

Keyword(s):

Abstract:

©

Automated Extensible XML Tree Diagrams

John Lumley

HP Laboratories
HPL-2009-137

XSLT, SVG, XML trees, Functional programming

XML is a tree-oriented meta-language and visual description of XML structures often involves the
construction of visual trees. These trees may use a variety of graphics for chosen elements and often
condense or elide sections of the tree to aid focus, as well as adding extra explanatory graphical material
such as callouts and cross-tree links. We outline an automated approach for building such trees with great
flexibility, based on the use of XSLT, SVG and a functional layout package. This paper concentrates on
techniques to declare and implement such flexible decoration, rather than the layout of the tree itself.

External Posting Date: October 21, 2009 [Fulltext] Approved for External Publication
Internal Posting Date: June 21, 2009 [Fulltext]

Copyright 2009 Hewlett-Packard Development Company, L.P.

Automated Extensible XML Tree Diagrams
John Lumley

Hewlett-Packard Laboratories
Long Down Avenue, Stoke Gifford

BRISTOL BS34 8QZ, U.K.
john.lumley@hp.com

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
DocEng’09, September 15-18, 2009, München, Germany.
Copyright 2009 ACM 978-1-60558-081-4/08/09...$5.00.

ABSTRACT
XML is a tree-oriented meta-language and visual description of
XML structures often involves the construction of visual trees.
These trees may use a variety of graphics for chosen elements and
often condense or elide sections of the tree to aid focus, as well
as adding extra explanatory graphical material such as callouts and
cross-tree links. We outline an automated approach for building
such trees with great flexibility, based on the use of XSLT, SVG
and a functional layout package. This paper concentrates on tech-
niques to declare and implement such flexible decoration, rather
than the layout of the tree itself.

Categories and Subject Descriptors
I.7.2[Computing Methodologies]: Document Preparation —
desktop publishing, format and notation, languages and systems,
markup languages, scripting languages

General Terms: Languages

Keywords: XSLT, SVG, XML trees, Functional programming

1. INTRODUCTION & MOTIVATION
Visualising XML structures in graphical forms such as two-
dimensional trees is an important part of research and development
in document engineering. Being able to examine structures graph-
ically with suitable visual emphases and foci helps understanding
and explanation, both in development (e.g. debugging) and in more
formal situations such as writing technical papers on XML.

Since XML is principally a tree-based representation, we wished
to generate visual trees, with an ability to i) declare flexible graph-
ics for different parts of the structure, ii) elide and de-emphasise
sections of the tree, often to reduce the effect of tree ‘bulk’ and iii)
annotate the visualisation with other attention-grabbing graphics,
such as callouts or cross-tree links. And to do this automatically
on real, sizeable and potentially highly unbalanced XML trees.

This paper describes an approach using SVG[1] as an output dis-
play format, an extensible functional graphic layout framework to
generate node graphics, exisiting algorithms to lay out the actual
tree and XSLT to declare what should be displayed and how.

Figure 1 shows an example plain tree version of a sample XML
structure (from Abdul-Rahman[2]) - here we are just displaying the
name of the element nodes, but of course there is additional inform-
ation (attributes, text, namespaces..) attached to that XML.

BODY

DIV

DIV

H1 IMG DIV

P

DIV

DIV

P DIV

P P

DIV

DIV

DIV

DIV

IMG P P P P

P

DIV

P P

DIV

H1 IMG DIV

P P DIV

P P DIV

IMG P P P P

P

P P

Figure 1.An example tree

Our primary goal was to develop a highly flexible, declarative and
completely XML-based system to support the sort of decorations
we might want to make to aid understanding - Figure 2 shows a
variety of the techniques outlined above employed on the example:
some nodes have an alternate caption, some are represented by a
compound graphical structure. Decorations are placed on points on
the tree, linking a sequence of some nodes and pointing at others.

BODY

DIV(pageset)

DIV(page)
id=_Sheet_1

H1
IMG DIV

P

DIV(page)
id=_Sheet_2

DIV

P
DIV

P
P

DIV(page)
id=_Sheet_3

DIV

DIV

DIV

IMG
P P P P

P

DIV(page)
id=_Sheet_4

P P

DIV(Original Input)

H1 IMG DIV

P P DIV

P P DIV

IMG P P P P

P

P P

Here are the images in
this tree

Here are the images in
this tree

Here are the images in
this tree

Here are the images in
this tree

Here are the images in
this tree

Figure 2.An example tree with additional decoration

2. METHOD
Our approach involves three steps:

Preparation of all the graphical atoms

Layout of the tree of these atoms and interconnection by suit-
able lines denoting tree structure.

Addition of any other top-level graphical decorations.

