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Abstract

The number of changes that IT departments have to deal with is growing at a fast pace in response to changing business
needs of enterprises. As changes are getting executed and deployed, knowledge is being created and stored. It is of
paramount importance to the success of the business to re-use that knowledge for future changes. In fact, those who do not
learn from past experiences are doomed to repeat the same mistakes as well as not bear the fruit of the ones that were
successful. This paper addresses this concern by providing for every change being worked out the most similar past changes.
Our approach uses an optimization paradigm to model the problem of finding past similar changes by designing and
learning similarity functions. Our approach enhances the efficiency and effectiveness of dealing with changes, by reducing
the risk and shortening the time of introducing new changes.

Introduction

IT environments are becoming increasingly complex and dynamic. Changes are constantly introduced responding
to changing business needs such as improving services or reducing costs as well as solving existing incidents or
problems. A typical enterprise deals with hundreds of thousands of changes every year. For these reasons, a
disciplined process is needed to ensure that required changes are carried out in a planned and authorised manner
while minimising the impact and risk of those changes upon service quality. There are several activities involved
in managing an individual change. It starts by creating and submitting a request for a change (RFC). The RFC
gets reviewed, assessed and eventually authorised or rejected. Once the RFC is authorised, plans are created
including implementation plans, test plans and back out plans in case the change fails. Then, the change is built,
tested and implemented. Finally, the change is reviewed to ensure that the change has the desired effect and met
the required objectives. During the lifecycle of a change, information is collected and knowledge is created and
stored in the Configuration Management Database. A CMDB contains details of the organizations’ elements
referred to as Configurations Items (CIs) that are used in the provision and management of its IT services. Among
those details, a CMDB contains information about all the changes that have been performed on those elements. It
includes the plans for implementing those changes, the risk involved, the back out plan, the resources used, the
impacted applications, the incidents triggered by implementing those changes, whether or not a change has been
successfully implemented, the reason(s) why a change has failed and so on. Since knowledge is created during the
lifetime of a change, it is of paramount importance to the success of the business to re-use that knowledge for
future changes. In fact, those who do not learn from past experiences are doomed to repeat the same mistakes and
also would not bear the fruit of the ones that were successful. What if a change manager (person responsible for
approving and overseeing the change from start to end), is presented with the outcomes of the most similar
changes? He will be able to better assess the risk and impact associated with the change at hand and consequently
take the appropriate course of action. What if a change planner (person responsible for designing the different
plans for a change) is presented with the plans of the most similar changes? He will be able to learn from those
plans and produce plans in a shorter period of time with a lower risk of failing. What if a change reviewer (person
responsible for monitoring changes after their implementation) is presented with applications that were disrupted
by past changes similar to a recently completed change request? He will be able to identify it as a potential root
cause to newly created incidents.

In order to answer all these questions, we need to be able to, given a change, find the most similar past changes
and display them. The information contained in a change record consists of various attribute types, ranging from
complex types such as text documents or graph representations, to basic types such as strings, integers and
booleans. There are various techniques in literature for computing the similarities of such attributes [1, 9, 10, and



11]. While the similarity of such attributes is important, it does not necessarily mean that the corresponding
changes are similar. Consequently, given the similarity of such attributes, there is a need for a way of classifying
two changes as being similar or not, more importantly, if two changes are similar, there is a need for a measure of
how similar they are. In literature, there are several classification techniques [12] which attempt to place
individual items into groups based on information about those items as well as a training set of previously
classified items. The classified items are usually generated with the help of a subject matter expert. The main
difference of our approach compared to existing approaches is the fact that we model the classification problem as
an optimization problem where we try to find one or more similarity functions while at the same time classifying
the changes as being similar or not with respect to those similarity functions. This will allow us to pick from the
set of similar changes only the changes that have high similarity values to the change at hand.

The remainder of the paper is organized as follows. Section 2 describes the framework for designing and learning
similarity between changes using their attributes similarity as well as expert feedback. Section 3 discusses some
techniques for capturing similarity between single attributes according to their type. In section 4, details of the
approach used to find and learn similarity between changes are depicted. Empirical results of our approach are
presented in section 5. Finally, we draw our conclusions and give a preview of the next steps in section 6.

