

Keyword(s):

Abstract:

©

Modelling Task Knowledge Structures in Demos 2000

Jean Paul Degabriele, David Pym

HP Laboratories
HPL-2008-94

Task Knowledge Structures, Demos 2000, Modelling

Task Knowledge Structures provide an account of the knowledge structures that people possess and use
when performing a task. Such models can be constructed using various techniques, such as direct
observation, interviews, questionnaires, and others. TKS models can represent either knowledge structures
that are possessed by a specific individual or, alternatively, a number of such individual TKS models can
be amalgamated to form new TKSs. Demos 2000 is tool for specifying and executing mathematical
simulation models of systems. The structure of Demos 2000 models can be considered to be based on the
resources and processes that describe the system components and a stochastic representation of the
(dynamic) environment within which the system resides. This report summarizes our work in translating
models of human behavioural characteristics, as represented by Task Knowledge Structures, into Demos
2000 models.

External Posting Date: August 6, 2008 [Fulltext] Approved for External Publication
Internal Posting Date: August 6, 2008 [Fulltext]

Copyright 2008 Hewlett-Packard Development Company, L.P.

1

Modelling Task Knowledge Structures in Demos 2000

Jean Paul Degabriele David Pym

 jeanpaul.degabriele@gmail.com david.pym@hp.com

Systems Security Lab

Hewlett-Packard Laboratories,

Bristol BS34 8QZ, UK

Abstract. Task Knowledge Structures provide an account of the knowledge structures

that people possess and use when performing a task. Such models can be constructed

using various techniques, such as direct observation, interviews, questionnaires, and

others. TKS models can represent either knowledge structures that are possessed by a

specific individual or, alternatively, a number of such individual TKS models can be

amalgamated to form new TKSs. Demos 2000 is tool for specifying and executing

mathematical simulation models of systems. The structure of Demos 2000 models can be

considered to be based on the resources and processes that describe the system

components and a stochastic representation of the (dynamic) environment within which

the system resides. This report summarizes our work in translating models of human

behavioural characteristics, as represented by Task Knowledge Structures, into Demos

2000 models.

1. Introduction

The work presented in this report is part of a bigger project that is concerned with the

study of human behaviour in information security. The project brings together various

research areas such as Task Knowledge Structures (TKS) [4, 5], human-computer

interaction in security, mathematical modelling, and discrete event computer

modelling using Demos 2000 (henceforth Demos2k) [1, 3]. Demos 2000 models can

be considered to be based on the resources and processes that describe the system

components and a stochastic representation of the (dynamic) environment within

which the system resides. Demos2k models execute as discrete event simulations.

This project aims to build models that incorporate characteristics of human behaviour

in order to analyse security policies and their associated risk mitigation and economic

effectiveness.

The overall methodology of the bigger project, illustrated in Figure 1, provides a

context for this work. We are concerned with developing, from the perspective of

information security, a methodology for modelling whole systems: the users and the

business processes, the technological system and its processes, including the threats

incident upon both of these, and the economic environment within which the system

and its users operate.

Figure 1 indicates our intended methodology. We begin with an empirical study of a

system, capture the information from that study in a conceptual model (e.g., using

TKSs), and then construct a corresponding, executable mathematical model (e.g.

using Demos2k). Iterations in design and analysis are then performed, leading to a

basis for an economic analysis of the value of aspects of the system.

2

Figure 1: The overall modelling methodology

This report summarizes out work in translating models of human behavioural

characteristics, as represented by Task Knowledge Structures, into Demos2k, the

transition in the central box of Figure 1.

Task Analysis is a branch of psychology that examines what people do when carrying

out a task and how they do it. Various contributions in this area led to the belief that

people possess structured knowledge about the tasks they perform which is stored in

long-term memory and processed in working memory [2, 6, 7]. In [5], it is argued that

TKS models can be built which represent the knowledge structures that people

possess and use when performing a task. Such models can be constructed using

various techniques, such as direct observation, interviews, questionnaires, and others.

TKS models can represent either knowledge structures that are possessed by a specific

individual, or alternatively a number of such individual TKS models can be

amalgamated into a single TKS through a process called Generification. Such a TKS

would represent characteristics that are common among individuals when carrying out

a particular task. Thus by modelling such a TKS in Demos2k we can simulate the

average individual performing a particular task and thereby allow us to make further

predictions.

