
kn(a1, ..., 8 S, ..., Sn_1), Where the functior,, : N"xN""1 — 7/27is defined

by
(9_13) Kl’l(alv"'van;slv"'vs“l—l) = Z S(aj+1_sj)

1<i<j<n

The main new idea in Definition 9-11 is the calibration fuontk, given in
Equation 9-13, which is rather mysterious at first glance.cQirse, we made
various arbitrary choices in setting up the Delta Rule; if eb@nged our minds
about those choices, then the proper calibration functionlvchange as well.
But the formula fork, is so wild that no simple readjustment of our arbitrary
choices could possibly free us entirely from the need tdcate.

We can avoid the issue of calibration in the equidimensicaak, however;
that is another way in which the equidimensional case is.damyany integem,
we have

kn(M,....,m;m, ..., m =0,

n n—-1
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since each term (a;;1 — S;) = m(m — m) in the sum is zero. Indeed, when the
factor mapgy, throughg, are all invertible, that by itself is enough to guarantee
thata;;; = s for j from 1 ton — 1, and hencen(ay, ..., a; St ..., S-1) = 0.
This explains why we found, in proving Theorem 7-12, thatitinealibrated Delta
Rule already obeys the cake= 1 of the All-but-One Invertible Law 4-7.

Our next goal is to verify that the axioms in Section 9.1 araststent by
showing that the Delta Rule, when calibrated by the pawicfunctionk, given
in Equation 9-13, satisfies all of those axioms. Of courseséhaxioms talk only
about the binary case, so we shall typically work only witl Hinary calibration
functionx,: N2 x N — Z/27 given by, (a, b; s) = s(b — s). In the process of
verifying associativity, however, we shall go further aradify thatx,, as givenin
Equation 9-13, is the proper calibration function for altias n.

Theorem 9-14 Let theBinary Delta Rulebe the binary case of the Delta Rule,
calibrated by letting,(a, b; s) := s(b — s). The Binary Delta Rule orients every
transverse fiber product of linear spaces in a way that sstiafl of our axioms:
Isomorphism; Stability; Left, Right, and Base ReversingtiB Left, and Right
Identity; Mixed Associativity; and Concatenate.

Because of associativity, the Binary Delta Rule extendgueiy to am-ary
Delta Rule, for alh; and that rule corresponds to adopting the calibrationtfanc

k(@1 ..., @3S .. S = Y S(811—9),

1<i<j<n

given in Equation 9-13.

We tackle the proof of Theorem 9-14 one axiom at a time.

9.3.1 The Isomorphism Axiom

The Isomorphism Axiom holds regardless of how the Delta Rsilealibrated,
and the proof is quite straightforward. We start with twodrnproblem instances

A S s < BandA AN S g B’ that are isomorphic. IC is any oriented
complementoP := AxsBin Ax B, thenthe image o€ under the isomorphism,
call it C’, will be an oriented complement & := A’ xg B’ in A’ x B’. With this
choice forC’, the right-hand quotients in the equations

ROC (—1)2@b® 20 Poc_ (—1yee@bis) A'(C)
Ax B S A x B S

will have the same sign. The calibration factors are alsostrae, because we
havea = @, b = b, ands = . So, on the left-hand side, the isomorphism must
carry P to + P’ rather than to- P/, as the Isomorphism Axiom requires.
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9.3.2 The Stability Axiom

We saw, in Proposition 7-6, that the Uncalibrated Delta Raiktable and that it
remains stable under any recalibration that depends ordy thee dimensions of
the factor spaces and base spaces.

9.3.3 The Reversing Axioms

The three Reversing Axioms also hold, no matter what caldmaunction we
adopt. Consider the relevant formula:

POC 1 s AC)
Ax B s

Reversing the orientation on the first factor spéceeverses the denominator on
the left-hand side and nothing else; so we have to reversé¢so, to keep the
equation valid. ReversinB is similar. Reversing reverses the denominator on
the right-hand side and nothing else; so, again, we haveseygeP. Thus, any
calibration of the Delta Rule satisfies all three ReversixgAs.

9.3.4 The Both Identities Axiom

The Both Identities Axiom is the first of our axioms that adtyiaonstrains the
calibration function. It turns out that the Both Identitidgiom holds just when
Ko IS zero on its main diagonal — that is, whes{m, m; m) = 0O, for allm > 0.

Our chosen calibratior,(a, b; s) = s(b — s) certainly meets this requirement.

Here is why. For the problem instanBe> S < S, the Delta Rule says:

PeC < AC)
— (=1 k2(S,S;S)
Sx S D S

The fiber producP = S x5 Sis, up to orientation, the main diagonal fx S,
the spaceP = {(0,0) | 0 € S}. So we haveP = 7 (1s.s, 1s.5)(S) for some
signn = +1, and the Both Identities Axiom requires thgat +1.

We get to choos€ to be any oriented complement Bfin S x S, and it is
convenient to choos€ = (0, S), that is, to seCC := (0Os._s, 1s.5)(S). With this
choice, since the difference maphas the matriA = (—1s.s 1s.s), we have

(9-15)

Os.
A(C) = (~1scs 1scs) (15 S) (9 =+S.
S<S
Thus, the quotient on the right-hand side of Equation 9-tltices to+<).
On the left-hand side, pasting together our recipe$’fand forC as specified
in Equation 5-7, we find that

_(1scs Oscs
P®C=n <1S&S 1&S> (Sx S).
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Since either an elementary row or column operation contigsmatrix into the
identity, we conclude thatP & C)/(S x S) = <. Thus, to make Equation 9-15
hold withn = +1, it suffices to ensure thas(s, s; s) = 0.

9.3.5 The Left Identity Axiom

To analyze the Left Identity Axiom, we consider the instasces S < B, for
which the Delta Rule says:

(9-16) PL%: — (—1)<sbs A©)

Sx B S
The fiber producP = S x g B here is the subspace 8fx B = S x B consisting
of all pairs of the form(g(B), B), for 8 in B. We thus have® = (g, 1g.g)(B)
for some sigm = +1, and the Left Identity Axiom requires= +1.
We chooseC, this time, to be the spac@ := (S, 0) = (1s.s, Og.s)(S). With
that choice, what happens on the right-hand side? The elifter map\ here has
the matrixA = (—1s.s @), SO we have

OS<—S

AC) = (-1s.s Q) (18*3) (S =—(S = (-1°S,

where *=" is the negation map discussed in Exercise 5-3. We conclhde t
A(C)/S = =(9/S = (—=1)%¢. Sincek? is odd just wherk is odd, we can
rewrite this ag—1)5"¢.

As for the left-hand quotient in Equation 9-16, pasting tbge the column
matrices that defin® andC, we have

P@C:n( g 13“5)(B><S).

1B<—B OB<—S

To simplify this matrix, we multiply the second column Igyon the right and
subtract from the first column — or we multiply the second romgoon the left
and subtract from the first row. Either way, we conclude that

P®C=r (OS*B 15*) (B x9),
1B<—B OB<—S
where this matrix denotes simply the swapping map fil®m Sto S x B. From
our study of the Concatenate Rule in Section 5.2, we conduaeP & C =
n(—1)PS(S x B), so the left-hand quotient ig(—1)°S¢.
To make Equation 9-16 hold with= +1, as the Left Identity Axiom requires,
we must have

(_1)bS — (_1)K2(S,b;s)(_1)52.

So the calibration functior, must satisfy,(s, b; s) = bs— s? = s(b — s). And
our proposed calibration, given ky(a, b; s) = s(b — s), meets this requirement.
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9.3.6 The Right Identity Axiom

The Right Identity Axiom is simpler. For the instanée—f> sd S, the Delta
Rule says
PaC _ (_1ye@ss A(C)
Ax S S’

where the fiber product is the subspa@e= +(1a.a, f)(A) of A x S and
the Right Identity Axiom requires the positive sign. ChogsC = (0,S) =
(Oacs, 1s.s)(S) reduces the quotient on the right-hand side-tp, while the di-
rect sumP & C is the image ofA x Sunder the map with matrix

1A<—A OA<—S
f  lss)’
Using an elementary row or column operation to zero out fthentry, the left-
hand quotient also reduces+a). So the Right Identity Axiom holds just when

the calibration functiom, satisfies the identity,(a, s; s) = 0. And our proposed
functionx,(a, b; s) := s(b — s) meets this requirement also.

9.3.7 The Axiom of Mixed Associativity

Verifying the Axiom of Mixed Associativity involves rathentricate reasoning,
but the challenges are more notational than conceptual.

The axiom itself(A xs B) x1 C = A x5 (B x1 C), involves only binary
fiber products. One way to show that the two sides have the eggrgation is to
show that each side has the same orientation as the terralyg@A xs B x1 C.
We can unify the arguments for the left and right sides by geizéng as follows.
Consider the nested product

Ar Xg - X5, Aice Xs_; (A X5 Aitr) Xs,, Aiv2 Xs, 0 Xs An,

where 1< i < n. That is, we first combine the adjacent factédtsand A ; in
an inner, binary fiber product. We then combine the resulhaf inner product
with the remaining factors, using an outer fiber product dfyar — 1. We shall
show that the orientation that results from this two-stepcpss agrees with the
orientation that would result from computing the overalbguct in onen-ary
step. Once we have that general result, the two special ¢asgs= (1, 3) and
(i, n) := (2, 3) combine to establish the Axiom of Mixed Associativity.

In order for the nested orientation and the overall orieotetb be defined, we
must calibrate the Delta Rule for products of arities 1 andn. As we claimed
in Section 9.3, the proper calibration function for any pesin is

kn(@1, ..., @3S .. S = Y Sd@s1 — §).

1<k<l<n
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In addition to establishing associativity, our argumenbbeverifies that these are
the proper calibration functions for products of arnity> 2. In what follows, it is
helpful to writek, with the sum ork outside:

k@1, .., 80 SL o Se1) = Y S ) (@ —9)

1<k<n k<l<n

To make our formulas somewhat shorter, let’s use the symbwmldenote the
spaces associated with the inner fiber product, wHiland J denote the spaces
to its left and to its right. That is, for the factor spacég), we set:

Ay =A; x---x A_1
A=A x A
Aj ::Ai+2X~--XAn

We also abbreviate the full direct produst x - - - x A, = Ay X A x Aj asAy ;.
For the base spacé€s,), we do something similar, except that one less space is
involved:

SHi=3x--x 31

S =3

S =8ax--x &
Sy =S %X G

We first tackle the inner fiber produé x5 A1, which we denote byp,.
Let C, be some oriented complement®fin the direct produc, = A x Ai;1.
Applying the Delta Rule to the inner product, we have

P & C e A1(Cy)
— (_1)S(a|+1 S) ,
A S

where A, : Ay — S is the difference map that is given by, (o, aj11) =
Oir1(air1) — fi(a;). Call that the Inner Equation.

Now for the outer fiber produdd; xs - - x5, Ai_1 Xs , P xs,; Aij2 Xs,,
-+ Xs,_, An, Which we denote byP,. Let Co be some oriented complement of
Po in the corresponding direct prodult x - - - x Ai_1 X Py X Ajjo X -+ x Ay =
Ay x P, x Aj. With our abbreviations, the Delta Rule applied to the opteduct
says that

(Inner)

Po®Co (1)Ko Ao(Co)
AHXP|XAJ_ S—|XSJ’

whereAog: Ay x P x A; — Sy x Sy is the map defined by

(Outer)

Ao(ag, ..., o1, (&, Aiy1), Aig2, ..., Op) 1=
(Qa(e2) — falen), ..., Gilei) — fia(eioa),
Gis2(iy2) — fira(oiga), ..., Onlon) — fn—l(an—l))-
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Note that the difference;1(xi 1) — fi(®;), which is identically zero orP,, is
omitted when defining the outer difference mag. In this Outer Equation, the
exponentK o of the calibration factor can be written

Ko:=Y_ sk( Y @a—9)+ (P -5+ Z(am—s))

1<k<i k<l<i—1 i<l<n

+ > s ) @u-9),

i<k<n k<l<n

wherep, := dim(P,). Since the inner fiber product is transverse, we have-
a + a1 — S; so this simplifies to

Ko= > s ) (@a1—s)

1<k<n k<l<n

k#i
Finally, let Py := A; xg - - X5, , Ay be the overall fiber product, viewed as
a subspace of the overall direct proddgtx --- x A, = Ay,;. We need some
oriented complemer@, of P, in Ay,;. We choose to sé€l, := Co d C;, where
C/ :=0xC, x0isCy, viewed as subset d&y,;. Applying the Delta Rule to
the overall product then gives us

Py ® Co ® C| (LD Av(Co @ C))
Aui Sy '

In this Overall Equation, the difference may, is the obvious one, while the
exponentKy of the calibration factor is

Ky =) s @m—9).