Change similarity design and learning system

Figure 1 depicts our solution. Every time a new Request for a Change (RFC) comes in to the system, it is
compared to changes stored in the Change Knowledge Base. The CKB consists of the set of all changes
performed in the past. The comparison of the actual RFC with a particular change makes use of a similarity
function that will be described in section 4. The most similar changes will be displayed to the user along with a
measure (value between 0 and 1) of how similar the change is. A domain expert will provide feedback on whether
or not the displayed changes are genuinely similar to the actual RFC. The feedback consists of stating whether the
two changes are similar or not. Once the expert feedback has been recorded, a set of new training elements will be
created and added to the training set. A training element is an object representing the actual RFC, a change
deemed to be similar according to the actual similarity functions, the similarity between each attribute of both
changes, along with the expert feedback. A training element with a positive feedback is called positive element
and a training element with a negative feedback is called negative element. Note that the training elements are
added to the training set if and only if there is at least one change deemed similar according to the similarity
functions but not similar according to the expert. In fact, if all feedback were positive then the existing similarity
functions are able to accurately classify changes hence there is no need to learn new ones.

If the training set has been updated, then the actual similarity functions are not able to accurately determine the
similarity between an RFC and a change. Consequently, there is a need to learn new similarity functions using all
expert feedback. Once new similarity functions are learned, it will be used for future detection of similarities
between an RFC and similar changes.



Figure 1: Framework for change similarity design and learning

Similarity Calculation

An RFC is modelled as an object with a set of attributes as shown in table 1. The list of attributes is not
exhaustive, so in practice some attributes could be present, others could be missing.

Table 1. Example of attributes of a Request for a Change

Attributes Description Type
Description This is a summary description of the change. Text
CIs to be changed List of CIs Set
Affected Applications List of applications affected and their topology Tree or a graph
Change Implementer (s) Who will implement the change (a single person or a group) Object or Set of

objects

Depending on the type of the attribute, we use an appropriate similarity function based on a pre-defined distance
(similarity and distance notions are dual) [1] to calculate the similarity between the same attributes of different
RFCs. For example, for a vector of integer’s type, we could use a similarity function based on the Euclidian
distance, a similarity function based on a Hamming distance is useful for strings of same length and a Levenshtein
distance is more suitable for strings of different length. We have derived a modified version of the Levenshtein
distance to calculate similarity between a set of objects. For text documents a cosine similarity is the most
appropriate. In the following, we will address more in detail the cosine similarity since a lot of knowledge is
captured in a textual form, the Levenshtein distance for its usefulness for more than a type of attributes and finally
we will tackle how to transform a distance into a similarity measure.

Cosine Similarity

The root of the cosine similarity measure comes from vector analysis theory. The cosine angle between two
vectors represents how close those vectors are. In other words, the closer the two vectors are, the more the cosine
of the angle approaches 1. The cosine angle between two vectors is represented by the ratio between their dot
product and their Euclidian distance. To apply this approach to compare text documents in a collection, the latter
are represented as term vectors where the coordinates of the vector are the term weights. There are many ways to
represent a term weight, the most widely used weight is: tf * log (N/n) where tf is the term frequency, N is the total



number of text documents in the collection and n is the number of documents containing the term. The cosine
similarity is used in many search engines to rank text documents with respect to a given query.

Levenshtein Distance

The Levenshtein distance also called the edit distance have been widely used especially to measure similarity
between strings. This distance is computed as the number of edits (insertions, deletion and substitutions) needed
to transform a string A into a string B. There are many applications to this measure including spell checking, to
identify duplicated content and plagiarism, for spam stemming and spamdexing search engines, regular
expressions approximate matching and many others. While it has been mainly used for strings, it could be used to
calculate the similarity between a set of objects or even trees. Since strings are ordered characters, if we consider
objects or tree nodes as characters and define an order for (the set of objects) or a traversal order on trees then it
would be easy to apply this measure to compare two different sets of objects or two trees.

From distance to similarity

As we said earlier, there is a notion of duality between similarity and distance. A similarity could be modelled as a
function S=f(d) where:

 f(0)=1, meaning that two objects are similar if their distance is equal to 0.

 If d1 <= d2 then f(d1) >= f(d2), meaning that the closer the distance of two objects, the more similar
they are.

Unfortunately there are many functions that could satisfy those properties and the choice of a good function
depends on the problem at hand. Well known functions are:

 S=1/1+d

 S=exp(-d/2)

 S=1-d/M for d<M, 0 otherwise.

Similarity Learning

The learning process consists of finding at least a similarity function (Sij) and a threshold (t) that maximises the
number of training elements set correctly. If we define the similarity function as the linear combination of the
attributes similarity:
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Where:

 Sij defines the similarity between RFCi and RFCj;

 wk is the weight associated to attribute k. The values of the weights wk represent the significance of the
corresponding attribute in determining the similarity between RFCs.

 Sijk is the similarity between the kth attributes of RFCi and RFCj.

Then the learning process could be modelled as an MIP (Mixed Integer Program):



(P1): Maximise the number of training elements set correctly
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such that:

uc =1 if training element c is set correctly, 0 otherwise.