Most of this paper is concerned with flexible techniques for the first
and last. To carry out the layout of the final tree, it's been essen-
tial to use some algorithm that can build condensed trees, i.e. ones
where deep-wide sections of the tree can lie ‘underneath’ shallow-
er sections. For our work here we've used the doubly-recursive tech-
nique of Kennedy[3], implemented in XLST2.0 - other methods
such as those outlined in Marriott[4] could also be used.

There is a key component to this approach - an extensible declar-
ative layout system. We've used that employed in DDF[5] which
supports XML declarations of graphical combinators coupled with
XLST-based resolution agents, and produces SVG as the canonic-
al output. This can be used to construct significantly complex graph-
ical components, and has a particular agent that supports the lay-
out of parts in a tree-based manner.

We'll briefly describe the layout of the tree (which uses existing
technologies) before proceeding to the novel methods for defining
graphical atoms and super-decoration.

2.1. Tree Layout
Laying out the tree requires a data structure (itself a tree) describ-
ing node graphics and parent-child relationships. Later sections
describe how this may be formed from an original source XML com-
ponent. We need to determine the geometric placement of all the
graphical pieces, following up by joining with suitable lines. Any
suitable algorithm could be used, but condensed (under-running)
forms are highly desirable. We use the doubly-recursive algorithm
of Kennedy

1
which roughly proceeds as follows:

For a given node determine the isolated layout for each of its
children (by recursion).

Take the ‘layed-out’ children by adjacent pairs and determine
the minimum horizontal separation between their ‘roots’, i.e.
when their adjacent vertical ‘edges’ just interfere. (Deeper trees
can ‘underhang’ shallower trees this way - these vertical edges
are not monotonic over depth). This separation is determined
by an inner recursion, describing the (left and right) edges of
a tree as a sequence of steps quantised in (geometric) depth -
this hides intricacy in the edge shape of graphical atoms - the
influence of geometrically ‘deeper’ elements is rounded up to
the next level as shown in Figure 3.

The sum of these separations over the children is taken to be
the overall extent of the ‘roots’ of these children - lay them out
(average a left-to-right and a right-to-left pass to ‘balance’) .

1
Implementors should be warned that the coding of such doubly-

recursive algorithms is exceptionally sensitive to having the correct
internal data structures - there are few half-measures: either the lay-

out works or you're left with a bag of bits, often located at 0,0

Add the display for the node itself above these placed children
and determine the edges of the generated ‘layed-out’ node. (This
node is then only translated as a whole - relative positions of
children are not further modified.)

BODY

DIV(pageset)

DIV(page)
id=_Sheet_1

H1
IMG DIV

P

DIV(page)
id=_Sheet_2

DIV

P
DIV

P
P

DIV(page)
id=_Sheet_3

DIV

DIV

DIV

IMG
P P P P

P

DIV(page)
id=_Sheet_4

P P

DIV(Original Input)

H1 IMG DIV

P P DIV

P P DIV

IMG P P P P

P

P P

Figure 3.Quantisation of tree geometric depth

2.2. Building Graphic 'atoms'
An XML tree is simply a set of nodes linked in parent/child/attrib-
ute relationships. Display of the parent/child relationship is left to
the ‘tree layout’ described above but how do we want to repres-
ent a given node graphically ? There are at least three techniques:

A set of default rules for generating graphical pieces from the
source XML.

Define a set of specific display directives, either as attributes or
as dedicated child elements, which can be added to the XML
tree to declare required graphic display within sections of the
tree.

Develop transforms that generate specific graphical pieces for
chosen sections of arbitrary XML source trees.

Figure 4 shows an example of the use of a set of ‘built-in’ default
rules - in this case, using the (element) name of a node to form a
text graphic and colour-coding the different namespaces of those
elements. These default rules provide a useful fallback.

ddfl:layout

ddfl:variable

ddfl:layout

fo:block svg:ellipse fo:block fo:block fo:block fo:block

ddfl:layout

ddfl:attribute ddfl:layout

fo:block

fo:inline fo:inline fo:inline

ddfl:copy-of ddfl:layout

ddfl:attribute ddfl:layout

fo:block

Figure 4.A simple example tree

We can define an intermingled format for declaring specific graph-
ics to use for a given node, or some means of overriding the default
behaviour. Figure 5 illustrates a case where captions can be declared
and specific graphic constructs included - some of the elements have
alternative captions related to their meaning, and another has a suit-
able graphic, in this case an arrow. Figure 6 shows some of the defin-
ing XML, with attributes and elements named ddfl:tree-

caption carrying the definition of the caption or element reques-
ted. Using a reserved namespace for such components would reduce
interference between these decorations and other manipulation - for
historical reasons we've used reserved names in the namespace
defining document layout.