1<k<n k<l<n

(Overall)

The spaced, and Py are the same, except possibly for their orientations;
and we want to show that their orientations are the same ds Wwef the sign
n = £1 be such thaP, = nPg; we shall show that the Inner, Outer, and Overall
Equations imply thay = +1.

We begin with the quotient on the left-hand side of the OvVeEgluation,
which we’ll call the Overall left quotient:

Py @ Co ® C| _nPoEBCOEBCf
Aniy Aniy
We can produce a second quotient with the same numeratoafiingtwith the

Outer left quotient and adding; as a direct summand at the right end of both the
numerator and denominator:

(9-17)

Po®Co Po ®Co & C|
Ay x P x Ay (Apx P xA)aC
Po ® Co @ Cy

T (Aux P xA)®OxC x0)

= (_1)dim(C|)dim(AJ) Po ®Co & Ci
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Since the inner fiber product is transverse, we have@jm= s ; and we trivially
have dintA;) = a.» + - - - + a,. We now rewrite Equation 9-17 with the right-
hand quotient expanded as the product of two quotients, &ndse what we've
just learned to simplify the first of them:

Pv@co@cf_n Po @ Co ® Cj XAHX(P|@C|)XAJ
Anig Ay x (PL®C)) x A Anig
Po & Co Ay x (P& C)) x A

— n(_l)s (@42+++an)

AH><P|xAJ>< Ania

The rightmost quotient in this expansion also arises if vaet stith the Inner left
guotient and add direct-product factors A&f; on the left andA; on the right of
both the numerator and denominator:

P|@C| . AH X(P|@C|)XAJ . AH X(P|€BC|)XAJ
A| o AH X A| XAJ N AH|J

So we deduce the following relationship between the Ove@iliter, and Inner
left quotients:

Ph®Co®Cj ()5 @izttan Po®Co  POGC
AH|J =1 AHXP|XAJ A|

Substituting the right-hand sides of the Overall, Outed Bmer Equations for
their left-hand sides, we find that

(9-18)
Av(Co @ C)) R Ao(Co) ey A(Cy)
—1Kv 2 — (—1)S @+2t+an)+Ko —1)5@+1-8)
=1 Sis n(—1) S x SJ( ) 5
— (—1)S @rz++a)+Ko+8 @1-S) Ao(Co) x A1(C1)
(SH X §) x §
Note that any pointoy, . . ., oj_1, (@i, Qit1), Xigo, ..., on) INCo hasfi (o) =

Oi+1(ait1), sinceCo is a subset oAy x P, x Aj;. Thus, theS coordinate in
Ay (Co), the coordinate that is omitted ing (Cp), is always 0. So we can rewrite
the quotient on the right-hand side of Equation 9-18 usingatlisums as

Ao(Co) x A1(Cy)  Ay(Co) ® (0x A(Cy) x0)
(Si xS xS (Six0xSHBOxS x0)

Compare this with the quotient on the left-hand side of Eigue-18, which is

Ayv(Co® C)) _ Ay (Co) @ Ay(C))
Siis SHis '

The second summand in each of these numerators is an oremtgaement of
the common first summantly (Co) in Sy, SO Exercise 5-5 is relevant here. Let
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¢i: S413 — § denote projection onto the factor spage= S, and note that
Ker(¢pj)) = Sy x 0x § = Ay (Co). Exercise 5-5 then tells us that our two
numeratorsAy (Co) @ (0 x A(Cy) x 0) and Ay (Co) @ Ay (Cy) will give the
same orientation t&, ; just when the two expressiogs(0 x A, (C,) x 0) and

¢i (Ay(C))) give the same orientation t§. And they do: Consider any point
(¢, ajy1) in Cy. This point maps to

(Ov---9oagi+l(ai+l)_ fi(ai)909"'90) in (OX A|(C|) XO) and to
Y M
i—1 n—i—-1
©,...,0,0(x),Gi+1(it1) — fi(e), = fija(ig1),0,...,0) in Av(C)),

i—2 n—i—2
and both of those map @1 (1) — fi(«j) underg;. So we conclude that
Av(Co®C)) _ Ao(Co) x A(C))
S—| 1J S—| 1J '

Comparing this with Equation 9-18, we next account for tHéetknce between
the denominator§y;; and(S5 x §) xS = (S x0x )P (0 x § x 0). We
have

Sii =S xS x G =DM ((§; x0x ) @O xS x0),

where dimS ) dim(S;) = s(s11+- -+ S_1). Equation 9-18 thus reduces to the
following equation about signs:

(_1) Kv — n(_l)S (@42++an)+Ko+s (@ +1—5)+S (S41++S-1) .

The exponenK cancels out most oKy, leaving just the terms iy, with
k=1i,whichares ) ,_,_,(a+1 —s). Recalling that signs don’t matter in dealing
with exponents of-1, those terms exactly cancel against the remaining explici
terms in the exponent on the right-hand side. We conclude) il of this, that
n = +1, which completes our proof of mixed associativity.

9.3.8 The issue of commutativity

While we know that we can’t achieve full commutativity, itirteresting to see
what does happen about commutativity, with our chosen rieldn functionk,,.
We claim thatA x g B = (—1)@9®-9(B x g A). Recall that direct products skew
commute just when the dimensions of both factor spaces akeFaber products
generalize this by skew commuting just when both factorspaave dimensional
parity opposite to that of the base space.

This claim is easy to verify. LeP := A xs B andP’ := B xs A be the
two fiber products, each oriented as specified by the Delta.RiétC be some
oriented complement oP in A x B, and letC’ be the image ofC under the
swapping magia, 8) — (B, @). The spac&’ is then an oriented complement of
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P’in B x A. If we apply that swapping map to the fiber prod&gtwe get either
P’ or —P’, and our challenge is to determine which. Applying the DEItde to
the unprimed case, we have

P @ C — (_1)S(b—S) A(C)
(A,0)® (0, B) S
In the primed case, we get
P/ o) C/ _ (_1)s(a—s) A/(C/)
(B,0)® (0, A) S

Noting thatA’(8, «) = f(a) — g(B), we see that’(C’) = —=(A(C)), where ="

is the negation map discussed in Exercise 5-3. As for thequtitaft quotient,
let’'s apply the inverse swapping map, «) — («, 8) to the direct summands
in both numerator and denominator; this just changes ourdauate system and
hence does not affect the sign of the quotient. So the prirasd reduces to

EPYOC e s (AC)
(0,B)® (A, 0) s

Comparing this to the unprimed case, the left-hand dendoisidiffer by(—1)2%;
the calibration factors differ by—1)st-32 = (—1)-32-sP and the right-hand nu-
merators differ by—1)S = (—1)%°. So the proper sign iGtEP) is (—1)@ 909
as we claimed.

9.3.9 The Concatenate Axiom

The Concatenate Axiom is easy. Suppose Bat ¢ is zero-dimensional and
positively oriented; the Concatenate Axiom requires that, B = A x B. To
verify this, we apply the Delta Rule, getting

P®C | 0p0A©)
AxB_( b o

Noting thatC is zero-dimensional, we can take it to be positively oridnté/e
then haveP & C = P andA(C) = A($) = ¢, so we have

P AXOB
AxB AxB =+

That being the last of the axioms on our list, the proof of Tleen9-14 is now
complete. So there is a unique rule for orienting transyenseed fiber products
that satisfies all of the axioms on our list; that rule is thét®®&ule, calibrated
as in Equation 9-13. In what follows, we shall refer to thesntations produced
by that rule as th@roper Orientations Furthermore, given any transverseary
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fn—l

zigzag A, & S & A T b S & A,, we henceforth use the formula
A x5 A2 Xs, -+ Xs,_, Ay to denote its mixed fiber product, oriented properly.

(We defined the Proper Orientation for an all-invertiblergptiber product
back in Definition 7-10, and we extended that by continuityaliotransverse,
equidimensional, pure fiber products in Definition 7-15. We mow extending
further, both to the any-dimensional case and from pure tedfiber products;
but this new extension is consistent with those earlier defirs.)



Chapter 10

Adjusting the axioms

We have achieved our key goal: a consistent, complete, amgpeiting family
of axioms for a rule that orients any-dimensional transvditser products. In
particular, | am personally pleased that there turns outetar orientation rule
that satisfies the Axiom of Mixed Associativity.

In this final chapter, we consider several ways in which wehiagljust our
family of axioms. First, we study how free we would be to vawy orientation
rule, were we to give up on certain of our axioms. Second, seusis several
ways in which our list of axioms could be shortened by conrigra group of
axioms into a single, more powerful identity.

10.1 Twisted orientation rules

The Proper Orientation Rule is the unique rule that satisfiesf our axioms.
But suppose that we were willing to abandon some of our axiditisat freedom
would we thereby acquire to adopt some orientation rulerbfiit from the Proper
Rule? To study this issue, we introduce the concept of a “dsimmal twist”.

Given a binary problem instancé& Ls& B, we have agreed that the
formula A x s B denotes the fiber product with its Proper Orientation. Le¢sote
by A x§ B = (A xs B) that same fiber product, but oriented by some possibly
improper orientation rule.

For the problem instancé L s Btobe transverse, we must have b >
S; let 7 be the set of all triples of nonnegative integéaisb; s) witha + b > s.
Define adimensional twisto be any functionw: 7 — 7Z/2Z; so, for each triple
(a, b; s) in 7, we get to choose a free hit(a, b; s). Given a dimensional twist
w, the correspondingwisted orientationgiffer from the Proper Orientations as
follows:

Ax¥B:= (-1 @9 (A xgB).
What do our various axioms say about which dimensional srast legal?

125
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10.1.1 Twists are the only reasonable adjustments

It's easy to see that the Isomorphism, Stability, and RévgrAxioms hold for
any twisted orientation rule, just as they do for the untad$®roper Orientations.
The more interesting result goes in the other direction.

Proposition 10-1 Any orientation rulex* that satisfies the Isomorphism, Stabil-
ity, and Reversing Axioms is the twisted orientation rule:= x" corresponding
to some dimensional twist: T — 7./27.

Proof Let A x¥ B denote the result of orienting the fiber productxs B by
some rule that satisfies the Isomorphism, Stability, anceR#vg Axioms; and let
(a, b; s) denote some triple of nonnegative integerginit suffices to show that,

for all problem instances . s & B whose dimensions are given by the triple
(a, b; ), the quotients A x§ B)/(A xs B) have a common sign, since we can
then choose the free hit(a, b; s) to make that common sign lfe- 1)@,

Among such problem instances, the generic ones have faeps mandg
that are of the largest possible rank: dihdA)) = min(a, s) and dim(g(B)) =
min(b, s). By the Stability Axiom, it suffices for us to show that all $ugeneric
instances agree about the sign of the quotightxg B)/(A xs B), since any
non-generic instance is the limit of a family of generic arstes.

let A 5> s & BandA > s £ B be two such generic instances.
Since both are generic, we have dihgA)) = dim(f’(A)) and dimg(B)) =
dim(g’(B’)). And, since both are transverse, we havedit®) + g(B)) = s =
dim(f'(A) + d'(B")). It follows that dim(f (A) Ng(B)) = dim(f'(A)Ng'(B")).
Therefore, we can choose a bijectipn S — S that satisfieg (f (A) Ng(B)) =
f'"(A)YNg(B), x(f(A) = f'(A),andy(g(B)) = g'(B’). We can then choose
bijectionsg: A — A’ andy: B — B’ that satisfyy (f(«x)) = f'(¢(«)) and
x((B) =g (B)).

The three bijection®, v, and x almost constitute an isomorphism between
the unprimed and primed problem instances, as in Diagranti®elonly problem
being that they might not preserve orientation. So wefset= +A’, B” := + B/,
andS’ := £S5, choosing the signs so as to make/, andx preserve orientation
as bijections between the unprimed and doubly primed ies&nSince both the
proper orientation rule and the rute* satisfy the Isomorphism Axiom, the map
(o, B) — (p(a), ¥(B)) will be an orientation-preserving map both frolnx s B
to A” xg B” and also fromA x§ B to A” x§, B”. It follows that the two quotients
(Ax§B)/(AxsB)and(A” x§ B")/(A” xg B”) will have the same sign.

Both the proper orientation rule and the rué satisfy the Left, Right, and
Base Reversing Axioms as well, so we have bé8thxg B” = n(A xg B')
and A” xg B” = n(A x§ B’), where the sigm = (A"/A)(B"/B")(S'/S)
is +1 or —1 according as the number of sign reversals between theysamgl
doubly primed instances is even or odd. It follows that tinglsi-primed quotient
(A" x§ B)/(A xg B') agrees with the other twom
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The Isomorphism and Stability Axioms are our most basiagesthey ensure
that the orientation rule under discussion will lift fronméiar spaces to smooth
manifolds. The Reversing Axioms are less basic; but it toutghat some appeal
to all three of the Reversing Axioms can't be avoided in Peifian 10-1. As
the next two exercises show, the Reversing Axioms are nga@eisely in those
cases where either one of the three input spaces or the agpoé — that is,
eitherA, B, S, or A x§ B —is zero-dimensional.