A training element (RFCi ,RFCj , (Sij1,.., Sijn), f) is considered to be set correctly if
and only if:

 If f is true, then Sij - t >= 0

 If f is false, then Sij - t < 0
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This problem is known as the maximum feasible subsystem problem (MFSP) [4]. Unfortunately, this problem is
known to be NP-hard [4, 5, and 6] hence finding the optimal solution for a large training set is out of reach.
However there are several fast heuristics [2] to solve the MFSP problem producing results covering more than
90% of the optimal set of feasible constraints in polynomial time. Figure 2 depicts the algorithm
(LearnOneSimilarityFunction) for finding the MSFP which could be described as follows:

1. We transform P1 into a linear program P2. Contrary to an MIP, a linear program can be solved in
polynomial time [7].

(P2): Max t such that:

1
1
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For each training element:

 If f is true, then Sij - t >= 0

 If f is false, then Sij -t < 0

2. Elasticize P2 into EP2. An elastic program [8] is a relaxation of an LP by adding/subtracting (depending
on the direction of the inequality) non negative elastic variables to the constraints. By design an elastic
program is always feasible. An elastic program has the advantage of providing useful information about
the infeasibility of the original LP. The objective function of the elastic program is to minimize the sum of
the elastic variables. If the value of the objective function is equal to 0 then the original LP (P2) is
feasible. The value of an elastic variable indicates whether the corresponding constraint is violated (value
equal to 0) or not (value different than 0).
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For each training element :

 If f is true, then Sij - t + ec >= 0

 If f is false, then Sij -t - ec < 0

ec >= 0

3. The last step consists at iterating through a process of deleting a constraint from the elastic program until
the original LP (P2) becomes feasible. The choice of the constraint depends on the impact of its deletion
on the drop on the objective function. As observed by [2], “a good predictor of the magnitude of the drop
in the objective function that will be obtained by deleting the constraint is given by the product
(constraint violation) × | (constraint sensitivity)|”, where the constraint violation represents the value of
the elastic variable and the constraint sensitivity is the reduced cost of the variable associated to the
constraint (value of the dual variable of the constraint).

4. Once all constraints causing the infeasibility of the original LP problem (P2) have been removed, P2
becomes feasible and solving this problem will produce the similarity function and the threshold
separating negative and positive elements.

INPUT:

STEP1:

STEP2:

STEP3:

OUTPUT:

Original infeasible Linear program (P2)

CoverSet=ø

Elasticize P2 into EP2

Solve EP2

If number of constraints with non zero elastic variable = 1 then:

Add corresponding constraint to CoverSet

Goto STEP3

Else

Remove the constraint with the highest product (elastic variable * |constraint sensitivity|) from EP2

Add corresponding constraint to CoverSet

Solve EP2

If objective function = 0 then:

Goto STEP3

Goto STEP 2

Remove all constraints in CoverSet from P2

Solve P2

Similarity function represented by (w1 , ..,wn) and threshold t

Figure 2: Algorithm for learning a similarity function: LearnOneSimilarityFunction



While this algorithm produces very good results in solving the MSFP problem, it doesn’t however cover a big part
of the training set. This drawback is mainly due to the nature of the problem at hand meaning that one similarity
function is not sufficient to cover all the cases of similarities in the training set. The following example will
illustrate this issue:

Let’s assume a change is composed of 4 attributes and the training set consists of the following 6 elements:

Table 2. Example of a training set

Training element Changes Expert
Feedback

Attribute 0
Similarity

Attribute 1
Similarity

Attribute 2
Similarity

Attribute 3
Similarity

t0 c1, c2 true 0.75 0.12 0.89 0.3

t1 c3, c4 true 0.88 0.2 0.73 0.15

t2 c5, c6 true 0.05 0.92 0.11 0.77

t3 c7, c8 true 0.1 0.72 0.23 0.88

t4 c9, c10 false 1 0.7 0.03 0.2

t5 c11, c12 false 0.09 0.8 0.77 0.14

Each training element consists of a couple of changes (ci, cj), the user feedback (true/false) stating whether or not
the two changes are similar and the similarity of the attributes of both changes. From the given example, we can
see that t0 and t1 share high similarities for attributes a0 and a2, while t2 and t3 share high similarities for
attributes a1 and a3. Training elements t4 and t5 state that two changes having high similarity for attributes (a0,
a1) respectively (a1, a2) are not similar. Furthermore, we can observe that any MSFP would contain either t0 and
t1 or t2 and t3 but not both. If we apply the algorithm on figure 2 over this training set, it will eliminate t0 and t1
(as the corresponding constraints were causing the infeasibility of the system) and produces a similarity function
f1 represented by (w1 , w2, w3, w4) = (0, 0.35, 0, 0.65) and a threshold t = 0.82. If we construct a new training set
composed of t0, t1 (positive elements excluded by applying the algorithm on the whole training set) as well as the
negative elements t4, t5 then by applying the same algorithm, we obtain a similarity function f2 represented by
(w1 , w2, w3, w4) = (0.55, 0, 0.45, 0) and a threshold t = 0.81. The negative elements t4 and t5 have been added to
the training set to make sure that every similarity function will exclude all negative elements from being classified
as similar. Table 3 shows the calculated similarities for all training elements using the functions f1 and f2.