ddfl:layout

main =

ddfl:layout

fo:block svg:ellipse fo:block fo:block fo:block fo:block

ddfl:layout

@y=$main//e/@cy ddfl:layout

fo:block

fo:inline fo:inline fo:inline

$main

@y=$main//m/@y ddfl:layout

fo:block

Figure 5.A tree with altered captions and node graphics

<ddfl:layout function="flow" direction="x">
 <ddfl:variable name="main" ddfl:tree-caption="main =">
 <ddfl:layout function="flow"> </ddfl:layout>
 </ddfl:variable>
 <ddfl:layout function="position">
 <ddfl:attribute ddfl:tree-caption="@y=$main//e/@cy"/>
 <ddfl:layout function="encap"> </ddfl:layout>
 </ddfl:layout>
 <ddfl:copy-of ddfl:tree-caption="$main" select="$main"/>
 <ddfl:layout function="position">
 <ddfl:tree-caption>
 <svg:polyline stroke="red" fill="none"
 points="-10 0 10 5 7.5 3 10 5 7 6"/>
 </ddfl:tree-caption>
 <ddfl:attribute ddfl:tree-caption="@y=$main//m/@y"/>
 </ddfl:layout>
</ddfl:layout>

Figure 6.Tree graphic declarations

As we build the overall tree within an extensible functional layout
framework, these node graphic element declarations need not be just
‘grounded’ components (such as the svg:polyline defining the
arrow above) but they can be constructional ‘programs’ (flows,
alignments, even trees) that combine various elements together.
This is very useful in visualising layout descriptions as XML trees,
enabling layouts to be partially evaluated.

The first two methods are suitable for illustrating specific example
trees, such as shown in this paper. In general if large numbers of
trees are anticipated, for example as a visual debugging aid, an obvi-
ous approach is to develop sets of transforms to add appropriate
information to or otherwise modify, the source XML tree before
it gets handed to the ‘tree-drawing’ package. Figure 7 shows trans-
form fragments used in Figure 2 which add the blue closing ‘brack-
et’ to elements marked as ‘end’ in the tree.

<xsl:template match="*[@mark='end']" mode="caption">
 <xsl:copy>
 <ddfl:tree-caption>
 <fo:block border-style="dashed"
 border-left-style="none"
 border-color="blue"
 font-weight="bold">
 <xsl:value-of select="name()"/>
 </fo:block>
 </ddfl:tree-caption>
 <xsl:apply-templates select="*|text()" mode="#current"/>
 </xsl:copy>
</xsl:template>

Figure 7.Decorating classes of node through transform
templates

Similar techniques can of course be used to modify the tree topo-
logy significantly. For example the use of the ellipsis (...) to reduce
unimportant repetitive sections of the tree is commonly required.
In Figure 8 we've reduced any long contiguous sequence of sim-
ilar (sibling) elements into a start node with an ellipsis and count.

ddfl:layout

ddfl:variable

ddfl:layout

fo:block svg:ellipse fo:block...3

ddfl:layout

ddfl:attribute ddfl:layout

fo:block

fo:inline...2

ddfl:copy-of ddfl:layout

ddfl:attribute ddfl:layout

fo:block

Figure 8.A tree with elided components

The simple templates shown in Figure 9 do this, where the first of
the sequence has a caption directive added and any of its children
and the rest of the following elements are deleted.

2

<xsl:template match="*[name(following-sibling::*[1]) =
name()]">
 <xsl:copy>
 <xsl:sequence select="@*"/>
 <xsl:variable name="n" select="name()"/>
 <xsl:variable name="rest"
 select="following-sibling::*[name()=$n]"/>
 <xsl:attribute name="ddfl:tree-caption"
 select="concat($n,'...',count($rest)"/>
 </xsl:copy>
</xsl:template>
<xsl:template match="*[name(preceding-sibling::*[1]) =
name()]"/>

Figure 9.Templates for eliding repetitive sequences

Clearly more complex transforms can be developed to give a vari-
ety of similar effects, which involve modification of the source tree
before geometry is assessed.

2.3. Additional Super Decoration
The tree itself is the major graphical form of a visualisation, but
we might wish to add additional graphical components between
parts of the tree or from parts of the tree to external graphics -
examples might be to link sections that involve a cross-reference,
or extra-tree callouts. Figure 2 shows some of these, where links
between an external label and different nodes in the tree are drawn.

To achieve this we have to i) layout the target tree, ii) identify the
final geometric positions of (graphic) nodes of interest and iii) draw
the appropriate decorative elements to ‘touch’ those nodes. If such
requirements are acyclic we can do this using single assignment
presentational variables[6] to record the result of the layout and
then interrogate this result via XPath interpolation to generate or
position the final decoration. Figure 10 shows an example where
we've drawn the blue dashed line between two leaf nodes:

2
The ‘rest’ selecting XPath actually has to be slightly more com-

plex to choose only the current contiguous sequence - that shown
here is illustrative.

tree

b

x y z

c d e f

Figure 10.Super decoration on a tree

The code to do this is shown in Figure 11, which assigns the res-
ult laying out the main tree to a presentational variable main and
identifies the two nodes to and from in the result geometry,
through an XPath query on the result searching for the ddfl:
tree-name properties (which are copied by the tree constructor
from the original source XML onto the appropriate SVG graphic
element). A line is then constructed starting and ending at the geo-
metric centres of those nodes in the result and then the tree graph-
ic is written on top.