Exercise 10-21In the proof of Proposition 10-1, consider a trigée b; s) in which
all four of a, b, s, anda+b—s are strictly positive. Show that all problem instances

A e s & B with the dimensionga, b; s) then share a common sign for the
quotient(A[ f] x§[g]B)/(A[ f] xs[g]B) without assuming that the orientation
rule x* satisfies any of the Reversing Axioms.

Sketch: Whers > 0, we can choose the bijectigh: S — S to preserve
orientation. Even when the primed and unprimed problenamsts are generic,
however, we may then be unable to choose the bijegtioA — A’ to preserve
orientation, since we might have diKer(f)) = dim(Ker(f’)) = 0. But, when
a, b, s, anda + b — s are all positive andy has rank mib, s), we can afford to
lower the rank of the map from min(a, s) to min(a, s) — 1 without destroying
transversality. Thus, we can smoothly alter the niajp a new mapf —: A —

S whose behavior has been negated in precisely one dimengithrout losing
transversality as the behavior in that dimension passesghrzero. The quotient
(A[T7] x%[g]B)/(A[ f 7] xs[g] B) for this altered problem instance has the same
sign as the original, by stability; and, if we compare th&r@d instance to the

primed instanced’ AN s & B, using the same bijectiop as before, we can
now choose the bijectiop: A — A’ to preserve orientation. Repeating the same
technique, if necessary, we can smoothly alter the mapone dimension to a
new mapg : B — S, thereby allowing the bijectioy: B — B’ to preserve
orientation as well — and all without any appeal to the Rengré\xioms.

It follows from this exercise that most instances of the Reng Axioms are
actually consequences of the Isomorphism and Stabilitypdws. That is, given
the latter two axioms, the only novel content in the Revergitioms concerns
fiber products where either an input space or the output spaeeo-dimensional.

Exercise 10-30n the other hand, show that the Reversing Axioms are redjuire
in Proposition 10-1 for those triples, b; s) in which at least one o, b, s, or
a+b—sis zero.

Answer: For triples witta = 0, consider the orientation rule* given by
AxiB = AxsB ?fd?m(A)>O
O xs B ifdim(A) = 0.

This rule assigns the Proper Orientation except when therfapaceA = —<¢ is
both zero-dimensional and negatively oriented, in whickeaadoes the reverse.
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So it differs from the Proper Rule by something that isn’t giyra dimensional
twist. This rule is stable because there is no way to smoatidye from a case
that it treats properly to a case that it treats impropengpdy by altering the
factor maps; changing from = < to A = —¢ requires a discrete jump. This
rule also satisfies the Isomorphism Axiom — and the Right aaseBReversing
Axioms, for that matter. But it violates the Left Reversingiém.

Triples withb = 0 or withs = 0 can be handled similarly. For triples with
a+b—s =0, consider the orientation rule that orients every positimensional
transverse fiber product properly, but orients every zémeedsional such product
positively, whether that is proper or improper.

10.1.2 Which twists have which properties?

For an orientation rulex™ that is based on a dimensional twist 7 — 7Z/27Z,
the structure of the twistw determines which of our remaining axioms will be
satisfied. Each axiom boils down to a certain constraint entwhistw. In four
cases, the axiom simply forces the twisted rule to agree tv@HProper Rule on
some subset df, so the constraint is quite simple:

The Both Identities Axiom holds when(s, s; s) = 0, for allsin N.

The Left Identity Axiom holds whem (s, b; s) = 0, for allb ands in N.

The Right Identity Axiom holds whew(a, s; s) = O, for alla ands in N.

e The Concatenate Axiom holds whera, b; 0) = 0, for alla andb in N.

But the Axiom of Mixed Associativity(A xs B) x1 C = A xs (B x1 C), is
more subtle. If we evaluate the left-hand side using thetédisulex™, our result
will differ from the proper result by-1 to the powem(a, b; s)+w(a+b—s, c; t).
Similarly, the twisted right-hand side will differ from thgroper one by-1 to the
powerw(a, b+ c —t; s) + w(b, c; t). So the Axiom of Mixed Associativity will
hold just when

(10-4) w(a,b;s)+w@+b—-s,ct)=w@ b+c—t;s)+w(b,c;t),

for all nonnegativey, b, c, s, andt witha+b > s, b+c > t, anda+b+c > s+t.
We shall refer to Identity 10-4 as thMixed Identity and we shall refer to those
dimensional twists that satisfy the Mixed ldentity as beaimged-associative

It is not immediately clear what structural properties ofimehsional twist
cause it to be mixed associative. It will turn out that the ediassociative twists
are precisely those of the form

(10-5) w(a, b;s) :=u@) +u(b) +u@+b—-s)+v(s)),

whereu: N — Z/2Z andv: N — 7Z/27 are arbitrary functions. Recall that every
triple (a, b; s) in 7 satisfiesa+ b > s, so the argumerd + b — sin the third call
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to u will be nonnegative. We shall refer to Equation 10-5 asWiMeRecipe The
twists that are mixed associative, it will turn out, are jgely those that can be
constructed from an appropriate pair of functignsv) via the UV-Recipe.

If a dimensional twistw can be so constructed from a pair of functigosv),
then there are always three other pairs of functicrisv’) that would produce
the same twisiw. First, suppose that we complement all of the values of both
functions, settings/' (k) := u(k) + 1 andv’(k) := v(k) + 1 for all nonnegative
k. Since there are four terms on the right-hand side of the @¥¢ise 10-5 and
we are working modulo 2, the paiu’, v") will generate the same twist &s, v).
Second, suppose that we complement all of the valdksandv(k) for k odd;
that is, we setl' (k) := u(k) + k andv’(k) := v(k) + k. Since the sum of the four
argumentga) + (b) + (a+ b — s) + (s) is zero modulo 2, we again get the same
twist. We can eliminate those two sources of redundancy bmalizing the pair
(u, v), arbitrarily constraining some two values of the functiorendv, one with
an even argument and the other with an odd argument. For é&ame could
require thau(l) = u(0) = 0 or thatv(1) = v(0) = 0. In fact, we shall constrain
one value olu and one value o#, requiring thau(1) = v(0) = 0.

Proposition 10-6 The UV-Recipe 10-5 constitutes a one-to-one corresporedenc
between dimensional twists that are mixed associative and pairs of functions
(u, v) that satisfy the normalization constraintd) = v(0) = 0.

Proof It is easy to see that any dimensional twisthat is constructed from a
pair of functions(u, v) via the UV-Recipe will satisfy the Mixed Identity 10-4
and will hence be mixed associative. The left-hand side efMtixed Identity
simplifies to

w(@,b;s)+w@+b-s,c;t)
=u(@) +u) +u@+b—-s)+v(s
+u@+b—-s)+ulcc)+u@+b+c—s—t)+v(t)
=u(a) +u() +uc)+u@a+b+c—s—1t)+v(s) +v(),

and the right-hand side simplifies to that same value.

To show the converse, let be a twist that satisfies the Mixed Identity 10-4 for
all quintuplegqa, b, ¢; s, t) witha+b > s, b+c > t, anda+b+c > s+t. We must
construct functionsi: N — Z/27Z andv: N — Z/27 with u(1) = v(0) = 0 and
with

w(a, b;s) =u@) + ub) +u@+b —s)+ v(s),

for all triples(a, b; s) with a+b > s. And we must show that this pair of functions
(u, v) is uniquely determined.

Step 1: Considering first the quintupless, k; s, s) for any nonnegative and
k, we find thatw(s, s; S) = w(s, k; s). Symmetrically, consideringk, s, s; S, S),
we find thatw(s, s; s) = w(k, s; S).
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Step 2: In the particular case = 0, we havew(k,0; 0) = w(0,k; 0) =
w(0, 0; 0). We want to havev (0, 0; 0) = u(0)+u(0)+u(0)+v(0) = u(0)+v(0),
and our normalization requireg0) = 0; so we must sai(0) := w(0, 0; 0). This
establishes the UV-Recipe in the cabe0; 0).

Step 3: We next consider the quintuplesb, a; 0, 0), learning that

w(a, b; 0) +w(@a+b,a;0) =w(a, a+b; 0+ w(b,a;0),
which we can rewrite as
w@,a+b;0 —w@+b,a;0) =w(,b; 0) —w(b, a; 0).

From this, an induction that parallels the subtractive algm for computing the
greatest common divisor allows us to deduce théd, b; 0) = w(b, a; 0), for
all nonnegativea andb. The base cases of that induction are the cases with
min(a, b) = 0, which we established in Step 2.

Step 4: For ank > 1, we want to arrange that

w(l,k;0) =u(d) +uk) +uk+1) +v0 =uk) +uk+1),

where the latter equality holds because the normalizatimesu(1) = v(0) = 0.
Since we are working modulo 2, it follows thatk+1) = u(k)+w(1, k; 0). Thus,
our only hope is to sai(k), for allk > 1, as follows:u(k) := >, _, w(1,i; 0).
Note that this givesi(1) = 0, as required by the normalization. Furthermore,
making this choice fou(k) establishes the UV-Recipe for all of the triplgs b; s)
with s = 0 and mina, b) = 1.

Step 5: Considering next the quintupl@s 1, b; 0, 0) for any nonnegative
andb, we find thatw(a, 1; 0)+w(a+1, b; 0) = w(a, b+1; 0)+w(1, b; 0). Since
the UV-Recipe holds for the first and last terms, it holds Fe& $econd term just
when it holds for the third. By induction along the diagonalshe planes = 0
with a fixed value ofa 4 b, we conclude that the UV-Recipe holds for all triples
(a, b; s) withs = 0.

Step 6: For alk > 0, we want to arrange that

w(S, S; S) = U(S) + U(S) + U(S) + v(S) = u(s) + v(s).

Sinceu(s) is now determined, this forces us to s€b) = w(s,S;S) — U(S).
Note that, whers = 0, this givesv(0) = 0, as the normalization requires. For
s > 1, this choice establishes the UV-Recipe for the partictrigie (s, s; S).
Furthermore, we saw in Step 1 thatk, s; s) = w(s, k;s) = w(s, s; s), for all
nonnegatives andk. From this, it follows easily that the UV-Recipe actually
holds for all triples of the forntk, s; s) or (s, k; S).

Step 7: Finally, we consider the quintupl@esb, 1; s, 0) for a+b > s, finding
thatw(a, b; s) +w@+b—--s,1;0) = w(a, b+ 1; s) + w(b, 1; 0). We know that
the UV-Recipe holds for the second and fourth terms; so d$fwr the first term
just when it holds for the third. Thus, by induction, the U\éd®e holds for the
entire column{(a, k; s) | k > max0, s — a)} when it holds for any entry in that
column. In Step 6, we saw that it does hold fars; s); so it always holds. O
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Let’s now restrict ourselves to dimensional twigtshat are mixed-associative
and can therefore be constructed via the UV-Recipe 10-5.s&ohn twists, the
Identity and Concatenate Axioms translate into restmdion the functiona and
v. There is an additional, very weak property that is worthscdering in this
context. It seems natural to hope tiak , ¢ = ¢, as opposed tp x, ¢ = —¢.

If an orientation rule has the properly x, ¢ = ¢, let's say that itpreserves
null-positivity. Note that any rule that satisfies either the Both IdentAié®m or
the Concatenate Axiom must preserve null-positivity.

Proposition 10-7 Recall that every mixed-associative twist correspondsletin
the UV-Recipe, to a unique pair of functioqs, v) with u(l) = v(0) = 0. The
twists that preserve null-positivity are those wil®) = 0. The twists that satisfy
the Both Identities Axiom are those with= v, that is, withu(k) = v(Kk) for all
k > 0O; those same twists also satisfy the Left and Right IdentixyoAs. The
twists that satisfy the Concatenate Axiom are those withO.

Proof A mixed-associative twisiy preserves null-positivity just when we have
w(0, 0; 0) = u(0) + u(0) + u(0) + v(0) = u(0) + v(0) = 0. Sincev(0) = 0 by
assumption, we must also hawvé@) = 0.

A twist w satisfies the Both Identities Axiom just when we haues, s; S) =
u(s) + v(s) = 0, that is, wheru = v. When this happens, it also satisfies the Left
Identity Axiom, sincew(s, b; s) = u(s) + u(b) +u(b) + v(s) = 0. And similarly
for the Right Identity Axiom.