Our modelling philosophy is based on classical applied mathematics, using tools from

algebra, logic, computation theory, queuing theory, and probability theory [1, 3, 8, 9,

10]. Basically, for the purposes of this paper, we consider the following essential

components when modelling a system: environment, resources, and processes. The

complex dynamics pertaining to the environment of a system are represented

stochastically. The notion of locations refers to the spatial, temporal, or the more

abstract spaces inherent in a model. Lastly the aim of a system is to carry out

processes which in turn require some kind of resources. Demos 2000 is a semantically

justified modelling language which, to some extent, captures each of these conceptual

structures [3].

In the sections that follow, we describe our experience in constructing Demos2k

models from Task Knowledge Structures. We made substantive use of the Task

Knowledge Structures and accompanying information listed in [4]. Johnson and Hyde

provide a summary of the experiments they carried out on individuals constructing

jigsaws collaboratively, and the corresponding TKS models they were able to

Empirical
Studies

Conceptual
Modelling

Mathematical

Modelling

Information

System

Information

System
[people, process,

technology]

Validation

Design Exploration
Economic Value Analysis

3

assemble from these experiments. We describe how we built on this work to translate

these TKSs to Demos2k models, and compare results from our simulations with

experimental values listed in [4].

2. A Basis for Mapping TKSs to Demos2K

After having completed this exercise, we feel that we are not yet in a state in which

we can formulate a formal methodology for mapping Task Knowledge Structures onto

Demos2k models. A mapping from TKS to Demos2k depends to some extent on

one’s programming style and the intent for which the model is built. Moreover, we do

not know yet whether it would be possible to formulate such a mapping methodology

without any loss of generality. Nonetheless, we give below a set of intuitive

guidelines on which we based our mapping.

1. Task Knowledge Structures represent the knowledge a human stores in long-

term memory on how to accomplish a task. However a TKS may not provide

all the sufficient information to model a human doing the task under

consideration. In the jigsaw example, the TKS does not give details about the

time required to search a tile from a pile, or not even how the player searches

for a jigsaw tile (i.e. whether he looks for a specific tile to start from or he

picks the first two adjacent tiles he finds). Thus some reasonable assumptions

or observations need to be taken to obtain this missing information: in our

case, we attempted the task ourselves and observed our actions.

2. The purpose of a model is to produce predictive knowledge. So it is necessary

to identify which components influence the aspects we are interested in. In the

jigsaw case we analyse the model solely by the time it takes to complete the

task. Thus abstract TKS sub-tasks such as Create Workspace, which have no

direct influence on the time needed to complete the puzzle, were deliberately

left out.

3. Often a TKS model represents the task-knowledge structure of a single

individual. When constructing a predictive model, the features of interest are

those that are common to the majority of the individuals, as these are

essentially the features we are able to predict. Thus in such circumstances it is

best to use a generified TKS [5], and account for individual peculiarities using

a noise parameter in the model, or by the degree of uncertainty inherit in the

model.

4. A TKS is composed of a goal, sub-goals, sub-tasks, a taskplan, objects and

associated actions. For the sake of integrity it is important not to infringe any

of the structure inherent in the TKS. The sequencing and chunking of sub-

tasks portrayed in the TKS taskplan should be preserved in the Demos2k

model. Additionally, events that occur in random sequence should be

replicated as occurring in a random sequence.

5. A computer model is generally more useful the more flexible it is, in the sense

that it can represent more scenarios that are of interest. So it is generally good

practice to choose an abstraction level that allows the model to portray various

strategies. For instance, in the jigsaw case, one strategy is to dissect the jigsaw

into the main pictorial sections depicted. An alternative strategy is to dissect

the jigsaw into the four borders and the centre. These strategies can be

modelled separately by assigning different values for the number of sections,

4

the tile-search-time, and the probability with which the player consults the lid.

The latter two parameters need to be adjusted since border pieces are easier to

spot.

6. Again for the sake of generality and flexibility, it is best to include factors that

represent the individual’s skill in conducting the task as model input

parameters. Referring again to our model such parameters include the mean

time needed to pick a tile from a pile, the error rate, and how often the

individual needs to consult the box lid.