<ddfl:layout function="encapsulate"
 ddfl:evaluate="yes">
 <ddfl:variable name="main">
 <ddfl:layout function="tree" font-size="6">
 <tree>

 <x/>
 <y/>
 <z ddfl:tree-name="from"/>

 <c/>
 <d/>
 <e/>
 <f ddfl:tree-name="to"/>
 </tree>
 </ddfl:layout>
 </ddfl:variable>
 <ddfl:variable name="from"
 select="$main//*[@ddfl:tree-name='from']"/>
 <ddfl:variable name="to" select="$main//*[@ddfl:tree-
name='to']"/>
 <svg:line stroke-width="1.5" stroke="blue"
 stroke-dasharray="2,1">
 <ddfl:attribute name="
x1" select="$from/@x + $from/@width div 2"/>
 <ddfl:attribute name="
y1" select="$from/@y + $from/@height div
 2"/>
 <ddfl:attribute name="x2" select="$to/@x + $to/@width div 2"
/>
 <ddfl:attribute name="
y2" select="$to/@y + $to/@height div 2"/>
 </svg:line>
 <ddfl:copy-of select="$main"/>
</ddfl:layout>

Figure 11.Defining code for the diagram of Figure 10

Clearly such techniques can be extended to considerable complex-
ity, without modification of the underlying layout system. However
the programmatic model supported in our layout engine is that of
a simple ‘pull mode’ XSLT - involving XPath node selection,
choice, iteration and single-assignment variables. Building ‘smart’
elements, such as ‘connectors’ that avoid overlap, i.e. thread their
way within the tree, would in practice require additional special-
ist layout agents to be added.

3. PRIOR ART
The problem of big trees has been approached by several: Walk-

er [7] developed an early approach; Kennedy[3] generates compact
trees with ‘centred parents’ - the technique used in this paper.
Recently Marriott et al[4] tackled denser layout with non-centred
parents. There have been a number of simple tree-drawing imple-
mentations published, such as Kosek [8] - most of these i) are simple
layout implementations (no attempt at condensation) and ii) use
simple canonical text-based descriptions for the nodes, or some-
times with constant graphical icons (e.g. folder ‘picture’) for par-
ticular types of node.

None of these provide the possibility of building an arbitrary graph-
ical construct for a node.

4. STATUS, FUTURE & THANKS
The techniques described in this paper were of course used to con-
struct all the sample tree visualisations in this paper. Future work
is to refine the vocabulary and develop some useful libraries of tree-
decorating templates and well as common paradigms for super-
decorations.

The author thanks Alfie Abdul-Rahman for posing a display prob-
lem which triggered revisiting this work on tree construction and
Owen Rees and Roger Gimson for suggestions about this paper.

5. REFERENCES
[1] W3C, World Wide Web Consortium Scalable Vector Graph-

ics (SVG) 1.1 Specification . http://www.w3.org/TR/xsl/.
2003.

[2] Abdul-Rahman, A., Gimson, R. and Lumley, J. Automatic
Pagination of HTML Documents in a Web Browser . In sub-
mitted to :Proceedings of the 2009 ACM symposium on Doc-
ument engineering. 2009.

[3] Kennedy, A. Drawing Trees . In Journal of Functional Pro-
grammingVol 6 , no 3 , pages 527 - 534 Cambridge Univer-
sity Press. May 1996.

[4] Marriott, K. and Sbarski, P. Compact layout of layered trees.
In ACSC ‘07: Proceedings of the thirtieth Australasian con-
ference on Computer science pages 7--14 Australian Com-
puter Society, Inc.. 2007

[5] Lumley, J., Gimson, R. and Rees, O. Extensible Layout in
Functional Documents . In Digital Publishing, Proc. of SPIE-
IS&T Electronic Imaging, Vol 6076. 2006.

[6] Lumley, J., Gimson, R. and Rees, O. Resolving Layout Inter-
dependency with Presentational Variables . In Proceedings
of the 2006 ACM symposium on Document engineering. 2006.

[7] Walker, J. A node-positioning algorithm for general trees .
In Software Practice and ExperienceVol 20 , no 7 , pages
685 - 705 1990.

[8] Kosek, J. Automated Tree Drawing: XSLT and SVG . http:
//www.xml.com/pub/a/2004/09/08/tree.html. Sept 2004.