A twist w satisfies the Concatenate Axiom just when we hava, b; 0) =
u(a) + u(b) +u(a+ b) + v(0) = u(a) + u(b) + u(a + b) = 0. Settinga := k
andb := 1, we find thatu(k) + u(l) + u(k + 1) = 0; sinceu(1) = 0, this means
u(k) = u(k + 1), so we haves = 0 by induction. O

Of course, if we want both the Identity and Concatenate Asidémnhold, we
must choos@ = v = 0; that is, we must eschew all twisting and adopt the Proper
Orientations.

Exercise 10-8Let’s denote byx < the oriented fiber-product operator that would
result if we replaced the Concatenate Axiom with the ConateBackwards
Axiom, while retaining all of our other axioms. Since all afraother axioms are
either left-right symmetric or come in symmetric pairsoliéws thatA x§ B =

B xs A, for all binary problem instance& e s < B. So the orientation rule
x < differs from the Proper Rule by the dimensional twist 7 — 7Z/27 given
by <> (a, b;s) := (a—s)(b—s) mod 2. This twist must be mixed-associative;
to what functionss andv does it correspond?

Answer: The functionsi andv given by

0 if k=0,1 (mod 4

ulk) = vl := {1 if k=2.3 (mod 4.
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10.2 The partial identity formulas

Consider a binary problem instange > S < B. If the map f is bijective,
then the Left Identity Axiom, together with the Isomorphiamd Left Reversing
Axioms, tells us at once how to orient the fiber product. Nopmse thaf is not
bijective, but that we can writé as the direct product of two maps, one of which
is bijective. We want to exploit the existence of that bipeetfactor to simplify
the fiber product, and the Left Partial Identity Formula well us how.

Changing notation somewhat, Ikt denote the dimensions that we know to

be bijectively mapped, whilé& and S denote the remainders of the left factor and

base spaces. That s, we consider the binary zigivhg A) il (Mx9S 09 g

The left factor map is the direct producf; 1y x f, where . y: M — M

corresponds to the bijectively mapped dimensions &ndA — S to the rest.
The right factor maygh, g) also splits into two parts, the map B — Sand the
maph: B — M. Is this zigzag transverse? The left factor map certainker®
M, so this zigzag is transverse just when im+ Im(g) = S, that is, just when

the reduced zigzaé . s & Bistransverse. Furthermore, when both zigzags
are transverse, their fiber products are isomorphic in ardgeabway: The map
®: Ax B— M x Ax Bgivenby®(a, B) := (h(B), «, B) carries the reduced
fiber productA x s B bijectively onto the extended fiber prodydt x A) x vxs) B.
One might hope that this map would preserve orientation; that is, one might
hope that

(10-9) (M x A) xuxs B = AxsB.

If so, this would be exactly the type of formula that we weradimg for: Given a

fiber product in which the left factor map is a direct produitwva bijective factor,

we could simplify by removing the domain and codomain of thigction.
Unfortunately, Formula 10-9 turns out to be wrong; more @&y, it turns out

to be inconsistent with the Concatenate Axiom. The probkethat the factor of

M multiplies A and S from the left. We set things up that way without discussing

the issue. But we can equally well put the bijectively mapgeaensions on the

right, forming the extended zigzad\ x M) i (Sx M) @M B This suggests

an analogous formula in whiddl multiplies A and S from the right:
(10-10) (Ax M) x(sxmy B=AxgsB.

Formulas 10-9 and 10-10 can’t both be right, since they gifferént answers
in some cases — for example, when d#n and dim{M) are both odd, so that
Ax M =—(M x A), butdim(S) is even, so thaB x M = M x S. The special
cases in whicts = ¢ are particularly revealing. In those cases, we shall sde tha
Formula 10-10 follows easily from our axioms. Since Formi(a9 disagrees
with Formula 10-10 on some of those cases, Formula 10-9 isitédyi wrong.
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When S = ¢, Formula 10-10 claims thatA x M) xxm) B = A x, B.
This case is particularly simple to analyze because therstatal left factor map
f: A — S must be identically zero. Applying the Concatenate Axionihe
direct productA x M, we have

(A X M) X (¢oxM) B = (A X4 M) X (oxM) B.

Sincef = 0, the left factor map of the outer fiber product on the rigaidh side

is the composite mapR 1: Ax, M — $ x M. The value of this map at a point
(o, u) doesn’'t depend upoa; so the side condition discussed in Section 9.1.7
is met. Thus, we can apply the Axiom of Mixed Associativityth@ transverse,
ternary zigzag

0 0 0,1 0,
A2 EME oxm 2B,

to swap the parentheses from the left to the right:
(A X4 M) X (oxM) B=A X4 (M X (oxM) B) =A X4 (M XM B)

The Left Identity Axiom then reduces this answerAax, B, which establishes
Formula 10-10 in the casge= ¢.

The upcoming Proposition 10-12 will show that all cases afnfida 10-10
follow from our axioms; so we shall henceforth refer to Folani0-10 as the
Left Partial Identity Formula Proposition 10-12 will also establish the symmetric
formula for those binary fiber products in which the rightttaomap is partially
bijective, which is theRight Partial Identity Formula

(10-11) A Xaixs (M x B) = A xg B.

Proposition 10-12 The zigzag(A x M) ~ (Sx M) on g is transverse

just when the reduced zigz&'g—f> s & B is transverse, and, under the Proper

Orientations, we haveA x M) xsxm) B = A xs B. Symmetrically, the zigzag

 f X . . f .
ALY (M xS &2 (M x B) is transverse just wheh -> S & B is transverse,

and we havéA x uxs (M x B) = A x5 B.

Proof The claims about transversality hold because the idengilyin M — M
coversM, leaving Im( f) and Im(g) to coverS.

As for the Partial Identity Formulas themselves, it suffiteverify one of
them, since each implies the other. For example, if we asgsbeRight Partial
Identity Formula 10-11, we can then prove the Left Formulal@My keeping
track of the sign changes as we commute the various diredil@rdoroducts:

(Ax M) xgum) B = (=D3™M(M x A) xuxs B)
— (_1)am+sm+<(m+a)—(m+S))<b—(m+s))(B X Mxs (M x A))
— (_1)am+sm+(a—s)(b—m—s)(B Xs A)
— (_1)am+sm+(a—s)(b—m—s)+(b—s)(a—s)(A Xs B)

:AXSB.
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To verify the Right Partial Identity Formula, it suffices tbasv that it holds
under the Calibrated Delta Rule, since that rule assign®tbper Orientations.
So we consider the equation

Al(e, )] xmxs [1 x g](M x B) = A[f] xs[g]B.

Let P := A xg B denote the right-hand fiber product, viewed as a subset of the
direct productA x B, and letd: A x B — A x M x B be the map given by
®(a, B) = (a, e(w), B). The left-hand fiber produd®’ := A xuxs (M x B)

then satisfie’ = n ®(P) for some sigm = +1, and we claim that = +1.

Let C be any oriented complement Bfin A x B. Applying the Delta Rule to the
right-hand fiber product, we have

POC _ o9 AC)
Ax B S -

Turning to the left-hand fiber product, we cho@se= ®(C) & (0, M, 0) as
our oriented complement &’ in A x M x B. The Delta Rule then gives us

_Pec = (—1)MO(M+b)—(m+s)) A'(C) X

AxMxB M xS

Rewriting P’ asn ® (P) and substituting in fo€’, we deduce that

d(P)® ®(C) (0, M, 0) _ (_p)mob-s) A'(®(C) @ (0, M, 0))
Ax M xB M xS '

We now transform the left-hand side of Equation 10-13 so amdke it to
resemble the left-hand side of Equation 10-15. Since the dné&ginjective, we
can apply it to both numerator and denominator, gettifgp C)/(A x B) =
(®(P)® ®(C))/P(A x B). Sinced (A x B) and(0, M, 0) are linearly indepen-
dent subspaces & x M x B, we can then add a direct summand@fM, 0) to
both numerator and denominator, getting

*P)®P(C)® (0. MO _ (1) AC)
d(Ax B)® (0, M, 0) S
The numerators on the left-hand sides of Equations 10-15L8ntb are the

same. As for the denominator in Equation 10-16, we kbyAx B)® (0, M, 0) =
V(Ax Bx M),where?: Ax Bx M — Ax M x Bis the linear map with the

matrix
1A<—A OA<— B OA<—M
v = e Omee 1mem |-

Ogca 1lg.g Ogem

(10-13)

(10-14)

(10-15)

(10-16)

The entry ofe here can be eliminated by an elementary operation on eitleer t
rows or the columns, so we hawe(A x B x M) = (-=1)*™(A x M x B).
Combining this result with Equations 10-15 and 10-16, weudedhat

iC) — (_1)(S+m)(b—s) A'(®P(C) @ (0, M, 0)
s M < S .

(10_17) n (_1)bm+S(b—s)
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Now, sinceA'(®(a, B)) = A'(a, &), B) = (&(a), 9(B)) — (e(@), f(a)) =
(0,9(B) — f(a)), we haveA'(®(C)) = (0, A(C)). And sinceA’(0, u,0) =
(m, 0) — (0, 0) = (u, 0), we haveA’(0, M, 0) = (M, 0). We deduce that

AC) (—1)'“3(0’ ACH® M, 00 (M,00® (0,A(C)) M x A(C)
s M,0®0,S  (M0®d@O,S  MxS

and so the sign is indeed+-1, as we claimed.O

Exercise 10-18Suppose that we chose to replace the Concatenate Axiom with
the Concatenate-Backwards Axiom. Show that the Partiatityd=ormulas above
would then be replaced by theft Partial Identity Back-Formula

(10-19) (M x A) xiuxs B=Axg B
and theRight Partial Identity Back-Formula
(10-20) A X (som (B x M) = Axg B,

wherex < is the Concatenate-Backwards version of the oriented filmelyct that
we introduced in Exercise 10-8. The former of these can beadeas a corrected
version of the erroneous Formula 10-9, with which we beganti@e10.2.

Answer: If we swap the left and right factor spaces on botbsif the Left
Partial Identity Formula 10-10, we gBtx ;5\, (Ax M) = Bxg A. This becomes
the Right Partial Identity Back-Formula 10-20 when we resedphabetical order
by swappingA andB. The Left Partial Identity Back-Formula 10-19 follows in a
similar way from the Right Partial Identity Formula 10-11.

Exercise 10-21For n a positive integer, suppose that the oriented linear space
S= A; x --- x A, isthe direct product af oriented spaces. Show that

(Apx - x Ay Xs (AL X Agx oo X Ag) X+ X (Ap X - x Ay) = 9,

where a hat indicates a factor that is omitted from a direatipct and where the
factor maps of the fiber product on the left-hand side are bwoas inclusions.
Note that, whem = 2, this reduces to the identip xa«g A = ¢ that we
discussed in Exercise 9-8.

Answer: Consider th&" factor spacef; x - -- x A1 X Agpr X -+ - X An,
for somek in [1 .. n]. Fori from n down tok + 1, working from right to left,
we use the Left Partial Identity Formula to cancel the facofoA; in this product
against thed; in the next base spa&to the right. Similarly, fori from 1 tok—1,
working from left to right, we use the Right Partial Identigrmula to cancel the
A in this product against thé, in the nextS to the left. All of this canceling
leaves) x, - - - x4 ¢, Which is simply$.
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10.3 The Binary Full Formula

The Patrtial Identity Formulas are less transparent thamaividual axioms, but
they are also more powerful. Moving even further in that ctien, we can com-
bine both of the Partial Identity Formulas with the ConcatenAxiom into a
single, subtle formula, thBinary Full Formula

(10-22) (LxNxQ) xmxnxg (Mx NxR)y=LxNxR.

If X, u, v, 0, andp are elements of the spacesM, N, Q, andR, then the left-
hand factor map here takés, v, 6) — (0, v, 6), while the right-hand map takes
(i, v, p) = (u, v, 0). Thatis, we are dealing with the binary problem instance

LxNx QX3 MxNxQZX2 MxNxR

The lettersL, M, N, Q, andR are less than perspicuous. A better way to
name the five oriented linear spaces in the Binary Full Foanmilto give each
space a two-letter name, where those two letters are draitimyepetition, from
the set{ A, B, S}. Under this scheme, the Binary Full Formula is written

(10-23) (AAx AB x AS) x(sexaBxas (SBx AB x BB) = AAx AB x BB.

To start to get a handle on this formula, let’s consider astvarse fiber product
P := A[ f] xs[g] B and think about the ways in which the various dimensions of
the linear spaceé, S, andB can interact.

AB: There may be some dimensionsAf B, andS that are in mutual bijective
correspondence unddr andg. In the Binary Full Formula 10-23, those
dimensions make upB, and they survive into the fiber produiet

AS There may be some dimensions Afthat are in bijective correspondence
with some dimensions o under f, but where those dimensions Sflie
outside the image a. Such dimensions make UpS. They don't survive
into the fiber producP — because Bob couldn't stay at the same altitude
as Alice if Alice moved in those dimensions.

