[LaBs™)

Maintaining Network QoS Across NI C Device Driver Failures Using

Virtualization
Michael Le, Andrew Gallagher, Yuval Tamir, Y oshio Turner

HP Laboratories
HPL-2009-115

Keyword(s):
device driver, recovery, virtua machine, fault tolerance, QoS, network, dependability, resiliency

Abstract:

Device driver failures have been shown to be amagjor cause of system failures. Network services stress NIC
device drivers, increasing the probability of NIC driver bugs being manifested as server failures. System
virtualization isincreasingly used for server consolidation and management. The isolated driver domain
(IDD) architecture used by several virtual machine monitors, such as Xen, forms a natural foundation for
making systems resilient to NIC driver failures. In order to realize this potential, recovery must be fast
enough to maintain QoS for network services across NIC driver failures. We show that the standard Xen
configuration, enhanced with simple detection and recovery mechanisms, cannot provide such QoS.
However, with NIC driversisolated in two virtual machines, in a primary/warm-spare configuration, the
system can recover from an overwhelming majority of NIC driver failuresin under 10ms.

External Posting Date: May 21, 2009 [Fulltext] Approved for External Publication (éﬂ
Internal Posting Date: May 21, 2009 [Fulltext]

To be published in and presented at |EEE International Symposium on Network Computing and Applications, July 9-11, 2009

© Copyright |IEEE International Symposium on Network Computing and Applications 2009



8th IEEE International Symposium on Network Computing and Applications
Cambridge, MA, July 2009.

Maintaining Network QoS Across NIC Device Drver Failures Using Virtualization

Michael Le, Andrev Gallagher Yuval Tamir
Concurrent Systems Laboratory
UCLA Computer Science Department
{mvle,ajcg,tamir}@cs.ucla.edu

Abstract—Device driver failures hare been shown to be a major
cause of system failues. Netvork services stress NIC deice
drivers, increasing the probability of NIC driver bugs being
manifested as serer failures. System virtualization is
increasingly used for serer consolidation and management.The
isolated driver domain (IDD) architecture used by sgeral virtual
machine monitors, such as Xen, forms a natural foundationof
making systems resilient to NIC drver failures. In order to
realize this potential, recorery must be fast enough to maintain
QoS for network services across NIC drier failures. We show
that the standard Xen coniguration, enhanced with simple
detection and recorery mechanisms, cannot povide such QoS.
However, with NIC dri vers isolated in two virtual machines, in a
primary/warm-spar e cmnfiguration, the system can ecover from
an overwhelming majority of NIC dri ver failures in under 10ms.

I. Introduction

Yoshio Turner
HP Laboratories
Pdo Alto, CA
yoshio.turner@hp.com

However, the IDD architecture has the potential to verg
most non-malicious device ®a failures from corrupting
other VMg[4]. Sincesystem virtualization is commonly used
in data centers for other reasons, there is strongatioti to
utilize the IDD architecture for resiliepco driver failures
without resorting to special or modified bis.

Unfortunately  without  additional mechanisms,
virtualization utilizing the IDD architecture is not 8afent to
allow applications to continue uninterrupted acrossveri
failures. Onthe contrary with virtualization, the effects of
failed drivers are worse since a single deviceverfailure can
impact mag VMs sharing the dece. Whendrivers reside in
a privileged VM, such as DomoO in the Xen VMM, the entire
virtualized system, including all the application VMs, must be
restarted if the dvers crash the prileged VM. Even in a

A significant fraction of bugs in operating systems areconfiguration where device ders reside in separate non-

found in device dxiers [3]. Thus, errors in dviers are a major
cause of systenailures [18]. A faulty device driver can cause

the entire system to crash, hang, or exhibit arbitrary incorrect

behavior In order to improe the reliability of systems,
drivers must be isolated, limiting their ability to corrupt other
parts of the systefii8]. Furthermorethe system must be able
to detect erroneous dear behavior and recwer by restoring a
working driver. In current systems, since auity driver can
corrupt the entire system, remoy is likely to require a
complete system reboot as well as xecp of the application
state. Br mary applications, such as most network services
lengthy service interruption is unacceptable.

The resilieng of systems to drier failures can be
improved by isolating drvers in light-weight domainfl8],
and by usetevel drivers [9]. Isolating the device drérs from
the lernel preents buggy dwers from harming the kernel and
crashing the systemDevice driver recovery is done by
restarting and re-attaching the deviceverito the running
kernel. Thesapproaches require the kernel and devioeedsi
be be modified or the use of non-standard devicermdri

System virtualization[16] is nmo widely used in data
centers to pndde workload isolation and fkible
management of consolidated se/[2]. Several virtual
machine monitors (VMMs) use an isolatedvdri domain
(IDD) architecture to virtualize 1/0 d&es|[4,12, 14]. With
the IDD architecture, unmod#d commodity device drers
(e.g., NIC dwers) run in a different virtual machine (VM)

privileged VMs[4], filure of a dwer VM causes all VMs
sharing the device exported by theverivM to stop working.

Table 1. Impact of fault injection in NIC device dr.

system N o _
configuration #injections | % gpplication failure

Linux 1987 66.0%

Xen-base 2574 66.1%

Xen-IDD 2809 63.4%

To illustrate the point ah@ regading the IDD

architecture, @ble | shavs the results fromailt injection into

a NIC device dner (see Sections Il and IV for detailsThe
application is a simple ustsvel ‘‘ping’”’ program between a
separate physical system and the target systesults are
shavn for a target system that is Linux without virtualization,
Linux in an application VM on a standard Xen dguafation
(Xen-base) where the d®a is in the privileged VM, and
Linux in an application VM on a Xen configuration with a
separate dver VM (Xen-IDD). In all three cases a similar
fraction of injected faults caused the application to fail.