7. As in every kind of programming, it helps to keep some degree of structure,

and in this case it is better to make this structure conform to the structure of

the TKS. Most important is to separate clearly between sub-goals. This does

not, however, necessarily require each chunk of sub-tasks, corresponding to a

sub-goal, to be implemented as distinct entities.

8. In collaborating models, identify the kind of collaboration that is taking place;

that is, whether it is a form of parallelization, pipelining, or any other.

Moreover, identify any competing behaviour between the collaborating

entities such as contention for resources.

9. The TKS of a task carried out individually is generally different from a TKS

of the same task when carried out collaboratively. It is therefore important to

use the appropriate TKS instead of adapting it for the scenario at hand.

3. Model of a Collaborative Jigsaw Construction Task

Our first attempt was to model the collaborative TKS portrayed in Figure 2. The full

Demos2k model can be found in the Appendix. The model employs three classes:

shakeBox, player, and calculatePileSize. The purpose of shakeBox is for initialization:

it populates the box with randomly oriented jigsaw tiles and it initializes the piles bin

with numbered tokens. The number of tokens in the bin is determined by the model

parameter pilesAmt which reflects the number of piles into which the players will

categorise the jigsaw pieces. Finally, shakeBox signals its completion by placing a

token in the bin startPlay upon which two instances of the class player are created.

The player class is at the heart of the model, as this is where the Task Knowledge

Structure is embodied. The class is segmented into two stages which correspond to the

two sub-goals in the TKS. Stage 1 starts with the player scrutinising the box lid,

represented by the resource Lid, for a time span sampled from an exponential

distribution. Thus while one player is scrutinizing the box lid, the other will be on

hold waiting for his turn to examine the box lid. Once a player had a first look at the

box lid he starts sorting the jigsaw pieces into piles. Each player picks a tile at a time

from the box, flips it if necessary, and then does one of two things, either he places it

directly into the workspace or sorts it into one of the piles. This is determined by the

model parameter placeInWorkSpace, which determines the probability of either case

to occur. Moreover, after picking a tile the player may occasionally consult the box lid

to determine where it belongs.

5

Figure 2: TKS model of a collaborative jigsaw construction (reproduced from [4]).

When both players have finished sorting the tiles, the players simultaneously move on

to the second stage. Each of them gets hold of a pile by grabbing a token from the

piles bin. This is the point where the third class, calculatePileSize, is invoked by the

players. The role of this class is similar to that of a function which calculates the

number of tiles in a pile. Jigsaw construction is modelled by having the players look

for a particular tile among their pile and placing it in the workspace until the jigsaw

section corresponding to their pile is complete. Intuitively it makes sense that the time

taken to find a tile within a pile is in some way related to the size of the pile. We

model this time interval by sampling an exponential distribution to obtain a random

variable, searchTimePerTile, and multiply this value by the pile-size. Thus on average

a player will pick tiles faster as he works through a pile. Moreover while a player is

working through a jigsaw section there is the possibility that he picks the wrong tile.

Such errors are more likely to occur when searching through a large pile and the

probability of errors decreases as the pile gets smaller. For each tile that is picked the

probability of it being the wrong one is given by

 P{error} = (S – 1) / (εεεεS0),

6

in which S is the pile-size before the tile was picked, S0 is the initial pile-size, and εεεε is

a scaling parameter. The pile-size is decremented by 1 such that when the pile-size is

1 no error can occur. If the tile picked is the correct one it is placed in its position in

the workspace, otherwise it is put back in the pile and the player may want (according

to a predefined probability) to consult the box lid. This process goes on until the

jigsaw is completed.

While the structure of the model represents the strategy that is inherent in the TKS,

the model parameters need to be tuned to reflect the users’ skill and the complexity of

the jigsaw. Such parameters are the searchTimePerTile, requireLid4Sorting,

invErrorProb, placeInWorkSpace, etc. The number of piles however depends both on

the strategy employed and the picture portrayed in the jigsaw. One more thing to note

is that the total number of errors does not depend on the number of piles into which

the jigsaw tiles were divided. The average total number of errors only depends on εεεε,

which we call invErrorProb in the model.