SB. Symmetrically,SB consists of those dimensions Bfthat are in bijective
correspondence with dimensions®tinderg, but where those dimensions
of Slie outside the image of .

AA: There may be some dimensionsAthat lie in the kernel off — ways that
Alice can move without affecting her altitude. Those dimens make up
AA, and they survive into the fiber produet

BB: Symmetrically,BB is those dimensions d that lie in the kernel o§.
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Note that the two letters in the name of a space should be tiaigs the left
and right endpoints of a nonempty substring of the striA@B'’. In particular,
the spaceAB appears in thé& position of Formula 10-23, as well as in theand
B positions. Note also that we are using only five out of the sigsible such
substrings. By transversality, every dimensionSaiust correspond either to a
dimension ofA (CaseAS) or a dimension ofB (CaseSB) or both (CaseAB).
Thus, we have no need for a “neither” option, a space nai&d

The Binary Full Formula 10-23 follows easily from the two ®alrldentity
Formulas and the Concatenate Axiom. Starting with theHaftd side

(AAX AB x AS) X (SBx ABx AS) (SBX AB x BB),

we apply the Left Partial Identity Formula to remove the twstances ofAS
and the Right Partial Identity Formula to remove the twoanses ofSB, leaving
(AA x AB) xag (AB x BB). We then choose one of the two Partial Identity
Formulas — say the Left one — to remove two of the three ingsin€AB, after
which the Concatenate Axiom finishes the pro@®A x AB) x ag (AB x BB) =
AA x, (AB x BB) = AAx (AB x BB) = AAx AB x BB.

While the Binary Full Formula is easy to prove, it is surprgly powerful.
The key to that power — the reason why it is “full”’ — is the follong universality.

Proposition 10-24 Every binary problem instanadg e sd Bis isomorphic to
an instance of the special form

AA x AB x AS 2% sBx AB x ASEXY sBx AB x BB,

to which the Binary Full Formula applies.

Proof We want to express the oriented factor spagemd B as direct products
A= AAx AB x ASandB = SB x AB x BB and the base spa&as a direct
productS = SB x AB x ASin such a way that the factor mapsandg become
the trivial direct products & 1 x 1 and 1x 1 x 0. To this end, we shall construct
oriented subspace&aa, Aas, and Axs of A with A = Axa ® Aag ® Aas and
similarly for B and S, where the factor maps andg restrict to give orientation-
preserving bijections relatingas <> Sas, Ssg <> Bsg, andAag <> Sag <> Bag.

It's convenient to do the work in two phases. We'll first dodar algebra to
choose the subspaces themselves, but just orient themaaithit We'll then go
back and reverse the orientations of some of those chosepatis, as necessary,
so that the final orientations &, B, andS match the given problem instance.

The linear algebra starts out easily; we Bgh := Ker(f) andBgg := Ker(g),
assigning orientations to those two kernels arbitrarily.

We next fix some complemebk of Axain A. If we restrict the factor mag
to the subspadéd of A, it becomes a bijection onto Ifi) C S. Let's refer to that
restriction as the map: U — Im(f). In a similar way, fix some compleme¥t
of Bgg in B, and letg: V — Im(g) be the resulting bijection.
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We next setSag := Im(f) N Im(g), once again orienting arbitrarily. We then
set Aag 1= f 1(Sag), SO thatAag is some oriented linear subspacelbf our
chosen complement &faa in A. Similarly, we seBag := §71(Sap).

The substrings that remain af&SandSB. We setSysto be some complement
of Sag in Im(f), oriented arbitrarily. We then sétas ;= f1(Sag). Similarly,
we setSsg to be some complement &g in Im(g), oriented arbitrarily, and we
setBsg = G *(Ssp). )

We now haveSas @ Sas = +Im(f). Applying the bijectionf ! to each
summand, we havAag @ Aas = +U. And it follows that Apa @ Aag @ Apas =
+(Aap ® U) = £A. Similarly, we haveSsg @ Spg = + Im(g) and, applying
g, we haveBsg @ Bag = £V and Bsg @ Bag @ Bgs = +£B. Furthermore,
since the mapd andg are transverse, their images span allSpfso we have
Ssg® Sag P Sas = £S.

We now fix up the orientations, as necessary, starting withbtse spacs.

If the orientation of the direct surBisg @ Sag @ Sas IS currently—S, we reverse
the orientation of, say, the summan8s; and Axs. Since we are reversing both
of them, the mapf still restricts to an orientation-preserving bijectiontvween
them; but we now havésg @ Sag @ Sas = +S. We then fix up the factor
spaces. If the orientation of the direct S#as ® Aas D Aasis currently— A, we
simply reverse the orientation of the summahg,. Similarly, if the orientation
of Bsg ® Bag @ Bgg is currently—B, we reverseBgg. The resulting problem
instance is then isomorphic to the originah

Corollary 10-25 The Binary Full Formula 10-23 and the Isomorphism Axiom —
just those two, without any of our other axioms, not even Btgh — form a
consistent and complete axiom system for the Proper Otienta

Proof Given any binary problem instano& Ls& B, Proposition 10-24
constructs an isomorphic instance of the special form tackitihe Binary Full
Formula applies. The Proper Orientation for the fiber prodRic= A xs B is
then determined as the orientation that maRes AA x AB x BB. O

So the Binary Full Formula, together with the Isomorphismohx, implies all
of our other axioms; but our proof of that in Corollary 10-8%iased on much of
this monograph. It is instructive to confirm that the BinamtlFFormula implies
each of our other axioms, using separate arguments thas aliecat as possible.
We are going to devote the rest of Section 10.3 to that taskeshose confirming
arguments help to explain just how the Binary Full Formulaages to bundle up
so much information into a single equation.

By the way, analogous to our Binary Full Formula, there exastn-ary Full
Formula for anyn. The Unary Full Formula is trivial, but is worth writing down
to help clarify the general pattern&A = AA. We'll write out the Ternary Full
Formula in Section 10.3.4, and we’'ll tackle theary case in Section 10.4.
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10.3.1 The easy confirmations

The Concatenate and Both Identities Axioms are the easigsnha to confirm as
being implied by the Binary Full Formula — so easy that we tlemén need the
Isomorphism Axiom. Settind\A := A andBB := B in the Binary Full Formula
while settingAS:= AB := SB:= ¢, we find that

(A X O X ) Xpxoxe) (O x O x B)y=Ax ¢ x B,

from which it follows immediately thafA x, B = A x B. And settingAB := S
while settingAA := AS:= SB:= BB := ¢, we find that

(O X SX Q) Xgxsxey (O X SX Q) = X SX O,

so we have confirmed th& x5 S=S.
The Left Identity Axiom is a bit more subtle. If we s@tA := SB:= ¢ in the
Binary Full Formula, we find that

(¥ x AB x AS) x(sxnBxag (O x AB x BB) = { x AB x BB.

This is perfectly consistent with the axioBixs B = B, where the role oS is
played by AB x AS and the role ofB by AB x BB; but we don't yet have a
proof. Indeed, in the Left Identity Axion$ xs B = B, we don’t need to assume
anything about the behavior of the right factor nggpB — S. In order to apply
the Binary Full Formula, however, we must break up the sp&esd S into
subspaces on which behaves in known, simple ways. Proposition 10-24 tells
us that this breaking up can always be done, up to isomorph&mthe Binary
Full Formula, together with the Isomorphism Axiom, does Iythe Left Identity
Axiom. The Right Identity Axiom is symmetric.

The Reversing Axioms are a similar story. Every binary peablinstance
A x s B = P isisomorphic to an instance of the special form to which tivaB/
Full Formula applies:

(AA X AB x AS X (sexnBxag (SBx AB x BB) = AAx AB x BB.

By negatingAA, we then conclude th&t-A) xs B = —(A xs B); and negating
BB gives us the Right Reversing Axiom in a similar way. For the®Reversing
Axiom, we negate, say, botASand AA.

10.3.2 Confirming stability

The Stability Axiom is so subtle that we shan’t bother to confit here in detail.
But we shall discuss the key idea that would underlie sucméroeation.

The hard part of confirming stability is showing that the ot&tion of the fiber
product doesn’t suddenly flip at the end of a limiting prodasghich the rank of a
factor map drops. Suppose that we approach a particularnyjpnablem instance
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A 2 s & Balong a path of instances -+ S & B, ast tends to zero. We
always have rankfy) < lim;_qrank( f;) and rankgy) < lim;_orank(g)). When
both of those hold as equalities, stability actually foltofkom the Isomorphism
Axiom. The hard cases are those in which at least one of thypialities is strict.

Let's suppose that rariy) < lim;_ o rank( f;); what happens when we apply
the Binary Full Formula to each problem instanef;] xs[g]B? In particular,
how does Proposition 10-24 decompose the spé&¢cd3, and S into subspaces,
as a function oft? And how does the Binary Full Formula then build up the
fiber productP from those subspaces? At the moment tHa¢comes zero, some
dimensions move out of the subspaeB. In the factor spacd, those dimensions
move out of Axg iNto Aaa; that is, they get absorbed into the kernel of the map
f;, which suddenly grows. In the fiber produet the corresponding dimensions
move out of Pag into Paa. The corresponding dimensions of the base sg&ce
move out ofSyg into Sgg; that is, they are left behind by the image f which
suddenly shrinks. Note that, since these dimensioisawé no longer covered by
Im( f,) whent = 0, they must be covered by ligp), since the problem instance
Al fo] xs[go] B is transverse. So they do indeed move iBtg, as we claimed.
The corresponding dimensions in the factor spaaaove out ofBag into Bsg.

We now exploit a combinatorial property of the Binary Fullrfula. Note
that its four ternary direct products correspond preciselthe four left-to-right
chains in the following poset:

AA BB
N~ -
SB AS

(10-26)

In particular, the subspace&sA and SB appear only in direct products witAB
immediately to their right, whileAB always has eitheAA or SBto its left. We
can thus proceed as follows: Aspproaches zero, we arrange that the “moving”
dimensions come first, in our positive, ordered bases fdr etihe four subspaces
Aag, Sag, Bag, andPag. At the moment that becomes zero, those dimensions
can then slide over, with no transpositions needed, to bedbmlast dimensions
in our positive, ordered bases féaa, Ssg, Bsg, and Paa. Since the order of
the basis elements doesn't change &®comes zero — all that changes is our
interpretation of which basis elements span which subspae¢he orientations
that are produced by the Binary Full Formula do remain stalee limit.

We could deal in a similar way with a sudden drop in the rankyofthent
becomes zero, because the subsp@c®and BB appear always just to the right
of AB. We could even deal with the ranks of bothandg; dropping whent
becomes zero, since the drop in rafi shrinks the basis foAB from the front,
while the drop in rankg;) shrinks it from the back — so the two processes don't
interfere. Thus, if we filled in lots of details, we could canfithat the Binary Full
Formula (together with the Isomorphism Axiom) implies thalslity Axiom.
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10.3.3 Reordering the direct products

Writing the Binary Full Formula 10-23 as we have been doing,
(AA X AB x AS X (sexaBxas (SBx AB x BB) = AAx AB x BB,

with its direct products in the order specified by Diagram28)-works well for
confirming stability. But it is worth noting that there arédet ways to order those
products that are equally valid.

For example, the subspa&® appears twice, withAB to its right both times.
If we swapped that pair in one of the two products, put@®yo the right ofAB,
we would introduce a correction factor ¢f1)9mSBAMAB Byt swapping the
other pair as well removes the correction factor, givingueagually valid way to
write the Binary Full Formula:

(AAx AB x AS) x(aBxsexas (AB x SBx BB) = AAx AB x BB.
The ternary direct products in this variant are left-taatighains in this poset:

_BB
(10-27) AA—AB—SB__
AS

This variant of the Binary Full Formula makes it harder totezdown the left
factor mapf, however. We can't just writé = 0 x 1 x 1, because corresponding
subspaces no longer occur in corresponding left-to-rigkttipns. Instead, if we
wrote f : AAx AB x AS— AB x SB x ASas a matrix of maps, it would be

oAB<—AA 1AB<—AB OAB<—AS
f= OSB<—AA OSB<—AB OSB<—AS ’
OAS<—AA OAS<—AB 1AS<—AS

with not all of the identity blocks on the main diagonal. Bug factor map that we
intend is still clear: The matrix of maps should have idgribcks wherever the
domain and codomain correspond and should otherwise brelgrgero. This rule
makes perfect sense even when the matrix of maps is not sgsavéll happen
in constructing the factor maps for the Ternary arary Full Formulas.

Here is another possible variant of the Binary Full Form#&er swapping
SBwith AB, we could swapAAwith AB, both times that that pair appears, getting
the variant

(AB x AA X AS) x(aBxsexas (AB x SBx BB) = AB x AA x BB,
with its poset:

/AA— BB
(10-28) AB\ X
SB— AS
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In this variant, theAB component comes first in all four of the direct products.