The focus of this paper is on achieving resiliet@NIC
driver failures in virtualized systems using the IDD
architecture. Wh the Xen VMM, we describe and/auate
several mechanisms that prisle detection and regery from
NIC driver failure. Ourevduation is based on injectingults
in the driver code and measuring natvk service interruption.
We pesent a dvier failure detection mechanism that is

from applications. The IDD architecture does not eIiminate\cm){me of detecting hangs as well as crasl@s results

the ability of a malicious déce driver to prevent correct
execution — for example, a NIC dér can drop all pacts.

shav that simply rebooting the VM with the NIC der when
driver failure is detected results in reeoy delay of multiple



-2-

seconds and thus cannot provide transparentvegcdor

. ivi Application VM
network services. Privileged VM pplication

Request Request
We pesent a fast rewery mechanism based on aeee Consumer Producer i Unmodified
. .. . . . anager & N\ / User
maintaining tvo VMs with the NIC dwer: the primary and a Control siw Software
warm sparé. When_drver fallu_re is dgtected, revery is SeseR GUeSIOS
perfprmed by replacing the primary with the spak&hile e
Interf
previous schemes reported reegy times on the_ order of a etace / % TSV
second [17]or hundreds of milliseconds[4], in the great Response Response rontond)
majority of cases our scheme ree in less than 10msSuch Producer Consumer
fast recwery allows th_e system_ to _meet QoS rgquwemen_ts for Xen (VMM)
mary network services. This is accomplished using

unmodifed application VMs, minimal modiations to the | ABEIETD (ERY, e, Eieinet, DIE |
Xen VMM and driver VM kernel, and usdevel scripts in the
privileged VM. The scheme incurs no performanaerbead

and insignificant memoryvarhead during normal operation. memory shared between the respecitMs. Therequests are
often pointers to pages in memory containing the data, such as

a packet that a VM wishes to send. These pointers, called
grant references, allo one VM to give acess to certain
memory pages to other VMs. Once a request or response is
placed on the shared ring, aveat can be sent notifying the
other side of the pending request/response. The use of the ring
The releant aspects of virtualization technology areijs coordinated using request/response producer/consumer
revieved in Sectiodl. The evduation methodology is indices. Br network devices, there aredwhared rings, one

described in Sectiofil. SectionlV presents anvaluation of  ysed for transmission (transmit ring) and one for reception
the impact of device drer failures on standard Linux and on (receie iing).

Linux in a VM hosted by Xen.Section V describes and
evduates three system architectures thatvipe recoery
from driver failures. Relatedvork is presented in Section VI.

Figure 1: Xen virtualization architecture

While our ealuation is based mainly on the Intel Pro 100
100Mb NIC, we hee dso \alidated our mechanism using
another 100Mb NIC and a 1Gb NIGVith 100Mb NICs,ho
device driver modifications were requiredWith the 1Gb NIC,
minor modifications (15 lines of code) were required.

To initialize a frontend-backend connection, grant
references (for setting up the shared ring) arshtechannel
ports must be communicated between frontend andebdck
Il. SystemVirtualization drivers residing on different VMsTo dlow this, Xen preides

Virtualization technology allows multiple VMs, each & centralized store call the XenStore, implemented as a
with its avn OS, to run on a single physical macHig]. A ~ Process running in the FXM. Sincecommunication through
critical function of the VMM is to isolate VMs from each the XenStore is asynchronousyatving multiple levels of

other so that activities in one VM cannotfeat another indirection, operations are sicand are typically only used for
VM [15]. frontend-backend connection setup and teardown.

In Xen[1], a prvileged VM (PrivWM), often referred to In order to iso!ate th? Priv\/M from device wiis, Xen
as Domo, is used to control and manage wvileged VMs allows baclends with their device dmrs to be hosted on
running applications (AppVMs).The PrivwM has direct Unprivileged VMs[4]. A VM hosting a deice driver must be

access to the hardwarevites on the system and typically able to directly access the correspondingiae controller
houses all the device ders. A failure of the PrivwM can Xen allows VMs to hee drect access to PCI devices by

cause the entire virtualized system to crash. mapping the PCI I/O memory address space into the VMs
virtual address space. VMs hostingvérs that directly access
devices are referred to in this paper avarivMs (DVMSs).
VMs which host only netark devices are referred to as
network driver VMs (NetDVMs). Multiple AppVMs can
share a single NetDVM.

The split device dvier architecture in Xendcilitates the
sharing of devices among VN®. With the split drver
(Fig. 1), afrontend driver resides in each VM sharing the
device. Onebackend driver together with the actual diee
driver reside in one VM. Requests from frontends are
processed by the backend, using the actuaiceedriver to lll. Evaluation Methodology
perform the requested operationSrontend/backnd drvers The results in this paper were obtained usingeraé
are paravirtualized (PV) but can be used in fully virtualizedsystems based on the Intel Core-2 process&i®. most
(FV) VMs. FV VMs can use PV drers in place of more experiments, we used Intel Pro 100 NICs interconnected by a
complex device driers to improve reliability and performance  100Mb switched ethernet natvk. Xen3.3.0 was used as the
(by eliminating device emulation). VMM. The non-virtualized setup used the Linwerkel

Communication between frontend and berok drivers is ~ version 2.6.18.8. XenoLinux kernel version 2.6.18 #swsed
done using requests and responses on a ring data structurdanthe PrivvM, AppVM, and NetDVMs.