4. Comparing Two Strategies for Constructing Jigsaws

The paper by Johnson and Hyde [4] includes a summary of two participants

independently constructing a jigsaw puzzle. There are some important differences in

the way the two participants, A1 and A2, construct the dinosaur jigsaw. Each of the

participant’s strategy is summarized in the TKS models shown in Figures 3 and 4. In

brief, A1 has a more structured strategy and follows it very strictly, while A2 takes a

less structured and more opportunistic approach in completing the jigsaw. A1 first

flips all the tiles, then sorts them, then first completes the frame, attaches pieces to the

frame, and then completes the jigsaw from top to bottom. On the other hand, A2 flips

a tile and either he directly places it in the jigsaw or he sorts it in one of the piles.

Similarly to A1, most of the jigsaw is completed from top to bottom. Another main

difference between the two is the degree of categorization that they employ in sorting

the pieces. While A1 sorted tiles only into two piles, A2 was at different stages

grouping tiles into 4, 5, and 6 piles
*
.

* Private communication with Hilary Johnson

7

Figure 3: A TKS model for A1 (reproduced from [4]).

In order to verify in part the validity of our modelling methodology, we decided to

replicate these two strategies in Demos2k and compare the results with the actual

experimental values. The full Demos2k models for A1 and A2 can be found in the

Appendix. When examining the two models, it is evident that they are fairly similar.

The main differences lay in stages 1 and 2 of the player class. In stage 1 A1 flips all

the jigsaw tiles that are facing down and then examines the box lid before moving to

stage 2 where he sorts all the pieces into 2 piles. In contrast, Player A2, in stage 1,

merely examines the box lid, while in stage 2 tiles are picked, flipped if necessary and

either placed directly into the workspace (with a probability of 10%) or sorted into

one of the piles (with 90% probability). Construction of the jigsaw occurs in Stage 3,

which is done in a similar way to the collaborating model. Participant A2 is

configured to have 5 piles throughout the simulation run. As the effective time to

search a tile in a pile is assumed proportionate to the pile size in the model, this is

another distinguishing factor in the model that makes A2’s strategy faster. It is

reasonable to assume that categorizing tiles among five piles rather than two is a more

complex process. Accordingly the time required for sorting a tile was modelled by

two exponential distributions of mean values 1 and 2 seconds for A1 and A2

respectively. In [4], however, it is claimed that A1 took longer than A2 to sort the

tiles, but since no values are specified we decided to stick with these values. One

more parameter in the models that reflects the players’ skill is the Inverse Error

8

Probability. This was tuned to reflect the experimental values listed in [4]. As can be

seen from the tables below, the numbers of failed attempts in the two sample runs

shown in Table 2 conform with the actual experimental values shown in Table 1.

Figure 4: A TKS model for A2 (reproduced from [4]).

Participant Total Time taken (s) No. of pieces Failed Attempts

A1 1320 120 44

A2 940 120 29

Table 1. Experimental results obtained from [4].

Participant Total Time taken (s) No. of pieces Failed Attempts

A1 1316 120 45

A2 941 120 30

Table 2. Single Sample runs of our Demos2k models.

5. Results, Conclusions, and Future Work

The two models described above were run 1000 times each producing the plots shown

in Figures 5 and 6. We think that the experimental values in Table 1 are sufficiently

close to the means of the two distributions, to sustain the validity of our models, and

proceed with our line of work. Our plans for future work are to use such models to

analyze the impact of security policies on humans and their everyday tasks. In

9

particular, we intend to examine the impact of security policies on employees’

productivity, and use similar models to assess the effectiveness of alternative security

policies. Complex security policies may render users more prone to commit other

security-critical errors which expose the system to further risks.

Frequency Histogram for A1

0

50

100

150

200

250

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

Completion Time (s)

F
re

q
u

e
n

c
y

Figure 5: Frequency distribution of a 1000 sample runs of model A1.

10

Frequency Histogram for A2

0

50

100

150

200

250

300

350

400

15
0

25
0

35
0

45
0

55
0

65
0

75
0

85
0

95
0

10
50

11
50

12
50

13
50

14
50

15
50

Completion Time (s)

F
re

q
u

e
n

c
y

Figure 6: Frequency distribution of a 1000 sample runs of model A2.