On the other hand, there certainly are constraints on thetpalsat we can
adopt. For example, we must hayeA < BB (that is, AA to the left of BB)
in any valid poset. To see why, consider a problem instanaghich AA and
BB are odd-dimensional, whilaB = AS = SB = {. The left-hand side of the
Binary Full Formula then reduces %A x , BB, while the right-hand side is either
AAx BBor BB x AA, according a®\A < BB or BB < AAin the poset. In order
to satisfy the Concatenate Axiom, the former must pertain.

Exercise 10-29Show, by a similar argument based on the Left Partial Idgntit
Formula, thatAA < ASin any valid poset. Symmetrically, because of the Right
Partial Identity Formula, we must ha&B < BB.

Exercise 10-30Show, by using both of the partial identity formulas (or byngs
the formulaB x a.g A = ¢ in Exercise 9-8) thaBB < ASin any valid poset.

The four constraintA\A < BB, AA < AS SB < BB, andSB < AS which
are the four in Poset 10-28 that don't invol@, turn out to be the only ones that
must hold in any valid poset for the Binary Full Formula. Werdastrate that,
and generalize to the-ary case, in Section 10.4.2.

10.3.4 Confirming mixed associativity

We have left the most intriguing axiom for last: Why is it thhe Binary Full
Formula (together with the Isomorphism Axiom) implies thgi@dm of Mixed
Associativity? The obvious strategy for confirming that lro@tion starts with a

ternary problem instancé e s& B T £ . We then confirm that

(A1 xsTg1B)IN] x7 [KIC = A[f] xs[g](BIN] x7 [KIC)

by applying the Binary Full Formula four times to evaluate thner and outer
fiber products on each side. In order to apply the Binary Foithkula, however,
we have to decompose the various linear spaces involveditspaces that the
various factor maps behave on in known, simple ways. Prtposl0-24 does
that decomposition in the binary case, breaking up eachedthitee spaces, S,
andB into subspaces corresponding to the appropriate subdet five labelAA,

SB, AB, AS andBB. In the ternary case, the decomposition is more complex.
We must break up the five spacAsS, B, T, andC, and we have a total of twelve
potential labels: all fifteen non-empty substrings of thingt“*ASBTC,

AA SS BB TT CC
AS SB BT TC
(10-31) AB ST BC
AT SC
AC,
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except forSS ST, andTT, which are ruled out by transversality. Rather than
tackling that ternary decomposition here, we postponetit Section 10.4.1, in
which we prove ther-ary analog of Proposition 10-24 by appealing to the theory
of quiver representations. For now, let’s simply assumedeh®ary analog.

Under that assumption, the following is a universal formigiathe ternary
case, which we therefore christen d@rnary Full Formula

(10'32) AxsBxrC=7P
where

A= AAx AB x AC x AT x AS

S =SBx SCx AB x AC x AT x AS

B :=SBx SCx AB x AC x BB x BC x AT x BT
T :=TCx SCx AC x BC x AT x BT
C:=TCx SCx ACx BCx CC
P:=AAx ABx AC x BBx BC x CC

This Ternary Full Formula is, unfortunately, far too longadte on a single line;
so we have introduced symbolic names for each of its six dmeducts.

Let's consider first which subspaces appear in which dirsadyocts, without
worrying about their order. The subspaces that appear ifih@roducts on the
left-hand side are determined by the order of the letterfiénstring ‘ASBTC.

For example, for the produ@ft, we start with the eight substrings that contain the
letter T — eight because there are four gaps to the leff pivhere the substring
can start, and two gaps aft€r where it can stop. These eight substrings form the
parallelogram that can be reached by downward pathsTrérm Diagram 10-31.
But we then omit the two spac& andT T, which are ruled out be transversality,
leaving7 as the product of six subspaces. The fiber pro@uista different story;

it contains all six of the subspaces whose names involvaercstnor T.

The order of the subspaces in each direct product is a subsiee. As we
have chosen to write down the Ternary Full Formula 10-3Zixslirect products
correspond to chains in this poset:

AA_ _cc
(10-33) TC__ _AB—AC—BB—BC__ _AS
_sc AT
SB BT

As in the binary case, there are lots of other orderings ttaildvbe equally
good. Note that we haven't been able to achieve perfectigft-symmetry in
the ternary case. The subspadés and BB appear together in several products,
so we had to break the symmetry; we have chosen arbitrarilyrite AC to the
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left of BB. SinceAC andBB appear together in an even number of products, how-
ever — to wit, in the two product8 and’P — reversing this choice would affect
only the surface form of the Ternary Full Formula, not its erging import.

To prove that the Ternary Full Formula 10-32 is correct wite products in
the order that we have chosen, we apply the Binary Full Faartwice to evaluate
the left-associated produgtl x s B) x+ C. The resulting calculation is shown in
the top half of Table 10.1. To save space, that table denotss groducts simply
by listing their factor spaces; that is, we writ¥, Y, Z) rather thanX x Y x Z.
We also abbreviate di\T) as(at), and similarly for the other subspaces. Note
that we have to reorder some of the subspaces temporariydar to apply the
Binary Full Formula. The horizontal braces indicate theugiog of subspaces
into blocks for each application of the Binary Full Formukand £ denotes the
result of the inner binary fiber product.

The bottom half of Table 10.1 verifies the Ternary Full Forarkecond time,
this time using the right-associated produttx s (B X7 C). So R denotes the
result of that inner binary fiber product. The two halves dj§l€&l.0.1 are not quite
symmetric, because of our arbitrary choice to wt€ to the left of BB in the
Ternary Full Formula. But the two halves do get the same temudi this confirms
that the Binary Full Formula (together with the Isomorphi&riom) does indeed
imply the Axiom of Mixed Associativity — the last of our othaxioms.

Exercise 10-34What is theBinary Full Back-Formulathe analog of the Binary
Full Formula that would result if we replaced the Concaten@iom with the
Concatenate-Backwards Axiom?
Answer: Swapping the left and right factor spaces in the Bifall Formula
gives
(SBx AB x BB) X g asxag (AAX AB x AS = AAx AB x BB,

But restoring alphabetic order among the names of the sabsghaen requires
that we swap the nam&A with BB and the namé@Swith SB, leading to the final
formula:

(ASx AB x AA) X o rsrss (BB x AB x SB) = BB x AB x AA

10.4 Towards ann-ary Full Formula

In verifying the mixed associativity of the Binary Full Fouta 10-23, we found
it helpful to write out the Ternary Full Formula 10-32. Suppdhat we wanted
to write out an explicin-ary Full Formula, for some larger— a single formula
that encodes the proper orientations ofraliry transverse mixed fiber products.
We would face two challenges.
First, to show that such a formula actually has the univaysahplied by the

adjective “full”, we need a result from linear algebra — essaly, a structure
theorem for zigzags. We proved that theorem for binary Zigdesy explicit linear
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algebra in Proposition 10-24. But extending that result®n-ary case is not
trivial. Indeed, we haven't yet extended it even to the tgriease. Fortunately, the
theory of quiver representations comes to our rescue. We, sh&ection 10.4.1,
that the necessary structure theoremrfaary zigzags is a corollary of Gabriel's
Theorem, in the theory of quiver representations.

The other key ingredient that we need, in order to write ougxgslicit n-ary
Full Formula, is an appropriate partial order. Each spaatappears in that Full
Formula will be written as the direct product of a sequencsulfspaces, and
we need to know an appropriate left-to-right ordering fog #ubspaces in that
product. In Section 10.4.2, we analyze the constraints oh aipartial order and
we construct an explicit total order that satisfies all ofrdaguired constraints.

10.4.1 The indecomposable summands of a zigzag

In Proposition 10-24, we showed that every binary problesteince is isomorphic
to an instance of the special type to which the Binary Fulhtde applies. Recall
that the proof had two steps. We first did explicit linear algeto decompose the
three linear spaces, B, and S as direct sums of subspaces on which the factor
mapsf andg behave in very simple ways. We then adjusted the orientadn
the resulting subspaces so that the orientations of thespad, andS came out
properly. Adjusting the orientations turns out to be easgnan then-ary case.
But the linear algebra required in tineary case is fairly subtle. Fortunately, the
recent theory ofjuiver representationgl, 5, 14] has made dramatic progress on
these subtle issues of linear algebra. The quiygthat corresponds to amary
zigzag turns out be a quiver bhite type so an appeal to Gabriel's Theorem will
give us all that we need to analyze the structure of zigzags.

Define Q, to be the directed graph that consists of a path of lengtivl2ose
edges alternate between pointing forward and pointing\wacdk

O <— O

O O o) e
D]_ Cl D2 Cn—l Dn

The named; andC; are intended to suggest “domain” and “codomain”, by the
way. Since a quiver is just another name for a directed graplshall also refer to
the graphQ, as a quiver, tha-ary alternating-path quiverAn n-ary zigzag is, in
other language, simply a representation of this qu@grin such a representation,
we associate a linear space with each vertex, say the fguémeg\ with the
domain vertexD; and the base spa& with the codomain verte&;, for eachi;
and we associate a linear map with each edge, the linearfmafy — S with
thei™ forward edge and the linear map,.: Ai,1 — S with thei™ backward
edge, thus arriving at the-ary zigzag

f1 o7} f2 fno1 On
A S Ao e S-1 An.

Giventwon-ary zigzagsZ; andZ,, we construct theidirect sum Z= Z,® Z,
by taking the direct sums of corresponding linear spacesamdsponding linear
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maps. Theall-zero zigzagthe zigzag all of whose spaces are zero-dimensional
and all of whose linear maps are identically zero, is an itlestement of this
direct-sum operator. A zigzag isdecomposable/hen it is not isomorphic to a
direct sum of nonzero zigzags. The key to understandingittead algebra of
zigzags is to describe all of the isomorphism classes ofcoiposable zigzags.
Fortunately, the theory of quiver representations givethasdescription.

The quiverQ, is of finite type; that is, its Tits form [4, 14] is positive deitie.
So Gabriel's Theorem tells us that there are preci(féyyisomorphism classes of
indecomposable representations@f, one such isomorphism class for each of
the (22“) subpaths of),,. For example, consider the subpath@f that goes from
C,to Ds:

O «<— O —/8>» O <— O

C D, C, Ds

The indecomposable representationsQf that correspond to this subpath are
all isomorphic, with the following structure: They assdeid-dimensional linear
spaces with each of the vertices in the subpath, that is, tiwittiour vertice<C,,

D,, C,, and D3; and they associate zero-dimensional spaces with the frés¢ o
vertices ofQ,,. There are then three linear maps for which both the domain an
codomain are 1-dimensional: the forward map fr@mto C, and the backward
maps fromD, to C,; and fromDs to C,. For the representations in this equivalence
class, those three linear maps are bijections. All of thetimear maps are
identically zero, as they must be, including the forward rfrapn D; = ¢ to C;
and the forward map frorD; to Cz = .

Theorem 10-35 (Structure of Zigzags)Fix an arityn > 1. Everyn-ary zigzag

Z can be decomposed, in an essentially unique way, as the direcof a finite
number of indecomposabieary zigzags, each of which corresponds to a subpath
of the quiverQ,, as discussed above. The structur&ofan thus be described,

up to isomorphism, by specifying how many of these indecasapte summands

lie in each of the(zzn) possible isomorphism classes. Those classes can be grouped
into four types, according as the corresponding subpat run

Type DD: from D; to Dj, for some < j;
Type DC: from D; to C;, for somé < j;
Type CD: fromC; to D;, for soméa < j, or

Type CC: fromC; toCj, forsoma < j.

Proof This is Gabriel's Theorem [4, 14] applied to the particulaivegr Q,,
which is of finite type. The?%) isomorphism classes correspond to (8 non-
negative dimension vectors at which the Tits form takes envtiue+1. O
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Theorem 10-35 is a structure theorem for zigzags, and wésd®it to verify
that ann-ary Full Formula is actually “full”. Before we do that, hower, we need
to consider the role that transversality plays in Theorer33.0

Proposition 10-36 An indecomposabla-ary zigzag is transverse just when it is
not of TypeCC.

Proof Recall that am-ary zigzagA; il> S & Ao iz> fl}l S1 & A, is

transverse just when its difference map Ay x --- x Ay > S X -+ x §_11S
surjective, where that difference map is given by

Aoy, ..., o) i= (G2(a2) — fr(ea), ..., Gnlan) — faoz(an-1)).

If a zigzag is indecomposable of TygeC, the number of base spac&s
that are 1-dimensional exceeds by one the number of factaresp\ that are
1-dimensional; so the difference mapcan’t possibly be surjective.