-3-

Software-implemented fault injectionas used to inject execute for a longer period before accumulating 7s during
faults in the NIC dwer. This was done using o@igan fault ~ which it receves packets. Oneinjection run consists of
injector that resides in the VMM and is capable of non-booting the taget system, randomly picking a time between 0
intrusively injecting into VMg[11]. Someof these injections and 5s for when to set a breakpoint at the injection address,
simulate programming errors, such asadiil pointer access and running the application. If the application does not record
and incorrect loop termination conditidi8]. For code  normal termination within 22s (or in some experiments 14s), a
injection, fults were injected intovery byte of the most timeout is triggered and that is interpreted to bésdent
frequently used functions[8] (six out of 75) in the E10Qice  application failuré.
driver, identified by the Xenoprof sampling pilefr[13].
These six functions account for roughly 29% of the E100
code. Therest of the functions are used forvibe/driver In a coventional system, device dhr failure is likely to
initialization. Injection was triggered by setting hardwe lead to eerall system dilure. Inour experiments @ble II),
breakpoints on the virtual addressegjéted for injection.If ~ 64.9% of injections into the E100 def, running in a
the breakpoint fired, a random bit of the targeted bys w cornventional Linux system, led to system crashes or hangs.
flipped. Register injection was similarexcept that when the AS discussed earlierecovery in this case requires a reboot of
breakpoint ifed a random bit of a random general-purposéhe entire systemThis involves a long service interruption.
register was flipped. In the reported results, an injection i§urthermore, without additional mechanisms, such as
counted only if it was actually aetted — the breakpoint checkpointing/rollback, rebooting also leads to loss of

IV. Impact of Device Dvier Failures

fired and caused a bit flip. application state.
The outcome of each injection experiment is classified as Table Il. Device drver code injection results
either crash, hang, silent application failure, or non-
manifested. Acrash occurs when a kernel panics or the VM is g)ésntf?g?aration Linux | Xen-base| Xen-IDD
killed by the VMM. A hang occurs when the VM stops —
responding with no »licit report of a crash.A silent Injections 1987 | 2574 2809
application &ilure occurs when no hang or crash is detected System Crash 54.6% 0.0% 0.0%
but the application is unable to complete successfully (see | SyStem Hang 10.3% 0.0% 0.0%
belan). Non-manifestedneans that no errors are observed. PrivvM Crash - 56.7% 0.0%
L ) ) ) PrivWVM Hang - 7.7% 0.0%
_Fault |nject|(_)n in a device drer often cause;_theeknel NetDVM Crash - - 5550
hostlng the drier to crgsh or hang. To facilitate the NetDVM Hang . . 3.0%
experiments, for the Linux and Xen-base targets (see Silent App ilure 11% 17% 2.9%

Section I),the targets were run inside a VM. This allowed the
injection campaign software to resume the campaign after a With the standard Xen configuration (Fig. 1), theide
crash or hang without manual intention [11]. Thus, with  drivers are in the PrivWM, which is isolated from the AppVM.
the Xen-base system target, there were levds of Xen: an  Table Il shows that injection into the E100 \@ni in the
inner-level Xen running inside the VM hosted by the outer PrivWM leads to crashes/hangs of the PrivWM (in 64.4% of
level Xen. Inthis case, injection was done from t@gan injections) and not of the VMM or AppVMHowever, the
injector located in the inndevel Xen. For the rest of the overall effect on the application running in the AppVM is the
configurations, in which device drérs were isolated in their same (fails in 66.1% of injections)This is not surprising
own VM, the target system ran directly on a physical machinesince crashes/hangs of the Wil effectively renders the

A user-lerel ping was wsed to gercise the NIC driers. entire virtualized system inoperabl&hus, it is desirable to
This application, consisting of twprocesses running on femove the device dxiers from the PrivWM and place them in

separate physical hosts, sends a UDP packey dms from @ eparate !D'M. This allows the D\(M to fail ind.ependently
the sender hogt to the target system. Upon daiy of this from the PrivWM and lege the virtualized system intact.
paclet, an acknowledge UDP packet is sent bagken the Fig. 2 shows a configuration wherevie drivers are
tamget is a virtualized system, one of the application processésolated using BMs. The NIC device driver is in the
is run on an AppVM. The network interruption latgnehich ~ NetDVM while all the rest of the drers are in one BM.
is a combination ofdilure detection and reeery lateny, is  This configuration isolates all the device vérs from the
the maximum time between reception of suceesging PrivvM and AppVM and isolates the NIC dea from other
acknowledgements on tisender host. drivers. Asshaown in Table Il,injection into the NIC drxier in

The application process on the target system normallfflis Setup only crashes/hangs the N&D (in 58.5% of
executes for Teconds during which it reves packets before |njept|ons}, Iealng. all other componentg of thg system intact.
reporting normal termination. If there is a netw While this configuration prents driver failures from

interruption, packets are not reeal so he application may Propagiting to the AppvM and the PrivVM, the effect on the
application running in the AppVM (fails in 63.4% of