Acknowledgements

We are grateful to Brian Monahan, Hilary Johnson, and Mike Yearworth for

discussions about this work.

References

[1] Birtwistle, G. Demos - Discrete event modelling on Simula. Macmillan, 1979.

[2] Card, S.K., T.P. Moran, and A. Newell (1983). The psychology of human-

computer interaction. Hillsdale, N.J.: Lawrence Erlbaum Associates.

[3] Christodolou, A., R. Taylor, and C. Tofts (2000). Demos 2000.

http://www.demos2k.org

[4] Johnson, H. and J. K. Hyde (2003). Towards Modelling Individual and

Collaborative Construction of Jigsaws Using Task Knowledge Structures (TKS).

ACM Transactions on Computer-Human Interaction 10(4): 339-387.

[5] Johnson, P., H. Johnson, R. Waddington, and A. Shouls (1988). Task-related

knowledge structures: Analysis, modelling and application. In D.M. Jones and

R.Winder, Eds. People and Computers: From research to implementation.

Cambridge: Cambridge University Press, 35-62.

[6] Kieras, D and P.G. Polson (1985). An approach to the formal analysis of user

complexity. International Journal of Man-Machine Studies, 22, 365-394.

[7] Payne, S. J. and T.R.G. Green (1986). Task-Action Grammars: a model of the

mental representation of task languages. Human Computer Interaction, 2, 93-133.

11

[8] Pym, D. and C. Tofts (2006). A calculus and logic of resources and processes.

Formal Aspects of Computing 18(4): 495-517. Erratum: Collinson, M., D. Pym,

and C. Tofts (2007). Formal Aspects of Computing 19: 551-554.

[9] Pym, D. and C. Tofts (2007). Systems Modelling via Resources and Processes:

Philosophy, Calculus, Semantics, and Logic. Electronic Notes in Theoretical

Computer Science 172, 545-587. Available from:

http://www.sciencedirect.com/science/journal/15710661 Erratum: Collinson, M.,

D. Pym, and C. Tofts (2007). Formal Aspects of Computing 19: 551-554.

[10] Yearworth, M., B. Monahan, and D. Pym (2006) Predictive Modelling for

Security Operations Economics. Proc. I3P Workshop on the Economics of

Securing the Information Infrastructure. Washington DC, 23-24 October, 2006.

Available from: http://www.hpl.hp.com/techreports/2006/HPL-2007-125.pdf

Appendix

// Demos2k for TKS & Jigsaws

// Parameter initialization

// Scaling constants (hrs = timing unit)

 cons hrs = 3600;

 cons mins = 60;

 cons secs = 1;

 cons msecs = secs/1000;

 cons days = 24 * hrs;

 cons weeks = 7 * days;

 cons months = 28 * days;

 cons years = 365 * days;

// Model parameters

 cons jigsawSize = 120;

 cons pilesAmt = 4;

 cons players = 2;

 cons invErrorProb = 3; // between 2 and 4 sounds reasonable

// Stochastic parameters

 cons probUp = pud[(0.5,0),(0.5,1)]; // 0 = Facing Down,

 // 1 = Facing Up

 cons flipTime = negexp(1 * secs);

 cons scrutinyTime = negexp(5 * secs);

 cons placeInWorkSpace = pud[(0.9,0),(0.1,1)];

 cons requireLid4Sorting = pud[(0.8,0),(0.2,1)];

 cons requireLid4Searching = pud[(0.7,0),(0.3,1)];

 cons examineLid4Sorting = negexp(3 * secs);

 cons examineLid4Searching = negexp(3 * secs);

 cons pickTile = pud[(0.23, 1),(0.32, 2), (0.2, 3), (0.25, 4)];

 cons rand = uniform(0, 1.0);

 cons searchTimePerTile = negexp(500 * msecs);

 cons sortTime = negexp(1500 * msecs);

 cons placeTime = negexp(2 * secs);

// Universal variables

12

 var t = 0;

 var workSpace =0;

 var errors = 0;

// Resources

 res(Lid,1);

 res(lockWS, 1);

 res(lockE, 1);