Table 3. Similarity results for example training set

Training element Changes f1 f2

t0 c1, c2 - 0.81

t1 c3, c4 - 0.81

t2 c5, c6 0.82 -

t3 c7, c8 0.82 -

t4 c9, c10 0.37 0.56

t5 c11, c12 0.37 0.39

The new algorithm for learning multiple similarity functions is displayed in figure 3. At each iteration of the
algorithm, a new similarity function is created by applying the LearnOneSimilarity algorithm onto the training set.
The training set is composed of all negative elements and the remaining positive elements (all positive elements
whose corresponding constraints have been identified as violated). The algorithm stops when there are no
remaining positive elements or the MSFP contains only negative training elements.



INPUT:

OUTPUT:

Training Set

LOOP

Apply the LearnOneSimilairtyFunction onto the training Set

Remaining Positive Elements:=CoverSet;

Training Set = Negative Elements + Remaining Positive Elements

Until (Remaining Positive Elements= ø or no new function can be learned)

All similarity functions

Figure 3. Algorithm for learning multiple similarity functions

Empirical Results

We have implemented the algorithm for learning multiple similarity functions and we have designed a set of
examples to test the performance and efficiency of the algorithm. Since real data were not available, we have
generated random training elements, in other words, for each attribute a random similarity (between 0 and 1) have
been generated. In order to emulate the expert feedback, we have classified training elements according to the
similarity of the attributes as shown in table 4. For each example, changes are considered similar if one of the
conditions over the attributes similarity is satisfied.

Table 4. Test cases for the algorithm

Conditions for similarity between changes Number of attributes

Example 1  s0 >= 0.9 and s2 >= 0.6

 s1 >= 0.6 and s3 >= 0.8

4

Example 2  s4 >= 0.6 and s7 >= 0.8 and s0 >= 0.7 and s8 >= 0.8

 s0 >= 0.9 and s2 >= 0.6 and s6 >= 0.8

 s1 >= 0.6 and s3 >= 0.8

 s2 >= 0.6 and s9 >= 0.8

 s5 >= 0.9

10

Figure 4 shows the results of applying the algorithm on training sets of different sizes (number of training
elements). Once the similarity functions have been identified, we generated randomly 50000 training elements
and checked the accuracy of the algorithm on classifying those training elements against the similarity functions.

A positive training element is considered to be misclassified if its similarity value is below the threshold for every
similarity function. However, a negative training element is misclassified if its similarity value is above the
threshold for at least one similarity function.
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Figure 4: Algorithm classification accuracy

It is obvious to see that the bigger the training set the more accurate the results are. For both examples, a big
increase in efficiency (more than 5%) is seen between moving from a training set size of 200 to 500. However,
beyond that point the gains in accuracy are significantly lower especially if we look at the tradeoff between the
performance of the algorithm and its efficiency as shown in table 5. Consequently, a training set of a size of 500
is an excellent candidate for an initial training set, because it has a far better accuracy than 200 with little decrease
in performance and it has a far better performance than 5000 with little increase in accuracy.

Table 5. Algorithm performance

Example 1 Example 2

Training Set size LPs Time (sec) avg/LP (sec) similarity
functions

LPs Time (sec) avg/LP (sec) similarity
functions

100 9 0.078 0.008 2 27 0.188 0.007 4

200 11 0.203 0.018 3 56 0.750 0.013 6

500 71 1.422 0.020 3 150 5.172 0.034 8

1000 180 7.438 0.041 4 410 44.25 0.108 5

2000 192 36.172 0.181 2 904 370.199 0.409 6

5000 510 1138.265 2.231 2 2580 14564.53 5.640 7

Conclusion

We are in the process of finalizing a prototype for our solution. The learning algorithm is promising and produces
very good results for large training sets in terms of the cover of different similarity cases. The algorithms
presented in this paper have been implemented in the Control and Change Management Center (CCM) and at the
time of writing this paper, are being validated at customer sites. A patent covering the approach is being filed. The
next steps would be to get more customer data and extensively test our solution. Our research efforts will be next
focused at how best the results (similar changes) could be used to enhance and better guide the decision maker for
the best possible choices. In terms of enhancements, we are exploring graph based similarity distances especially
for attributes represented topologically like the configuration items. Furthermore, we are also looking at applying



the same approach in other areas of ITSM (IT Service Management) like incident and problem management.
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