(every 150ms) wak up and execute a fev instructions.
Privileged VM Device VM Net Device VM  Application VM o ] o
The second heuristic applies to the transmit rings of

e o Unmogtied NetDVMs. Whenan AppVM transmits a packet, it places it
SRS SHETD SRS on the shared ringAn operational NetDVM shouldventually
P —— — — remove the packet from the ring and place a responsegpack

NIC Virtual on the ring. Code in the VMM periodically (ery 100ms)

Interface

Device
Manager &
Control s/w

GuestOS

Driver

Backends Backend e samples the shared ring indices. This code identifies a hang
v | e Interface when it determines that there were packets on the transmit ring

(Frontend)

in one sample but none of these packets were processed and

Xen (VMM) responded to by the NetDVM before thexinsample. This
mechanism cannot be applied to the nezdng since it is not
| Hardware (CPU, Memory, Ethernet, Disk) | known when packets will be reved by the NetDVM.
Figure 2: Xen-IDD - Xen with an Isolated B. Recovery Using Reboot
Device Driver VM When a crash/hang is detected by the VMM, a message is

injections) is the same as with the Xen-base and LinugENt 10 & useevel recovery agent running in the RVM.
configurations. Thisis because failures of the N&fml | hiS message is sent using a shared ring andem ehannel

disrupt the network connectivity of the AppVMWithout that the receery agent sets up with the VMM when it is
some mechanism to rem the faulty NetDVM, the initialized. Wherthe recoery agent is alerted to a crash/hang,
application cannot continue to operate. it recovers the system by pausing the failed NetDVM, booting

a rew NetDVM, and establishing a me frontend-backend
V. Device Driver Recovery connection with the AppVM. As explained belw, this
This section describes NIC der recovery techniques requires: 1nodification of Xens management tool, alaing
that can be used in a virtualized system where the NVieale it to remae acess to the NIC device from a failed Netd;
driver is isolated in a NetBM. Theserecovery techniques are and 2)enhancement of the suspend/resume code in the
based on the assumption that the@rcode is not completely AppVM kernel to facilitate frontend-backend reconnection.
dysfunctional. Rathendriver bugs may lead to failure in rare Fig. 2 shows the system setup for this wecptechnique.
cases, under particular timing and ordering of asynchronous |t might be expected that the first action upon detecting a
events in a system. Such Heiserys [6]are unlikely to recur  crash/hang of a NetDVM would be to degtio. However,
once the duier is reset and the system is in a slightlyfefiént  despite the crash/hang of the NetDVM, the NIC may still be
state. Inaddition, these techniques ardeetfive for driver  riting into the NetlYM’'s memory If the failed NetDVM is
errors that are the result of transient hardware faults. destryed, its memory might be reused by the VMM (e.g., for

The first receery scheme simply detects and reboots a&he nev NetDVM), leading to memory corruptionHence, the
failed NetD/M. While this works and enables the AppVM to failed NetDVM s, initially, only paused, keeping all its
continue, it is also sl The next technique speeds up memoryinstead of being immediately destroyed.
recovery by deploying a \arm-spare NetDVM to tak over A VMM that allovs VMs to directly access PCl\dees
once the primary NetDVMafils. Analysisof this mechanism  must preent concurrent accesses to a single PCI device by
reveals parts of the revery process that can be further multiple DVMs. Hence, Xen's management tools (in the
optimized, leading to theinfal recovery technique that can PpriywM) prevent another VM from accessing the same PCI
reduce network interruption time to less than 10ms. device as a paused VMIn order to all a rew NetDVM to
A. Failure Detection Mechanisms boot and control the NIC, the weNetDVM must be gien
access to the PCl dee. Thereforea minor modification to
leg management tools was done tovaltbe paused Netiiv
to be flagged as no longer accessing the Nid@cde This

NetDVM recovery is initiated after the VMM detects a
crash or hang. Crashes are detected when 1) the crash han

in the VM's kernel maks a hypercall to the VMM or 2) the change allows the meNetDVM to be granted access to the
VMM responds to iligdl VM activity by killing the VM. NIC device. Thefailed NetDVM is destroyed shortly after the

Hangs are diagnosed usingotvheuristics. Thefirst  nay NetDVM is booted, withoutwer being unpaused.
heuristic maintains that a kernel with multiple runnable

processes should be caxttewitching among those processes
The VMM detects context switching by monitoring page tabl
base register (PTBR) changes of the VMI.PTBR changes
are not detected for a spéetf quanta of time (500ms), a hang
is reported.To ensure that PTBR changes occur iraalf-free
VM, the VM executes tvo smple processes that periodically

A new frontend-backnd connection must be established
ébetween the me NetDVM and the AppVM to complete
recovery. This should be transparent to the application on the
AppVM so that there will be no need to modify applications.
Fortunately this ability is already implemented in Xen for VM
checkpointing/restoring. Duringheckpointing of a VM, all
frontend drvers suspend aefity and prepare for systemvig