// Bins

 bin(box, 0);

 bin(piles, 0);

 bin(pile, 0);

 bin(readySorting, 0);

 bin(startPlay, 0);

// Class definitions

class shakeBox = {

 local var i = 0;

 local var up = 0;

// populate box

 while [i < jigsawSize]

 {

 up := probUp;

 putVB(box, [up]);

 i := i + 1;

 }

// set number of piles

 i := 1; do pilesAmt {putVB(piles, [i]); i := i + 1;}

 putB(startPlay, 1);

}

class player(id) = {

 local var up = 0;

 local var pileGroup = 0;

 local var pileSize = 0;

 local var pileVar = 0;

 local var initSize = 0;

 local var pid = 0;

 local var pidVar = 0;

 local var flag = 0;

// Stage 1: Sort or place tiles

 getR(Lid, 1); hold(scrutinyTime); putR(Lid, 1);

 while [getVB(box, [up], true)]

 {

 try [up == 1] then {}

 etry [] then {hold(flipTime);}

13

 try [requireLid4Sorting == 1] then {getR(Lid,1);

hold(examineLid4Sorting); putR(Lid,1);}

 etry [] then {} // Examine Lid for Sorting or Placing

 try [placeInWorkSpace == 1] then

 {

 hold(placeTime);

 getR(lockWS, 1); workSpace := workSpace + 1;

 putR(lockWS, 1);

 trace("workSpace=%v", workSpace);

 }

 etry [] then

 {

 hold(sortTime);

 pileGroup := pickTile;

 putVB(pile, [pileGroup, 0]);

 }

 trace("Player %v (%n) finished Stage 2 (sorting)", id);

 }

// Wait for everyone to finish, so that all piles are complete

 do (players - 1) {putVB(readySorting, [id]);} // announce I am

 // ready to everyone

 pid := 1;

 while [pid < (players + 1)] // check everyone is ready

 {

 try [pid == id] then {}

 etry [getVB(readySorting, [pidVar], pidVar == pid)] then {}

 pid := pid + 1;

 }

// Stage 2: Complete the rest of the jigsaw

 pileGroup := 1;

 while [pileGroup < pilesAmt + 1]

 {

 try [getVB(piles, [pileVar], pileVar == pileGroup)] then

 // take a pile

 {

 syncV(calcPileSize, [pileGroup], [pileSize]); initSize :=

pileSize;

 hold(1 * msecs); // initialise pileSize

 while [getVB(pile, [pileVar, flag], pileVar == pileGroup)]

 {

 hold(searchTimePerTile * pileSize); // model time to

 // search a tile

 try [rand > ((pileSize - 1)/(invErrorProb * initSize))]

then //Prob Correct tile was picked

 {

 hold(placeTime);

 getR(lockWS, 1); workSpace := workSpace + 1;

putR(lockWS, 1);

 pileSize := pileSize - 1;

14

 trace("workSpace=%v", workSpace);

 }

 etry [] then

 {

 getR(lockE, 1); errors := errors + 1; putR(lockE, 1);

 trace("errors=%v", errors);

 try [requireLid4Searching == 1] then

 {getR(Lid,1); hold(examineLid4Searching); putR(Lid,1);}

// consult Lid

 etry [] then {}

 putVB(pile, [pileGroup, flag]); // put tile back

 }

 }

 }

 etry [] then {}

 pileGroup := pileGroup + 1;

 }

 trace("Player %v (%n) is ready", id);

}

class calculatePileSize = {

 local var i = 0;

 local var index = 0;

 local var pileIndex = 0;

 local var flag = 0;

 repeat {

 getSV(calcPileSize,[pileIndex], true);

 i := 0;

 while [getVB(pile, [index, flag], (index == pileIndex)&& (flag

 == 0))]

 {

 i := i + 1;

 putVB(pile, [pileIndex, 1]);

 }

 putSV(calcPileSize, [i]);

 }

}

// Run simulation

 entity(SHAKEBOX, shakeBox, 0);

 entity(CALCULATEPILESIZE, calculatePileSize, 0);

 try [getB(startPlay, 1)] then

 {t := 1; do players {entity(PLAYER, player(#t), 0);

 t := t + 1;}}

 try [workSpace == jigsawSize] then {close;}