If a zigzag is indecomposable of TyR¥C, its difference map is bijective, as
we can check by working from right to left. For example, if itsdlimensional
spaces run from the verté; to the vertexCj, for somei < j, then any value for
o; determines a unique corresponding valuedgmfter which that value, together
with any value foro;_,, determines a unique value fay_,, and so forth. The
difference maps for indecomposable zigzags of Tgeare similarly bijective,
as we can check by working from left to right.

Finally, if a zigzag is indecomposable of Typ®, its difference map fails to
be injective, but is surjective — as we can check by workingjiher direction. O

Proposition 10-37 If an n-ary zigzagZ is a direct sum, sa¥ = p, Z;, thenZ
is transverse just when all of the summadgsire transverse.

Proof The difference map oZ is the direct product of the difference maps of the
Z;i, and a direct product of maps is surjective just when eadbrf&surjective. O

Corollary 10-38 An n-ary zigzag is transverse just when all of its indecompos-
able summands are of types other than T@Qe

We can now verify the “fullness” of an-ary Full Formula. We shall state the
result only for the ternary case,= 3; but the same ideas suffice for all

Proposition 10-39 Every ternary problem instande > s < BAT £ cCis
isomorphic to an instance of the special form to which thendagr Full Formula
applies, that special form being as described in Formul&2L0-

Proof As in our analysis of the binary case in Proposition 10-24,gloof has
two parts. The hard part is the linear algebra that breakd opthae factor spaces
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and all of the base spaces into appropriate subspaceshdristraightforward to
adjust the orientations of those subspaces as needed.

We deal with the linear algebra by applying Theorem 10-35ht® given
ternary problem instance, thereby decomposing it as tleetdsum of indecom-
posable zigzags of the fifteen classes shown in Table 10-F1thd3e fifteen
classes, the three class®§ ST, andT T cannot arise, since a ternary problem
instance is assumed to be transverse. We group the indesafripsummands of
the twelve remaining classes by their class. The direct sutiheosummands of
classSC, for example, then gives us the subspaSes Bsc, Tsc, andCsc, and
similarly for the other eleven classes.

It remains only to deal with the orientations. We begin by mglan arbitrary
choice of orientation for each of the twelve classes. Fonmpla, for the class
SC, we choose some orientation for the subsp&ge and we carry that orienta-
tion forward to orientBsc, Tsc, andCsc. We then reverse some of our arbitrary
choices, if necessary, in order to arrange that the threerfapacesA, B, andC
and the two base spac8sandT all emerge with the proper orientations. We fix
up the base spaces first. If the orientatiorSa$ currently wrong, we reverse the
subspace®\as and Sas. Similarly, if T is currently wrong, we reversBgt and
Tgr. We can then fix up each factor space independently, with tesference.
For example, ifB is currently wrong, we simply reverdgzg. O

10.4.2 The poset underlying a Full Formula

Our quiver-based analysis of the structure of a zigzag ha®dstrated that every
transversa-ary zigzag can be decomposed in such a way thatary Full For-
mula will apply. To write out an explicib-ary Full Formula, however, we need
one further ingredient: We need to know how to order the verisubspaces in
each of its direct products. In the ternary case, for exanwpdeordered the six
direct products in Formula 10-32 as specified by the chaifoset 10-33.

In then-ary case, we need a poset whose elements are the isomoipasses
of indecomposable representations ohaary zigzag. Of thos@”) classes, how-
ever, the(g) classes that are of Typ@C will not arise, since our zigzags are
transverse. So our poset will ha(@) — () elements.

What are our goals for this poset? To be useful, it must impdsgeear order
on all of the isomorphism classes that appear in any singldyat of ourn-ary
Full Formula. But we also want our Full Formula to be corrétat is, to impose
the Proper Orientation on every fiber product. We can gueeathiat correctness
by imposing simple combinatorial conditions on the poset.

Definition 10-40 Fixingn > 1, consider a poset whose elements ardihe- (})
isomorphism classes of indecomposable, transverse egpat®ns of the quiver
Qn. We call such a posetdmissiblevhen it meets the following six conditions:

1. For each vertex in the quiv€),, the poset imposes a linear order on those
classes that include that vertex.
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2. The poset also imposes a linear order on all of the clagSgpe DD. Note
that those classes are the ones that appear, on the rigthstonof the Full
Formula, in the expression for the fiber product.

3. If the leftmost vertex in a clasgp of Type DD also belongs to a clagkp
of TypeCD, then the partial order must hagep < app.

4. Symmetrically, if the rightmost vertex in a clags, of TypeDD belongs to
a classBpc of TypeDC, then we must havepp < Bpc.

5. If a classxcp of TypeCD and a clasgpc of TypeDC intersect, but are not
nested one inside the other, then we must haye < Bpc. An equivalent
way to describe this situation is to say that the two clasgsgsand Bpc
share an odd number of vertices.

6. Given two classespp andfBpp, both of TypeDD, if every vertex ofxpp lies
strictly to the left of every vertex ofpp, then we must havepp < Bpp.

In the binary casé x sB, each of the last four conditions boils down to a single
ordering constraint. Condition 3 sagB < BB, Condition 4 saysAA < AS
Condition 5 say$SB < AS and Condition 6 sayAA < BB. Note that these four
constraints are precisely the four that we saw to be negess8&ection 10.3.3.

We shall show, in a moment, that the six conditions in Defanitl 0-40 suffice
to ensure that the resultingary Full Formula is correct. But let’s first make the
easy observation that these six conditions can be simultetesatisfied.

Proposition 10-41 Admissible partial orders exist, for evemy> 1.

Proof We satisfy Conditions 1 and 2 by choosing our partial orddvedotal.
In Conditions 3 through 5, note that a class of Tyjie is always required to be
smaller than some class of some other type, while a classpd D¢ is always
required to be larger than some class of some other type. Waeace satisfy
those conditions as follows: We put all of the classes of T@pdirst in our order,
ordered arbitrarily among themselves. And we put all of tlasses of Typ®C
last, again ordered arbitrarily among themselves. It remainly to insert the
classes of Typ®D into the middle, between théD’s and theDC's, in some
order that satisfies Condition 6. For example, we could desaach class of
Type DD by the pair(leftmost vertexrightmost vertex and then sort those pairs
lexicographically. O

Proposition 10-42 Then-ary Full Formula that is constructed from any admissi-
ble partial order is correct, in the sense that it determihesProper Orientation
for every transverse-ary fiber product.
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Proof To show that the resultingrary Full Formulais correct, we use our axioms
to reduce its left-hand side to coincide with its right-haik.

Step 1. Canceling the classes of TypeSD and DC We start by tackling the
isomorphism classes of TyggD andDC, working inductively from the shortest
such classes toward the longer ones. We shall eliminate adhclass in turn
from our Full Formula — in particular, from that formula’dtdand side.

Choose one of the shortest remaining classes. Let’s sait thaélhe classcp
of TypeCD; ifitis of Type DC, we treat it symmetrically. The clasgp includes
an even number of vertices, and we view each codomain vestpaieed with the
following domain vertex. Let andd denote one such adjacent pair of vertices,
included withinocp; we shall treat each such pair separately. We are going to
use the Right Partial Identity Formula 10-11 to remove thledicocp from the
left-hand-side products associated with the vertecasdd.

We first exploit mixed associativity to insert parenthesgs our Full Formula
in such a way that one of the innermost fiber products to be cbsapis the
binary product that has vertexas its base space and vertas its right-hand
factor space. Note that the direct-product expressionscaged with each of
these vertices will include a factor correspondingtg. If those two factors
were both leftmost in their products, we could apply the RiBartial Identity
Formula immediately to remove those two factors.

Typically, of course, there will be factors to the left®@fp in the product for
the vertexc, and also to the left ofcp in the product for the verted. Some of
those leftward factors may be shared between the two predunctact, we claim
that all such leftward factors must be shared.

Consider some factor, say that lies to the left obcp in the product for the
vertexd. If the factorr occurs at all in the product far, it must lie to the left of
ocp there as well, since the same partial order linearly ordeotd products. Can
it be thatr does not occur at all in the product fo? If so, the class must have
d as its leftmost vertex; se must be either of Typ®D or of TypeDC.

Suppose first thatpp is of TypeDD. By Condition 3, sincel is the leftmost
vertex intpp andd lies also inocp, the partial order must havep < tpp. But
that contradicts the leftward location afp.

On the other hand, suppose thg¢ is of TypeDC. By induction, we have al-
ready removed from our Full Formula all factors correspogdo classes that are
shorter thawcp. So the classpc is at least as long agp. Sincerpc starts to the
right of whereocp starts, the classegp andtpc cannot be nested. Condition 5
therefore applies, telling us that¢p < tpc, which is again a contradiction.

So every factor that occurs to the left @fp in the product for the vertes
occurs also in the product far What about the converse?

Suppose that is a factor that lies to the left afcp in the product forc; could
it be thatp does not occur in the product fd? The rightmost vertex gé would
then have to be; so p would have to be of Typ®C. (There is no second choice
because Typ€C doesn’t occur.) Sincepc is at least as long agp, those two



152 CHAPTER 10. ADJUSTING THE AXIOMS

can’t be nested. By Condition 5, we conclude tbgt < ppc, which is again a
contradiction.

We have now shown that the factors that lie to the lett&f in the product for
the vertexc are identical to those that lie to the left@fy in the product fod. We
can swapcp to the left over each of these factors in turn. Since each swelp
happens twice, once in the formula foand once in the formula fat, any factor
of —1 that might be introduced cancels out. Having done thespswae factor
ocp IS now leftmost in the products for bothandd, so we can use the Right
Partial Identity Formula to eliminate it. Note that this gypéng puts our formula,
temporarily, into a state where some of its products are ragred according to
the controlling partial order. But, once we eliminate the instances oficp with
the Right Partial Identity Formula, that problem goes away.

Step 2: Converting to lexicographic order When the induction in Step 1 has
been completed, all of the factors that remain in our Fulhidg, on the left-hand
side as well as on the right, correspond to classes of Dipe By Condition 2,
our partial order restricts to total order on all of the ckssef TypeDD. Our next
goal is to replace that total order, one swap at a time, wiicdgyraphic order.

A pair of classes of Typ®D is currentlyinvertedif the ordering relationship
between those classes in the current total order is the dppafstheir lexico-
graphic relationship. Our strategy will be to eliminateteaach inverted pair by
performing a single swap. We don’t want that swap to affegt@her ordering
relationships, however; so we restrict ourselves to swapipiverted pairs that are
adjacent in the current total order. If there are no invep@ds that are currently
adjacent, then every adjacent pair is in lexicographic or@gy transitivity, the
current order must be entirely lexicographic, so we are datlieStep 2.

If not, choose some inverted pair that is currently adjac8aly thatrpp and
opp are two classes of TypeD that are adjacent in the current total order, that
Tpp < opp IN that total order, but thatpp < 7pp in lexicographic order. Our plan
is to swapopp to appear beforepp.

The only way in which we are changing any ordering relatigusis to swap
inverted pairs into lexicographic order. So any pair thatugently inverted was
also originally inverted. But the original total order orethlasses of Typ®D
was required to satisfy Condition 6. Singg, precedednpp in that original order,
it cannot have been the case thgp precededrpp; so, by the contrapositive of
Condition 6, it cannot be the case that every vertexgpflies to the left of every
vertex oftpp. But we also know thatpp precedespp in lexicographic order.
Because of the way that lexicographic order works, it carb®the case that
every vertex ofbopp lies to the right of every vertex afpp. The only remaining
option is that the vertex sets 6fp andpp intersect.

Two classes of Typ®D that intersect can intersect in various ways: One
may be nested inside the other, or they may overlap like #8ngn any case,
however, the size of their intersection is always odd. Sgese that we rewrite
the left-hand and right-hand sides of our Full Formula tauatifor swappin@pp
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to precederpp. We need to swap adjacent factors correspondingytoand tpp
in an odd number of products on the left-hand side, one fon @adex in their
intersection. But we also need to swap them in the singleymtooin the right-
hand side. So the total number of swaps is even, and we caoaitBull Formula
to account for this swap without introducing a factor-¢f.

Step 3: Canceling the superfluous factors of Typ®D As a result of Step 2,

the total order on the classes of Typ® the controls our current Full Formula
is now lexicographic. And that makes it easy to cancel theeslymus factors

that remain. To see the pattern, here is what the left-hadwl & a quaternary

fiber product would be at the start of these final simplificagiogiven that the

controlling order is lexicographic:

(AA, AB, AC, AD) xaB.ac.ap) (AB, AC, AD, BB, BC, BD)
X (ac,ap,Bc,ep) (AC, AD, BC, BD, CC, CD)
x ap,8p,cp) (AD, BD, CD, DD).