Table lll. Device drier injection results with recery.
system injections NetDVM NetDVM silent app non successful
configuration crash hang failure manifested recovery
IDD Reboot Receery 568 (code) 54.0% 3.2% 2.8% 40.0% 100.0%
IDD Spare Receery 584 (code) 53.4% 3.4% 2.9% 40.3% 100.0%
IDD Fast Spare Regery | 2856 (code) 55.2% 3.1% 2.6% 39.1% 99.9%
IDD Fast Spare Regery | 1300 (r@ister) 28.6% 3.0% 0.5% 67.8% 99.9%

suspension. During/M restoration, the frontend ders  recovery agent is imoked by a nessage sent from the VMM.
resume activity and transparently reconnect with thedyatk Due to the asynchronous nature of this communication, it
drivers. Unfortunately checkpointing and restoring a VM is takes approximately 0.4s for the re&eny agent to respond to a
slow. To avoid full checkpoint/restore, the suspend/resumedetected NetDVMdilure. Thefollowing paragraphs detail the
code in the AppVM kernel was modified to allondividual  impact of operations (II) and (lll) akke an the recoery time.
frontend dwers to be seleately suspended/resumedJsing In the reboot reaery mechanism, the time to boot ane
this mechanism, the reeary agent directs the AppVM 10 NetDvM includes mapping the NIC to the N&fBI address
transparent'ly reconnect only the netwfrontend dwer to the space and then probing the NI®ost of the boot time is
backend dxier on he nev NetDVM. saved by deploying a warm-spare NedMM. However, the
This recwery technique was wvaluated by performing mapping and probing of the NIC device must still be delayed
fault injection into the code of the E100 devicevdrias  until recorery since the NIC device iscelusively accessed by
described in section lll. Table Il shows the results. the primary NetDVM up to that point.
Recweries were attempted on 325 detected hangs/crashes out e permission to map the PCI NIC device to the
of 568 injections and successfully restored the system 100% RfstpvM’s address space is controlled by a PCl-leak
the time. The mean time of re@y was 7.47s and ranged qyiver [ocated in the PrivVM and a PCI-frontendwdrilocated
from 7.29s to 9.36s. The slowest component of thisvego i, the NetVM. Before the spare NetBM can access the
mechanism was the time required to boot & ™etDVM  \C| the recoery agent issues a request for the spare
(approximately 3s). NetbVM to be gien the access. This process tads
C. Recovery using a Warm-Spare NetDVM approximately 1s to complete due to the required multiple
The booting of a ne NetDVM during recaery can be interactions, via the Xen?tpre, among the veop agent,
avaded by using a warm-spare NetDVM, pausedijting to Xen'’s Lsermanagement utilities, the PCl-baeid driver, and
take over when a NetDVM #ils. Thesystem setup for this the PCI-frontend dver.
recovery technique is similar to the Xen-IDD architecture To restore network conneeiy to the AppVM, a
(Fig. 2), except for the addition of a spare N&B. To  frontend-backnd connection must be established with the
initialize the system, the RWM boots both the spare and spare NetM. The same mechanism used in the NékD
primary NetDVMs, pausing the spare once its OS has bootetkboot technique is used heraitiating and establishing this
During recwery, the recoery agent: 1) pauses thailed  connection requires multiple handshak via the XenStore,
NetDVM, 2) unpauses the spare N&tM, 3) transfers NIC  between the RrtWM and AppVM and between the R¥M
device control to the spare NetDVM, and 4) sets up @& ne and spare NetfM. This takes about 1.8s to complete.
frontend-backnd connection between the spare NetDVM and ¢ memory werhead of keping a spare NetDVM is
the AppVM. Most of the required modiftions are the same 64MB, which is used to run the XenoLinwerkel and
as for the reboot regery technique. In addition, a simple applications to setup and run the network kack Hovever,
mechanism is implemented to inform the PrivWM when tOgjnce the memory content of the spare N&Dis nearly
pause the spare NetDVM during initializatio@pecifically,  jgentical to the primary NetDVM, most of thisehead could
the anVM.momtors an entry in the XenStore that the sparge gliminated by using content-based memory sharing in the
NetDVM writes once it boots. VMM [7]. Since the spare NetDVM is paused, it does not
Results of fault injection into the code of the E100icee  consume anCPU cycles.
driver (Table Ill) shav that recoeries were attempted on 332 Minimizing NetDVM Failover Latency
detected hangs/crashes out of 584 injections and successfully . N
restored the system 100% of the time. The mean time @ The secqnd paragraph of the previous subsection lists the
recovery was 4.52s and ranged from 4.33s to 7.69s. Most Otfwee ope.rat|ons responsible for most of the Iateot
this time was spent: (Ihvoking the receery agent inside the recovery with thg varm-spare Ne'tDM. MOSt. of the !ateny
PrivwM, (Il) transferring control of the NIC device to the of (I) can be eliminated by moving the main functionality of

spare NetDVM, and (lllestablishing a e frontend-backend the recoery agent .|nt.o the VMM'MOTSt of the lateng of (Il)
connection. Aswith the NetD/M reboot scheme. the and (lll) can be eliminated by allowing the spare NetDVM to



-6-

discover and set up the NIC device and form the matw rings between the AppVM and NefM. The spare Netd'M
frontend-backnd connection with the AppVM during system maps these pages into its address space on-the-fly (M2).

initialization, prior to receery. With these optimizations, During recoery, the spare NetBM re-initializes the
recocery entails pausing the ailed primary NetM, N device and network backend\dsi (M6). This involves
unpausing the spare Net®, and performing minor NIC (e jnitializing the DMA rgjions. Furthermoresince the diled
device and network backend re-initialization. NetDVM may corrupt the NIC state, the re-initialization

This recaery technique requires that the primary andinvolves a reset of the NIC (see Subsectidf). Theprivate
spare NetDVMs ha acess to a single NIC device and useshared ring indices in the neivk backend dvier are updated
the same shared rings to perform network communication witlvith current \alues from the shared rings (transmit and
the AppVM. The modifications required for this remmy  receve), so that the spare NetDVM can continue consuming
technique are: (M1YMM modification, allowing it to control requests and putting responses at the locations wherailte f
the recwery of the NetlYM; (M2) VMM modification, NetDVM left off. A new function is added in the netnk
allowing it to remap grant permissions on-the-fly; (M3YIM baclend device dvier in Linux (M7) to allav for this shared
modification, allowing it to redirect vent notifications; ring re-attachment to occur.

(M4) VMM modificati_on, allowing a VM to imoke a rew A kernel module is added to the spare NEYD(MS).
hypercall to pause itself; (MSpodification to Xens FCl  pying system initialization, this module utilizes awne
baclend drver, dlowing PCI device co-ownership; (M&) pypercall to the VMM that pauses the calling VM (M4).
new kernel module in the spare NetDVM to perform NIC\yhen the VMM unpauses the spare NéWD during
device and network baehd re-initialization; and (M73 rew recovery, the spare NetDVM begins to immediatelyeeute

function in the NetDVM network backend \dee drver,  ,de which initializes the NIC device and network backend.
allowing the existing shared ring to be attached to thedvatk

during recoery. All of these modifications together required Since setting up access to the NIC device for the spare

adding 246 lines of code to the Xen VMM, 200 lines of codel\llletD‘_‘/'vI LS 5:10,:1 this step isdm@d to Q/Nstengilr\w/iltializgtioq by
to NetDVM kernel, and 51 lines of code to the PrivwM kernel. 2'OVINY oth the spare and primary e_t s lv _zfmtlv_e
use of the NIC device (M5). This requires a modification to

The system coiguration for this mechanism is similar to {he PC| backend drér in the PrivVM to maintain multiple
the previous subsectioHowever, system initialization difers  ~5nnections (one for each Naf) to a single PCI déce.

in two ways: (1) the spare NetbVM pauses itself after settingconcurrent access to thevite is still prevented by ensuring
up the frontend-ba@nd connection with the AppVM and only one NetDVM is unpaused atyatime.

(2) whenthe primary Net®M boots, it forms a frontend-

baclend connection with the AppVM by mapping in the 100%
shared rings used in the connection between the AppVM ar b
the spare NetbM. VMM code (M1) provides the 70%
functionality of the receery agent. When an error is detected, 60%
this code pauses the failed N&M, initiates unmapping of iggﬁz
some pages from theaifed NetDVM (see below), and
unpauses the spare NetDVM.

30%
20%

In this setup, the AppVM #&ctively has a single netwrk 1822 — e 00

frontend that is connected to dwnetwork backends (spare 11-30 31-10 101-27 40300 451-966 1018-2300
NetDVM and primary NetDVM), with only one netwk time (ms)

baclend actite & a tme. It is transparent to the AppVM . ) ] .

which NetDVM is handling its network requestslence, the Figure 3: Network interruption latene using fast
AppVM is not involved in the receery process, thus reducing failover spare NetDVM

the recoery lateny. (M2) and (M3) implement this ability by
remapping and redirecting grant references arnente

notifications to the aote retwork baclkend. These | ith . L f
modifications require t@ minor changes to the VMMFirst, Teble Ill, with code (rgister) injection, out of 2856 (1300)

hooks are added to change grant references associated with imgctions, 9h7'40/,° (99'5%) Wer: not manifested or t][iglgered
failed NetDVM to refer to the spare NefM. Second,one recogery.fvr\: en it was trlggere ' rea(:y \;V"’.‘IS suc;]cess urin
end of an eent channel is allowed to be disconnected fromgg'?/0 of the ;gezes. II:et e?tvmasest at al ed, the Appr:/M
one VM and reconnected to another VM withowbliing the no longer rec pac t_s ater receery. Fg.3 s ws the
distribution of network interruption times (reomy times)
VM at the other end. . LT i .
_ ) with fault injection in the dvier code. In91% of recoeries,
During recwery, the VMM (M1) remaes from the &iled e network interruption time was less than 10ms. All of these
NetDVM the mapping to pages used farfiers by the shared 5565 were crashes that were immediately detedvabt

% recoveries

Evaluation of this approach consisted primarily of code
and register injection into the E100 devicevelti As shown in



-7-

interruption durationswer 10ms were due to detection latgnc Broadcom Tigon 3, Attansic Atheros L1E, and Intel E1000.
of the hang detectors, ranging between 200ms for the transntost of this time is due to auto-negotiation and PHY training
ring hang detector to 1s for the PTBR hang detectbiere  that must be performed on a reset[10].

were also cases where crashes took as much as 500ms t0 |, most cases, the physical link is not affected when a

detect since the NetDVM kernel was stuck reealgicalling  gajice driver fails. Hence,performing link negotiation is

fault handlers before it finally panicked. rarely necessary for reeery. Thus, as long as the NIC state is
E. Slent Application Failures not corrupted, a full NIC reset can beoiged, thereby

A small portion of injections (less than 3%) caused thePV&rcoming the abee dfficulty with 1Gb NICs. The only
benchmark to fail silently These were the results of errors N€Cessary operation is updating the descriptor rings in the
that disrupted the NetDVMs ability to provide netk NIC. While recorery may fail if the drver failure corrupts the
connectity but failed to be detected by the mechanismd\IC state, the experimental results lveldemonstrate that this
discussed in SubsectidhA. Threeexamples of this class of S unlikely.
errors, that resulted from code injection into the E100 NIC  For the E1000 NIC we made small modifications to the
with the fast receery scheme, are discussed velo driver to dlow the descriptor rings to be updated without