(We have separated the factors in each direct product hehecaimmas, rather
than with x’s, just to save space.) Consider each base space. We caheuse t
Right Partial Identity Formula to cancel each of the factwirshat base space,
from left to right, with the corresponding factors at thastdi the following factor
space. All of the base spaces in what remains are sikbp we can convert the
fiber products that remain into direct products using thedatenate Axiom. And
what results from that is precisely the direct product otkdkses of Typ®D, in
lexicographic order — which agrees with the right-hand side

(AA, AB, AC, AD, BB, BC, BD, CC,CD, DD)
So the Full Formula that we started with was indeed corretct.

Exercise 10-43If a partial order is going to guide us in writing out arary Full
Formula, that order certainly has to satisfy Conditionsd 2im Definition 10-40.
Proposition 10-42 shows that Conditions 3 through 6 theficeuio guarantee that
the resultingn-ary Full Formula will be correct. In the other directionpshthat
Conditions 3 through 6 are also necessary. In particulegenga partial order that
violates even just one of the ordering constraints in Camat3 through 6, find a
fiber product that the resultingary Full Formula will orient improperly.

Hint: The arguments are similar to those in Exercises 10a2i918-30. In each
case, we can choose the subspaces corresponding to thesaalered classes to
be 1-dimensional, while choosing all other subspaces tp.be



154 CHAPTER 10. ADJUSTING THE AXIOMS



Bibliography

[1] Julien Basch, Leonidas J. Guibas, G. D. Ramkumar, and R@mshaw.
Polyhedral tracings and their convolutiomdgorithms for Robotic Motion
and Manipulation: 1996 Workshop on the Algorithmic Founolas of
Robotics edited by Jean-Paul Laumond and Mark Overmars, A. K. Peters
(1997), pages 171-184.

[2] Edward Bierstone and Pierre D. Milman. Semianalytic anbanalytic
sets.Publications Matématique®f the Institut des HauteStudes
Scientifique$7(1988), pages 5-42.

[3] Garrett Birkhoff. Lattice Theorythird edition. American Mathematical
Society (1967), pages 65 and 66, particularly Exercise 8age 66.

[4] Harem Derksen and Jerzy Weyman. Quiver representatiotices of the
AMS52 #2 (2005), pages 200-206.

[5] Peter Gabriel and Andrei V. RoiteRepresentations of Finite-Dimensional
Algebras second printing. Springer-Verlag (1997), particularlyapter 7.

[6] Leo Guibas, Lyle Ramshaw, and Jorge Stolfi. A kinetic feavork for
computational geometryEEE 24th Annual Symposium on the Foundations
of Computer Sciendd983), pages 100-111.

[7] John Philip Huneke. Mountain climbind@ransactions of the American
Mathematical Societ$39(1969), pages 383-391.

[8] Serge LangDifferential and Riemannian Manifold$Springer-Verlag
(1995).
[9] Page 21.
[10] Pages 29 and 30.
[11] Saunders Mac Lane&Categories for the Working Mathematicissecond
edition. Springer-Verlag (1998).
[12] Page 196.

[13] G. D. RamkumarTracings and their Convolution: Theory and
Applications PhD thesis, Stanford University (1998).

155



156 BIBLIOGRAPHY

[14] Alistair Savage. Finite-dimensional algebras and/ers. Encyclopedia of
Mathematical Physicsrolume 2, edited by J. P. Francoise, G. L. Naber, and
S. T. Tsou, Oxford:Elsevier (2006), pages 313—-320. Alsdaia as
“arXiv:math/0505082v1”.

[15] Pierre Schapira. Operations on constructible fumstidournal of Pure and
Applied Algebrar2 (1991), pages 83-93.

[16] James V. Whittaker. A mountain-climbing proble@anadian Journal of
Mathematicsl8 (1966), pages 873-882.



Index

-, the negating map, 69 Left Identity, 108, 117
¢, the zero-dimensional linear space, of Mixed Associativity, iv, 109,
68 118
1-dimensional case, of transverse fiber credit for proposing, v
products, 21 side condition in, 109
. Reversing, 107, 116
admissible poset, for amary Full For- Right Identity, 109, 118
mula, 149 Stability, 106, 116
adyancmg, 9, .26 Axiom of Choice, 52
affine versus linear, 5n
All Invertible Law, 60, 92 backward factor map, 98
All-but-One Invertible Law, 60 Banach spaces, 58
all-invertible case, 92 base set, of a fiber product, 52
Proper Orientations in, 92 Binary Delta Rule, 115
all-zero zigzag, 147 Binary Full Back-Formula, 145
alternating tensors, 68 Binary Full Formula, 36, 136
any-dimensional case, of transverse  pjinary orientation rule, 105
fiber products, 21 binary problem instances, 105
associativity for direct products isomorphism of, 106
unoriented Both Identities Axiom, 107, 116
in a category, 56 Both Invertible Law, 28
in indexed approach, 52 boundary
in positional approach, 51 a manifold with, 5, 17
associativity for fiber products closed segment of, 47
oriented of a region, 37
in mixed case, 34, 109 open segment of, 47, 50
in pure case, 34 brush stroke
unoriented, 53, 101 modeled as Minkowski sum, 41
associativity of transversality, 60, 102 swallowtail in boundary of, 44
atlas, for a manifold, 62
augmented fiber product, 55, 99 category theory, 55
Axiom central inversion, 50
Both Identities, 107, 116 chart, on a manifold, 62
Commutativity, 108 closed boundary, segment of, 47
Concatenate, 111, 123 coats of paint, in a brush stroke, 38,
Concatenate-Backwards, 111, 131 44,48
Isomorphism, 82, 106, 115 Commutativity Axiom, 108

157



158

commutativity for direct products
oriented, 70, 111
unoriented
in indexed approach, 52
in positional approach, 51
commutativity for fiber products
oriented
in equidimensional case, 48
in general case, 110, 122
unoriented, 54
compact and contractible component,
50
complementary linear spaces, 71
completeness of axioms, 105, 112
Concatenate Axiom, 111, 123
Concatenate Rule
for linear spaces, 70
for smooth manifolds, 75
Concatenate-Backwards Axiom, 111,
131
consistency of axioms, 105, 115
constructible function, 38
continuous linear maps, 58
contractible and compact component,
50
contravariant tensors, 68
convolution (versus Minkowski sum),
44
covariant tensors, 69

Delta Rule
Calibrated, 114
in matrix form, 87
need to calibrate, 32
Uncalibrated, 32, 86
difference map
augmented, 59
in mixed case, 101
in pure case, 58
differential, 22, 63
dimensional twist, 125
mixed-associative, 128
direct product
in a category, 55

INDEX

of maps, 72, 73
of oriented linear spaces, 30
of sets
defined positionally, 51
defined with indices, 52
direct sum
of maps, 72
of zigzags, 146
double cover, 81
downward slope, 9, 26, 44
dual spaces, 69

elementary row and column operations,
on matrix of maps, 74
equidimensional case
arises in convolutions, 48
no calibration needed, 114
equidimensional case, of transverse
fiber products, 21
Euclidean structure, 88

factor maps
of a mixed fiber product, forward
and backward, 98
of a pure fiber product, 5, 53
factor set, of a fiber product, 53
fiber bundle, 4, 78
fiber product, iii, 4
as direct product in a related cat-
egory, 56
commutative diagram of, 23, 25
may be disconnected, 4, 48
notation for, 5
of linear spaces, 57
of sets, 53
of smooth manifolds, 63, 104
fiber-product map, 5, 53, 58
in mixed case, 99
flat spot, 9, 26, 44
flexes (points of inflection), 41
forward factor map, 98

Gabriel's Theorem, 146, 147
Gabiriel, Peter, 155



INDEX

Gauss map (a.k.a. whisker map), iii,
40
Grassmann manifold
of oriented subspaces, 80
of unoriented subspaces, 79
Gray-Region Rule, 13, 85
intrinsic version of, 15
topological flaw in, 30
Gray-Side Rule, 30
Greedy-Alice Rule, 9

Hausdorff, required for manifolds, 62

Identity Axioms, 48

indecomposable zigzag, 147

index sef{1, ..., n}, 56, 98

indexed approach, for direct product,
52

inflection, points of, 41

intersect transversely, 61, 64

Intrinsic Gray-Region Rule, 15

Invertible Factor Laws, 28

isomorphic binary problem instances,
106

Isomorphism Axiom, 82, 106, 115

Jacobian matrix, iv, 22, 23
Klein bottle, 75

Left Identity Axiom, 108, 117

Left Invertible Law, 28

Left Partial Identity Back-Formula, 135

Left Partial Identity Formula, 133

linear space versus vector space, 21n

linear versus affine, 5n

local coordinate system, on a mani-
fold, 62

local orientation rule, 9, 25

locally consistent pseudo-orientation,
75

manifold
non-orientable, 75
smooth defined, 62
topological defined, 62

159

with boundary, 5, 17
matrix of maps, 72
Minkowski sum, iii, 39
differs from convoluation, 44
with a 1-dimensional summand
becomes brush stroke, 41
Mixed Associativity Axiom, 34, 109,
118
side condition in, 109
mixed fiber product, 98
credit for concept of, v
mixed-associative dimensional twist,
128
Mobius strip, 23, 75

n-ary Full Formula, 36, 145
negative basis, 67
negatively oriented zero-dimensional
linear space, 68
neutrinos, spurious appeal to, 1
null-positivity, preservation of, 131
nullary direct product, 56
nullary fiber product, 52, 54
arising in geometric context, 61
oriented like base, 93
via category theory, 56

offsets of a curve or surface, iii
of a parabola, 42
offsetting repeatedly, 47
open boundary, segment of, 47, 50
orientation of a boundary
two uses for, 40
two ways to draw, 38
orienting
a direct sum or direct product, 69
a linear space, 23, 67
a quotient space, 71
a smooth manifold, 23, 75
a zero-dimensional linear space,
67
the boundary of a region, 37

painting, 38
Partial Identity Back-Formulas, 135



160

Partial 1dentity Formulas, 133
Partner’s-Slope Rule, 11, 25
Velocity Variant, 13, 29
piecewise affine, 5
piecewise real analytic, 19
poset
admissible, for am-ary Full For-
mula, 149
for Binary Full Formula, 140, 141
for n-ary Full Formula, 149-153
for Ternary Full Formula, 143
positional approach, for direct prod-
uct, 51
positive basis, 67
positive definite Tits form, 147
positive semidefinite matrix, 88
positively oriented zero-dimensional
linear space, 67, 68
Proper Orientations
in all-invertible case, 92
in equidimensional case, 108
in general case, 123
pseudo-orientation, 75
pullback (another name for the fiber
product), 4, 56
pure fiber product, 98

quiver, v, 146
of finite type, 146
guotient spaces, orienting, 71

retreating, 9, 26, 44

Reversing Axioms, 107, 116

Right Identity Axiom, 109, 118

Right Invertible Law, 27

Right Partial Identity Back-Formula,
135

Right Partial Identity Formula, 133

Schapira, Pierre, 19, 38
semialgebraic set, 19

semianalytic set, 19

sense, of a smooth map at a point, 23
sign, of a linear bijection, 23

slope of terrain, 9, 26

INDEX

smooth manifold, 62
smooth,C*® versusC?, 62
Stability Axiom, 106, 116
stable orientationrule, 11, 81, 89, 104
standard index s€tl, ..., n}, 56, 98
stealth airplane, an example that graph-
ically resembles, 49
subanalytic stratification, 19, 38
swallowtail
appearing in inner offset, 42
arrowheads along, 46
cusps of, 42
whiskers along, 46

tangent bundle, of a manifold, 78
tangent map, 22, 63
tangent space, to a manifold, 22, 63
Tarski-Seidenberg Theorem, 19
tensors, 68
terminal object, in a category, 56
Ternary Full Formula, 36, 143
ternary problem instances, 105
Tits form, 147
trajectory
of a brush, 41
transversality, iv, 7, 58
defined for linear spaces, 59, 101
defined for manifolds, 63
defined for zigzags, 101
in the 1-dimensional case, 7
monsters when not required, 18
role of in Structure Theorem for
Zigzags, 148
substitutes for, 19
viewed geometrically, 61, 64
twist, dimensional, 125
twisted orientations, 125
TypesDD, DC, CD, andCC, 147

unary fiber product, 87
orientation independent of base
orientation, 93
Unary Full Formula, 138
universally attracting object, in a cat-
egory, 56
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upward slope, 9, 26, 44

vector bundle, 78
vector space versus linear space, 21n

whisker, 38
credit for the clever name, v
pulling on, 47

whisker map (a.k.a. Gauss map), 40
weakly monotonic, 44

winding number, 38
along boundary, 47

zigzag, 101
all-zero, 147
as a quiver representation, 146
indecomposable, 147
of Type DD, DC, CD, or CC,
147
Structure Theorem for, 147
transverse, 101
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