To dlow interrupt number sharing in Linux, interrupt performing a hardware resethe changes consisted of adding

handlers for déce drivers probe their devices to determine if 1° lines of modified versions of existing functions.

they generated the interrupihe first silent failure was caused As part of normal operation, the E1000 NIC caches
by injecting into the code that performs this check, leading theeceve descriptors [10].This poses a problem during reery
interrupt handler to incorrectly determine that the NIC did nosince these cached descriptors contain memory locations
generate the interrupfThis caused the handler to exit without belonging to thediled primary NetlM. Incoming packets
processing the interrupt, leaving the device unusable. using these cached descriptors will be lost, thus increasing

The second silent failure was a result of a fault thafl®ork interruption latenc To avoid this, these cached
changed the condition check in a conditional jumifhis ~ descriptors must be quickly med immediately after
caused a function in the der to incorrectly return an error "€C/€y. Purging is performed by heng the recuoery
code, leading highdevel operations in the dvér to fail. The ~Module in the spare NetDVM send out ping requests
result was that incomplete command sequences were sentifgmediately after reatery so that the returning ping replies
the NIC, preenting it from properly performing the desired flush out the imalid cached descriptors.
function. With the modifications alwe, out of 2289 injecteddults,

The third silent failure was caused byaailf in the code 37% resulted in detectable NetDVMilures. Aoiding the

that allocates e buffers for receied packets after old ones full NIC reset caused more unsuccessful vedes: 18 out of

fill up. The fult prevents the biffers from being allocated, 837 attempted reeeries, compared to 5 out of 2680
and thus, packets could no longer be nesbi attempted reogeries for the 100Mb NICs.In 91% of

detectable dilures, the network interruption latgnés less
than 33ms.Most of the 33ms interruption latgnés due to a

All the results reported so far were for the Intel E100 NIC10ms sleep (actually measured between 10-19ms) xisis e
driver. To determine the extent to which the the fast vecp  as part of the E1000 descriptor ring re-initialization code.
scheme depends on a particular NIC, wauated the scheme When this sleep was rewa, the network interruption
with the RealTek 8139 100Mb NIC. The results with this NIC|ateny was reduced to less than 10ms for 86% of veries.
were similar to the results with the E100 NIGpecifically, However, the number of unsuccessful reedes increased to
out of 1044 injected aults, 58% resulted in detectable 54 out of 745 attempted resies.
NetDVM failures. Receery was successful for all these
detectable dilures. In 87% of recoeries, the netark VI. RelatedWork
interruption time was less than 16ms. Over the last f& years there has been significant interest
in techniques for enhancing system resilieno driver
failure [4, 12,18, 17, 5, 9] Excellent summaries can be found
in the related work sections of awecent publications on the
topic [5, 9]. The main idea in all of these mechanisms is to
isolate drvers from the rest of the system so thataaltly
driver is unlikely to corrupt or crash other parts of the system.
Techniques that do not use virtualization typically require
modifications to the device diér and the OS &rnel. Schemes
that use virtualization pwide stronger isolation but incur
overhead in performance and memory associated with

F. Recovering from Failures of other NIC Drivers

Our scheme is not able to acheefast recwery for 1Gb
NICs without small modifications to thedee driver. A key
to achieving fast res@ry is the ability to quickly reset the
NIC when failing @er to the spare NetBM. Resettingthe
NIC updates the transmit and reeeicescriptor rings in the
device with memory locations from the spare Ne¢ND
Resetting the NIC also re-initializes the hasdevstate, which
may hae keen corrupted by thailed NetD/M. The problem
with 1Gb NICs is that a full reset can ¢akip to 18s to
complete. Thiswas dosened in three different 1Gb NICs:



-8-

virtualization. Havever, dnce virtualization is widely used in injection campaigns.

data centers for other reas¢bs, 2], there is littleadditional
overhead for taking adantage of virtualization to pvide
resilieng to driver failures.

(1]
Most published mechanisms for enhancing resilieioc
driver failure hae been applied to NIC drers. Published
results for netwrk interruptions associated with reeny  [2]

from NIC driver failures range from hundreds of milliseconds
to a fav seconds [4, 9, 17].

(3]
Fraser et al.[4], describe the use of >enDD
architecture to pmide recwoery from NIC driver failure.
Recwery is done by restarting theaifed driver VM and  [4]

reconnecting the guest VM to thewnariver VM instance.
The drver VM uses a customized kernel that boots from RAM
disk, only comes up far enough to initialize the rtw
device, and runs no user procesd®d. The evduation is
done by causing the dgr to perform an illgad memory

(5]

access, leading to guaranteed immediate detection and
recorded network outages of around 275m@sir mechanism (6]
uses primary and warm-sparewdri VMs that recoer from
most drver failures in less than 10ms. Owmakiation is based
on &tensve fault injection and includes arvatuation of a 7]
practical detection mechanism in addition to the vego
procedure. 8l
VII. Conclusionsand Future Work

This paper shows that raewy from NIC driver failures

can be accomplished while maintaining Qdis is done by [9]

exploiting the capabilities of system virtualization, that is
already in wide (and increasing) use for other reasons.
Virtualization not only enforces strong isolation of the NICI[10]
driver from the rest of the system, but, aswghdere, also
provides mechanisms that enable the implementation gf1)
multiple recoery schemes with relatgly little effort.

We havedemonstrated that simple detection mechanisms,
facilitated by virtualization, are able to detect thell2]
overwhelming majority (oer 95%) of manifesteddults in the
NIC driver. Our driver recovery scheme, based on primary
and warm-spare NetDVMs, is able to reeofrom 99.9% of
detected dvier failures. In most cases (91%), netwk
interruptions for receery were in the range of 1-10ms.

While most of our results were based on the E100 100MB4]
NIC, we also imestigated the applicability of our scheme to [15]
other NICs. With the Realtek 8139 100Mb NIC we obtained
similar results. For both of these 100Mb NICs no der
modifications were neededWe determined that for 1Gb
NICs, receery that irvolves a full NIC reset cannot be used
since the reset itself isswy slaw. Using the E1000 1Gb NIC,
we showed that fast reesry is achi@able with small dnver
modifications that alle the reset to bevaided.

(13]

[16]
(17]

(18]

Future vork will include the ealuation of the receery
scheme under multiple workload scenarios, using multiplé-°]
AppVMs and NetDVMs, and with a greater variety afilt

References

P. Barham, B. Dragovic, K. Frase6. Hand, T Harris, A. Ho, R.
Neugebauer I. Pratt, and A. \drfield, “Xen and the Art of
Virtualization] Nineteenth ACM Symposium on Operating Systems
Principles, Bolton Landing, NY, pp. 164-177 (October 2003).

J. P. Gasazza, M. Greenfield, and K. ShiRédefning Sener
Performance Characterization for Virtualization Benchmarkirigtel
Technology Journal 10(3), pp. 243-251 (August 2006).

A. Chou, J. ¥ng, B. Chelf, S. Hallem, and D. Engl&A n Empirical
Study of Operating System Errdrs,18th ACM Symposium on
Operating Systems Principles, Lake Louise, Alberta, pp73-88 (October
2001).

K. Fraser S. Hand, R. Neugebauet. Pratt, A. Warfield, and M.
Williamson, “Safe Hardware Access with the Xen Virtual Machine
Monitor,” 1st Workshop on Operating System and Architectural Support
for the on demand IT InfraSructure (OASS), Boston, MA (October
2004).

V. Ganapathl, M. J. Renzelmann, A. Balakrishnan, M. M. Swift, and S.
Jha, ‘The Design and Implementation of Microdeis, 13th
International Conference on Architectural Support for Programming
Languages and Operating Systems, Seattle, WA, pp. 168-178 (March
2008).

J. Gray, “Why Do Computers Stop and What Can Be Done About It?,
5th Symposium on Reliability in Distributed Software and Database
Systems, Los Angeles, CA, pp. 3-12 (January 1986).

D. Gupta, S. Lee, M. Vrable, S.\&ge, A. C. Snoeren, G.afhese, G.
M. Voelker and A. Vahdat, ‘Dif ference engine: Harnessing Memory
Redundang in Virtual Machines, 8th Symposium on Operating
Systems Design and Implementation, San Diego, CA (December 2008).
W. Gu, Z. Kalbarczyk, R. K. lyerand Z. Yang, “Characterization of
Linux Kernel Behavior Under Errofs,International Conference on
Dependable Systems and Networks, San Francisco, CA, ppl59-468
(June 2003).

J. N. Herder H. Bos, B. Gras, PHombug, and A. S. @&nenbaum,
“ Falure Resilience for Device Drérs” International Conference on
Dependable Systems and Networks, Edinbugh, UK, pp. 41-50 (June
2007).

Intel, “ PCI/PCI-X Family of Gigabit Ethernet Controllers Scdie
Developer's  Manual, http://downl oad.intel .convdesign/networ k/
manual§/8254x_GBe_SDM.pdf (Accessed March 2009).

M. Le, A. Gallagherand Y. Tamir, “Challenges and Opportunities with
Fault Injection in Virtualized Systems$, First International Workshop
on Mrtualization Performance: Analysis, Characterization, and Tools,
Austin, TX (April 2008).

J. LeVasseur V. Uhlig, J. Stoess, and S. GotdJnmodified Device
Driver Reuse and Impred System Dependability via ixual
Machines, 6th Conference on Symposium on Opearting Systems
Design, San Francisco, CA (September 2004).

A. Menon, J. R. Santos,.YTurner G. J. &nakiraman, and W
Zwaenepoel, “Diagnosing Performance Overheads in the XegoaV/
Machine Erironment; First ACM/USENIX Conference on Mrtual
Execution Environments (June 2005).

Microsoft, Hyper-V Architecture, http://msdn.microsoft.com/en-us/
library/cc768520.aspx.

H. V. Ramasamy and M. SchuntéA rchitecting Dependable Systems
Using Mrtualization] Workshop on Architecting Dependable Systems,
Edinburgh, UK (June 2007).

M. Rosenblum and .TGarfinkel, “Virtual Machine Monitors: Current
Technology and Futurerénds, |EEE Computer 38(5), pp. 39-47 (May
2005).

M. M. Swift, M. Annamalai, B. N. Bershad, and H. M. We
“Recwvering Device Drvers; 6th Symposium on Operating Systems
Design and Implementation, San Francisco, CA (December 2004).

M. M. Swift, B. N. Bershad, and H. M. kg “Improving the
Reliability of Commodity Operating SystethsACM Transactions on
Computer Systems 23(1), pp. 77-110 (February 2005).

A. Warfield, Private Communication (July 2008).



